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a b s t r a c t

A laser surface melting treatment (LSMT) was performed on a ZE41 Mg-alloy using an excimer KrF laser.

The laser-melted layer depth depends on the laser scan speed. The morphology and the microstructure

of the laser-melted surface were characterized, thanks to the scanning electron microscopy (SEM).

The melted Mg-alloy presented a homogenous distribution of the alloying elements in the magnesium

matrix. The laser surface melting treatment increased the microhardness of the ZE41 Mg-alloy and

improved its corrosion resistance.

1. Introduction

Magnesium and its alloys, specially the ZE41, have a wide
scope of applications in the fields of aerospace, automotive and
many other industries where weight reduction is a concern,
because of the low densities and high specific strength of these
materials. In fact, magnesium alloys density is only two-thirds of
that of aluminum alloys and a quarter of that of steels. Despite the
versatility of these alloys, a relatively poor resistance to corrosion
and fretting wear makes them less competitive than aluminum
alloys [1]. The most common treatments used to improve these
properties are chemical surface treatments such as anodization
and mordanting process [2]. However these treatments tempora-
rily protect magnesium alloys, they are harmful for the environ-
ment and expensive, and there is no doubt that much more
efficient protection methods are still needed. Laser surface
melting treatment is one of the most interesting materials
processings which can enhance the corrosion and wear resistance
of ZE41 alloy. LSMT has been reported to increase the wear and
corrosion resistance of magnesium alloys [3–11]. Kalimullin et al.
[3] reported that LSMT of MA21 alloy makes it possible to increase
its corrosion resistance in a 3% NaCl solution in comparison with
the untreated alloy by about 30 times with pulsed laser treatment
and by more than 10 times with continuous laser radiation.

According to Kalimullin et al., this corrosion resistance improve-
ment is due to the refinement of MA21 grain structure.
Koutsomichalis et al. [4] noted that an excimer-laser-treated
AZ31B magnesium alloy exhibits higher corrosion resistance in a
NaCl solution and lower microhardness in comparison with the
untreated one. Majumdar et al. [6] indicates that LSMT signifi-
cantly improves the pitting corrosion resistance of MEZ magne-
sium alloy in a 3.5% NaCl solution. It also enhances the
microhardness of the alloy by 2–3 times. These improvements
are attributed to the combined influence of grain refinement,
dissolution of intermetallic phases and retention of alloying
elements in an extended solid solution. Abbas et al. [7],
Guo et al. [8] and Gao et al. [9] also observed a similar enhan-
cement of corrosion resistance of laser-melted AZ31, AZ61, WE43
and AZ91 Mg-alloys. Jun et al. [10] and Zhang et al. [11]
mentioned that both microhardness and wear resistance are
improved by respectively Nd:YAG pulsed and CO2 continuous
Laser surface melting treatment of the AM50 and AZ91D
magnesium alloys. However, Dubé et al. [5] reported no increase
of the corrosion resistance of AZ91D and AM60B alloys in a
sodium solution following the use of a pulsed Nd:YAG laser,
although refinement of microstructure within the laser-melted
layer had been achieved.

Our interest in excimer laser surface melting treatment stems
from its ability to produce extremely high power densities
(41012 Wm�2) and the possibility of applying them with precise
spatial and temporal control to the processed surface. In addition,
the high energy and short pulses of excimer laser associated with
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low reflectivity of metals in the ultraviolet range enable the
modification of thin surface layers with a reduced thermal effect
in the underlying bulk material. Moreover laser is a clean energy
source which does not require a critical environment during
processing.

2. Experimental procedure

ZE41 specimens with dimensions of 20�20�7 mm3 were cut
from the as-cast plate (300�140�15 mm3) which was subjected
to a T6-heat treatment (Quench at 300 1C during 2 h, tempering at
200 1C during 16 h) and was protected by a HAE anodized coating.
The chemical composition of a ZE41 alloy is presented in Table 1.

The magnesium specimens were irradiated in atmospheric
conditions, without an assisting gas, using a Lambda Physik
excimer laser using a KrF gas mixture. The wavelength of the laser
was l¼248 nm and its pulse duration was t¼20 ns. The energy of
each pulse and the repetitive rate of pulses were fixed
respectively at Ep¼100 mJ and F¼100 Hz. The laser beam has a
rectangular shape with dimensions of 24�10 mm2. To perform
laser surface melting treatment, the laser beam was focused
thanks to a planoconvex lens with a focal distance of 130 mm.
The LSTM was carried over a 1�1 cm2 area in a normal incidence
by overlapping several melt tracks with a scan speed (Vb) varying
between 250 and 50mm s�1 and with an overlapping of 50%.
(See Fig. 1).

The general features of the melted surfaces were observed
through macro photography and optical microscopy. Transverse
sections of the laser-melted surfaces were mounted, polished to
1200 SiC and finally etched using a 4% nital solution before being
observed by a scanning electron microscopy (SEM).

The microhardness of the laser-treated and the as-received
magnesium alloy was measured using a Leika VMHT Vickers
microhardness tester using a load and indentation time respec-
tively equal to 0.49 N and 15 s.

The corrosion behavior of the as-received and laser-treated
magnesium alloy was examined by two methods: the first one
consisting in recording the open circuit potentials continuously
for 24 h in 0.5 M NaCl solution at pH¼10 and 293 K and the
second method being the salt-spray test performed as prescribed
in the ASTM B 117-97 standard.

3. Results and discussion

The laser surface melting treatments presented below were
performed under 100 mJ pulse energy, 100 Hz repetitive pulse
rate and a scan speed (Vb) varying between 250 and 50mm s�1.
Laser surface melting treatments were carried out ten times to
ensure their repeatability and to provide enough samples for
corrosion and microhardness tests. Fig. 2 shows the transverse
section of the ZE41 specimen irradiated respectively at 250, 100
and 50mm s�1 scan speeds. The pictures show two zones: the
lower one representing the granular structure of the as-received
ZE41 specimen. The higher zone is the melted layer. Several
measurements of laser-melted layer depth by image processing
prove that the layer depth is uniform for each specimen and it is
inversely proportional to scan speed. Fig. 3 shows the evolution of
the laser-melted layer depth as function of the scan speed.

3.1. Morphology and microstructure of the laser-melted surfaces

After the laser surface melting treatment, the ZE41 displayed a
complex rippled surface morphology. Fig. 4 shows a wavy
morphology: a succession of hollows and hills can be seen on
the irradiated surface of the ZE41 specimen. Each hollow
corresponds to a laser beam track. Such morphology is due to
several causes. The first one is loss of material by evaporation
caused by the high power density (160 MW cm�2) of the laser
beam. This power density is not homogenous within the laser
spot; it reaches the maximum at the centre of the beam and
decreases whenever we approach the beam border. Therefore
evaporation is emphasized at the centre and a hollow is created.
In addition, the high power density brought by the laser pulse
creates a temperature gradient around the irradiated zone. This
temperature gradient induces a gradient of surface-shear stress,
which increases with the distance from the irradiated surface.
Consequently, the molten material is pushed away from the
irradiation centre towards the beam periphery where the surface-
shear stress is the highest. During laser surface melting treatment,
we noticed a creation of plasma on the magnesium alloy surface.
The plasma vapours’ pressure drives shock waves and compresses
the molten material beneath the incident laser beam, enhancing
formation of the wavy topography. The irradiated surface is dark
and covered with a white powder which can be wiped off. This
white powder comes from ionized gas and metal from the plasma
which reacts together and form solid products deposited on the
magnesium surface as an extremely thin film. The dark thin layer
on the irradiated surface is formed by the oxidation of the very
hot laser-melted surface.

Fig. 5 shows the transverse section of a ZE41 specimen treated
with Ep¼100 mJ, F¼100 Hz and Vb¼50mm s�1. This section was
observed by a scanning electron microscope (SEM) after being
mounted, ground to 1200 SiC, polished with diamond suspensions
to 0.05mm and finally etched using a 4% nital solution.

As mentioned before, pictures present two zones, the higher
one being the laser-melted layer. It has a uniform depth of 70mm
(Max¼73mm, Min¼69mm). The lower zone represents the
structure of the as-received ZE41 specimen. This structure is
composed of magnesium grains having an average size of 70mm
and surrounded by intermetallic compounds, where alloying
elements were held. In the laser-melted layer, we cannot observe
a crystalline structure because the crystallites are extremely
small. We can notice also that there is no intermediary zone
between the laser-melted layer and the granular structure
because of the rapid heat exchanges during heating and
cooling processes. In fact, a small surface of the magnesium alloy
absorbs a quantity of the laser energy in an extremely short

Table 1
Chemical composition of ZE41.

Alloying elements Zn TR Zr Mn Si Cu Mg

% Weight 3.21 1.23 0.83 0.013 0.009 0.04 94.668

Fig. 1. Schematic diagram of the experimental set-up for laser surface melting of

ZE41.
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Fig. 3. Evolution of the laser-melted layer depth as function of the scan speed.

Fig. 4. Morphology of the irradiated surface.

Fig. 2. SEM micrographs of laser-treated surface cross-sections: (a) Vb¼250mm s�1

(�500), (b) Vb¼100mm s�1 (�500), (c) Vb¼50mm s�1 (�150).



time (20�109 ns). A very thin layer melts and reaches high
temperatures, while the surrounding mass of material is steel
cold. Hence, the melted zone is subjected to a high cooling rate
and there is not enough time for the heat affected zone to be
formed.

3.2. Microhardness improvement

The microhardness of the treated specimen was measured
within a laser and a non-laser-melted zone. These measurements
are not taken with respect to the depth of the melted zone
because it is too thin (70mm) to perform several indentations on
it, but we carried out many measurements along the melted zone
in the different laser tracks to see whether microhardness is
uniform (see figure). Each indentation is done under a load of
0.49 N during 15 s with a Vickers indenter. Fig. 6 shows the
microhardness measurements along the two zones. From this
figure it can be observed that the microhardness of the laser-
treated magnesium alloy is higher than that of the as-received
specimen. The averages of the microhardness values in the
laser-melted layer and in the bulk are respectively 124 and

72 HV, these results are confirmed in two other samples treated in
the same conditions. The laser surface melting treatment has
improved the microhardness of the ZE41 by a factor of about
170%. This improvement may be attributed, in the case of a
crystalline material, to the grain refinement of the metallurgic
structure and the homogenous distribution of the alloying
elements in the magnesium matrix. The formation of new solid
phases by precipitation can also increase microhardness. Whether
the melted layer is amorphous, this non-ordered material can
acquire better mechanical properties such as hardening.

3.3. Corrosion resistance improvement

Fig. 7 shows open-circuit corrosion potentials for the as-
received ZE41 and its laser-modified surface. This test was
performed twice in a 0.5 M NaCl solution at pH¼10 and 293 K.
The open circuit potentials were recorded continuously for 24 h
of immersion using a saturated calomel reference electrode.
Comparing the two curves (Fig. 7), we can notice that the
corrosion potentials of the alloy were increased by laser surface
melting treatment by up to 117 mV after 24 h. Therefore, the
laser-treated alloy became nobler than the untreated one [12].
This improvement in the corrosion resistance is confirmed twice
by salt-spray tests carried out with respect to the ASTM B 117-97
standard. As shown in Fig. 8, a ZE41 specimen – presenting a
10�10 mm2 laser-treated surface and a similar untreated surface
– is exposed to a KCl salt spray (5 mass% KCl solution, pH¼6.9)
in a closed chamber maintained at 35 1C. After two hours of
salt-spray exposure, several corrosion pits are observed in the
untreated surface while the laser-treated layer is unaltered. Fig. 8
shows a completely corroded as-received alloy after 131 h of
KCl spray exposure, although the treated surface is still intact.
This better resistance to corrosion can be attributed to the
microstructure transformations, due to rapid cooling of the laser-
melted alloy [13]. These transformations lead to non-equilibrium
microstructures which are more resistant to corrosion. The
alloying elements added to the magnesium a-phase matrix
improve the resistance corrosion of the ZE41 alloy. In
equilibrium microstructures, these elements are localized in
grain boundaries because of their low solubility in the Mg a-
phase. However, at high temperature, these alloying elements are
more soluble in Mg and with a rapid cooling of the melted
material, they are caught in the magnesium a-phase which
increases the concentrations of alloying element in the a-solid
solution and makes them much more efficient for corrosion
protection of a ZE41 alloy. In addition, LSMT resulted in significant
refinement of the granular microstructure due to the rapid
cooling of the melted material producing therefore a more
uniform distribution of the rare earth elements.

The cooling rate of the laser-melted layer plays an important
role in microstructure transformations within the material. This
cooling rate depends on the laser parameters such as laser energy
pulse, laser scan speed, laser frequency and pulse duration. We
noted in Section 3 (Fig. 3) the influence of the laser scan speed on
the laser-melted layer depth, but SEM observations show that the
melted zone has the same microstructure for the different laser
scan speeds. The cooling rate of the material also depends on the
boundary and initial conditions such as free or forced convection
and initial material temperature. If these parameters change so
that the cooling rate is slow, then the alloying elements –
uniformly dispersed in Mg a-phase at high temperature – are able
to move to grain boundaries during the cooling process, which
reduces their effect in enhancing corrosion resistance. For these
reasons, we performed laser surface melting treatments on
two samples preheated to 373 and 673 K. SEM observations

Fig. 5. SEM micrographs of laser-treated surface ZE41 cross-sections, Vb¼50mm s�1.



(not reported in this article) show no significant changes in
preheated microstructures compared to non-preheated ones.
Consequently, we can say that laser surface melting treatments

carried out under the conditions mentioned above generate similar
microstructures, and therefore similar resistance to corrosion.

As noted in Section 3.1, the laser-melted zone displays a
rippled surface morphology with several asperities, especially in
laser track borders (Figs. 4 and 5). These asperities can give rise to
crevice corrosion [14]. Examining the sample after 24 h of
immersion in a 0.5 M NaCl solution, we find that this surface
was uniformly corroded. We cannot determine whether crevice
corrosion took place or not. In addition, the salt-spray test shows
that, after 131 h of exposure, the laser-treated surface is intact,
and devoid of any sign of crevice corrosion. Knowing that the later
type of corrosion needs an incubation time, after which the
corrosion process begins to develop rapidly, this incubation time
may be longer than 131 h. Therefore we cannot detect it during
the tests performed.

4. Conclusion

� A laser surface melting treatment of ZE41 Mg-alloy was carried
out by a KrF excimer laser. Under fixed laser power and spot
size, the depth of laser-melted layer depends on the scan speed
of the laser beam. The maximum laser-melted layer depth
reached in this study is 70mm.
� The surface of the laser-treated magnesium alloy showed a

wavy oxidized topography.
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� The laser surface melting treatment resulted in significant
refinement of the ZE41 microstructure.
� The laser surface melting treatment improved the microhard-

ness of the ZE41 by a factor of about 170%. This improvement

Fig. 8. Evolution of the corrosion in a salt-spray room of a LSMT and an as-

received ZE41 alloy: (a) after 2 h of exposure and (b) after 131 h.

may be attributed to the grain refinement of the metallurgic
structure.
� The laser surface melting treatment of ZE41 improved the

corrosion resistance in a 0.5 M NaCl solution of pH 10 at 293 K
and under a salt-spray exposure. The improved corrosion
behavior is associated with a refinement in the alloy’s micro-
structure and the uniform distribution of alloying elements.
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