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a b s t r a c t

Micro–macro simulations of polymeric solutions rely on the coupling between macroscopic conservation
equations for the fluid flow and stochastic differential equations for kinetic viscoelastic models at the
microscopic scale. In the present work we introduce a novel micro–macro numerical approach, where
the macroscopic equations are solved by a finite-volume method and the microscopic equation by a lat-
tice-Boltzmann one. The kinetic model is given by molecular analogy with a finitely extensible non-linear
elastic (FENE) dumbbell and is deterministically solved through an equivalent Fokker–Planck equation.
The key features of the proposed approach are: (i) a proper scaling and coupling between the micro lat-
tice-Boltzmann solution and the macro finite-volume one; (ii) a fast microscopic solver thanks to an
implementation for Graphic Processing Unit (GPU) and the local adaptivity of the lattice-Boltzmann
mesh; (iii) an operator-splitting algorithm for the convection of the macroscopic viscoelastic stresses
instead of the whole probability density of the dumbbell configuration. This latter feature allows the
application of the proposed method to non-homogeneous flow conditions with low memory-storage
requirements. The model optimization is achieved through an extensive analysis of the lattice-Boltzmann
solution, which finally provides control on the numerical error and on the computational time. The
resulting micro–macro model is validated against the benchmark problem of a viscoelastic flow past a
confined cylinder and the results obtained confirm the validity of the approach.

Ó 2013 Elsevier B.V. All rights reserved.

1. Introduction

One of the most commonly adopted practices for the simulation
of dilute polymeric suspensions relies on macroscopic constitutive
equations for the polymeric extra stress, derived from molecular
models and solved via well-established numerical methods [1].
The advantage of this approach is the low computational cost asso-
ciated, the drawback is that some kinetic models does not have a
closed-form continuous counterpart. With regards to the finitely
extensible non-linear elastic (FENE) model for example, a rheolog-
ical law can only be derived under closure approximations, i.e.
FENE-P, FENE-LS [2]. The resulting models are then able to phe-
nomenologically describe the basic flow features but the underly-
ing theoretical assumptions can hinder the retrieval of relevant
viscoelastic phenomena.

In a more general modeling strategy, the kinetic origin of the
molecular models is retained [3]. Methods using this approach
are generally described as micro–macro models, due to the sepa-
rated solution of the micro and macroscales. Continuity and

momentum equations are solved using continuous equations
(macro-scale) and kinetic equations are solved by stochastic or
deterministic methods (micro-scale) [4]. In this framework, one
of the most popular methodologies is the CONNFFESSIT approach,
where a finite element solution of the macroscopic equations is
combined with stochastic simulations for the dumbbell configura-
tion [5]. One of the major issues concerned with this approach is
the high computational expense and the embedded statistical
noise, which can be filtered using variance reduction techniques
[6]. Another similar and commonly used approach is the Brownian
configuration field method [7]. This method already embeds effi-
cient variance reduction, as long as individual molecules are clus-
tered in continuous configuration fields according to their initial
configuration and applied force, but the computational cost of
the stochastic simulation is anyway a limit.

An alternative approach for noise reduction and faster compu-
tations consists in the solution of an equivalent Fokker–Planck
equation for the probability density of the dumbbell configuration.
However, a literature review reveals that due to the dimensionality
of the problem and the lack of efficient numerical methods to solve
the Fokker–Planck equation, little progress has been done in this
framework [4] and no method prevail. Relevant recent work about
the direct solution of the Fokker–Planck equation for complex
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flows relies on a Galerkin spectral element technique for 2D [8] and
its extension to 3D [9]. Another group of promising methods are
those that approximate the solution of the Fokker–Planck equation
reducing the dimensionality of the problem. This order-reduction
can be done a priori, like in the lattice-Fokker–Planck method
[10], on line like in the proper generalized decomposition [11] or
a posteriori like in the proper orthogonal decomposition [12]. All
these techniques aim to systematically reduce the degrees of free-
dom and therefore the computational expense.

In this work we focus on direct deterministic numerical meth-
ods, therefore no approximation occurs beyond mesh resolution.
The proposed approach relies on a previous work by Ammar [13]
about a lattice Boltzmann solution of the Fokker–Planck equation
for homogeneous flows. Recently this method has been also theo-
retically analyzed [14] and applied for the solution of a population
balance equation [15] and for the Fokker–Planck equation [16].
However, none of the previous works [13–16] deals with the cou-
pling of the kinetic solution with macroscopic fields, thus we
investigate efficient ways to exploit it in multi-scale simulations.

In the proposed micro–macro model, the macroscopic equa-
tions are solved by a finite-volume method using the commercial
solver ANSYS Fluent

Ò

v14.0, while the microscopic equation is
solved by a lattice-Boltzmann method. The Fokker–Planck equa-
tion is solved using an operator-splitting procedure that allows
to solve the configurational part by a GPU implementation of the
lattice Boltzmann method and the physical convection by a finite
volume method. The operator-splitting indeed allows us to trans-
port only viscoelastic stresses instead of the whole distribution
function defined in the configuration space. Consequently, algo-
rithms with low-memory requirements can be formulated.

The outline of the paper is as follows: the governing equations
for the polymeric suspension and a derivation of the stochastic
equation for the FENE dumbbell model are firstly presented; suc-
cessively, the equivalent Fokker–Planck equation is introduced
(Section 2). In Section 3, the solution and coupling strategy is de-
tailed together with the numerical methods. Section 4 comprises
the numerical analysis of the sub-grid solution, the validation of
the coupled model and its optimization. The details of the GPU
implementations and the relative coupling with the macroscopic
solver are reported in Appendix C. A brief summary of the results
obtained and an outlook on further developments concludes the
paper (Section 5).

2. Theoretical model

2.1. Hydrodynamic system

Let us consider a polymeric solution as a blend between a
Newtonian and a viscoelastic fluid. Assuming the flow to be incom-
pressible and isothermal, mass and momentum conservation
reads:

rx � v ¼ 0; ð1Þ

q
@v

@t
þ qv � ðrxvÞ ¼ ÿrxpþrx � r; ð2Þ

where q is the density, p the pressure, v the velocity vector and the
subscript x denotes operators in the physical space. The total stress
tensor r, embeds contributions from both the Newtonian solvent rs

and the polymeric solute rp, therefore r = rs + rp. Denoting by ls

the dynamic viscosity of the solvent, rs is given as:

rs ¼ lsðrxv þ ðrxvÞyÞ ¼ ls
_c; ð3Þ

being _c the rate of strain tensor. In order to close the hydrodynamic
system, an additional material model must be solved for the visco-
elastic contribution rp.

2.2. Viscoelastic model

In the simplest micro-mechanical approach for polymer rheol-
ogy, molecular chains are modeled by two beads and a spring con-
nector, that is by a non-rigid dumbbell immersed in a fluid. A
general kinetic model can then be derived considering the equa-
tions of motion of the beads in the dumbbell, namely the equilib-
rium of inertial, frictional, Brownian and connector forces [17]. For
a jth bead located in ri, the equilibrium yields the so called Langevin

equation:

mj

d

dt

drj
dt

ÿ v rj
ÿ �

� �

¼ fj
drj
dt

ÿ v rj
ÿ �

� �

þ r
dWj

dt
þ Fc

j ; ð4Þ

with m being the mass of the bead, f a drag coefficient, r a coeffi-
cient for the standard Wiener process W and Fc the connector force.
Indicating with kB the Boltzmann constant and T the absolute tem-
perature, r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

2kBfT
p

from the principle of equipartition of energy
[1]. Assuming high friction regime and thus over-dumped Brownian
dynamics [18], the inertial term on the left-hand side can be
dropped and, indicating with n = r2 ÿ r1 the end-to-end vector of a
dumbbell, yields the following (Itô) stochastic differential equation:

d

dt
n ¼ j � nÿ 2

f
FcðnÞ þ

ffiffiffiffiffiffiffiffiffiffiffi

4kBT
f

s

d

dt
W; ð5Þ

where W is a standard Brownian motion ðW2 ÿW1Þ=
ffiffiffi

2
p

and the
symbol j has been adopted for the transpose of the velocity gradi-
ent tensor (rxv)

 . The peculiarity of the dumbbell model lies in the
expression of the connector force law Fc(n). In this work we are con-
cerned with the finitely extensible non-linear elastic model, there-
fore indicating with h the spring constant and n0 a finite
extensibility parameter, the connector force reads:

FcðnÞ ¼ h

1ÿ knk2=n20
n; ð6Þ

with k � k indicating vector norm. This entropic force law, originally
proposed by Warner [19], exhibits linear behavior for small exten-
sions and the finite length n0 in the limit of an infinite force. In a sto-
chastic approach, Eq. (5) should then be stochastically solved for the
dumbbell configurations in the random process W with the spring
force law (6).

Using stochastic analysis, the ordinary differential Eq. (5) can be
associated with a partial differential equation for a probability den-
sity function (PDF), which can then be deterministically solved in-
stead of a large number of realizations for the Brownian driver. In
this case the resulting probability density function w(x,n, t) satis-
fies the Fokker–Planck equation [20]:

@w

@t
þ v � ðrxwÞ þrn � j � nÿ 2

f
FcðnÞ

� �

w

� �

¼ 2kBT
f

r2
nw; ð7Þ

which is also called Smoluchowski equation in polymer science. In-
dex n on operators indicates that they act in the configuration space.
Due to its dimensionality, the solution of Eq. (7) is non-trivial and
we proceed as detailed in the next section.

3. Numerical methods

3.1. Solution strategy

In order to solve the Fokker–Planck equation directly, we con-
sider a time-splitting-like procedure similar to that proposed by
Lozinski and Chauvière [8]. Following this idea, the operators act-
ing in the configuration space are separated from those acting in
the physical space. In this way Eq. (7) can be firstly solved in the
configuration space for an intermediate distribution function wn� ,



which is then used for the solution in the physical space. We adopt
a mixed explicit/implicit framework:

wn� ÿ wn

Dtn
¼ ÿrn � j � nÿ 2

f
FcðnÞ

� �

wn

� �

þ 2kBT
f

r2
nw

n
; ð8Þ

wnþ1 ÿ wn�

Dtx
þ v � ðrxw

nþ1Þ ¼ 0; ð9Þ

thus Eq. (7) reduces to an advection–diffusion equation in the con-
figuration space (8) and an advection equation in physical space (9).
Let us now firstly focus on Eq. (8): the space scaling is achieved con-
sidering a relaxation time h = f/4h and a dimensionless finite exten-
sibility parameter b ¼ n20h=kBT , therefore n is made dimensionless
with

ffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=h
p

, j with hÿ1 and time with h, thus the resulting dimen-
sionless equation reads:

wn� ÿ wn

D~t~n
¼ ÿr~n � ~j � ~nÿ 1

2
Hð~nÞ~n

� �

wn

� �

þ ~ar2
~nw

n
; ð10Þ

with the dimensionless diffusion coefficient being ~a ¼ 1=2 (see Sec-
tion 3.3). From now on, the convection vector of w in the configura-
tion space (terms in round brackets on right-hand side of Eq. (10))
will be indicated with u for convenience. The reader should notice
that the scaling of the velocity gradient tensor j represents the link
between the physical velocity field and the convection vector u

through the relaxation time h of the polymer. On the basis of this
consideration, we define a microscopic (or local) Weissenberg num-
ber that will be used later, based on the second invariant of the rate
of strain tensor as:

~j ¼ j=hÿ1 ! Wim :¼ h

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1
2
_c : _c

r

: ð11Þ

Using the same scaling parameters as above, the connector
force law Fc(n) in Eq. (6) is also made dimensionless as:

Hð~nÞ ¼ 1

1ÿ k~nk2=b
: ð12Þ

Eq. (10) with the connector force law (12) is therefore the final
dimensionless equation to be solved in the configuration space. We
assume the dumbbells to be always laying in the same plane,
therefore the configuration space is two-dimensional and the
dumbbell extensibility domain (support of the PDF) results in a
disc of radius

ffiffiffi

b
p

. Eq. (10) is solved for a solution of wn� for the local
convection vector u at each point in a domain. The details about
the numerical method together with its optimization will be exten-
sively discussed later. The obtained intermediate wn� should be
convected in physical space by Eq. (9) according to the second
stage of the operator-splitting procedure. However, we note that
the convection of the full PDF in Eulerian framework would require
a prohibitively amount of data to be stored and transported. This
issue can be overcome considering that the final target for the
hydrodynamic system is the viscoelastic stress tensor. Therefore,
we proceed by computing an intermediate stress tensor, which is
convected in physical space in place of the relative distribution.
Being hh � ii the ensemble averaging operator, the intermediate
dimensionless viscoelastic stress tensor ~rn�

p is calculated from wn�

using the Kramers expression [3]:

~rn�
p ¼ hhHð~nÞ~n
 ~nii ÿ I ¼

Z

k~nk2<b

wn� ðHð~nÞ~n
 ~nÞd~nÿ I: ð13Þ

Applying the ensemble average to Eq. (9) yields:

~rnþ1
p ÿ ~rn�

p

Dtx
þ v � r~rnþ1

p

� �

¼ 0: ð14Þ

In the iterative solution adopted, this procedure is formally
equivalent to the convection of the PDF before computing stresses.
Furthermore, the conservation of stresses is analogous to the

conservation of the second order moment of the distribution,
which is actually the target quantity. The advantage of this ap-
proach is that the second stage for the solution of the Fokker–
Planck Eq. (9), reduces to the convective transport of three scalar
quantities, one for each component of the symmetric stress tensor.

Finally, the dimensionless stress tensor is scaled-up to its corre-
sponding in the physical space, to serve as volumetric source term
in the momentum Eq. (2). Indicating with nc the number of poly-
mer chains per unit volume, an equivalent polymer viscosity can
be defined as lp = hnckBT and the extra stress is scaled as [21]:

rp ¼
lp

h

bþ 4
b

� �

~rnþ1
p : ð15Þ

3.2. Finite volume method

The macroscopic governing Eqs. (1) and (2) and the transport of
stresses (14) are solved by finite volume method (FVM). In this ap-
proach, transport equations are numerically solved on a discretized
computational domain (mesh) and the conserved variables are cal-
culated at cell centers. Partial differential equations are therefore
converted to algebraic equations by integration about the cells
(or control volumes), for example Eq. (2):
Z

Vc

q
@v

@t
dV þ

I

qv � rxvð ÞdA ¼
I

ðÿrxpþrx � rÞdA: ð16Þ

Eq. (16) is then applied to each control volume and its neighbor-
ing cells in the domain, resulting in a system of algebraic equations
with sparse coefficient matrix to be solved. Fluxes at cell faces,
which are required for convective terms, can then be interpolated
using several numerical schemes: we adopt a third order quadratic
upwind scheme (QUICK) for momentum (2) and transport of stres-
ses (14) and a second order scheme for pressure interpolation. The
Semi-Implicit Method for Pressure Linked Equations (SIMPLE) is
chosen for the pressure-velocity coupling. For the sake of clarity,
we remark that despite the hyperbolic nature of Eq. (14), the solu-
tion is sufficiently smooth to be solved with a third order scheme.
The interested reader can refer for example to [22] for details on
the methods.

3.3. Lattice Boltzmann method

The advection-diffusion equation for the FENE model (10) is
solved by lattice Boltzmann method (LBM). This mesoscopic ap-
proach relies on the Boltzmann transport equation, whose discrete
form in the Bhatnagar–Gross–Krook (BGK) approximation of the
collision operator, reads as [23]:

fið~nþ cid~t;~t þ d~tÞ ÿ fið~n;~tÞ ¼ ÿ1
s
ðfið~n;~tÞ ÿ f eqi ð~n;~tÞÞ; ð17Þ

with d~t being the time step, fi the discrete particle distribution func-
tions and ci the associated microscopic velocity vectors. The equilib-
rium distribution function f eqi can be derived, for example, via
second-order Taylor expansion in the Mach number of the Max-
well–Boltzmann equilibrium [24]:

f eqi ¼ 1þ ciu

c2s
þ ðciuÞ2

2c4s
ÿ kuk2

2c2s

 !

xiw; ð18Þ

where cs is the lattice speed of sound that, indicating with d~n the lat-
tice spacing and thus c ¼ d~n=d~t the lattice speed, is defined as
cs ¼ c=

ffiffiffi

3
p

. The reader should notice that in this case we retain the
tilde notation for space and time for analogy with the equation
being solved (10), but rigorously we should consider dimensionless
lattice units. Macroscopic quantities can be recovered from the
moments of the distribution function:



w ¼
X

i

fi ¼
X

i

f eqi ; ð19Þ

wu ¼
X

i

cif
eq
i ; ð20Þ

w uuþ c2s I
ÿ �

¼
X

i

cicif
eq
i ; ð21Þ

which also allow to recover the macroscopic Eq. (10) by multi-scale
expansion and thus the following expression for the relaxation time
(see Appendix A for details):

s ¼
~a

d~tc2s
þ 1
2
: ð22Þ

Given the advective–diffusive nature of Eq. (10), the numerical
solution can be carried out on two lattice topologies, D2Q9 and
D2Q5 (Fig. 1). The lattice constants for both stencils can be found
in Appendix B. The domain length l is imposed to be 20% larger
then the domain of existence of the PDF, therefore indicating with
N the number of nodes, the lattice spacing d~n is given by l/N.

3.4. Coupled numerical algorithm

The numerical solution of the coupled model has been carried
out using the commercial CFD code ANSYS Fluent

Ò

v14.0. The lat-
tice Boltzmann solution is called at cell centers as a sub-grid rou-
tine via compiled-C user defined function (UDF). The numerical
procedure can be summarized as follows:

1. solution of the governing equations for v and p by finite volume
method: Eqs. (1) and (2);

2. sub-grid lattice Boltzmann solution of the FENE kinetic equa-
tion: Eq. (10);

3. computation of the local viscoelastic stress tensor: Eq. (13);
4. convective transport of the viscoelastic stresses by finite vol-

ume method: Eq. (14);
5. addition of the extra-stress to the momentum equation: (Eq. 2).

The procedure is iteratively repeated until global convergence.
The internal convergence criterion for the FVM iterations (step 1
and 4 of the above algorithm) is a 10ÿ8 residual, while for global
convergence (between step 5 and 1 of the next loop) is 10ÿ4. The
standard test case of the viscoelastic flow around a confined cylin-
der (used for the validation, see Section 4.2) has a steady-state
solution. Thus, a proper choice of the time steps, both in the config-
urational and physical space, is needed. The configurational-space
time step Dtn is the one needed to reach the steady state of the lo-
cal viscoelastic stress, which is dynamically checked in each cell. It
should be noticed that several internal time steps in lattice units d~t
are needed to reach Dtn. The physical-space time step Dtx is chosen

in order to obtain an equilibrium between accuracy and perfor-
mance, as done in other operator-splitting approaches [9].

4. Results and discussion

4.1. Sub-grid solution analysis

In this section, the indexes introduced in Section 3.1 are omit-
ted for readability. We analyze the sub-grid solution of the Fok-
ker–Planck equation by a lattice Boltzmann method in terms of:
its relaxation towards equilibrium, evolution to steady-state solu-
tions, numerical errors, stability range and computational time.

The relaxation of the probability density wð~n;~tÞ to equilibrium is
tested considering that for null velocity gradient ~j, an analytical
solution for Eq. (10) can be found in the form [13]:

weq ¼
Hð~nÞÿb=2

R

Hð~nÞÿb=2
d~n

; ð23Þ

which for a dimensionless dumbbell extensibility b = 10 (constant
throughout the paper), yields the equilibrium distribution shown
in Fig. 2(a). Given an initial distribution function w0 (constant in
this case), satisfying the normality condition

R

wð~nÞd~n ¼ 1, the relax-
ation rate and error convergence are analyzed by an ‘2 – norm with
respect to the reference solution weq defined as:

kek2 ¼ 1
N

X

N

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
eq ÿ w2

~t

q

; ð24Þ

Fig. 1. Lattices and relative discrete distribution functions: five links for D2Q5
(black color) and four additional links for D2Q9 (gray diagonals).
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being w~t the distribution function at time ~t. The convergence crite-
rion for relaxation is a 10ÿ8 residual calculated as backward finite
difference on the norm. The analysis for the two lattices shows that
the error of the 8-neighbors lattice is slightly larger than that of the
4-neighbors one (see Fig. 2(b)).

With regards to the analysis of non-null ~j gradient, we examine
the time evolution of the shear stress ~rpxy for a start-up planar Cou-
ette flow ½0; ~jxy;0;0�. The initial distribution function w0 is in this
case (as in the rest of the paper) given as Eq. (23). According to
its definition (11), in this case the local Weissenberg number cor-
responds to the magnitude of the component ~jxy itself. The result-
ing steady-state PDF for Wim = 5 is shown in Fig. 3(a), while the
stress evolution for varying Wim is shown in Fig. 3(b). The error
analysis has been carried out for Wim = 1 and Wim = 5 and is shown
in Fig. 4(a). To allow a proper visualization of the comparison, the
shear stress has been normalized using the value obtained with the
highest number of nodes ~rpxy=~r

ref
pxy for each case. Notice as for a

higher Wim the solution requires a higher number of nodes to con-
verge, in particular for the D2Q9 lattice. This behavior can be asso-
ciated with the shape of the PDF at steady-state, that for lowerWim
is closer to the initial condition. More details about error analysis
of lattice Boltzmann methods for Fokker–Planck equations can be
found in [13,16].

An analysis of the stability domains for the two tested lattices
has been also carried out for Wim in the range 1–10. The results
show that the stability range of the D2Q9 is larger than that of
the D2Q5 lattice in the region of low Wim and high DoF

(Fig. 4(b)). Despite the increased stability, the error of the 8-neighbors
lattice is also slightly larger than that of the 4-neighbors one
(Fig. 4(a)).

Table 1 shows the comparison of the computational time re-
quired by the two lattices to converge to steady-state for the
start-up plane Couette flow at Wim = 5, using the minimum relax-
ation time s = 0.55 and the maximum stable allowed on the basis
of the stability map. The tested CPU is an IntelÓ XeonÓ X5650
2.67 GHz. The D2Q5 lattice requires less computational time due
to the reduced number of links and therefore of computational
operations, however the speed-up for the D2Q9, when moving
from smin to smax, is greater due to the larger stability range. The
relative numerical error introduced increasing the relaxation time
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Table 1

Comparison of the computational time [s] and relative numerical error [%] for the two
lattices for s = 0.55 and s = smax (start-up plane Couette flow at Wim = 5).

Stencil DoF=N2 1681 3721 6561 10,201 14,641

D2Q9 s = 0.55 0.98 4.88 15.24 36.86 80.54
s = smax 0.33 0.87 2.48 4.63 8.43
speed-up 3.0 5.6 6.1 8.0 9.6
error 0.5357 ÿ0.1933 ÿ0.1538 ÿ0.1690 ÿ0.1092

D2Q5 s = 0.55 0.62 3.11 6.45 9.93 14.24
s = smax 0.2 0.63 1.93 3.92 7.03
speed-up 3.1 4.9 3.4 2.5 2.0
error 0.0764 ÿ0.0594 ÿ0.0297 ÿ0.0347 ÿ0.0198



for the two lattices is anyway always lower than 1% and the max-
imum speed-up achievable is nearly ten times for the D2Q9 lattice.

4.2. Coupled model

The coupled model is validated against a commonly adopted
benchmark problem: two-dimensional viscoelastic flow around a
cylinder confined between two parallel plates [1]. In order to save
in computational time, only half of the domain is studied and sym-
metry conditions are applied on the lower boundaries. The domain
extent is 4 m length (L), 0.5 m height (H) and the hole is 0.25 m ra-
dius (R) centered in the origin. The ratio of the radius of the cylin-
der to the half-width of the channel (blockage) has been chosen to
be K = 0.5 and the ratio of the solvent to the total zero-shear-rate
viscosity is b = ls/(ls + lp) = 0.59 [9,21]. The mesh layout close to
the cylinder surface is shown in Fig. 5, where only 2 m length
and 1770 cells are displayed to allow a proper visualization of
the mesh layout. The boundary conditions are: stream-wise peri-
odicity between inlet and outlet; no-slip for momentum and
homogeneous Neumann for convection of stresses on the hole
and upper boundary (walls). Indicating with h � i the volume-
averaging operator, we define for this problem a macroscopic (or
global) Weissenberg and Reynolds number based on the average
velocity at inlet (or outlet):

WiM ¼ hvi
R

h ¼ h _cih; ReM ¼ qhviR
l

: ð25Þ

The Reynolds number is kept constant to 10ÿ3 for steady-state
creeping flow. In order to test the FVM mesh independence, the
solution has been carried out on three different grids, respectively
of 15,000 (M1), 25,000 (M2) and 40,000 (M3) cells for WiM = 0.6.
The number of nodes and relaxation time for the sub-grid solution
are N = 128 and s = 0.8 (D2Q5). The obtained profiles of dimension-
less viscoelastic stresses on the symmetry plane and on the cylin-
der surface are consistent with those obtained by Chauvière and

Lozinski [9] with a Galerkin spectral element method for the 2D
case (Fig. 6). We also report the contours of dimensionless
dumbbell elongations in the domain (Fig. 7) and of the dimension-
less viscoelastic stresses (Fig. 8). These latter are reported also for
the case WiM = 0.9 in Fig. 9. As further validation we compare a
drag coefficient defined as follows:

CD ¼ Fx

4pRðls þ lpÞhvi
; ð26Þ

with Fx being the total drag force on the cylinder surface (with polar
angle #):

Fx ¼ 2
Z p

0
ÿpþ2ls

@vx

@x
þrpxx

� �

cos#þ ls

@vy

@x
þ @vx

@y

� �

þrpxy

� �

sin#

� �

Rd#: ð27Þ

In order to compare the results with those obtained by Chauvière
and Lozinski [9], the drag factor CD is split into pressure Cp

D, viscous
ClD and viscoelastic contributions C

rp

D . The analysis (Table 2) show
very good agreement for WiM = 0.6, the relative error on the total
drag factor is below 1%. On the other hand, for WiM = 0.9 the error
is around 2.5%. We noticed that despite a converged solution can
be achieved with increasing WiM, the accuracy decreases. The cause
of this decrease in accuracy can be sought in the discretization of
the PDF in cartesian coordinates with the lattice-Boltzmann method
and on the choice of the time-step. In this work we limit the max-
imum WiM to 0.9 and leave a deeper analysis of this issue for future
work.

The sub-grid solution can be called from Fluent
Ò

via user de-
fined function implementation and eventually parallelized on mul-
tiple processors. For computational efficiency, we use an
accelerated version running on graphic card (GPU). The GPU is less
flexible on the choice of the number of nodes, but provides remark-
able acceleration: in this case the speed-up reaches nearly 50x
with respect to the CPU (see Appendix C for details).

Let us now focus more in detail on the solution for Wim = 0.6. As
derived from the analysis in Section 4.1, the error and numerical
performance depends on the local Wim. The parameters for the
sub-grid solution can then be adjusted according to the local
Weissenberg number in the domain (Fig. 10). For this case, the lo-
cal Weissenberg ranges between 0 and 9, with the highest frequen-
cies between 0 and 2 and tail between 2 and 9. The parameters N

and s can then be chosen according to the following criteria:

1. Minimize numerical error: high lattice resolution and minimum
relaxation time are to be used. This approach assures converged
solution throughout the domain but non-homogeneous numer-
ical error. The computational cost is high due to excessive num-
ber of nodes in low ÿWim regions.

Fig. 5. Mesh layout close to the cylinder surface (2 m length and 1770 cells
displayed).
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Fig. 6. Profiles of the dimensionless viscoelastic stresses on the symmetry plane and on the cylinder surface for WiM = 0.6. The results for the three tested FVM meshes (M1,
M2 and M3) are compared with ref. [9]: (a) ~rpxx ; (b) ~rpxy ; and (c) ~rpyy .



2. Maximize computational speed: coarse lattice resolution and
maximum stable relaxation time. The lattice parameters are
chosen according to the maximum value of Wim in the domain,
that is the coarsest allowed lattice and the maximum stable
relaxation time. This approach does not guarantee constant
nor converged numerical error. The maximum error depends
on the choice of the lattice size (Fig. 4(a)).

3. Strain-adaptive: lattice resolution based on localWim. The lattice
parameters are dynamically adapted according to the local Wim
(Fig. 10). Therefore, coarser lattices are used in low ÿWim
regions and finer lattices in high ÿWim ones. This approach rep-
resents a trade-off between the two above discussed ones and
allows to optimize the computational speed, providing control
on the error. The number of different lattices to use can be cho-
sen on the basis of an expanded analysis such as that in Fig. 4(a),
according to the desirable degree of speed-up/error control.

An overview of the three approaches is reported in Table 3. The
parameters for the comparison of the achievable speed-up are:
Nmin = 41, Nmax = 121, smin = 0.55 and smax the maximum local sta-
ble value for the locally-adaptive approach (Fig. 4(b)) and the max-
imum stable value for Wim = 9 for optimizing the computational
speed (0.6 for D2Q9 and 0.55 for D2Q5). In order to compare the
advantage of the locally-adaptive approach here we use two lattice
sizes, namely N = 81 for Wim = 1 � 5 and N = 121 for Wim = 6 � 9.
We remark that this choice is made to illustrate the methodology
but the number of lattice resolutions is arbitrary.

5. Conclusions

A novel micro–macro model for dilute polymeric solutions has
been presented. The proposed approach relies on a coupled numer-
ical solution for the macro- and microscopic scales: a finite-volume

Fig. 7. Contours of dimensionless molecular elongations (configuration tensor) for
WiM = 0.6: (a) hh~nx~nxii; (b) hh~nx~nyii; and (c) hh~ny~nyii.

Fig. 8. Contours of dimensionless viscoelastic stresses for WiM = 0.6: (a) ~rpxx ; (b)
~rpxy ; and (c) ~rpyy .

Fig. 9. Contours of dimensionless viscoelastic stresses for WiM = 0.9: (a) ~rpxx ; (b)
~rpxy ; and (c) ~rpyy .



method for the fluid-flow equations and a lattice-Boltzmann meth-
od for the kinetic viscoelastic model. This micro–macro approach
allows to properly simulate non-homogeneous viscoelastic flows.
The convection of the configuration distribution function in

physical space is taken into account by means of an operator-splitting
algorithm. This leads to a convective-transport equation for visco-
elastic stresses in the physical space, which is equivalent to the
transport of the distribution function. The algorithm is optimized
for its use in steady-state cases. The validity of the introduced
model has been proven against the benchmark problem of two-
dimensional flow past a confined cylinder. We have observed a de-
crease of accuracy as reaching WiM = 1. Regarding this issue, there
are three sources of error that deserve further investigation: (i) the
failure of the Chapman-Enskog expansion for WiM > 1 as reported
by Singh et al. [16]; (ii) the time step selected for the operator-
splitting algorithm, which is not unique and affects the accuracy
and (iii) the Cartesian discretization of the configuration distribu-
tion function used when the Fokker–Planck equation is solved with
the lattice Boltzmann method. These three sources of error could
be avoided by a proper redefinition of the approach and this is left
for future work. From a computational point of view, we have
introduced and proven the validity of the coupling strategy when
the micro-solver is implemented on a graphic card. This allows
up to a 60x acceleration of the computational time. We have used
a low-performance single graphic card, but the solution can also be
distributed on multiple units, further reducing the computational
time. We remark that in this work we proposed the coupling with
a finite volume method solver, but the accelerated sub-grid solu-
tion can be easily called from other solvers (i.e. FEM–LBM or
LBM–LBM solutions). Finally, the results obtained suggest that a di-
rect numerical method together with proper hardware implemen-
tation, may deserve attention in the framework of numerical
methods for complex fluids.
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Appendix A. Asymptotic analysis

In this appendix we briefly report the procedure to recover the
FENE equivalent Fokker–Planck Eq. (10) from the lattice-BGK Eq.
(17) via asymptotic expansion (Chapman–Enskog procedure)
[13]. Tilde notation is omitted for readability.

Table 2

Comparison of the calculated drag factor with the results obtained by Chauvière and Lozinski [9] for different Weissenberg number.

WiM C
l
D C

l
D [9] Cp

D Cp
D [9] C

rp

D C
rp

D [9] CD CD [9]

0.6 6.2103 6.2248 1.9342 1.9980 0.6769 0.6696 8.8216 8.8925
0.9 5.8497 6.0175 1.9061 1.9953 0.5915 0.5393 8.3474 8.5521
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Fig. 10. Discrete distribution of Wim in the physical domain (mesh M1, number of
bins 50, WiM = 0.6).

Table 3

Summary table of the three sub-grid solution approaches: ME (minimize error), SA
(strain-adaptive) and MS (maximize speed). The comparison of the computational
speed-up per FVM iteration refers to different approaches on the same stencil (results
for mesh M1).

Stencil Approach N s Error Speed-up

D2Q9 (ME) minimize error Nmax smin variable 13.6 (ME/SA)
(SA) strain-adaptive f(Wim) smax controlled 17.9 (SA/MS)
(MS) maximize speed Nmin smax variable

D2Q5 (ME) minimize error Nmax smin variable 2.9 (ME/SA)
(SA) strain-adaptive f(Wim) smax controlled 23.7 (SA/MS)
(MS) maximize speed Nmin smax variable
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Fig. C.11. Comparison of the computational time for compiled C and the CUDA
implementation using shared memory (D2Q9 and D2Q5 lattices with s = 0.55).

Table 4

Comparison of the computational time for C and CUDA (shared memory
implementation).

N 96 128 160 192 224 256

D2Q9 CPU 30.4 95.5 235.8 483.0 889.0 1495.0
D2Q9 GPU 0.8 2.0 4.7 10.1 23.3 34.7
speed-up 38 48 50 48 38 43
D2Q5 CPU 19.0 60.0 149.0 303.5 567 948
D2Q5 GPU 0.4 1.3 2.5 5.0 9.6 7.1
speed-up 48 46 60 60 60 55



Let us consider the 2-nd order Taylor expansion of the post-col-
lision term (first term on the left-hand side) in Eq. (17):

Xiðf Þ � ð@t þr � ciÞfi þ
1
2
ð@2

t þ 2@tr � ci þrr : ciciÞfi; ðA:1Þ

and the following expansions of the time derivative @t and distribu-
tion function fi in terms of a small formal number � (spatial deriva-
tive is not expanded):

@t ¼ �@t1 þ �2@t2 þOð�3Þ; ðA:2Þ
fi ¼ f eqi þ �f ð1Þi þ �2f ð2Þi þOð�3Þ: ðA:3Þ

Applying (A.2) and (A.3) in Eq. (A.1) yields the scale-separated
form (A.4) and (A.5). Combining to get rid of higher order deriva-
tives yields (A.6).

ð@t1 þr � ciÞf eqi ¼ ÿ 1
sdt

f ð1Þi ; ðA:4Þ

@t2f
eq
i þ @t1 þr � cið Þf ð1Þi þ dt

2
@t1 þr � cið Þ2f eqi ¼ ÿ 1

sdt
f ð2Þi ; ðA:5Þ

@t2f
eq
i þ 1ÿ 1

2s

� �

@t1 þr � cið Þf ð1Þi ¼ ÿ 1
sdt

f ð2Þi : ðA:6Þ

Using now the 0th order moment (19) and the condition (A.7)
on the non-equilibrium distribution functions, yields (A.8) and
(A.9):
X

i

f noneqi ¼
X

i

f ð1;2Þi ¼ 0; ðA:7Þ

@t1wþr � ðwuÞ ¼ 0; ðA:8Þ

@t2wþ 1ÿ 1
2s

� �

r �
X

i

cif
ð1Þ
i ¼ 0; ðA:9Þ

Recovering f ð1Þi from Eq. (A.4), the sum in (A.9) becomes (A.10),
rearranging (A.11):
X

i

cif
ð1Þ
i ¼ÿsdt

X

i

ci @t1þr �cið Þf eqi

¼ÿsdt @t1ðwuÞþr � w uuþc2s I
ÿ �� �ÿ �

; ðA:10Þ
X

i

cif
ð1Þ
i ¼ÿsdtðuð@t1wþr � ðwuÞÞþc2srwÞ: ðA:11Þ

Finally using (A.11) into (A.9) and reassembling scales, yields
the final macroscopic equation:

@w

@t
¼ ÿrn � ðuwÞ þ dt sÿ 1

2

� �

c2sr2
nw; ðA:12Þ

that from the comparison with Eq. (7), gives the following expres-
sion for the lattice relaxation time:

s ¼ a

dtc2s
þ 1
2
: ðA:13Þ

Appendix B. Lattice constants

The discrete velocities ci and weights xi for the D2Q9 lattice
are:

ci ¼
ð0;0Þ i ¼ 0

ð�c;0Þ; ð0;�cÞ i ¼ 1;2;3;4

ð�c;�cÞ i ¼ 5;6;7;8

8

>

<

>

:

xi ¼
4=9 i ¼ 0

1=9 i ¼ 1;2;3;4

1=36 i ¼ 5;6;7;8

8

>

<

>

:

and for the D2Q5 lattice:

ci ¼
ð0;0Þ i ¼ 0

ð�c;0Þ; ð0;�cÞ i ¼ 1;2;3;4

�

xi ¼
1=3 i ¼ 0

1=6 i ¼ 1;2;3;4

�

Appendix C. GPU acceleration and coupling

In this section we present and discuss the methodology that
progressively led us to the fastest implementation for Graphic Pro-
cessing Unit (GPU). Going into the details of coding goes beyond
the purpose of the present work, therefore we only provide a meth-
odological description and the main results for each strategy.

The Compute Unified Device Architecture (CUDA) is a parallel
computing platform and coding environment developed by NVI-
DIAÓ [25], which enables users to exploit the power of graphic pro-
cessing units for scientific applications (see the CUDA
Programming Guide [26]). Several open-source codes are already
available to help users with the implementation.

Sailfish, for example, is an open-source code for computational
fluid dynamics based on lattice Boltzmann method and optimized
for NVIDIAÓ graphic cards [27]. The user sets the simulation up (in
Python) and the CUDA code is created automatically and runs on
the graphic card. Using Sailfish the speed-up of the sub-grid solu-
tion reaches nearly 60� with respect to a compiled-C code. How-
ever, calling the solution from Fluent

Ò

is not computationally
efficient due to the Sailfish start-up time which is comparable with
the simulation time, therefore an ad-hoc CUDA implementation has
to be developed.

We developed a CUDA code based on texture memories [26].
However this implementation did not show to be optimal for our
purposes, as long as the maximum speed-up achieved is around
25x with respect to the CPU.

In order to overcome the limit of the previous code, we devel-
oped a code based on shared memory [26]. Thanks to the utilization
of this extremely fast memory, with this implementation the
speed-up reaches nearly 60� with respect to the CPU, as shown
in Fig. C.11 and Table 4. This solution is more flexible than Sailfish

for our purpose and it can be efficiently called from Fluent
Ò

.
The developed code is finally compiled with the CUDA compiler

(nvcc) and dynamically called from a Fluent
Ò

user defined function.
The sub-grid simulation is driven by passage and retrieval of the
required variables between the two compiled codes through a
stream process.
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