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a b s t r a c t

The objective of this paper is to provide a numerical simulation and an experimental study in order to

assess stiffness and damping characteristics of thrust air bearings with multiple orifices. Finite element

modeling is used to solve the non-linear Reynolds equation while taking into account the movement

equation for the bearing. The numerical results obtained show that performance characteristics are

related to bearing design type. An experimental investigation allows us to analyze the behavior of thrust

air bearings with several orifices as well as that of groove or porous material bearings. Frequency

response measurements have been realized in order to compare the dynamic properties of the different

bearings. The frequency responses obtained demonstrate that air bearings with multiple orifices have a

damping higher than the other types in certain conditions. Air bearings with multiple orifices offer many

advantages from a dynamic point of view. Their performance may be characterized not only by flow

conditions but also by the number or diameter of the orifices in the bearing surface.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The usual approach to the design of thrust air bearings is based

on static characteristics. However, when integrated into a system,

for instance a spindle or a metrology stage, bearings are subject to

load variations, pressure fluctuations or gap variations induced by

surface flaws in the slideways. These effects induce excitations of

the bearing dynamic response, which can eventually lead to

bearing instability. Consequently, the prediction of dynamic char-

acteristics in working conditions is necessary for the applications

requiring high precision movements or positioning with micro-

meter to nanometer repeatability.

Several approximate analytical approaches to the dynamic

behavior of thrust air bearings have been presented in the

literature. Licht et al. [1] and Bassani et al. [2] developed analytical

models to examine the influence of geometric parameters on the

stability of aerostatic bearings with recesses. Their common

conclusion is to minimize the depth of the pockets in order to

avoid the effect of pneumatic hammer. Stifller [3] conducted a

theoretical analysis of a thrust bearing with inherently compen-

sated orifices by using a small perturbation of the Reynolds

equation, and found that an unstable range occurs when stiffness

is at maximum.

Few authors studied numerically the dynamic characteristics of

thrust air bearings. Lin et al. [4] proposed a finite element

modeling to calculate the static and dynamic characteristics of

air bearings using the Gross form of the Reynolds equation [5].

They employed the Runge–Kutta method to solve the coupled

dynamic equation of a journal bearing with shaft, and simulate a

thrust pocket bearing to analyze the stable and unstable states for

different pocket depths. Fourka et al. [6] established a comparison

of the stability map of pocket bearings obtained by finite element

modeling. Their findings demonstrated that the analytical method

underestimates the critical threshold, giving a wider margin. The

same conclusion established by [1,2] is arrived at in [4,6] using

FEM to examine the influence of the volume of bearing recess.

Aguirre et al. [7] proposed a new theoretical approach for

analyzing the behavior of aerostatic bearings to avoid a self-

excited vibration known as pneumatic hammer. They developed

a system with the active compensation using air bearings in order

to control its position and to reduce the influence of disturbance

forces.

Nishio et al. [8] studied numerically and experimentally aero-

static annular thrust bearings with feedholes of less than 0.05 mm

in diameter. It was confirmed that aerostatic thrust bearings with

small feedholes have a larger stiffness and a higher damping

coefficient than bearings with compound restrictors.

Bhat et al. [9] analyzed the static and dynamic characteristics

of inherently compensated orifice based flat pad air bearing

system. The steady state characteristics are studied theoretically

and experimentally for a single orifice air bearing. They found that
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pneumatic hammer instability tends to occur at low perturbation

frequencies at small orifice diameters (less than 0.25 mm), large

gap heights (greater than 20 mm) and large supply pressures.

Boffey [10–14] tested and analyzed the static and dynamic

characteristics of thrust bearings with a pocketed orifice and

inherent orifice compensation. The effect of geometric parameters

on stability has been shown for pocketed thrust bearings. The

same tendencies as those described by [6,10–18] have been

deduced from experimental investigations. Nevertheless, few

experimental results report the dynamic behavior of thrust air

bearings with multiple inherent orifices.

The numerical study using the finite element method pre-

sented in this paper allows the analysis of the damping of thrust

air bearings fed with multiple orifices. Simulations have been

performed in order to describe the influence of geometrical

parameters and static equilibrium conditions. The numerical

results show that an optimum position may be achieved. The

same approach is used by Charki et al. [19] for studying the

dynamic behavior of hemispherical air bearings.

An experimental setup is also proposed in this paper. Experi-

mental tests have been conducted to compare thrust air bearings

with different types of inlet by exciting the bearing system with a

variable force around its static equilibrium position. The aim of

these experiments is to establish a comparison between porous

wall bearings and bearings with orifices of different diameters,

both with and without grooves. Frequency response measure-

ments are then used to characterize several design types of

bearings. The effects of geometrical parameters and of air flow

conditions have been investigated.

2. Modeling

2.1. Finite element modeling of a thrust air bearing

In this section, a finite element model is developed for thrust

air bearings in order to study the effect of several design and

working parameters on fluid film gap characteristics, such as

discharge coefficient, supply pressure, number and diameter of

orifices and position of orifice rows, and external load.

After introducing the dimensionless variables

p¼
p

Pat
; x¼

x

R2
; y¼

y

R2
; h¼

h

h0
; τ¼ υt;

Pat is the atmospheric pressure, υ is the frequency, R2 is the outer

radius of the bearing, h is the film gap, h0 is the reference film

gap—with the isothermal perfect gas assumption, the Reynolds

equation of compressible flow becomes [5,19–21]

∇:ðh
3
p∇p−ΛphÞ ¼ s

∂ðphÞ

∂τ
; ð1Þ

where Λ is the compressibility vector and s is the squeeze

parameter [5,19–21]. The components of the compressibility

vector in each directions and the squeeze parameter are

respectively expressed as

Λx ¼
6μuxR2

h
2
0pat

; Λz ¼
6μuzR2

h
2
0pat

and s¼
12μυR2

2

h
2
0pat

ux and uz are the components of the velocity vector of the

film flow.

The problem consists in determining the pressure field pðx; zÞ

satisfying the dimensionless Reynolds equation (1) and the mass

flow rate conservation.

The film flow is developed along a 2-dimensional surface S as it

is shown in Fig. 1. The solution is defined over a surface S on which

the boundary conditions are given by the pressure along the

external boundary Γp of the bearing and the mass flow rate qn in

the film along Γq. The mass flow rate qn in the film is defined by

qn ¼ ρh U−
h
2

12μ
∇p

 !

n ð2Þ

where U is the velocity vector of the film flow in each axis

directions, and n is the normal unit vector of the Γq.

By applying the Galerkin weighted residual method [19] to (1),

the following integral formulation is obtained as

IðpÞ ¼

Z

S

−∇δp:ðh
3
p ∇pÞ þ ∇δp:ðphΛÞ−δps

∂ph

∂τ

 !

dS−

Z

Γq

δpqn dΓ

ð3Þ

where qn is deduced from (2).

In order to have a matrix formulation, the domain S (see Fig. 1)

is descritized with the linear triangular element T3. Thus, the

pressure functions are

pðx; z; τÞ ¼ oNðx; zÞ4fpnðτÞg ¼ ∑
3

i ¼ 1

Niðx; zÞ:piðτÞ

δpðx; z; τÞ ¼ oNðx; zÞ4fδpnðτÞg ¼ ∑
3

i ¼ 1

Niðx; zÞ : δpiðτÞ

where N is the shape function for which its coefficients are

determined with the nodes coordinates. Then, Eq. (3) becomes

IðpÞ ¼ 〈δpn〉 ∑
ne

e ¼ 1

ð½KðpnÞ(
efpng þ ½C(ef _png þ fFegÞ

$ %

¼ 0

where

½KðpnÞ(
e ¼ −

Z

Se
h
3
Nf gop4

∂N

∂x

& '

o

∂N

∂x
4 þ

∂N

∂z

& '

o

∂N

∂z
4

( )

dSe

þ

Z

Se
h Nf g o

∂N

∂x
4Λx þ o

∂N

∂z
4Λz

( )

dSe−

Z

Se
sN〈N〉

∂h

∂τ
dSe

½C(e ¼

Z

Se
shfNg〈N〉 dSe and fFeg ¼ −

Z

Γe
q

qnfNg dΓ

Finally, taking into account all elements ne of the discretized

surface, the non-linear algebraic non-stationary equations consti-

tutes a matrix relation as

½KðpnÞ(fpng þ ½C(f _png þ fFg ¼ 0 ð4Þ

2.2. Static calculation

The non-linear algebraic equation (4) is first solved using the

Newton–Raphson method in order to find the static characteris-

tics. The calculation procedure is performed as follows:

1. Perform surface meshing.

2. Provide input parameters and boundary conditions. Input

feeding parameters: supply pressure, inlet diameter, discharge

Γq

Γp

Fig. 1. Domain S.



coefficient, number of inlets; boundary conditions: initial

feeding pressure of fluid film and atmospheric pressure,

squeeze and compressibility parameters.

3. Perform static calculations and analyze results: flow rate,

pressure distribution, load capacity and stiffness.

The pressure distribution is calculated in taking into account

the mass conservation in the flow [6,19]. The solution is deter-

mined over a surface on which the boundary conditions are given

by the pressure along the external boundary of the bearing (see

Fig. 1) and the mass flow rate (2).

In the bearing with orifices, the dimensionless pressure

pr ¼ Pr=Pat (where Pr is orifice outlet pressure ) at the exit

determines the flow rate through the orifice [20], which in turn

allows us to examine the influence of feeding parameters on

pressure in the fluid film.

From the compressible flow theory through [19,22] a nozzle,

under isentropic assumption, the dimensionless air mass flow

through each one of the feeding holes is expressed as

q¼
12mℜT

h
3
0P

2
at

qo ¼ hCs
2

γ−1

Pr

Ps

$ %2=γ

−
Pr

Ps

$ %ðγþ1Þ=γ
" #( )1=2

if
Pr

Ps
≥

2

γ þ 1

$ %ðγ−1Þ=γ

and

q¼ hCs
2

γ þ 1

$ %ððγþ1Þ=2ðγ−1ÞÞ

if
Pr

Ps
≤

2

γ þ 1

$ %ðγ−1Þ=γ

;

where Ps is the feed supply pressure, and Cs is the feeding

parameter expressed as

Cs ¼
12μπdCdPs

h
2
0P

2
at

ffiffiffiffiffiffiffiffiffiffi

γℜT
p

;

where T is the atmospheric temperature at supply conditions, Cd is

the discharge coefficient, d is the orifice diameter, μ is the dynamic

viscosity of the fluid, γ is the isentropic index and ℜ is the gas

constant.

Powel [23] published that Cd is a variable, which expresses a

function of the pressure ratio Pr=Ps.

As normally considered by many authors, the orifice discharge

coefficient is equal around to 0.8 for all flow conditions [22].

The gap and pressure steps chosen are equal to 0.05 mm and

0.0001 bar in order to achieve a very small ratio error and to

maintain the conservation of mass flow rate through the orifices

and in the air film gap. This aspect is particularly important for a

very small gap, i.e. at approximately zero.

The work of the designer consists in determining a compromise

between the load capacity and the stiffness of the final choice of

bearing.

The dimensionless load capacity and stiffness are calculated

respectively using the following expressions:

W ¼
W

PatR
2
2

¼

Z

s

ðp−1Þ dS ð5Þ

K ¼
h0K

PatR
2
2

¼ −
dW

dh
ð6Þ

2.3. Dynamic calculation

The dynamic calculation derives from the need to solve the

Reynolds equation simultaneously with the equation of motion

[19,20], written as

ΔFðτÞ ¼M €h ð7Þ

where

M¼
mυ2h0

PatR
2
2

;

m is the mass supported by the bearing, Pat is the atmospheric

pressure, υ is the frequency, R2 is the outer radius of the bearing, h0
is the reference film gap. ΔF is the variation of the resultant

pressure force: from this may be deduced, firstly, the wall accel-

eration, and secondly the velocity and variation of air film gap

relative to the equilibrium position, using a variable step Euler

scheme:

1. Choice of equilibrium position for dynamic calculation.

2. Input of initial step displacements and velocities for step by

step method.

3. Dynamic calculation of the movement (acceleration, velocity,

displacement, pressure and load capacity, etc.).

3. Numerical application

3.1. Test case

In this section, a test case is proposed for comparing results

obtained with previous works in the literature. Frêne [24] studied

the bearing design presented in Figs. 2 and 3. The bearing for

which the load capacity has been calculated is shownwith another

view in Fig. 3, where R1, R2 and r respectively show the position of

the orifices and the outer and inner radii.

Numerical calculations are performed with a regular mesh,

where the feeding orifices are located at the nodes of the fluid film

geometry meshing, as shown Fig. 4. Fig. 5 shows the pressure

distribution obtained by the FEM developed in Section 2. As

shown in Fig. 5, the pressure is distributed from Pr to Pat. Pr is

calculated using the relations presented in Section 2.2 for all

conditions shown in Table 1.

The load capacity is calculated with an analytical approach

proposed by Frêne [14] in assuming a simple statical case. The load

capacity is also obtained experimentally and numerically using

FEM. Fig. 6 shows that results are different for each case for a film

thickness lower than 15 mm, and are very close for numerical and

experimental approaches for a film thickness higher than 15 mm.

3.2. Analysis of the equilibrium position

In this paper, the FEM proposed allows us to study the

influence of several design and working parameters on air film

gap characteristics, such as discharge coefficient, supply pressure,

number and diameter, of orifices and position of orifice rows, and

external load.

For this section, the bearing configuration considered is pre-

sented in Fig. 7 and its fixed parameters are listed in Table 2.

The dimensionless load capacity and stiffness calculated versus

the dimensionless air film gap are respectively presented in

Figs. 8–10. Results are obtained for Ps¼5.105 Pa, Cd¼0.7,

R1/R2¼0.8, h0¼20 mm, R2¼32 mm and ω¼1400 rpm.

Inlet

R2 R1

r
Compressed

air

Fig. 2. Bearing design of Frêne [24].



As the figures show, the best working conditions lie within a

very small gap range. These are obtained for an air film gap of less

than 10 mm for all configurations.

Certain parameters are more sensitive than others. The influ-

ence of diameter and the number of orifices is very accentuated.

Load capacity increases significantly for a very small air film gap as

the number of orifices and orifice diameter increases. The load

capacity increase drops off severely when there are 24 orifices. The

optimum stiffness is found when the film gap diminishes as the

orifice diameter is reduced

3.3. Analysis of dynamic responses

Figs. 11–14 give the dynamic step responses of the bearing

studied above. The results also make it possible to analyze the

sensitivity of the parameters vis-à-vis the dynamic behavior of the

bearing around an equilibrium position. The step responses are

calculated with the Euler scheme as described in Section 2.3, with

the same initial conditions: h
0
¼ 0:5 and _h

0

¼ 0:0.

The dynamic simulations take into consideration two external

loads: W ¼ 2:0 and W ¼ 0:5. The dynamic dimensionless air film

gap and the load capacity versus dimensionless time are obtained

for Ps¼5.105 Pa, Cd¼0.7, R1/R2¼0.8, h0¼20 mm, R2¼32 mm and

ω¼1400 rpm. The gap and the pressure step chosen for numerical

calculations must be as small as possible for optimal accuracy of

results.

For the highest external load W ¼ 2:0, the step responses are

not damped for a number of orifices equal to 12 whatever the

diameter of orifices as shown Fig. 11. The step responses give a

higher damped oscillation frequency for a number of orifices equal

to 8 or 24.

With an external load equal to 0.5, the damping is increased

when the orifice diameter decreases and the number of orifices is

equal to 8 or 12 as shown in Figs. 13 and 14. The oscillation amplitude

increases considerably for an orifice diameter of 0.6 mm, tending

towards a configuration close to an instability range.

Other results obtained by the numerical approach show the

same tendency found in the literature [20]. For instance, the

influence of the discharge coefficient and of the row position is

not significant.

4. Experimentation

4.1. Experimental setup

The experimental setup is presented in Fig. 15. The thrust air

bearings to be tested are placed on a stable granite base. The block

under which the bearing is fixed is supported by a journal air

bearing that prevents friction. The static value of the air film gap is

measured using a fiber optic sensor with nanometric resolution.

The force exerted is measured by a force sensor. The dynamic

response of the bearings is analyzed from a small white noise

perturbation generated by a shaker controlled by an electrical

signal. The frequency response of the bearing is obtained from an

accelerometer, using a modal analyzer.

The load is applied at the center of the bearing in order to avoid

a parallelism error between bearing surface and support surface.

The air flow is filtered by a regulation system to eliminate

humidity and solid particles.

4.2. Description of bearings tested

Fig. 16 gives the geometry type of bearings taken into con-

sideration in testing, where R2, R1, h, Ps, d, and no respectively are

the outer radius, position of orifice row, reference gap, supply

pressure, orifice diameter and number of orifices. Table 3 presents

the different geometric parameters of all bearings. The groove

d

R2

r

R1

Fig. 3. Other view of bearing geometry [24].

Fig. 4. Fluid film meshing.

Pat

Pat

Pr

x 1.105 Pa

Fig. 5. Pressure distribution.

Table 1

Thrust bearing parameters of Frêne [24].

Thrust bearing parameters

Outer radius R2 (mm) 75

Inner radius r (mm) 30

Reference gap h0 (mm) 20

Radius of orifice row R1 (mm) 48

Diameter of the feeding orifice d (mm) 0.15

Number of the orifices no 12

Supply pressure Ps (Pa) 3)105

Atmospheric pressure Pat (Pa) 1)105

Coefficient of discharge Cd 0.7

Isentropic index γ 1.4

Gas constant ℜ (J kg-1 K−1) 287

Dynamic viscosity μ (Pa s) 18.38)10−6

Temperature at supply conditions T (1K) 293

Rotational speed ω¼2πυ (rpm) 0



width of bearing configurations of cases 4 and 5 are respectively

equal to 0.2 mm and 0.6 mm. All results shown in following

sections are obtained for Ps¼5.105 Pa, ω¼0 rpm and no¼8.

Fig. 17 shows another view of the different feeding types of the

bearings studied.

Bearing characteristics are dependent on the surface quality

obtained from finish diamond machining. For high precision

machines or systems, it is very important that the flatness,

straightness and roughness of bearing surfaces fall within tight

limits. For our purposes, the reference surface flatness is within

1 mm, having been machined by diamond turning. Similarly, the

pad surface has been achieved by diamond cutting on the high

precision lathe. Furthermore, in order to ensure good parallelism

between the surfaces, the holes are drilled to the same diameter

and with good roundness. All orifices must be equally spaced

Analytical (Frêne [24])

Experimental

Numerical (FEM)

W
 (

N
)

h (lm)

Fig. 6. Load capacity versus film gap for Ps¼3 bar.

d

R2
R1

Fig. 7. Bearing configuration studied.

Table 2

Fixed parameters of thrust bearings studied.

Thrust bearing parameters

Outer radius R2 (mm) 32

Reference gap h0 (mm) 20

Radius of orifice row R1 (mm) 25.6

Supply pressure Ps (Pa) 5)105

Atmospheric pressure Pat (Pa) 1)105

Coefficient of discharge Cd 0.7

Isentropic index γ 1.4

Gas constant ℜ (J kg−1 K−1) 287

Dynamic viscosity μ (Pa s) 18.38)10−6

Temperature at supply conditions T (1K) 293

Rotational speed ω¼2πυ (rpm) 1400

W

h

d = 0.6 mm

d = 0.3 mm

d = 0.2 mm

Fig. 8. Dimensionless static load capacity versus dimensionless film gap for no¼12.

no = 4

no = 8

no = 12

no = 24

Fig. 9. Dimensionless static load capacity versus dimensionless film gap for

d¼0.2 mm.



along the circumference. The shape of an orifice outlet can be

observed in Fig. 18.

The roughness and form error measurements are made with an

interferential microscope and a profilometer comprising a linear

stage and an optical fiber sensor, giving a repeatability of less than

0.2 mm for the straightness measurement. Fig. 19 shows a rough-

ness measurement on the surface of the pad. In order to obtain a

high stiffness, the bearings need to work at a very low air film gap,

which means that the surface must be free of significant form

error waviness.

5. Experimental results

5.1. Testing validity of numerical results

Fig. 20 shows that the load capacity W obtained via both the

experimental method and a numerical method developed by Bonis

and Charki [20] are in good agreement. The experimental results

are obtained using the equipment described in Section 4.1.

A bearing with multiple orifices as shown in Fig. 16 is tested.

Experimental results ofW and h shown in Fig. 20 are based on a

mean of six measurements and a respectively standard deviation

equal to 10 N and 2 mm. For a very small film gap less than 2 mm, it

is difficult to know exactly the maximum load capacity supported

by the bearing in order to avoid a solid contact between surfaces of

reference support and bearing.

As shown in Fig. 20, two discharge coefficients have been

used in our calculations for the purpose of comparison. The

difference in the load capacity relative to the discharge coefficient

is very small.

5.2. Dynamic results

The following results serve to investigate the influence of the

feeding design on dynamic properties. The frequency responses

obtained correspond to the dynamic behavior at the first modal

frequency of each bearing. A single supply pressure (5 bar) is

considered in order to compare the frequency responses of all the

bearing types presented in Fig. 17 and Table 3.

Fig. 21 illustrates the influence of a groove on the natural

frequency and on the amplitude of the frequency response for

W¼35 N and two different diameters (d¼0.2 mm and d¼0.6 mm).

The natural frequency is higher in the presence of a groove; the

d = 0.6 mm

d = 0.3 mm

d = 0.2 mm

Fig. 10. Dimensionless stiffness versus dimensionless film gap for no¼12.

W

!

d = 0.6 mm

d = 0.3 mm

d = 0.2 mm

Fig. 11. Dimensionless step response of load capacity versus dimensionless time for

W ¼ 2:0 and no¼12.

W

!

no = 4

no = 12

no = 8
no = 24

Fig. 12. Dimensionless step response of load capacity versus dimensionless time

for W ¼ 2:0 and d¼0.2 mm.

W

!

d = 0.6 mm
d = 0.2 mm

d = 0.3 mm

Fig. 13. Dimensionless step response of load capacity versus dimensionless time for

W ¼ 0:5 and no¼12.



difference in natural frequency between a bearing with and a bearing

without a groove diminishes as the diameter increases, and the

amplitude of the responses decreases as the orifice diameter is

decreased.

Furthermore, Fig. 22 shows that the amplitude of the frequency

response diminishes as the load is increased. This aspect is due to

the fact that the air film gap decreases, and the acceleration after

an excitation reduces. The natural frequency remains almost the

same for each load.

The damping ratio ζexp is deduced by means of an empirical

procedure that looks at the amplitude of the frequency response at

W

!

no = 8

no = 4

no = 12

no = 24

Fig. 14. Dimensionless step response of load capacity versus dimensionless time for W ¼ 0:5 and d¼0.2 mm.

Power &

Charge Amplifiers

Pressure transducer

Thrust bearing

under testing

Journal bearing

Reference support 

Granit base

Accelerometer

Shaker +

Load transducer

Load 

Fiber  optical sensor

Data acquisition system

Dynamic analysis

Fig. 15. Test rig.

Orifice
Ps

no

R1

d

h

Surface

bearing

Surface reference support

R2

Fig. 16. Geometry bearing tested with multiple orifice.

Table 3

Description of bearings tested.

Geometric parameters Type of feeding

Orifices without groove Orifices with

groove

Porous

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

R2 (mm) 32 25 32 32 32 32

R1 (mm) 25.6 20 25.6 25.6 25.6 –

d (mm) 0.2 0.2 0.6 0.2 0.6 –

Orifices Orifices + Groove Porous

Fig. 17. Bearings configurations tested.



3 dB [25,26]. The damping ratio ζexp is calculated by using the

following expression:

ςexp ¼
f
exp
2 −f

exp
1

f
exp
n

ð8Þ

where fn
exp is the natural frequency corresponding to the top peak

of the frequency response function, f1
exp and f2

exp are frequencies

deduced by the half-power bandwidth method [25,26]. The

uncertainty of measurement on ζexp is estimated as

Δςexp ¼
0

0

0

∂ςexp

∂f
exp
n

0

0

0Δf
exp
n þ

0

0

0

∂ςexp

∂f
exp
1

0

0

0Δf
exp
1 þ

0

0

0

∂ςexp

∂f
exp
2

0

0

0Δf
exp
2 ð9Þ

where Δfi
exp
(i¼1,2,n) are the measurement uncertainties of each

frequency. The estimation of Δfi
exp
(i¼1,2,n) is equal to 3 Hz. This value

of frequency uncertainty takes only into account the experimental

standard deviation [27,28] of measurement data samples obtained

for all bearings tested.

For each case tested, the natural frequency of the bearing is

found to occur at about 100 Hz. As seen in Figs. 22 and 23, struc-

tural modes of the test rig are observed at high loads but corres-

pond to a much higher frequency, which is easy to distinguish.

Figs. 23 and 24 show the frequency responses of the three

bearings, for two loads (W¼135 N and W¼35 N) and an orifice

diameter of 0.6 mm. The frequency observed is the same for both

loads on each of the bearings and falls within the experimental

error range. The amplitude of the frequency responses decreases

with an increase in load, demonstrating that the increase in film

damping that is generated by an increase of the squeezing effect

and of viscous dissipation when the gap height is reduced.

A comparison of the frequency responses of the three types of

feeding – orifice, groove, and porous wall with a low permeability

(Sika B8) – makes it possible to distinguish clearly between their

respective dynamic performances.

In Fig. 23, for the load capacity of 135 N, the acceleration

amplitude of the bearing with orifices is lower than for the other

bearings, indicating higher damping ratio ζexp at high load, i.e. at

small gap. In Fig. 24, the trend changes at the lower load of 35 N.

In this instance, the bearing with porous material has the lowest

acceleration, together with a higher natural frequency (fn
exp), and

consequently a higher stiffness, giving it the most preferable

dynamic performance among the three types of bearings. The

acceleration amplitude of the bearing with groove remains the

highest at both loads.

Table 4 presents natural frequencies and damping ratios

with uncertainties measurement for two loads (W¼135 N and

Fig. 18. Bearing surface part and hole feed.

Fig. 19. Bearing surface part.
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Fig. 21. Frequency responses measurement for bearings with and without groove

for W¼35 N.
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W¼35 N) and all different bearings tested as shown in Figs. 23

and 24.

It has been clearly demonstrated that for a very small air film

gap, bearings with orifices offer advantages due to their dynamic

responses. Bearings may be less subject to perturbations if the

orifice diameter chosen is optimal in order to avoid pneumatic

hammer. Experiments show that it is possible to improve the

dynamic behavior by changing the type of bearing feed.

Fig. 25 gives the numerical results of the bearing with orifices

tested Case 3. In Table 5, the damping ratio ζ and the natural

frequency fn have been calculated with the logarithmic decrement

method [25,26]. Numerical results show the same tendencies

found in the experimental investigation concerning the natural

frequency whereas the damping ratios found are relatively higher.

6. Conclusion

This paper proposes a numerical and experimental approach

for analyzing the dynamic response around an equilibrium posi-

tion of a bearing with multiple orifices. Calculations based on

finite element modeling are a means of optimizing the design of a

bearing for high precision machines or systems, and take into

account different geometrical configurations.

Numerical results obtained show that dynamic characteristics

change with feeding conditions. Decreasing the orifice diameter

and the air film gap improves the damping of air bearings with a

number of orifices equal to 8. With a small load capacity, the

oscillation amplitude increases considerably in increasing the

orifice diameter, tending towards a configuration close to an

instability range.

A comparison between a bearing with orifices and bearings

either with a groove or made from porous material is carried out

using frequency response measurements. Experimental results

show that the bearing with orifices is better damped than the

other types for the highest load capacity.

Designers have to pay attention for optimizing the number and

the diameter of orifices in accordance to their needs in terms of

static and dynamic characteristics. Air bearings with multiple

orifices have a good stability but this analysis is correct in certain

conditions.
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Fig. 23. Frequency responses for different types of bearings for W¼135N.
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Fig. 24. Frequency responses for different types of bearings for W¼35 N.

Table 4

Experimental natural frequencies and damping ratios.

Load capacity W (N) Inlets type fn
exp(Hz) ζexp7Δζexp

135 Orifices with groove (Case 5) 100 0.13070.064

Porous (Case 6) 123 0.08170.051

Orifices without groove (Case 3) 99 0.17270.066

35 Orifices with groove (Case 5) 93 0.17270.071

Porous (Case 6) 125 0.24070.054

Orifices without groove (Case 3) 79 0.15270.082



The numerical approach developed in this paper allows

designers to optimize suitably air bearings with multiple orifices.

List of symbols

p(x,y) pressure field

Pa atmospheric pressure

Ps supply pressure

Pr orifice outlet pressure

R2 outer radius of the bearing

R1 position radius of the orifices

r inner radius

d orifice diameter

h film gap

h0 reference film gap

Λ compressibility vector

s squeeze parameter

υ frequency

ω rotational speed

q mass flow rate at the bearing inlet

S surface of the fluid film

Γq, ΓP boundary of the fluid film

n normal vector of the film fluid

N shape function

Cs feeding parameter

T atmospheric at supply conditions

Cd discharge coefficient

no number of orifices

μ dynamic viscosity of the fluid

γ isentropic index

ℜ gas constant

m mass supported by the bearing

W load capacity

K stiffness

τ dimensionless time

ζexp damping ratio obtained experimentally

fn
exp natural frequency obtained experimentally

ζ damping ratio obtained numerically

fn natural frequency obtained numerically
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