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In this study, a theoretical framework is developed to predict the equilibrium conditions of a non-

neutrally buoyant sphere placed in a vertical conical tube as encountered in liquid rotameters. The

analysis presented herein is applicable for a sphere heavier than the surrounding fluid, situated on the

axis of a slightly tapered tube. The sphere is subject to the laminar flow conditions with the Reynolds

numbers ranging between the Stokes type regimes up to values corresponding to slightly inertial

regimes. In this work, we assume that the aperture angle of the tube is small and that the drag force

is mainly due to the dissipation located in the gap between the tube and the sphere. Under these con-

ditions, it is possible to consider the tube as locally cylindrical and we can use the results previously

obtained for the correction factor of the Stokes force on a sphere subject to a Poiseuille flow in a tube

of constant cross-section. We obtain an equation relating the flow rate to the vertical position of the

sphere in the tube and the validity of this analysis is demonstrated by applying it to a commercially

available rotameter. The present study provides a simple but sound theoretical method to calibrate

such flowmeters. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4769053]

I. INTRODUCTION

Within the broad class of bulk flow metering devices, ro-

tameters constitute an important type of device. The term “ro-

tameter” was derived from the fact that floats originally were

produced with slots to give them rotation for the purpose of

centering and stabilizing them at the axis of a tube with an

upward flow of fluid in it. We restrict ourselves here to the

rotameters used for the measurement of low to very low flow

rates. This precision instrument is known for its simplicity

and ease of operation, requiring little maintenance, and for its

versatility and economy. It is popular because it requires no

external power, can be positioned near pipe bends, and leads

to relatively low pressure losses, but must be mounted ver-

tically with upward flow in the tube. It is particularly suit-

able for metering carrier gases in chromatographic columns,

monitoring and controlling gas flow rates in manufacturing

processes, liquid and gas measurement in laboratories, pilot

plants, flow and level indicating, etc. It consists of a vertical

metering tube and a float. In modern practice, the tubes are

formed on a mandrel and annealed to prevent internal stresses

so that strong, uniform tubes result. This enables one also to

form tubes with better reproducibility and interchangeability

or with special shapes, such as non-conical tubes with curved

elements designed to spread out the graduations at the lower

end of the flow rate range. It is possible to modify the conical

form slightly in order to give the exact linear relationship be-

tween the flow rate and the float position, which is not possi-

ble with a conical tube, as will be seen below. Some additional

features can be added, such as the transduction of the flow rate

to an electrical output signal (Lui et al.1), etc. Depending upon

a)Author to whom correspondence should be addressed. Electronic mail:
stephane.champmartin@ensam.eu.

the nature of the process fluid, the float can be made from sev-

eral materials to avoid corrosion, abrasion, or for the purpose

of capacity modification. For low flow rates, the float is gen-

erally a small sphere and hence the analysis presented in this

work is naturally relevant to this instrument. In this case, the

classical float materials are glass, sapphire, stainless steel, tan-

talum, or carboloy (an alloy of tungsten with cobalt or nickel

as a binder). Further information on the variable area flowme-

ters or rotameters can be found in many practical books such

as Goldstein,2 Webster3, etc.

In addition, it is appropriate to add here that the flow past

a sphere mounted on the axis of a tapered cylindrical tube

also denotes an idealization of several other industrial appli-

cations. Typical examples include the flow of mineral, food,

and other suspensions in converging sections of venturimeter,

during the emptying of storage and mixing vessels through

conical-shaped bottoms, chromatograph-based separations,

etc. Hence, it is readily agreed that a satisfactory understand-

ing of the hydrodynamic forces exerted on a sphere in a ta-

pered tube is germane to the understanding and the modeling

of the aforementioned applications. However, the major thrust

of the present work is to develop a theoretical framework

based on numerical and experimental results for the operation

and the calibration of a rotameter for measuring low flow rates

of incompressible Newtonian fluids. This theoretical frame-

work consists in assuming the tapered tube as locally cylindri-

cal, but with a local radius depending on the vertical position.

This assumption is acceptable as long as the angle of the tube

remains very small and because the dissipation is located in

a small gap between the float and the tube in such confined

situations. This work presents a novel analysis to improve

the currently used experimental and empirical approaches to

the design, standardization, and calibration of this kind of

rotameter.



II. FORMULATION AND ANALYSIS

In the absence of the inertial effects in the governing

equations, Stokes (1851) obtained for a spherical particle of

radius a placed in an unbounded flow with uniform velocity

V , the classical expression for the drag force acting on the

sphere

FS = 6πµaV. (1)

In this expression, µ is the dynamic viscosity of the fluid.

Strictly speaking, Eq. (1) is applicable when the Reynolds

number, Re (ratio of inertial to viscous forces) based on the

sphere radius is small (Re = ρf V a /µ ≪ 1, where ρ f is the

mass density of the fluid). If the particle is close to other

particles or to a wall, some corrections for the drag force

are required to account for the additional hydrodynamic

interactions. In the case of a single sphere fixed on the axis

of a cylindrical tube of constant radius b and subject to a

Poiseuille flow of maximum velocity V = Vmax, it is possible

to re-write Eq. (1) as follows:

F = FS λ(k)

with λ(k) the correction factor of the Stokes force depending

solely on the confinement parameter k = a/b (as shown

schematically in Fig. 1 on the left). F is the actual drag force

acting on the sphere. Evidently, due to additional energy

dissipation at the wall of the tube, λ(k) ≥ 1 and hence, F ≥ FS.

Among the many studies available for the determination of

λ(k), one can quote those of Ladenburg,4 Faxén,5 Wakiya,6

Happel and co-workers,7,8 Haberman and Sayre,9 Bohlin,10

or Wang and Skalak.11 Most of these analytical studies use

the reflection method and, are valid at confinements k < 0.6

and at low Reynolds numbers. These results have been

validated experimentally, among others, by Ambari et al.12 in

the same range of confinements. Bungay et al.13 developed

a technique based on the singular perturbation method,

combined with the asymptotic expansions derived from the

FIG. 1. Geometrical parameters.

analysis of Haberman and Sayre9

λ(k) =
3π

√
2

16
(1 − k)−5/2

[

1 +
7

60
(1 − k) −

2.227

50.4
(1 − k)2

]

+
1

12π
[4.018 − 3.9788k − 1.9215k2 + 4.392k3

+ 5.006k4]. (2)

This formula is valid in the range 0.05 < k < 0.99. How-

ever, attention is drawn to the fact that the second term in

this expression does not vanish for k → 1 as expected by the

asymptotical behavior of λ(k), but its value is rather negligible

in this limit.

In recent years, numerical values of λ(k) have also been

reported by Ben Richou et al.14 in an extended range of con-

finement, i.e., 0.05 < k < 0.98. Since the relative error be-

tween the results of Bungay and Brenner13 and those of Ben

Richou et al.14 is less than 2% in this range (as shown by

Table III in Ben Richou et al.14), we can equally use the ex-

pression (2) or the interpolated numerical data obtained in our

laboratory by Ben Richou et al.14 We shall use these results in

this work to obtain the condition of levitation of a free sphere

suspended in a Poiseuille flow in Stokes type regimes. We

consider an upward Poiseuille flow in a vertical cylindrical

tube in which we place a non-neutrally buoyant sphere. If the

density of the solid particle is greater than that of the fluid, it

is possible to find a steady equilibrium position for which the

apparent weight of the sphere counterbalances the drag force

acting upon the particle, thereby leading to its levitation:

4

3
πa31ρg = 6πµaVmaxλ(k) (3)

with 1ρ = (ρp − ρ f) > 0, ρp is the density of the particle (the

same condition is of course applicable if we consider a ver-

tically downward Poiseuille flow with 1ρ < 0). Introducing

the flow rate of the liquid Q = V̄ πb2 with V̄ = (Vmax/2) the

average velocity, this equation takes the following form:

Q

Q∗ =
πb2V̄

πa2VS

=
1

2k2λ(k)
= f (k). (4)

In this equation, the characteristic flow rate Q∗

= πa2VS = 2πa41ρg/9µ (VS = 2a21ρg/9µ is the settling

velocity of sphere in unbounded fluid at low Reynolds

number) corresponds to the flow rate of the backflow induced

by this settling particle in an unconfined medium. The non-

dimensional flow rate f(k) depends solely on the confinement

parameter k. Based on the studies quoted above (Bungay and

Brenner13 or Ben Richou et al.14), this functional relationship

between f(k) and k is shown in Fig. 2. In a tube of constant

section, the equilibrium position of the particle is neutral,

i.e., as soon as Eq. (3) is satisfied (neglecting end effects),

the sphere will levitate at all values of z. In order to obtain

a stable equilibrium position, it is necessary to relate the

vertical position of the sphere to its local confinement in

the tube. One way to achieve this objective is to use a tube

of a monotonically varying cross-section. Moreover, to lift

the sphere, the initial drag force must overcome its apparent

weight. If the cross-section of the tube increases in the flow
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FIG. 2. Non-dimensional flow rate f(kz) vs kz = a/b(z).

direction, the drag force decreases due to the decreasing

extent of the confinement effect and a stable equilibrium

position can be reached and the levitation achieved. On the

contrary, if the cross-section decreases in the flow direction,

evidently no such equilibrium position is possible. The

simplest shape that fulfills these conditions corresponds to

a tapered tube whose radius b(z) increases with the vertical

coordinate z (Fig. 1 on the right is exaggerated for clarity). In

the limit of small values of the taper angle β, we can locally

consider this system as a sphere confined in a cylindrical tube

with its radius given by b(z) (the validity of this hypothesis

is studied in Sec. III). Under this assumption, the equilibrium

position is still a solution of the Eq. (3) in which the confine-

ment parameter is now a function of the vertical position of

the sphere k = kz = a/b(z). Thus we can re-write Eq. (4) as

Q

Q∗ =
1

2k2
zλ(kz)

= f (kz). (5)

For a known functional dependence of the tube radius

b(z) on the height z measured from the base of the tube, this

expression provides a very simple way to link the flow rate Q

in the tube to the position z corresponding to the stable equi-

librium position of the sphere. In essence, this is the underly-

ing key principle of the operation of the rotameters at low flow

rates or Reynolds numbers (Stokes flow regime). The present

work provides a simple method to calibrate such flowmeters

as demonstrated in Sec. III.

III. CALIBRATION AND ANALYSIS

In order to verify our analysis, we have used a “Type S”

low flow rate rotameter obtained from Aalborg Instruments

& ControlsTM. The metering tube (N◦112-02-N) is a thick

walled borosilicate glass tube with a millimeter scale ranging

from z = 0mm to z = 150mm. According to the manufac-

turer, the stated accuracy of the flow rate Q is ±2% of full

scale for this specific type of tube. The inner radius b(z) at

a given graduation z and the taper angle β of the tube are

however unknown (possibly for proprietary reasons). They

are not directly accessible because the metering part of the

FIG. 3. The 112-02-N tube calibration curve for water and a 1/16′′ radius
steel float.

tapered tube is placed between two ends with complex cross-

sections for the purpose of blocking the float inside the tube

and holding it in its rack. However, the manufacturer provides

for this specific rotameter the calibration curve shown in

Fig. 3 for water at T = 21.1± 0.1 ◦C (70◦F) and a stainless

steel float of radius a = 1.588± 0.005 mm (1/16′′) and

density ρp = 8040± 10 kg/m3. It is interesting to note that

the flow rate is clearly not proportional to the float position,

nor does the curve pass through the origin (0, 0) point in

Fig. 3. First of all, we assume that the tube is an ideal tapered

tube such that

b(z) = b0 + tan (β) z,

b0 being the inner radius at z = 0 and β the angular aperture

of the cone. The procedure adopted here is as follows: since

our knowledge of the geometrical parameters of the tube is

incomplete, we use the calibration curve shown in Fig. 3

to estimate the parameters b0 and β. In a second step, we

use these values to calculate a new set of data (flow rate vs

position) with a new float material for comparison with the

corresponding calibration curve supplied by AalborgTM.

A. Evaluation of the geometrical parameters
of the tube

We use the relationship given by Eq. (5), i.e.,

Q

Q∗ =
1

2k2
zλ(kz)

= f (kz).

In a first step, we evaluate Q* and the accuracy on the

various parameters. For water at T = 21.1± 0.1 ◦C, we

have used the density ρ f = 998 ± 5 kg/m3 and the viscosity

µ = 0.976 ± 0.005 mPa · s (given by the Handbook of

Chemistry and Physics15). The characteristic flow rate Q*

depends solely on the float and fluid properties; for the

combination of water and a 1/16′′ radius stainless steel

float, we calculate Q* = (18.83 ± 0.37) 103 ml/min taking

account of the above uncertainties. Since the accuracy on

Q = Q∗f (kz) = Q∗/2k2
zλ(kz) depends on the accuracy of

kz (based on the assumption of the locally cylindrical tube)
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TABLE I. Evaluated data of kz and b(z).

Q (ml/min) z (mm) kz b(z) (mm) Re

1.1 10 0.976 1.627 14.5

1.5 20 0.972 1.632 19.3

2.3 30 0.967 1.641 29.4

3.2 40 0.963 1.649 40.5

4.4 50 0.958 1.657 55.2

5.6 60 0.954 1.664 69.6

7 70 0.950 1.671 86.4

8.6 80 0.946 1.679 105.2

10.3 90 0.942 1.685 124.9

12 100 0.938 1.692 144.4

13.8 110 0.935 1.698 164.9

15.6 120 0.932 1.703 185.2

17.5 130 0.929 1.709 206.4

19 140 0.927 1.713 223.1

20.4 150 0.925 1.717 238.5

and on the one of λ(kz) (based on the numerical results or on

an equation such as Eq. (2)), the estimation of the maximum

relative uncertainty on the flow rate is 4% for our analysis

(this value is comparable to the 2% accuracy given by the

manufacturer in the calibration data sheet).

The next step consists in using the calibration curve

(Fig. 3) to evaluate, for a given flow rateQ (corresponding to a

given value of z), the value of the function f(kz) = Q/Q*. Then

the characteristic curve (Fig. 2) or an appropriate expression

(see Eq. (7) further) is employed to estimate the local confine-

ment parameter kz = a/b(z). Finally, b(z) = a/kz is deduced.

The results are summarized in Table I. It is remarkable that

the confinement parameter kz varies very slightly (∼5 %) be-

tween the top and the bottom of the tube thereby suggesting

only a very small angle of taper and that the confinement is

very severe (kz ∼ 1). Hence, only the very last part of Fig. 2

is useful for the present rotameter tube. For such severe con-

finements, the first part of Eq. (2) is sufficient to accurately

calculate λ(k):

λ(k) ≈
3π

√
2

16
(1 − k)−5/2

×
[

1 +
7

60
(1 − k) −

2.227

50.4
(1 − k)2

]

. (6)

Therefore, when k > 0.92 as is the case for the rotameter

used here, it is convenient to combine Eqs. (4) and (6) to re-

write the equilibrium condition as follows:

Q

Q∗ = f (kz)

=
8

3π
√
2

(1 − kz)
5/2

k2
z

1

1 + 7
60
(1 − kz) − 2.227

50.4
(1 − kz)2

.

(7)

Assuming a perfectly cone-shaped metering tube, the lo-

cal tube radius b(z) varies linearly with the graduation z. In

Fig. 4, we have plotted the calculated values of b(z) accord-

ing to the float position z. The data conform satisfactorily to a

FIG. 4. Local inner radius of the tube vs vertical position.

straight line except for the last three values corresponding to

the highest flow rates and the lowest confinements. While the

reasons for such a deviation from linear behavior are not im-

mediately obvious, it can probably be ascribed to inertial ef-

fects as will be seen later. A linear fit excluding the last three

points gives the following values:

b0 = 1.620mmandβ = 0.041◦.

The very low value of the angle β confirms the assump-

tion that the local quasi-constant section tube used in the pre-

ceding analysis is justified here. For a vertical displacement

of the order of the float radius 1z = a = 1.588mm, the inner

radius of the tube varies by an amount given by 1b = a tan

β = 11.3 µm, which is very small compared to the tube

radius. For the lowest value of the radius b0 = 1.620 mm,

this corresponds to the maximum relative variation of 1b/b0

≈ 0.7% in the tube radius. However, we can also verify that

the relative variation of the drag force on the spherical particle

for a vertical distance of 1z = a is compatible with the value

of β computed above. Indeed it is possible to calculate:

1F

F
=

tanβ

λ (kz)

(

dλ

dkz

)(

a1z

b2

)

=
tanβ

λ (kz)

(

dλ

dkz

)

k2
z .

Since 0.925 < kz < 0.976 (see Table I), we can calculate

for example the angle β, which would give a 1% relative vari-

ation of F. We find that β < 0.02◦. Besides, we must empha-

size that for such strong confinements, most of the drag force

is due to the dissipation located in the small gap between the

particle and the tube. Moreover, the higher the confinement,

the smaller this region (see for instance Fig. 11 in Ben Richou

et al.14). This implies that the vertical distance 1z to consider

in the above calculation is, by far, less than the sphere radius

a but only by a small fraction ε = 1z/1a of it. Taking the

reasonable average value ε = 10 %, we obtain β < 0.2◦. This

is further evidence that the tapered tube can be considered as

locally cylindrical for this application.
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TABLE II. Comparison between the calculated values and the calibration

data for a glass float in water.

Q (ml/min) Q (ml/min) Relative discrepancy

z (mm) (calculated) (calibration) (%)

10 0.24 0.23 3.5

20 0.36 0.33 8.2

30 0.51 0.49 4.2

40 0.70 0.69 0.8

50 0.91 0.95 3.9

60 1.17 1.24 6.0

70 1.46 1.55 5.9

80 1.80 1.88 4.7

90 2.17 2.31 6.5

100 2.58 2.74 6.0

110 3.04 3.20 5.1

120 3.55 3.71 4.6

130 4.10 4.24 3.5

140 4.69 4.70 0.1

150 5.34 5.50 3.0

B. Comparison with another calibration curve

In order to check the usefulness of these results, we now

reconstruct the characteristic curve of the flow rate versus

the float position from the estimated values of b0 and β

with a float of the same size, but made of glass (ρp = 2530

± 5 kg/m3) instead of steel. Water is still the working fluid

here. This corresponds to a new value of the characteristic

flow rate Q* = 4096 ± 81 ml/min. The procedure is the

same as that employed in Sec. III A but in the reverse order:

starting from a given position z , we compute the value of

b(z) and thus of kz = a/b(z). The function f(kz), evaluated

using an appropriate function (Eq. (7)) or curve (Fig. 2), is

computed and finally, the flow rate Q = Q*f(kz) is calculated.

In Table II and Fig. 5 below, these calculated values are

compared with the calibration data given by AalborgTM. We

obtain a good agreement between both sets of values with an

FIG. 5. Comparison between the calculated values and the calibration data

for a glass float in water.

average relative discrepancy for the flow rate below 5% with

no discernable trends with respect to z.

Each value of the calculated flow rate is given with its er-

ror bar based on the relative uncertainty 1Q/Q ≈ 4 % evalu-

ated with the same approach as at the beginning of Sec. III A.

C. Influence of the Reynolds number

In the preceding analysis, we have assumed negligible in-

ertial effects. Nevertheless, it is well known that the Stokes

force FS = 6πµaV begins to drift from experimental re-

sults as soon as the value of the Reynolds number exceeds

Re > 0.1 in an unbounded flow. For a confined flow however,

it is known that the onset of the influence of inertial effects

is somewhat delayed. This problem was thoroughly studied

both numerically in our laboratory (see for instance the work

of Despeyroux16), and experimentally by Coutanceau17 (their

studies clearly show that the onset of the recirculation zone

behind the sphere is delayed and its size is reduced as the con-

finement increases). In order to ascertain the role of inertial

effects in the present situation, we have nevertheless done a

computational study with the code FLUENTTM. In Fig. 6, the

drag force normalized by FS λ(k) is plotted as a function of the

Reynolds number for confinement parameters in the range 0.4

< k < 0.9. At low Reynolds numbers, these plots are charac-

terized by plateaus corresponding to the Stokes type regimes

for which inertia is negligible followed by a complex evolu-

tion depending on the values of the Reynolds number and k.

Since the stated precision of the calibration curve is 2% of the

full scale, we have arbitrarily taken a criterion (5% increase of

the normalized drag force) to estimate the Reynolds numbers

corresponding to the “onset” of inertia. The resulting values

of the Reynolds number are summarized in Table III. As ex-

pected, the larger the confinement, the higher the Reynolds

number corresponding to the onset of inertial effects.

The metering tube (N◦112-02-N) of Aalborg with the

float of radius a = 1/16′′ = 1.588mm gives confinement

parameters greater than k ∼ 0.92 and thus the inertial effects

are expected to be negligible for the Reynolds number values

even beyond Re = 233. For each flow rate Q in Table I, we

FIG. 6. Influence of inertia on the drag force.
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TABLE III. Estimation of the Reynolds number for the onset of inertia.

k Re = Vmax2a/ν

0.4 17

0.5 31

0.6 54

0.7 76

0.8 138

0.9 233

have included the local Reynolds number corresponding to

the value of b(z) at which the float stabilizes as

Re =
ρVmax2a

µ
=

4ρQkz

πb(z)µ
.

Evidently, the last two or three values in Table I are very

close or greater than the critical value of Re = 233 and thus it

is likely that it is no longer possible to neglect the inertial ef-

fects under these conditions. This may also explain, at least in

part, why these points do not conform to a linear law in Fig. 4.

D. Inverse problem

Until now, we have assumed that the metering tube was

tapered with a radius varying linearly with the vertical posi-

tion. As shown in Figs. 3 and 5, this corresponds to a flow

rate Q that is not proportional to the float equilibrium posi-

tion z. We now attempt to find the shape of the metering tube,

which would result in a linear relationship between the flow

rate and the float position. Let us take the case of a stainless

steel float in water. Considering the numerical data in Table I,

we see that the flow rate varies between Q = 1.1 ml/min at

z = 10 mm and Q = 20.4 ml/min at z = 150 mm. For com-

parison purposes, we can evaluate the average rate of change

of the flow rate with z, denoted by α = 1Q/1z, the mean

value of which is evaluated as

α =
1Q

1z
=

19.3

140
≈ 0.138ml/min ·mm.

Hence, the flow rate obeys the equation

Q(z) = 1.1 + α(z − 10) inml/min with z inmm.

From the value ofQ(z) at a given position z, we can evalu-

ate kz = a/b(z) and then b(z) and these results are presented in

Table IV below. The calculated values of the Reynolds num-

ber show also that the last three points corresponding to the

higher flow rates are likely to be less reliable because of the

possible influence of inertia.

The hypothetical profile of the tube is shown in Fig. 7 and

compared to the uniformly tapered-shaped tube. The crossing

of the curves for the highest positions is due to the linear re-

gression calculated above that overestimates the flow rate as

can be seen in Fig. 4. In order to have a linear relationship be-

tween the flow rate and the float position, it is therefore neces-

sary to make a concave tube whose radius varies more steeply

at the bottom than at the top of the tube. This approach could

of course be extended to any float, any fluid, or any relation-

TABLE IV. Evolution of b(z) giving Q proportional to z.

Q (ml/min) z (mm) kz b(z) (mm) Re

1.1 10 0.976 1.627 14.4

2.5 20 0.966 1.643 31.6

3.9 30 0.960 1.653 48.6

5.2 40 0.955 1.662 65.3

6.6 50 0.951 1.669 81.8

8.0 60 0.947 1.676 98.0

9.4 70 0.944 1.682 114.1

10.8 80 0.941 1.687 130.1

12.1 90 0.938 1.692 145.9

13.5 100 0.936 1.697 161.7

14.9 110 0.933 1.701 177.2

16.3 120 0.931 1.705 192.6

17.6 130 0.929 1.709 208.1

19.0 140 0.927 1.713 223.3

20.4 150 0.925 1.717 238.5

ship between the flow rate and the float position provided that

the Stokes regime is respected.

E. Discussion about the axial position of the particle

Undoubtedly, the foregoing analysis hinges on the as-

sumption that the spherical float is always at the axis of the

tube and therefore it is appropriate to make some comments

on this aspect as a small degree of eccentricity can influence

the value of λ(k). An extensive experimental and analytical

body of knowledge exists on the migration of an isolated

particle and in a concentrated suspension when subject to a

velocity distribution in the tube (see for instance Segré and

Silberberg,18 Matas et al.19 or Eichhorn and Small20). Suf-

fice to say here that such a migration of particles across the

streamlines is caused by inertial effects, e.g., see the stud-

ies of Brenner et al.,21 Bretherton,22 etc. On the other hand,

Saffman23,24 showed theoretically that a sphere in a shear flow

field experiences a lateral force whose direction depends upon

the relative velocity between the sphere and the fluid. When

the particle velocity is faster than the undisturbed local fluid

velocity, the resulting lateral force tends to push the sphere

FIG. 7. Radius evolution for a conical and a non-conical tube.
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away from the axis of the tube towards the wall and in the op-

posite case the sphere migrates towards the axis of the tube.

Since in the present analysis ρp > ρ f, the sphere velocity is

smaller than the undisturbed velocity and the lateral force on

the sphere acts to move it towards the axis of the tube. Thus,

the sphere is likely to stay on the axis of the tube over the

range of conditions of interest here. However, let us recall

that for very high flow rate rotameters, inertial instabilities

can lead to radial fluctuations in the sphere position. This ef-

fect is usually reduced by the use of guide ribs to prevent any

radial displacement.

IV. CONCLUSION

In this study, we have proposed a new theoretical ap-

proach to analyze the stable equilibrium position of a non-

neutrally buoyant spherical particle placed on the axis of a

tapered tube. We have used the results concerning the cor-

rection factor of the Stokes force on a sphere placed on the

axis of a cylindrical tube in Poiseuille flow. Assuming that

the angle of tapering is small, together with the fact that the

dissipation is confined in the very small clearance between the

sphere and the tube, we show the relevance of this approach

and its usefulness for the practical problem of the variable

area flowmeters such as the rotameters at low flow rates in the

limit of negligible inertia. However, this restriction does not

imply that the particle Reynolds numbers are small, because

inertia is drastically reduced in the case of large confinements.

Finally, this analysis provides an easy way to calculate the

profile of a tube that would give a linear dependence of the

flow rate with regards to the vertical position of the sphere or

any other dependence law and this may lead to a new and/or

improved design of rotameters.
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