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a b s t r a c t

The current work presents a finite element approach for numerical simulation of the incremental sheet
metal forming (ISF) process, called here ‘‘ISF-SAM’’ (for ISF-Simplified Analysis Modelling). The main goal
of the study is to develop a simplified FE model sufficiently accurate to simulate the ISF process and quite
efficient in terms of CPU time. Some assumptions have been adopted regarding the constitutive strains/
stresses equations and the tool/sheet contact conditions. A simplified contact procedure was proposed to
predict nodes in contact with the tool and to estimate their imposed displacements. A Discrete Kirchhoff
Triangle shell element called DKT12, taking into account membrane and bending effects, has been used to
mesh the sheet. An elasto-plastic constitutive model with isotropic hardening behaviour and a static
scheme have been adopted to solve the nonlinear equilibrium equations. Satisfactory results have been
obtained on two applications and a good correlation has been shown compared to experimental and
numerical results, and at the same time a reduction of CPU time more than 60% has been observed.
The bending phenomenon studied through the second application and the obtained results show the reli-
ability of the DKT12 element.

1. Introduction

Conventional sheet metal forming processes such as stamping
and hydro-forming are realized with dies. The basic requirement
is that the production volume is large, but the tools cost is very
high. The recent market requirements tend to vary quickly and
the conventional sheet forming processes with dies become less
competitive for low volume production. Consequently, new flexi-
ble manufacture methods have to be developed. To achieve the
changing requirements of the market, the ISF process has been sug-
gested as a fabrication process with good potentialities. In addition,
several adaptations for this process are introduced and explored,
including the use of one or two dies, a mobile support, a rotating
tool, and the use of water jet instead of the forming tool [1]. In
the concept illustrated in Fig. 1a, the process is nowadays referred
to as SPIF (Single Point Incremental Forming): a flat blank is
clamped around its edges and is deformed progressively by a sim-
ple hemispherical tool which moves according to a known path.
Another variant of this process (Fig. 1b), called nowadays Two
Points Incremental Forming (TPIF) in which the flat blank is

deformed by two contact points. According to the historical review
made by Emmens et al. [2] about the ISF technological develop-
ments through the years and the state of the art given by Jeswiet
et al. [3], the TPIF is older than SPIF and both process are two com-
mon types of Asymmetric Incremental Sheet Forming (AISF).

Today, the ISF process is well suitable and highly recommended
for small volume and varied productions, and also is considered as
a rapid prototyping technique. The principal goal which motivates
the development of ISF is the flexibility of that process as it has
been shown by Ambrogio et al. [4] for medical products manufac-
turing. In fact, different components can be made without the need
to manufacture new tooling: the tool path defines the geometry of
parts, so a new tool path can be planned and used without incur-
ring additional costs of tool development. Generally in ISF, the
most commonly used materials are aluminium and steel alloys,
although investigations performed by Jackson et al. [1] have been
shown that the ISF process can be successfully applied to form
sandwich panels composed of propylene with mild steel and alu-
minium metallic foams. Furthermore, that process has an impor-
tant aspect concerning the formability: It gives higher forming
limits compared to conventional sheet metal forming processes
[5]. A simplified process was proposed by Allwood et al. [6] to gain
insight into this phenomenon for a broad class of incremental
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forming processes. They claimed that the forming limit is increased
when through thickness shear is present. It was observed that in a
plane perpendicular to the tool path the deformation of the sheet is
mainly by stretching and bending. In a plane parallel to the tool
path, significant through thickness shear was observed. To study
and give explanation concerning the higher forming limits for ISF
process, solid finite elements are used by Eyckens et al. [7] but
the simulation time was found extremely high. On the other hand,
this process suffers of two major drawbacks which limits its indus-
trial application and requires additional studies:

– the geometrical accuracy is one of the most relevant point of
weakness, although many investigations have been focused on
this topic. Guzmán et al. [8] studied a two-slope SPIF pyramid
with two different depths and they concluded that the shape
deviations is linked mainly to the elastic strains due to struc-
tural elastic bending, plus a minor contribution of localized
springback. Micari et al. [9] presented different strategies to
reduce geometrical error, taking into account the influence of
the most relevant parameters, and concluded that the optimiza-
tion of the tool path is the most promising solution. The inves-
tigations, carried out by Azaouzi and Lebaal [10], and Rauch
et al. [11], confirm that a tool path optimization leads to an
improvement of the geometrical accuracy;

– the production rate is not very high compared to other sheet
metal forming processes, due to the characteristic of point-to-
point forming process. In fact, the sheet is deformed locally by
the tool which moves progressively on a very long trajectory
in order to form complex shapes.

Several researchers have focused their attention on modelling
and numerical simulation of the ISF process. Finite element analy-
ses, using an explicit method, have been performed by Hirt et al.
[12] to investigate two major limits of the ISF: the limitation on
the maximum achievable wall angle and the occurrence of geomet-
ric deviations. These drawbacks have been investigated and two
methods are proposed to enlarge the range of process applications:
a multi-stage forming strategy to produce steep flanges of up to
81’’, and a correction algorithm to enhance the geometric accuracy.
In addition, a Gurson–Tveergard–Needleman damage law has been
applied to investigate the effect of process parameters such as the
tool size and the vertical pitch on the fracture risk. Through a num-
ber of case studies Duflou et al. [13] have demonstrated that the
use of multi-stage strategies allows to form geometries exceeding
conventional single-stage forming limits. From these case studies it
was concluded that there is no reason to consider 9000 wall angles
as the ultimate process limit. In addition, the thinning of the sheet
during multi-stage forming can exceed the maximum reduction of
the thickness observed in single-stage processing. Bambach et al.
[14] have shown, through benchmark parts, that the multi-stage
forming gives an increased accuracy compared to the single-stage
forming and that the multi-stage forming strategies could be con-
sidered as an alternative to the overbending strategies.

Despite the progress achieved, modelling the ISF process con-
tinues to be a challenging task. An implicit scheme could lead to
a high CPU time compared to an explicit one, mainly due to the
point-to-point alternating contact conditions [15]. With explicit
schemes, thanks to mass-scaling technique, it is possible to signif-
icantly reduce the computational time. However, it is not trivial to
find the right mass-scaling factor according to [16]. Despite their
high CPU time, implicit schemes are unconditionally stable and
will always give a better solution compared to explicit schemes.

In summary, the literature shows that several research investi-
gations performed numerical modelling of the process based on
static or dynamic, implicit or explicit approaches, using membrane,
shell or solid elements and considering classical or micro–macro
models. Most of these models can be very precise, but lead to very
high computational times and need expensive computer resources.
It is incontestable that some numerical methods may not be desir-
able for complex applications if they involve very significant com-
putational times. In order to overcome that problem, techniques
such as adaptive remeshing [17], and substructuring approach
[18] have been proposed for implicit simulations. A simplified
model for ISF based on a purely geometrical approach to the kine-
matics of material points has been developed [19] and a more
accurate calculation of the sheet thickness was shown compared
to the sine law. However, it seems necessary to enhance the pro-
posed model because it is based only on membrane deformation,
but without taking into account the mechanical equilibrium, the
material behaviour, and the bending effects.

The present investigation is a continuation of work that started
using an incremental deformation theory [20,21]. Satisfactory results
are obtained during the European project FLEXFORM [22] and shown
by Yu et al. [23]. The main goal is focused on the development of a
simplified numerical approach to simulate the ISF with precision
and with reduction of CPU time in mind. Firstly, the kinematics
and the elasto-plastic constitutive model constitutive law are pre-
sented. Then, the discretized equations governing equilibrium states
of the structure and the formulation aspects of the shell element
DKT12 including the bending effects, are briefly presented. Finally,
a simplified procedure to manage the contact between the tool
and the sheet is developed. The results obtained for a pyramidal
shape benchmark test are compared to experimental results. Other
numerical results carried out using the commercial finite element
code Abaqus confirm the validity of the proposed simplified
approach. The bending phenomenon is investigated through a
square box test that confirms the potentiality of the present FEM.

2. Kinematic of the DKT12 element and constitutive law

In this section kinematic aspects concerning the DKT12 element
will be briefly summarized. The shell element called DKT12 (Dis-
crete Kirchhoff Triangle), which is implanted in our FE model
was previously developed by Batoz et al. [24,25]. A Kirchhoff
assumption has been considered to define the position vectors of

(a) (b)

Fig. 1. Process variants: SPIF (a) and TPIF (b).



material points at the initial flat blank Co and the kth 3D configura-
tion Ck of the workpiece (Fig. 2).

The deformation gradient tensors at points q0 and q with re-
spect to p are defined in the local coordinate system by:

dxq0
¼ ½F0��1dx and dxq ¼ ½Fz�dx ð1Þ

Then, the inverse of the Cauchy–Green left tensor between q and q0

is defined as:

½B��1 ¼ ½F��T ½F��1 ð2Þ

where [F]�1 is the inverse deformation gradient tensor, which is ob-
tained from Eq. (1):

½F��1 ¼ ½F0��1½Fz��1 ð3Þ

with:

½F0��1 ¼ xp;x
�!� up;x

�! ..
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[F0]�1 and [Fz]�1 are the membrane and bending deformation gradi-
ent tensors, respectively, k3 ¼ z=zo ¼ h=ho is the thickness stretch.

The thickness stretch is assumed to be fixed through the thick-
ness. So, the tensor [B]�1 takes the following simple form:

½B��1 ¼
a b 0
b c 0
0 0 k�2

3

2
4

3
5 ð6Þ

The eigenvalue calculation of [B]�1 gives two principal plane
stretches k1, k2 and their direction transformation matrix [M]. Then,
the thickness stretch k3 is calculated by the assumption of constant
volume. Finally, the logarithmic strains are obtained as:

½e� ¼ ½M�½ln k�½M�T ð7Þ

In the current work, the yield stress function is written using the
Hill criterion and considering a plane stress condition for a planar
isotropic sheet:

Fðfrg; �epÞ ¼ �r� ryð�epÞ ð8Þ

where ry is the yield stress which is in function of the effective plas-
tic strain �ep, and �r is the effective stress:

�r ¼ ðhri½P�frgÞ1=2 ð9Þ

with hri ¼ hrx ry rxy i and the matrix [P] is in function of the
mean planar isotropic coefficient �r:

½P� ¼
1 � �r

1þ�r 0
� �r

1þ�r 1 0
0 0 2ð1þ2�rÞ

1þ�r

2
64

3
75; �r ¼ r0 þ 2r45 þ r90

4
ð10Þ

where r0, r45 and r90 are the Lankford coefficients.
At each iteration, and for each integration point, a discrete

strain increment {De} is computed and additively decomposed into
elastic and inelastic parts:

fDeg ¼ fDeeg þ fDepg ð11Þ

Then the increment of stress {Dr} will be evaluated and the stress
vector is updated:

frnþ1g ¼ frng þ fDrg ð12Þ

The increment of stress is given by the generalized Hooke’s law as:

fDrg ¼ ½C�fDeeg ð13Þ

where [C] is the elastic stiffness matrix.
When the material deforms elastically, the elastic strain part is

equal to the total strain increment ({De} = {Dee}) and the inelastic
strain increment vanishes. Otherwise, the inelastic part of the
deformation is defined by the flow rule (or normality rule) as:

fDepg ¼ D�ep @F
@frg

� �
¼ D�ep ½P�frg

�r
ð14Þ

For plastic deformation, the following consistency condition (dF = 0)
should be satisfied and leads to the increment of the effective plas-
tic strain:

D�ep ¼
h @F
@frgi½C�

h @F
@frgi½C� @F

@frg

n o
þ @�r

@�ep

fDeg ð15Þ

Substituting (Eq. (14)) and (Eq. (15)) into (Eq. (13)) gives:

fDrg ¼ ½C� ½I� �
@F
@frg

n o
@F
@frg

D E
½C�

@F
@frg

D E
½C� @F

@frg

n o
þ @�r
@�ep

0
@

1
AfDeg

¼ ½Hep�fDeg

ð16Þ

where [Hep] is the material tangent matrix.
Finally, the updated stress vector (Eq.12) should satisfy the sec-

ond consistency condition (F = 0). An algorithm based on a radial
returns predictor [26,27] was implemented in order to return the
stresses to the yield surface. In fact, for an increment strain {De},
an initial elastic prediction step {DrE} is carried out. If the yield
function is greater than zero an iterative correction procedure uses
the normal of the last yield surface is used until that the yield func-
tion vanishes.

3. Formulation aspects and equilibrium relationships

The DKT12 element is a triangular facet element resulting from
the superposition of the CST membrane element and the DKT6
plate element (see Fig. 3). It has twelve DOF (nine translations
(u, v, w) at the corner nodes and three rotations hs at the mid-side
nodes).

The virtual strain is composed of membrane and bending parts:

fe�g ¼ fe�g þ zfv�g; � h
2
6 z 6 þ h

2

� �
ð17Þ

Fig. 2. Kinematics of a thin shell in sheet forming.



where the thickness h is assumed to be constant per element.
The virtual membrane strains {e�} on the mean surface are

expressed in terms of the virtual displacement components
(u� and v�) of the element:

fe�g ¼
u�;x
v�;y

u�;y þ v�;x

8<
:

9=
; ¼ ½Bm�ð3x9Þfu�ng

with hu�ni ¼ hu�i v�i w�i . . . iði¼1;2;3Þ

ð18Þ

The virtual bending strains are expressed in a simple form consid-
ering the Discrete Kirchhoff Triangular plate element called DKT6.
The DKT6 element has six DOF (three transverse displacements w
at the corner nodes and three mid-side rotations hs along the ele-
ment sides:

fv�g ¼ ½½Bw�½Bh��fw�ng ¼ ½Bf �ð3x6Þfw�ng
with hw�ni ¼ hw�1 w�2 w�3 h�s4 h�s5 h�s6 i

ð19Þ

The relations (17)–(19) lead to the strain operator of the element
with 12 DOF:

fe�g ¼ ð½Bm� þ z½Bf �Þfu�ng
with : hu�ni ¼ hu�i v�i w�i h�3þi . . . iði¼1;2;3Þ

ð20Þ

The equilibrium of the structure, at the unknown configuration Ck

(or Ci+1 at the iteration i + 1), is expressed by the principle of virtual
work (PVW) in terms of quantities defined on the last known con-
figuration Ci (iteration i). The PVW is written in function of the sec-
ond Piola–Kirchhoff (PK2) stress {S} and the virtual Green–Lagrange
strain hE*i as:

W ¼W int �Wext ¼
Z
hE�ifSgdV �

Z
hu�iffgdV ¼ 0 ð21Þ

where hu*i the virtual displacement and {f} the external force.
The virtual work of the unknown configuration Ck (or Ci+1 at the

iteration i + 1) is linearly approached as follows:

Fig. 3. DKT12 shell element (CST + DKT6).

Fig. 4. Principle of the contact management procedure.

Fig. 5. Subdivision of the tool path (1st step).

Fig. 6. Flow chart of the ISF-SAM.



Z
ðhE�ifDSg þ hDE�ifSgÞdV �

Z
hu�ifDfgdV

¼
Z
hu�iffgdV �

Z
hE�ifSgdV ð22Þ

Since the two successive configurations (Ci and Ci+1) are very close,
the PK2 stresses and the virtual Green–Lagrange strains are numer-
ically equivalent to the Cauchy stresses and virtual linear strains,
respectively. Thus, the relation (22) can be written as follow:Z
ðhe�ifDrg þ hDE�ifrgÞdV �

Z
hu�ifDfgdV

¼
Z
hu�iffgdV �

Z
he�ifrgdV ð23Þ

where the Cauchy stresses increment {Dr} is defined by the elasto-
plastic constitutive law (see Section 3 {Dr} = [Hep]{De}).

Finally, the relation (23) and the DKT12 formulation lead to the
global discrete finite-element system:

½Ki
T �fDUg ¼ fFi

extg � fF
i
intg ð24Þ

½Ki
T � ¼

X
elements

½T�Tð½kep� þ ½kg � � ½kf �Þ½T� ð25Þ

½kep� ¼
Z
½Bm�T þ z½Bf �T
	 


½Hep� ½Bm� þ z½Bf �
� �

dv ð26Þ

½kg � ¼
Z
hDE�ifrgdv ð27Þ

where {DU} is the nodal unknown (displacements and rotations)
vector.
fFi

intg and fFi
extg are the global internal and external force vec-

tors. ½Ki
T � is the tangent stiffness matrix, [T] is the transformation

matrix. [kep], [kg] and [kf] are the element elasto-plastic stiffness
matrix, geometric stiffness matrix and the load following matrix.
We note that [kg] is obtained using only the quadratic part of the

Green–Lagrange membrane strains which lead to the following
expression:

Z
hDE�ifrgdv ¼

Z X3

k¼1

½Mk�T ½r�½Mk�dv ð28Þ

with:

½M1� ¼
1

2A
y23 0 0 0 y31 0 0 0 y12 0 0 0

x32 0 0 0 x31 0 0 0 x21 0 0 0

� �

½M2� ¼
1

2A
0 y23 0 0 0 y31 0 0 0 y12 0 0

0 x32 0 0 0 x31 0 0 0 x21 0 0

� �

½M3� ¼
1

2A
0 0 y23 0 0 0 y31 0 0 0 y12 0

0 0 x32 0 0 0 x31 0 0 0 x21 0

� �
ð29Þ

½r� ¼ rx rxy

ryx ry

� �
ð30Þ

The matrix [kf] and the external force vector fFi
extg vanish according

to the assumptions introduced via the contact procedure.

4. Contact assumption and tool path control parameter

In the ISF process, the contact zone between the tool and the
sheet is small and is continually changing with the movement of
the tool along its path. Standard contact algorithms, used in com-
mercial finite element codes, give good results but the computa-
tional times can be very large. This is due to the nonlinearity of
the contact between the sheet and the tool, and also due to the
very small tool displacement increments necessary to correctly
manage the contact. To correctly model the ISF process in which

Fig. 7. Incorrect geometry if too many nodes are kept (or forced) in contact with the tool.

Fig. 8. Contact with the tool and critical radius.

Fig. 9. Tool position strategy.



the tool trajectory can be very long and complex, a very large
number of tool displacement increments is required. The major
simplification introduced in our ISF-SAM approach consists in
replacing the tool action by imposed displacements. An algorithm
is developed to find the nodes supposed to be in contact with the
tool and to estimate their imposed displacements during a tool dis-
placement increment (Fig. 4). This is done by taking into account
the geometry of the blank at the beginning of that increment and
according to the geometric assumptions.

This algorithm was tested through the commercial code Abaqus
and satisfactory results have been obtained by Robert et al. [28].
The goal is to simplify the management of the contact between
the tool and the sheet which leads to a reduction of the CPU time.
The procedure is composed of three main steps. The first one con-
sists to subdivide the given tool path according to a user parameter
called a. This parameter controls the size of the displacement
increment between two successive positions of the tool along a
given direction by defining a maximal value Ddmax (Fig. 5):

Ddmax ¼ a � R ð31Þ

where R is the tool radius.
In the second step geometric assumptions are used to identify

the nodes on which displacements will be imposed. For each
node identified in contact with the tool, only one DOF (vertical
displacement W) is computed and imposed. The mid-side nodes
and their DOF are not concerned by the identification procedure.
The DOFs U and V will be predicted through the resolution of the
global discrete finite-element system (relation 24) which de-
scribed the equilibrium of the structure. This choice avoids to
force nodes to be in contact with the tool and to lock locally
the sheet, which could lead to impose the strains of some ele-
ments in the tool vicinity.

The third step is performed after the resolution of the equilib-
rium system and consists to verify if there are one or several nodes
which were forgotten and were not identified in the second step. If
it is true, we move to the next increment. On the other hand, the

boundary conditions must be updated and an intermediate equi-
librium step of the structure must be carried out and then we pass
to the next increment. The flow chart of the ISF-SAM is shown in
Fig. 6.

The second step is performed through two complementary
methods which are described in sections (4.1 and 4): At each incre-
ment and for each node a critical radius (Section 4.1) is computed
according to an intermediate tool position (Section 4.2). These
methods allow us to use a tool displacement increment as large
as possible, and to find the needed displacement ‘‘W’’ to impose.

4.1. Nodes in the contact

The interpenetration between both surfaces (tool and sheet) for
a given tool position, is not sufficient to determine nodes in the
contact zone, particularly when the tool displacement increment
is large. In fact, if too many nodes are kept (or forced) in contact
with the tool surface at the end of the increment, the geometry
of the deformed flange is not correct (see Fig. 7). Only some nodes
in the interpenetration zone must be considered to be in contact
with the tool surface.

A criterion based on a geometrical assumption has been devel-
oped to obtain a more realistic deformed shape. A critical radius is
computed in order to limit the contact zone and used to consider
(or not) that the node is in contact with the tool. For that two cir-
cular arcs are used to define the assumed deformed flange (see
Fig. 8). The first arc C1, of center P4 and of radius R1, passes through
P1 and P2 and it represents the non-constrained surface of the
flange. The second arc C2, joining P2 and P5, represents the contact
zone with the tool (it has a radius R2 and a center P3). The point P1

is sufficiently far from the contact zone and the blank is considered
to be fixed. The two arcs are assumed to be tangential at the point
of intersection P2.

The angle a is defined as the angle between the line P4P3 and
the Z axis (or P4P1). Therefore, the distance L and the algebraic
value h are defined as follows:

Plane 1: X=0 

Plane 2: Y=0 

(a)

(b) (c)
Fig. 10. Geometrical parameters.



h ¼ P1P3
��! � Z

!
and L ¼ P1P3

��! � X
! 

The contact zone between the tool and the sheet is defined through
the projection of the line P2P5 on the X axis. This distance is referred
as Rimp (see Fig. 8) which is computed as follow:

Rimp ¼ R2 sinðaÞ ð32Þ

The angle a could be computed using the following relationships:

R1 ¼
ðR2 þ hÞ2 � L2

2ðR2 þ hÞ
a ¼ tan�1 L

R1 þ h

� �
8>><
>>: ð33Þ

This distance L is limited to 5 times the tool radius R2. This value has
been chosen based on our house experience.

Fig. 11. Thickness distributions.

Fig. 12. Thickness distribution using ISF-SAM (a) and Abaqus (b).



Fig. 13. Major strains distributions in lower surface using ISF-SAM (a, b) and Abaqus (c).

Fig. 14. Major strains distributions in upper surface using ISF-SAM (a, b) and Abaqus (c).



4.2. Intermediate position of the tool

To allow a tool displacement increment as large as possible, it is
necessary to position the tool judiciously. Let us define Pk and Pk+1

as two different tool positions at the beginning and the end of an
increment, respectively. For a node between both tool positions,
it is incorrect to use this algorithm with the tool in the Pk+1 posi-
tion. In fact, some intermediate nodes will (or will not) have an im-
posed displacement as shown in Fig. 9-a.

To avoid this issue it is possible to use small tool increments
however this involves a long computation time. An alternative
solution has been proposed, which consist to find an intermediate
position of the tool between Pk and Pk+1 for each node. This position
minimizes the distance between the tool center and the node as
shown in Fig. 9-b. Then, the imposed displacement will be esti-
mated if the node is considered in the contact zone which is lim-
ited by the critical radius (Section 4.1).

5. Results and discussion

In this section, two applications of ISF were investigated and the
results carried out with the ISF-SAM code were compared to
numerical and experimental results.

5.1. Pyramidal part

The first benchmark is a pyramidal part (see Fig. 10) [16]. Two
of the opposing walls have different inclinations. One wall has a
changeover from a steep angle (55�) to a shallow angle (35�). The
other wall has an inverse changeover (from shallow angle to steep
angle). The remaining two walls have same angle (45�). The
frustum of pyramid has a depth of 36 mm and a base area of

Fig. 15. Thickness variation.

Fig. 16. Major strain variation.

Fig. 17. Tool path and geometry of the final shape (mm).



120 � 120 mm. The bottom area is 43.4 � 43.4 mm. Fig. 8c shows
the trajectory of the tool and two cutting planes on which experi-
mental results are provided.

The initial dimension of the sheet is 200 � 200 � 1 mm, the tool
has a diameter of 10 mm. The tool path follows the CAD surface at
a constant depth, followed by an increase in depth of 0.5 mm. The
starting point is at an exterior edge. The material is an aluminium
alloy (AA1050). The isotropic hardening behaviour is modelled by
the Swift law:

ry ¼ 119:5ð0:000142þ �epÞ0:235

The material AA1050 has a Poisson’s ratio of 0.33 and a Young’s
modulus of 70,000 MPa. The Lankford coefficients are: r0 = 0.51,
r45 = 0.75 and r90 = 0.48.

A static FE code (Abaqus/standard) has been successfully used
to simulate the ISF process, as it is very suitable for highly non-lin-
ear problems. In the FE model, the tools are assumed as rigid
bodies and the sheet has been meshed with 4394 triangular shell
elements called S3R and considering five integration points
through the thickness. The same discretization of the sheet has
been used to carry out the analysis with the ISF-SAM, and the sheet
part under the die has been assumed to be fixed.

Four tool path increments were tested: Dda = a * R(a = 0.5, 1, 2,
3). A stabilization of results in term of thickness distribution has
been observed when the tool path increment value is smaller than
one time the tool radius R (Fig. 11a–d).

The sheet thickness prediction obtained using ISF-SAM with a
tool path increment of 1R is compared to the Abaqus result and a
good agreement is shown in Fig. 12a and b. The results are given
in the same scale using Gid Postprocess interface developed by
the International Center for Numerical Methods in Engineering
(CIMNE) [29].

To quantify the bending phenomenon, numerical results ob-
tained with ISF-SAM code on lower and upper surfaces have been
compared to these of Abaqus. Fig. 13a and b shown that the major
strain distributions obtained on lower surface with ISF-SAM are in
good agreement with these of Abaqus (Fig. 13c), despite that the
maximum values are slightly different when a tool path increment
of 1R is used. However, the ISF-SAM results obtained with a tool
path increment of 0.5R are very close to Abaqus results. The max-
imum values are: 0.6198, 0.62054 and 0.59016 for Abaqus, ISF-
SAM with Dd1 = 0.5R and ISF-SAM with Dd2 = 1R respectively. This
result shows that the ISF-SAM code covers sufficiently the bending
phenomenon and that the error is reasonably acceptable. However,
the parameter, called a, which control the displacement increment
has a significant role. In fact, the accuracy of the FE modelling can
be increased by considering a small value of the tool path incre-
ment, but this leads to very expensive analysis in term of CPU time.
In addition, the increment is also in function of the tool radius. To
correctly manage the contact (tool/sheet) under Abaqus (or ISF-
SAM), the mesh size of the sheet must be less than 1/2, 1/3, (or
1/4) of tool radius. Thus, if the tool radius decreases, the mesh size
decreases, and consequently the CPU time increases. With the ISF-
SAM, the parameter a is given by the user and the increment does
not depend of the mesh size. If the tool radius decreases for the
same application, the parameter a could be increased in order to
keep the same increment, and consequently the CPU time will be
improved compared to Abaqus, but the quality of the ISF-SAM re-
sults could be degraded.

The analysis performed using the ISF-SAM with the incre-
ments, Dd1 and Dd2, were carried out in 23h38min and 50h7min
of CPU times respectively on an Intel Xeon workstation and in
63h50min using the Abaqus/static finite element code.

On the upper surface (Fig. 14), the major strain distributions ob-
tained using ISF-SAM and Abaqus were compared and again show

Fig. 18. Thickness distributions.



that the ISF-SAM code, takes into account the bending phenome-
non. According to the results obtained in lower and upper surfaces,
it has been concluded that the bending phenomenon for this exam-
ple is not significant. Thus, a second application was proposed to
investigate this phenomenon, which is presented in Section 5.2.

Numerical predictions carried out using ISF-SAM and Abaqus
are compared to experimental results and shown in Figs. 15 and
16. The thickness variations along the X = 0 and Y = 0 cut, presented
in Fig. 15 shows a good correlation between numerical and exper-
imental results. Also, the same conclusion regarding the major
strain variations presented in Fig. 16. Finally, the numerical results
obtained with the ISF-SAM code, the comparison with these of
Abaqus and the experimental validation confirms the potentiality
of the present FEM analyses.

5.2. Square box

A second application, called square box, has been proposed in
order to investigate the bending phenomenon and to illustrate
the capabilities of the ISF-SAM to take into account this phenome-
non. The material parameters of the sheet and the tool diameter
are the same as those used for the pyramidal benchmark. The ini-
tial dimensions of the sheet are 200 � 200 � 1.5 mm. The frustum
of the square box has a depth of 10 mm and a base area of
80 � 80 mm. The tool path and the dimensions of the desired
shape are shown in Fig. 17.

The sheet is meshed using 5422 triangular elements (DKT12 for
ISF-SAM and S3R for Abaqus) with five integration points through
the thickness. The sheet thickness distributions obtained using

Fig. 19. Major strain variations obtained in lower and upper surfaces.



ISF-SAM with increments of Dd = 0.5R and Dd = 1R (Fig. 18a and b)
are compared to the Abaqus result (Fig. 18c) and a best agreement
of results was observed for an increment of Dd = 0.5R. An excessive
thinning of 51.5% was obtained at the end using Abaqus code. The
same value was obtained for ISF-SAM with Dd = 0.5R and an
excessive thinning of 50.3% with Dd = 1R. The thickness variations
obtained along the line defined by the cut plane (Y = 0), which are
reported in Fig. 18d, show that the displacement increment of 0.5R
allows more accuracy result for ISF-SAM. In fact, significant gaps
are observed in the vicinity of ±40 mm when a displacement
increment of Dd = 1R is used.

In Fig. 19 are compared the major strain distributions obtained
by Abaqus and ISF-SAM with an increment of Dd = 0.5R. Fig. 19a
and b show the distributions obtained on the lower surfaces. It
could be noted that the distributions are not symmetric and signif-
icant deformations are located principally along the contour of the
square box base. Despite the gap between the maximum values a
good agreement of the results is observed. Fig. 19c compares the
evolution of the major strains along the line defined by the cut
plane (Y = 0) where the maximum values are 0.38 and 0.43 for
ISF-SAM and Abaqus respectively.

The major strains distributions obtained on the upper surfaces
are reported in Fig. 19e and f and they again confirm that the
ISF-SAM approach provides results in good agreement with Aba-
qus. Significant deformations have been again located along the
contour of the square box base but it should be noted that there
are also minor deformations on the borders near to the clamped
shape. Fig. 19d presents the evolution of the major strains along
the line defined by the cut plane (Y = 0) and shows that the solici-
tations obtained on the upper surface of the sheet are slightly dif-
ferent than these observed on the lower surface, and within the
both cases the solutions of ISF-SAM tend toward these of Abaqus.

Finally, the CPU time was reduced by more than 50% for this
application. The analysis performed using the ISF-SAM with
Dd = 0.5R was carried out in 13h24min of CPU times on an Intel
Xeon workstation and in 30h50min using Abaqus code.

6. Conclusion

A simplified numerical approach called ISF-SAM has been
developed to simulate the ISF process. A shell element DKT12
was implemented and coupled with an elasto-plastic model based
on a classical flow rule. A procedure to manage the tool/sheet con-
tact conditions in the context of the ISF process simulation has
been presented. A reduction of CPU time about approximately
63% has been obtained and at the same time good simulation re-
sults are achieved and compared to experimental results. A square
box test including more significant bending effect is investigated
and shows again the potentiality of the ISF-SAM. Also, we intend
to replace the DKT12 element by a rotation free triangular shell
element, again with hope to reduction the simulation times. Fur-
thermore, optional parameters will be added to the current ISF-
SAM in order to expand the application field and to study others
benchmark tests of the incremental sheet forming process such
as: ISF with double points and/or including a combination of mul-
ti-stage forming.
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