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The poly ethylene terephthalate near the glass transition
temperature highlights a strongly non linear elastic and
viscous behaviour when biaxially stretched at high strain
rates representative of the injection stretch blow mould-
ing process. A non linear visco-hyperelastic model,
where characteristics are coupled to the temperature,
has already been identified from equi-biaxial tension ex-
perimental results. The weak form of the mechanical part
of the model is presented and implemented into a finite
element code developed in the Matlab environment and
validated by comparing numerical simulation of equi-
biaxial testing with the analytical solution in the isother-
mal case. Considering the thermal aspects, an experi-
mental study, where PET sheets are heated using infrared
(IR for short) lamps is also presented. The modeling of
the IR radiation of the sheet helps to identify the thermal
properties of the PET. The thermal model is then imple-
mented in the finite element code, coupled to the 2D
viscoelastic model. A discussion is made to justify the ac-
curacy of the assumption made on homogeneity of the
temperature field through the thickness. The simulation
of the 2D plane stress equibiaxial test shows the impor-
tant influence of the thermal aspects and the coupled
thermo-mechanical software is used to quantify the self-
heating phenomenon in the case of the biaxial elonga-
tions of PET sheets at high strain rates. POLYM. ENG. SCI.,
53:2683–2695, 2013. ª 2013 Society of Plastics Engineers

INTRODUCTION

The injection stretch blow molding (ISBM) process

that is managed at a temperature near or slightly above

the glass transition temperature (Tg) involves multiaxial

large strains at high strain rate of the polyethylene tereph-

thalate (PET) material. The performance of a PET bottles

produced by the ISBM process depends on many parame-

ters. During the ISBM process, the PET behavior exhibits

a highly elasticity, a strain hardening effect, and a strong

viscous and temperature dependency. Therefore, many

researches have been conducted on the rheological behav-

ior of PET: Marckmann et al. [1] proposed and used a

hyperelastic modeling approach which could not take into

account the strain rate effect. Gorlier et al. [2, 3] also

used the hyperelastic type models, however, although

these models have demonstrated some success in repre-

senting the PET behavior at specific strain rates, they

have been found to be unstable in the numerical simula-

tion. Chevalier and Marco [4] have managed biaxial ten-

sion tests near Tg with a range of strain rates from 0.02 to

2 s21. They proposed a simple viscoplastic model [4]

identified from these tension tests. This model has been

used by Bordival et al. [5] in a numerical procedure based

on simulations of the heating and blowing phases per-

formed to optimize the stretch blow molding process.

Cosson et al. [6], then developed this viscoplastic model

into an anisotropic version. The strain hardening effect

observed during tension can be related with the strain

induced modifications of the microstructure of PET but

this viscoplastic model approach fails to represent the

relaxation stage after tension which Chevalier and Marco

[7] carried out from the relaxation tests. In their work, the

relaxation time has been identified from these tests and

clearly demonstrates the contribution of a viscous part in a

highly elastic macromolecular network. This stress relaxa-

tion behavior is the main characteristics associated with

viscoelastic materials. Therefore, the viscoelastic model

which take into account the strain hardening and strain rate

effects have been used for ISBM process [8, 9]. However,



the classical viscoelastic models such as the Upper

Convected Maxwell model [9] or the Giesekus model [10]

do not adequately demonstrate the strain hardening effect.

Buckley and Jones [11, 12] proposed a nonlinear visco-

elastic model which is physically based on molecular net-

work theory. Lately, Menary et al. [13] have examined three

different constitutive models: hyperelastic model, creep

model and a viscoelastic model (Buckley model) in the

ISBM simulation using the finite element package

ABAQUS/standard. They found that the Buckley model

(viscoelastic model) gave a better result than the others two

models in terms of predicting thickness distribution in the

bottle. Inspired from Figiel and Buckley’s work [14],

Chevalier et al. [15, 16] have recently proposed a nonlinear

incompressible viscohyperelastic model to represent the

complex constitutive behavior of PET. Experimental uniax-

ial and biaxial tests performed on PET were carried out by

Menary et al. [17] in Queen’s University of Belfast. These

tension tests were managed with various tension speeds

(from 1 to 32 s21), which are higher than in Chevalier and

Marco’s work [4]. The nonlinear forms of elastic and vis-

cous characteristics were proposed. Here, we implement

this complex viscohyperelastic model into a finite element

code in the Matlab environment. The weak form of this

four-field model (velocity V, the elastic left Cauchy Green

tensor Be, and the related pressure p and q for the incom-

pressibility assumptions) is presented in the two dimen-

sional (2D) specific plane stress case. It enables to reduce

the number of field to 2 (velocity, the elastic left Cauchy

Green tensor). Simulations of biaxial tests are managed

to compare with the analytical solution in the isothermal

conditions.

Effects of temperature, initial heating conditions or self-

heating during the process, are of fundamental importance

during the ISBM process of PET bottles. In the ISBM pro-

cess, an initial preform is heated in an oven to the process

temperature, which is near or slightly above Tg. Over this

temperature Tg, the mobility of the molecular chains in mate-

rial PET affects the orientation and the microstructure (crys-

tallization). The mechanical properties of PET are dependent

on the microstructural morphology of the PET and strongly

depend on the process temperature as well as on the strain

rates. On the other hand, the low mobility of micromolecules

and the high viscosity of the material generate dissipation of

energy which leads to a self-heating phenomenon. This self-

heating effect must be taken into account in the simulation.

In contrast, many existing numerical studies of ISBM [14,

18] neglect heat transfer: the temperature has been assumed

to be constant during the process and the deformation

induced heat was neglected. These researches show that a

numerical simulation neglecting the effect of temperature

during stretch-blow molding process could not accurately

predict or model the orientation and crystallization, which

are highly temperature dependent during the process. There-

fore, it is essential to incorporate heat transfer to represent

the mechanical properties of the final bottles. Schmidt et al.

[19] developed their work [8] in ISBM simulation by devel-

oping a nonisothermal finite element simulation to embed

heat transfer during the deformation process. However, it did

not show the significant improvement in terms of predicting

thickness distribution and the force exerted by the stretch

rod. Yang et al. [20, 21] continued the work of Menary et al.

[13] in a 2D isothermal simulation to a 2D nonisothermal

simulation by using the Buckley model to represent the PET

behavior. Significant nonlinear differentials have been found

in temperature and strain in the bottle thickness. Here, we

first identify the thermal properties from infrared (IR) heat-

ing tests of PET sheets. The identified parameters are com-

pared to classical values of the literature. Especially, the IR

heating flux coming from IR lamps is studied using radiative

laws adapted to the test geometry. A good correlation is dis-

covered. Then, the thermal part coupled with the viscohy-

perelastic model for the mechanical part is used to perform

the simulation. The simulation enables to quantify the self-

heating during the biaxial tests.

In the first section of this work, we present the implemen-

tation of the proposed nonlinear incompressible viscohypere-

lastic model into a finite element code developed with Mat-

lab. We present a two-field finite element formulation: global

velocity V and elastic Cauchy Green tensor Be. Rectangular

finite elements with quadratic and linear interpolations are

used for velocity and elastic left Cauchy Green tensor. A

numerical simulation of 2D plane stress case is performed.

It reproduces well the strain hardening effect.

In the second section, a procedure is proposed for the

identification of the thermal parameters from experimental

results of a test where PET sheets are heated using IR

lamps. Sheets used in this study are made with the PET Arn-

ite D00301 from DSM industries. The IR heating with IR

camera is widely used in the experimental setup for the heat

transfer [22, 23]. The Monte Carlo method is used to identify

the parameters from the temperature evolution measured on

the front face (in regard of the lamps) and the rear face of the

sheet. The heat capacity, Cp, is considered as a function of

the temperature while the other parameters (thermal conduc-

tivity, emissivity, convection coefficient, etc.) are assumed

to be independent of the temperature. A large section is

devoted to the comparison of the identified parameters with

classical values of the literature, especially for the IR heating

modeling. Moreover, the weak form describing thermal

behavior adapted to plane stress case is presented in the end

of this section.

In the third section, to accurately simulate the ISBM

process, the thermal and mechanical parts are put to-

gether. Nonlinear mechanical and thermal equilibrium

equations are solved with implicit schemes on the current

deformed configuration, which is updated at each time

step. Finally, the parameters identified in the proposed

model have to be adjusted because the self-heating effect

is not negligible and has an important effect on the vis-

cous part of the model. Therefore, an optimization proce-

dure is managed to adjust the characteristics of the PET

for these viscohyperelastic model expressions to represent

conveniently the biaxial experimental tension tests [17].



NUMERICAL SIMULATION OF THE MODEL
IN PLANE STRESS CASE

Model Presentation

Inspired from Figiel and Buckley [14], we proposed in

Refs. [15, 16], a nonlinear incompressible viscohyperelas-
tic model for both elastic and viscous parts to represent
the mechanical behavior. To represent the strain
hardening and strain rate effect and temperature depend-
ency, we choose two rheological functions for elastic and
viscous parts: G(ee) and g(ev, _ev, T).

ŝ ¼ 2G eeð Þ̂ee

ŝ ¼ 2Z ev; ėv; Tð ÞDv

(
and s ¼ 2ZNDþ ŝ� pI � qI

(1)

where r is the Cauchy stress tensor, Dv is the symmetric

part of the viscous velocity gradient, D is the symmetric

part of the global velocity gradient, I is the identity ma-

trix, ee is the equivalent elastic strain, ev is the equivalent

viscous strain, _ev is the equivalent viscous strain rate, T is

the temperature, the subscript ‘‘^’’ denotes the deviatoric
part of the tensor, gN is the small value of the viscosity

of the Newtonian branch of the Zener-like model used to

solve the ill-conditioned problem, and ee is the elastic part

of the Eulerian strain measure defined by:

ee ¼
1

2
Be � I
� �

(2)

where Be is the elastic left Cauchy Green tensor. p is a

Lagrange multiplier associated to the global incompressi-

bility condition, and q is the multiplier associated to the

incompressibility of the elastic part. Since the elastic and

global parts are incompressible, the viscous part is sup-

posed to be also incompressible:

det Be ¼ 1 ; divV
*

¼ traceD ¼ 0 ; divV
*

v ¼ traceDv ¼ 0

(3)

where V
*

is the global velocity and V
*

v is the viscous

velocity.

The assumption of an additive decomposition of elastic
and viscous velocity gradient is adopted to describe the
kinematic structure of this model:

D ¼ De þ Dv (4)

where De is the symmetric part of the elastic velocity

gradient.

Combining Eqs. 1, 2, and 4 in the Oldroyd derivation

of the elastic left Cauchy Green tensor leads to:

dBe

dt
þ G

Z
Be:B̂e ¼ 0 (5a)

TABLE 1. The numerical value of G0.

Strain rate (s21) 1 2 4 8 16

G0 (MPa) 7.2 8.1 7.7 7.9 8.9

Min G0 (MPa) 7.2

Max G0 (MPa) 8.9

where G is the elastic shear modulus, Z is the viscosity

and the Oldroyd derivation dBe=dt is defined by:

dBe

dt
¼ Ḃe þ BeO� OBe � a BeDþ DBe

� �
with a ¼ 1

(5b)
where is X the global spin.

Identification of the Material’s Properties

Both the elastic and the viscous parts of the model
must contribute to the strain rate effect. We first focus on
the elastic part. One can identify the initial shear modulus
G0 from the initial slope of the global experimental
strain–stress curves which were carried out by Menary
et al. [17], because there is no viscous strain at the very
beginning of the test. Table 1 show that G0 does not vary
much from one strain rate to another.

As the biaxial tests are conducted at constant nominal

strain rate, the global strain rate decreases versus time. If

the shear modulus G remains constant, it leads to a contra-

diction because the viscous strain rate may become nega-

tive. Therefore, we consider a Hart-Smith-like model to rep-

resent the elastic part:

G eeð Þ ¼ G0 exp � I1 � 3ð Þ2
� �

; I1 ¼ trace Be

� �
(6)

where K is a dimensionless parameter.

For the nonlinear viscous part of the model, we follow
the same method as in Cosson et al. [6] to represent mac-
roscopically the strain hardening effect, but we choose a
Carreau type law instead of the power law to describe the
influence of the strain rate:

Z ev; ėv; Tð Þ ¼ Z0h evð Þ:f ėvð Þ (7)

with : f ėvð Þ ¼
1

1þ lðėv=ėrefÞð Þa
� �ð1�mÞ=a

(8)

where l, m, and a are parameters in the Carreau type law
and _eref is a reference strain rate that can be taken equal

to 1 s21 for sake of simplicity. The strain hardening effect

is related to the h function which increases continuously

with �ev. We detailed the identification procedure for the h
function in [15, 16], here we slightly changed the form of

the function. Since the strain hardening effect is influ-

enced by the temperature, h is a function of T too:

Z0h ev; Tð Þ ¼ Z0 Tð Þ � 1� exp �Kevð Þð Þ
1� ðev=ev lim Tð ÞÞð ÞN

: (9)



According to the form of the lines of h showed in

Fig. 1, we propose the function in Eq. 9, where g0 is

related to the level of the function on the ‘plateau’, K
is a constant related to the initial slope of the curve,

evlim is the strain value corresponding to the vertical as-

ymptote of the h curve and N an exponent that fits the

‘‘beginning’’ of the quick increase in the curve.

Parameters K and N do not vary much with the tem-

perature; at the contrary, variables g0(T) and evlim(T) show

a significant dependence on temperature. We choose

the Williams–Landel–Ferry (WLF) model for the evolu-

tion of g0(T):

ln aTð Þ ¼
�C1 T � Trefð Þ
C2 þ T � Tref

; Z0 Tð Þ ¼ aTZ0 Trefð Þ (10)

where C1 and C2 are the WLF parameters, Tref ¼ 908C. We

propose the evolution of evlim(T) in the following way:

ev lim ¼ ev lim ref 1þ B1 Tref � Tð Þ
T � B2ð Þ

� �
(11)

where ev lim ref ¼ ev lim 90�C. Finally, the characteristics of

the PET for these viscohyperelastic model expressions to

represent conveniently the experimental are listed in

Table 2.

FIG. 1. The h evolution versus the equivalent viscous strain �ev when m

¼ 0.25 [15, 16]. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

TABLE 2. The characteristics of the PET.

G0 ¼ 8 MPa g0 ¼ 8.4 MPa�s C1 ¼ 1.88

L ¼ 0.001 K ¼ 3.2 C2 ¼ 25.818C
k ¼ 9.91 h0 ¼ 20.21 B1 ¼ 0.07

a ¼ 2 N ¼ 0.42 B2 ¼ 111.888C
m ¼ 0.2 evlim_ref ¼ 1.83

Weak Form of the Plane Stress 2D Viscohyperelastic
Problem

In the equibiaxial elongation plane stress case, before

deriving the weak form, we can establish a relation

between the pressures, the velocity, and the elastic left

Cauchy Green tensor:

s33 ¼ 0) pþ q
¼ �2ZN D11 þ D22ð Þ

þ G eeð Þ
3

2

Be11Be22 � B2
e12

� Be11 � Be22

� �
: (12)

The viscohyperelastic model is implemented in

the Matlab environment using a finite element approach.

A two fields (global velocity V and the elastic left

Cauchy Green tensor Be) variational formulation is pro-

posed for plane stress incompressible problem. Some

manipulations of Eqs. 5, 6, and 12 lead to the following

weak form:

RV ¼ 2gN

Z
X

D� :DdXþ G

Z
X

D� :BedXþ 2gNZ
X

D� : I D11 þ D22ð ÞdX

� G

3

Z
X

D� : I
1

Be11Be22 � B2
e12

dX�
Z
@XF

V�FddS ¼ 0;

RBe
¼
Z
O

Be
� :

dBe

dt
þ G eeð Þ
Z ev; ėv; Tð ÞBeB̂e

!
dO ¼ 0 (13)

where the superscript * designates test quantities and Fd

the prescribed traction field over the boundary @XF where

the loads are imposed. The integral equations are studied

on the entire volume O.

This strongly nonlinear problem (finite elastic displace-

ments, elastic left Cauchy Green tensor Be, nonconstant

shear modulus G, and viscosity g) is solved using a clas-

sical Newton–Raphson iterative procedure. The consistent

linearization must be done with Gâteaux operators and

the linear form of the problem for the increment DV and

DBe is written in the following system:

DDV RVf g½ � DDBe
RVf g½ �

DDV RBe
f g½ � DDBe

RBe
f g½ �

� �
DV½ �
DBe½ �

	 

¼ � RV½ �

RBe
½ �

	 

(14)

where DDV RVf g, DDBe
RVf g, DDV RBe

f g, and DDBe
RBe
f g

are the Gâteaux derivatives related to the increments:

DDV RVf g ¼ 2gn

Z
X

D� :D DVð ÞdXþ 2gnZ
X

D� : D DVð Þ : I
� �

I
� �

dX



DDBe
RVf g ¼

Z
X

D� : G eeð ÞDBe

� �
dX

�
Z

X
D� : G eeð Þ

1

DBe11DBe22 � DB2
e12

I

� �
dXZ

X
D� :ðDDBe G eeð Þf gBe

ÞdX

�
Z

X
D� :

1

Be11Be22 � B2
e12

DDBe
G eeð Þf gI

� �
dX

DDV RBe
f g ¼ 2

Z
X

Be
� : BeX DVð Þ
� �

dX

� 2

Z
X

Be
� : BeD DVð Þ
� �

dX

DDBe
RBe
f g ¼

Z
O

Be
� :DḂedO� 2

Z
O

Be
� : ODBe

� �
dO� 2Z

O
Be
� : DDBe

� �
dO

þ
Z
O

Be
� :

G eeð Þ
Z ev; ėv; Tð ÞBeDB̂e

� �
dO

þ
Z
O

Be
� :

G eeð Þ
Z ev; ėv; Tð Þ B̂eDBe

� �
dO:

þ
Z
O

Be
� : DDBe

G eeð Þ
Z ev; ėv; Tð Þ

	 

BeB̂e

� �
dO

(15)

Figure 2 shows the geometry of the PET specimen dur-

ing the tension tests, boundary conditions on symmetry

axis and the load applied on the edge of the sheet. The

PET sheet is submitted to a velocity V on X-axis and

Y-axis. This case represents the equal biaxial tension case:

rxx ¼ ryy. According to the axis of symmetry, the equal

biaxial tension case can be simulated using one-quarter of

the specimen. To compare the experimental results, the

length and width of the 2D domain simulated are 38 mm

and the thickness is 1.5 mm, which is representative of

the PET specimen size (76 mm 3 76 mm 3 1.5 mm) of

the test [17].

As showed in Fig. 2, the domain O is discretized by a

set of eight-node isoparametric rectangles elements. The

simulation is managed for different elongation rate _k
obtained from the derivative of stretch ratio k with respect

to time t: so _e ¼ _k=k, _e varies from 1 to 32 s21.

Simulation the Biaxial Plane Stress Testing

In the case of the classical incompressible problem

with a mixed velocity-pressure formulation, the finite ele-

FIG. 2. The 2D rectangular domain with the boundary conditions.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]

FIG. 3. (a) The experimental data (þ) and the finite elements results of

the viscoelastic model (lines) at 908C under different strain rates; (b) the

experimental data (þ) and the finite elements results of the viscoelastic

model (lines) at 8 s21 under different temperatures. [Color figure can be

viewed in the online issue, which is available at wileyonlinelibrary.com.]



ment calculations can lead to locking problem if velocity

and pressure spaces are not chosen carefully. To be

stable, a mixed formulation must verify consistency.

The well-known inf–sup condition or the Ladyzenskaia-

Babushka-Brezzi (LBB) condition [24] guaranties the sta-

bility of a finite element velocity-pressure calculation as a

quadratic interpolation for velocity and linear for pressure.

By analogy, we choose a quadratic interpolation for ve-

locity V and linear interpolation for Be.

The finite elements result matches perfectly with the

analytic results. Figure 3a and b shows a substantially

good representation of the experimental results. The mean

difference does not exceed 10%.

NUMERICAL SIMULATION OF A
THERMOMECHANICAL MODEL

Experimental Procedure

Mechanical properties of polymer are strongly influ-

enced by small variation of temperature. On the other

hand, the high viscosity of polymers generates important

dissipation that impacts the temperature evolutions. Con-

sequently, thermal properties are to be taken into account

in the ISBM modeling to achieve accurate simulation of

the process. It is necessary to:

i. define accurately the initial temperature distribution of

the preform at the beginning of the blowing operation;

ii. identify the thermal properties of the PET to model

the behavior law of PET coupled to the thermal laws;

iii. provide, by coupling the thermal equations with the

mechanical equations, the history of the temperature

field during the simulation.

In the following, a procedure is proposed for the identifi-

cation of the thermal parameters. According to Fig. 4, the ex-

perimental apparatus which consists in measuring, by ther-

mal imaging, a PET sheet heating by IR lamps. A FLIR

B250 IR camera with the wavelength range 7.5–13 lm is

used to evaluate the surface temperature distribution. The

surface dimension of the 1 mm thickness sheet is 60 mm 3

125 mm. Sheets used in this study are injected from the PET

Arnite D00301 following DSM industries recommendations.

We have tested three different distances between the

lamps and the PET sheet: 11 cm, 12 cm, and 13 cm. The

thermal properties are identified for each distance: we can

ensure the values of the heat conductivity, the specific masse,

the heat capacity and the convective heat transfer parameters.

Moreover, the relation between the heating flux and the dis-

tance can be estimated. For a constant heating IR flux, we

can notice that the temperature decreases while this distance

increases. This is a logical result because the intensity of the

radiation decreases when the distance increases [25].

Identification of the Thermal Properties

The software FLIR quick report is used to measure

accurately the temperature. In the work of Schmidt et al.

[26], they have found that the polymer material is opaque

under the wavelength in the range of 8–12 lm. This range

matches the one of the IR camera so the PET may be

considered like an opaque medium. The black paint used

is assumed to be opaque which means that only the radia-

tion emitted from the PET sheet surface is captured by

the camera’s sensor. To evaluate the temperature field

from the IR camera, we need the emissivity value of the

PET sheet. However, because we are not able to quantify

it precisely, the identification is managed from thermo-

couple measures. From thermal imaging by camera, the

temperature field visualization shows that some tempera-

ture heterogeneities only appear on the edges of the sheet

surface. According to these results, we can assume that

the temperature is homogeneous in the plane of the sheet

and only varies in the thickness direction. Therefore, the

identification can be done from a 1D model.

The heat transfer equation in the 1D case with the radi-

ative source term can be written in the following way:

rCpðTÞṪ � k
q2T

q2z
¼ �div qr

!� �
(16)

where r the specific mass, Cp the specific heat capacity, k
the material’s conductivity and qr

! is the internal radiative

heat flux.

FIG. 4. (a) Experimental heating setup; (b) IR lamps and PET sheet.

[Color figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]



In Cosson et al. [27], the convective heat transfer coef-

ficient for the face in front is little larger than the one on

the rear face, but in other works [28], it is the opposite.

Therefore, we choose to take into account the convection

via two different coefficients. T1 is the surrounding bulk

temperature: T1f for the air in front of the lamps is

higher than the one in the back T1r. Consequently, we

write the boundary conditions in the following way:

� krT � n ¼ hf T � T1fð Þ on the face in front of the lamps;

(17a)

� krT � n ¼ hrðT � T1rÞ on the rear face (17b)

where hf and hr are the convective heat transfer coefficient

on the face in front of the lamps and the one on the rear face.

The heat conductivity k, the specific mass q and the

convective heat transfer coefficient h are assumed inde-

pendent of temperature while the heat capacity Cp is con-

sidered as a function of the temperature, because heat

capacity increases significantly with the temperature (see

Fig. 5). According to the values referenced in Ref. [29],

we propose the following function to represent the evolu-

tion of the specific capacity:

CP ¼ DCp arctan ðaðT � TgÞÞ þ Cp1 (18)

where DCp is a constant related to the amplitude of the

increased of the Cp value when passing from the glassy

state to the rubber state, Tg is the more or less the glass

transition temperature, Cp1 is a specific capacity value

corresponding to the glassy state of the material and a is

a factor that fits the roughness of the jump of the curve.

Since the heat transfer is assumed as a 1D case which

the temperature varies only in the thickness direction, the

internal radiative intensity absorption qr
! is taken also as

1D and is managed by the Beer–Lambert law:

qr
!¼ fl0e�kls z! (19)

where: /k0 is the incident radiation, kk is the spectral

absorption coefficient of PET and s represent the path

between the current position to the incident surface. From

Fig. 8, s can be calculated as: s ¼ z� d.

The heat equation (Eq. 16) with a nonlinear specific

capacity (Eq. 18) and the equation of the internal heat

flux (Eq. 19) are solved using a 1D finite element method.

The implicit time integration scheme is chosen to solve

this time-dependent problem. Due to the nonlinear spe-

cific capacity, a Newton–Raphson method is used to

obtain the temperature field.

The Monte Carlo method is used to identify the param-

eters that best fit the experimental results. The domain of

each parameter is defined from Ref. [29]. We generate

the parameters randomly over the domain. On each draw,

a computation is carried out and the numerical results are

compared with the experimental temperatures. After draw-

ing 10,000 random inputs, we obtain the parameters, with

which the numerical results best matches the experimental

data. The thermal properties are referenced in Table 3.

This identification shows that hf is smaller than the rear

coefficient hr. The specific mass q and the absorption

coefficient kk have the same order of magnitude with ref-

erence. The heat conductivity k is smaller than the

reference.

Figure 6 represents for each distance, the experimental

temperature evolution on the surface in front of the lamps

Tf (the blue one) and the one on the rear face Tr (the red

one). With the identified parameters, the curves obtained

have a substantially good representation of the experimen-

tal results (dots).

The evolution of Cp for PET Arnite D00301 is illus-

trated in Fig. 7, comparing with the one of material PET

T4F9. They have the same order of magnitude except

some differences at the lower temperature. The convective

heat transfer coefficient h can be estimated from the rela-

tion proposed by Churchill and Chu [30]:

h ¼ k

L
0:68þ 0:67R1=4

a

ð1þ ð0:492=PrÞ9=16Þ4=9

!
(20)

where L is the height of the sheet, Ra is the Rayleigh

number, and Pr is the Prandtl number. Pr ¼ 0.688 and Ra

¼ 1.6�106 when the temperature of PET reaches 1008C

FIG. 5. Heat capacity Cp versus the temperature and the illustration of

the Cp function. [Color figure can be viewed in the online issue, which

is available at wileyonlinelibrary.com.]

TABLE 3. The value of thermal properties.

Cp (J kg21 K21) h (W m22 K21)

Parameter q (kg m23) Cp1 Tg DCp a k (W m21 K21) hf hr kk (m21)

Value 1400 120 87 1650 0.1 0.07 7 16 3.104



[29], we can obtain the value of h using Eq. 20: h ¼ 11

W m�2 K�1. The identified hr (16 W m�2 K�1) is a little

higher than this value estimated while hf (7 W m�2 K�1)

is a bit lower than this one.

FIG. 6. The experimental results (dots) and the numerical results

(curves) with optimal thermal properties: (a) d ¼ 11 cm; (b) d ¼ 12 cm;

(c) d ¼ 13 cm. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]

FIG. 7. The evolution of Cp with the parameters identified. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]

Since we tested three different distances between the

IR lamps and the PET sheet, the intensity of the incident

radiation depends on the distance. In the following, we

estimate this absorbed IR radiation /k0 from a simple

modeling based on the principle of spectral energy rela-

tion [29, 31]. Four identical IR lamps (radius r ¼ 2 mm

and length l ¼ 185 mm) are modeled as cylinders sepa-

rated by a distance dl ¼ 15 mm (Fig. 8b).

The amount of the radiation heat energy that comes from

the surface element dA0 at a collocation point M0 (x0 ¼ r cos

uþ h, y0, z0 ¼ r sin u) and reaches the surface element dA at

a collocation point M (x, y, z ¼ d) with the path vector ~w
(Fig. 8a), can be written in the following way:

dQdA0!dA ¼
Z l2

l1

elibl lð Þdl

�
Z j¼p

j¼0

Z y0¼l=2

y0¼�l=2

cos y cos y0
dA

M0Mk k2
dA0|{z}

rdjdy0

(21)

where k is a given wavelength between 0.2 and 10 lm and ek

is the spectral tungsten emissivity equal to 0.26 [29]. The

emissive power for a blackbody ibk is given by Planck’s law:

ibl ¼
2C1

l5 eC2=lTfil � 1ð Þ
(22)

where C1 � 1:193108 W m�2 lm4, C2 � 14388 lm K. We

assume that the filament temperature is a uniform source at

Tfil ¼ 1700 K. ~w is a vector which represents the path of the

radiation from M0 to M:

~w ¼ M0M
��!
M0Mk k ¼

x� x0

M0Mk k ex
!þ y� y0

M0Mk k ey
!þ z� z0

M0Mk k ez
!

� x� h

M0Mk k ex
!þ y� y0

M0Mk k ey
!þ d

M0Mk k ez
!: (23)



The last approximation is related to the condition r \
d. The two angles h0 and h represent respectively, the

angle between the normal at the lamp surface n0
!

at point

M0 and the path direction ~w; the angle between the normal

at the PET sheet n! at point M and the path direction ~w:

cos h ¼ ~w �~ez �
d

M0Mk k ; cos h ¼ ~w �~ez �
d

M0Mk k ;

cos h0 ¼ ~w �~er ¼
x� hð Þ cos u

M0Mk k þ d sin u
M0Mk k ð24Þ

where M0Mk k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� hð Þ2þ y� y0ð Þ2þd2

q
.

Once again, because the radius r is negligible compared

to the distance d, Eq. 21 combining with Eq. 24 leads to:

dQdA0!dA ¼
Z l2

l1

elibl lð Þdl � 2rd2

Z y0¼l=2

y0¼�l=2

dAdy0

M0Mk k2
: (25)

Finally, the intensity per unit area of the incident radia-

tion can be written as follow:

fl0 Mð Þ ¼ dQlamps!dA

dA

¼
Z l2

l1

elibl lð Þdl � 2rd2
Xn

i¼1

Z y0¼l=2

y0¼�l=2

dy0

M0Mk k2
(26)

where n ¼ 4 stands for four lamps.

We can see, from Fig. 9, that the intensity of the inci-

dent radiation reaching the PET sheet is not uniform. The

maximum difference can reach 21% between the central

zone of the PET sheet and the corners. Nevertheless, in

the central region of study where the identification is

done, the heterogeneity is less than 10% which validates

the 1D approach used to manage the identification.

From Fig. 9d, one can also notice that the incident

radiation /k0 calculated in the central zone decreases with

increasing distance. This value is close to the one identi-

fied from temperature measurements: both are listed in

Table 4.

Implementation of the Heat Part of the
Thermoviscohyperelastic Model

We consider a thermomechanical model to simulate

the equibiaxial stretching of PET sheets to evaluate the

self heating phenomenon. The mechanical part is shown

in Eqs. 13–15. The weak form of the heat part can be

written in the following way:R
O T�rCpṪdOþ k

R
OrT�rTdO

¼
R
O T� s : D

� �
dO� h

R
qOq

T� T � T1ð ÞdS

T ¼ T0 at t ¼ 0

8><
>: : (27)

@Xq is the union of the top and bottom face of the speci-

men. The process temperature is slightly above the tem-

perature Tg. Under this condition, based on the evolution

of the heat specific capacity Cp shown in Fig. 7, it can be

assumed as constant (1750 J kg�1 K�1). Because the

sheet specimen is heated on both sides, the heat transfer

coefficient h can be chosen equal to hf (7 W m�2 K�1).

No thermal exchange is assumed between the specimen

and the grips. To be consistent with the plane stress

assumption, T is chosen as a function of the plane coordi-

nates x, y and time (i.e., T is representative of the mean

value of the temperature through the thickness e). Conse-

quently, the weak form writes:

e

�
qCp

Z
@X

T�
@T

@t
dSþ k

Z
@X
rT�rTdS�

Z
@X

T� r : D
� �

dS

�
¼ 2

Z
@Xq

T� �h T � T1ð Þð ÞdS ð28Þ

where e is the thickness of the specimen. qO ¼ qOq ¼ S
is the area of the 2D plane domain that represents the

specimen. Since we assume that the thermal exchange

only occurs on the top and bottom face of the PET sheet,

the factor ‘‘2’’ before convective heat transfer term repre-

sents the total flux exchange from these two surfaces.

The dimension of the PET specimen during the test is

76 mm 3 76 mm 3 1.5 mm. The length and width are

large with respect to thickness: e \ L. Under this

condition, the most convective heat exchange is on the

top and bottom surfaces. The dissipated power density

FIG. 8. (a) Geometrical configuration of the lamps and PET sheet; (b)

position of the lamps. [Color figure can be viewed in the online issue,

which is available at wileyonlinelibrary.com.]



r : D is about 106 Pa s�1 and is almost uniform in the

specimen. This value leads to the Brinkman number Br

equals around 10:

Br ¼
ZV

2

k TP � T
� � e2

L2
: (29)

That means the viscous dissipation is 10 times larger

than the heat conduction through the thickness.

Furthermore, the biaxial stretching process is con-

sidered fast enough in regard of the time needed to

propagate the temperature through the thickness. The

characteristic time for diffusion is td ¼ qCpe2



k ¼ 57s
and the characteristic time for capacity is tc ¼ qCpe



h ¼ 132s. The time for the process is about 2 s. If we

compare the mean value of the temperature through the

thickness T ¼ T x; y; tð Þ in the plane stress case with the

T(x,y,z,t) in the axisymmetric case, the difference

between the mean value of the temperature �T
obtained by Eq. 28 and the temperature T calculated

from the weak form with the definite integral over the

thickness is nearly 0.558C. This difference causes an

error on viscosity that is less than 3%. Therefore, in

the following, we use Eq. 28 to simulate the thermal

part.

FIG. 9. The intensity of the incident radiation calculated by Eq. 26 (a) d ¼ 11 cm; (b) d ¼ 12 cm; (c) d ¼
13 cm. (d) The incident heat flux /k0 identified (the points) compared to /k0 calculated in the central zone

(the line). [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]

TABLE 4. The values of incident heat flux.

D (cm) 11 12 13

/k0 calculated (W m22) 1650 1450 1300

/k0 identified (W m22) 1680 1590 1380



Optimization of the Mechanical Parameters of the
Thermoviscohyperelastic Model

Mechanical and thermal balance equations are fully

nonlinear and solved together with implicit schemes on

the current deformed configuration, which is updated at

each time step. The thermal parameters are identified

from the experimental IR heating and the mechanical

ones are identified from the assuming isothermal equi-

biaxial elongation. Both are listed in Tables 2 and 3.

We implement the thermal part in the finite element

approach together with the mechanical part. Therefore,

three fields (global velocity V, elastic left Cauchy Green

tensor B, and temperature T) formulation has been per-

formed. We choose the linear interpolation for tempera-

ture. Equations 13–15 that solve only the mechanical part

has to also add the heat equations. The Newton–Raphson

residual for the heat part is:

RT ¼ qCp

Z
@X

T�
@T

@t
dSþ k

Z
@X
rT�rTdS�

Z
@X

T�ðr : DÞdS

� 2=e

Z
@Xq

T�ð�hðT � T1ÞÞdS: ð30Þ

The consistent linearization leads to the linear form of

this problem for the increment DV, DBe, and DT which

can be given in the following way:

DDV RVf g½ � DDBe
RVf g½ � 0½ �

DDV RBe
f g½ � DDBe

RBe
f g½ � DDT RBe

f g½ �
DDV RTf g½ � 0½ � DDT RTf g½ �

2
4

3
5 DV½ �

DBe½ �
DT½ �

8<
:

9=
;

¼ �
RV½ �
RBe
½ �
RT½ �

8<
:

9=
;:

(31)

The adding Gateaux derivatives of nonlinear operator

corresponding to the residuals (RV, RB and RT) can be

written:

DDT RBf g ¼
Z

X
Be
� :G eeð ÞBeB̂eDDT

1

g ev; _ev;T
� �

( )
dX

DDV RTf g ¼ �
Z

X
T� r : DD
� �

dX

DDT RTf g ¼
Z
O

T�rCpDṪdOþ k

Z
O
rT�r DTð ÞdO: (32)

Figure 10 shows that stresses obtained from this

thermomechanical simulation are lower than the experi-

mental data. Because the temperature increases during the

biaxial elongation, the self-heating effect affects the me-

chanical properties, especially the viscosity which

decreases. Consequently, the parameters identified assum-

ing an isothermal elongation must be modified to take

into account this.

As the self-heating effect is not negligible and pro-

duces an important effect on the viscous part of the

model, the first estimation of the parameters obtained

from our isothermal identification must be adjusted.

The parameters in the viscosity g ev; _ev; T
� �

are

needed to optimize. The purpose is to minimize the mean

difference between the experimental results and the numeri-

cal ones. The function ‘‘fminunc’’ in the Matlab Optimiza-

tion Toolbox is then chosen for the optimization procedure.

The characteristics identified from the isothermal elonga-

tion in Table 2 are applied as the starting point of each

parameter. Finally, the characteristics of the PET for these

viscohyperelastic model expressions to represent conven-

iently the biaxial experimental tension tests are listed in

Table 5.

Comparing with the values of Table 2, one can observe

that only the values of the WLF-like coefficients are influ-

enced by this adjustment. Other coefficients that appear in

the mechanical part of the model vary very few: the ini-

tial identification makes finally sense even if an adjust-

ment is needed a posterior.

RESULTS

With these parameters identified from the optimization,

we can obtain the stress–strain curves from the thermovis-

cohyperelastic model. Figure 11 shows the comparison

FIG. 10. The experimental data (the points) and the thermomechanical

results. [Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]

TABLE 5. The characteristics of the PET.

G0 ¼ 8 MPa g0 ¼ 9 MPa�s C1 ¼ 0.88

L ¼ 0.001 K ¼ 3 C2 ¼ 105.88C
k ¼ 10.51 h0 ¼ 20.21 B1 ¼ 0.07

a ¼ 2 N ¼ 0.3 B2 ¼ 180.88C
m ¼ 0.23 evlim_ref ¼ 1.43



between the stresses obtained from this thermomechanical

simulation and from the experimental data. The mean dif-

ference does not exceed 10% for each deformation rate

showed in Table 6.

We can notice that the increasing evolution of the tem-

perature versus strain is nearly linear. The increase in the

temperature is the same order of magnitude but little

lower than the one observed in the experimental test pre-

sented in [17]. Furthermore, the self-heating of the speci-

men increases regularly for strain rates varying from 1 to

32 s�1 where the temperature increases nearly of 68C (see

Fig. 11b). It confirms that at very high deformation rate

observed during ISBM process, the adiabatic heating due

to the viscous dissipation may generate a significant tem-

perature rises.

We can see in the Fig. 11c, the effect of temperature

on the viscosity evolution. For example, the final slope of

the viscosity curve for the strain rate 32 s�1 is much

lower than the one for lower strain rates; therefore, the

strain hardening effect is not so considerable at 32 s�1.

If we examine the high strain rate case, for example,

at 32 s�1 for 908C, the coupled themoviscohyperelastique

model simulation gives the stress evolution plotted in

Fig. 11a which have 9.25% errors with the experimental

data.

One can see that the stress evolution measured during

the experiment saturates and does not increase as the

lower strain rate case when approaching the 1.8 elonga-

tion. This may be explained by the higher temperature

level coming from the self-heating of the specimen for

this test. Our model does not predict the decreasing shape

but gives a pretty good estimation on the evolution with

nearly no strain hardening effect for this case.

CONCLUSIONS

A viscohyperelastic model identified from the equi-

biaxial tests performed at conditions close to ISBM pro-

cess strain rate and temperature was implemented for nu-

merical simulations. This finite elements model was used

to simulate the plane stress test. It reproduces successfully

the experimental results and can be used to simulate uni-

axial or sequential biaxial tests to predict the PET behav-

ior for isothermal conditions.

FIG. 11. (a) The experimental data (the points) and the thermomechan-

ical results; (b) the evolution of temperature under different strain rates;

(c) the calculated evolution of the viscosity under different strain rates

during the biaxial test including the temperature effect. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.

com.]

TABLE 6. Errors between the experimental and the results of the

model.

Strain rate (s21) Relative error (%)

1 6.72

2 8.4

4 4.97

8 4.45

16 8.55

32 9.25



Experiments have been conducted to characterize the

thermal properties of the PET in the range of the ISBM

temperature. Thermal imaging has been used to determine

the surface temperature distribution of the PET sheets

which are heated by IR lamps. The Monte Carlo method

is used to provide the parameters best fit the temperature

evolution. Comparison between the obtained values and

values coming from the literature, especially for the IR

heating radiation flux, validates the identification

approach.

The coupled thermoviscohyperelastic model proposed

has been used to manage a finite element simulation of

the equibiaxial elongation test. The weak form of the

model has been implemented in Matlab. It shows that the

thermal effects have an important influence on the viscous

part of the model and WLF-like parameters have to be

adjusted by nonisothermal simulations. With the adjusted

parameters, we obtained: (i) that stress–strain curves from

this thermoviscohyperelastic model fit well with the ex-

perimental data; (ii) that self-heating of the specimen is

not negligible and can reach nearly 108C for the highest

strain rate which is conform (slightly lower) to the tem-

perature measurements made on the specimen.

In further works, we intend to implement an axisym-

metric version of the viscohyperelastic model coupled to

temperature to simulate accurately the ISBM process.
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