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Abstract

The ecdysteroid receptor is an important potential target site for the development of
more specific and selective insecticides. In this study the ecdysone agonistic activity,
based on an ecdysone-dependent reporter assay using cell lines derived from one lepi-
dopteran species (the cotton leafworm Spodoptera littoralis), of a series of dibenzoylhy-
drazine derivatives, was modeled using the multiple linear regression (MLR) approach.
The dibenzoylhydrazine structures were first energy pre-optimized by molecular me-
chanics calculations using the MMFF9%s force field. 0D, 1D, 2D and 3D descriptors were
calculated for the minimum energy conformers and were related to the experimental
ecdysone agonistic activity, expressed as pECso values, using MLR calculations. Genetic
algorithm was used for variable selection. Seven out of the total number of thirty three
compounds were included in the test set. The more stable and predictive MLR model
had the following statistical parameters: Iiunne = 0.797, ries. = 0.753, qioo = 0.711, RMSE. =
0499, RMSEex: = 0449, r3; = 0.758. Geometric dibenzoylhydrazine structural features in-

fluence the insecticidal activity.

Keywords : Ecdysone agonistic activity, Dibenzoylhydrazines, Insecticide, MLR, Ome-
ga, QSARINS

1. Introduction

The ecdysteroid receptor is an significant potential target site for more specific and
selective insecticides (Harmatha et al, 2002). Nonsteroidal bisacylhydrazines were found
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to effective as agonists of the ecdysteroid receptor complex, being successful insect
control agents. These compounds contribute to the efforts on the reduction effects on
other animal groups and on lowering the environmental millstone (Dinan, 2003). The
ecdysteroids themselves have very limited application as pesticides, as they are too
polar, too complex and metabolically and environmentally too inconstant. Therefore
ecdysteroid analogues (steroidal or non-steroidal) were studied as potent pesticides for
trading applications.

Dibenzoylhydrazine derivatives are insect growth regulators that operate through
the induction of an early and lethal larval molting process in susceptible insects that
belong to the species of Lepidoptera and Coleoptera (Swevers et al, 2008). It was
reported (Soin et al, 2009) the importance of the unusual high affinity for the ecdysone
receptor of lepidopteran insects of dibenzoylhydrazine non-steroidal ecdysone agonists.
The ecdysone receptor belongs to the large class of nuclear receptors which are known
to act as transcription factors controlling a wide range of signaling pathways in many
organisms (Holmwood and Schindler, 2009). When activated by the steroid hormone
ecdysone, or more precisely by its active metabolite 20-hydroxyecdysone, the ecdysone
receptor is responsible for initiating the moulting of insects by binding to ecdysteroid
binding elements. As result, the insect stays permanently trapped in the molting
process and is unable to feed, it dies in the period of a few days from desiccation and
starvation.

Dibenzoylhydrazines share the molting hormone receptor, which belong to the
superfamily of nuclear receptors, with endogenous/endocrine-active ecdysteroids
working in arthropods and nonarthropod invertebrates (Fujita and Nakagawa, 2009).
The dibenzoylhydrazine derivatives include two benzene rings variously substituted.
Several classical QSARs (quantitative structure-activity relationships) were applied to
model the insecticidal activity of substituted dibenzoylhydrazines by correlating their
insecticidal activity to rice stem borer larvae with several structural parameters, like:
the l-octanol/water partition coefficient, the inductive/field electronic effect of ortho
substituents, the van der Waals volume (V) and AV value used as the difference from
the reference V value of hydrogen and scaled by 0.1 (calculated for different substituent
positions). The authors concluded an important participation to the activity of
hydrophobic effect for each substituent, and of electronic effect especially for ortho
substituents situated in the proximity of ‘side-chain’ carbonyl groups and unfavorable
steric effects of meta and para substituents. Homology modeling and CoMFA
(comparative molecular field analysis) approaches were applied as well to model the
ligand-binding domain of ecdysone receptor.

Hydrogen bonding was found to be important to the ecdysteroids-ecdysone receptors
interactions by classical QSAR and CoMFA analysis (Harada et al, 2009). The binding of

ecdysteroids to the ecdysone receptors of D. melanogaster was significantly correlated
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with the number of hydrogen bonds. Addition of steric effects slightly improved the
correlation, even though the contribution of the steric effect was not as large as that of
HB according to 3-D QSAR analysis.

In this paper structural features of a series of 33 dibenzoylhydrazine ecdysone
agonists (Soin et al, 2010) (Table 1), which influence the lethal larval molting process in
susceptible insects that belong to the orders of one lepidopteran species, namely the
cotton leafworm Spodoptera littoralis are studied. The quantitative relationship between
chemical features and the ecdysone agonistic activity was determined by means of the

multiple linear regression (MLR) approach.

Table 1. The dibenzoylhydrazine structures, the experimental (pECso) and predicted (pECsoprea) insecti-
cidal activity values and descriptors included in the best the MLR1 model
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1 @_{o :f 5.89 |5.79 291 0.00 -0.38 0.92
HN—N

2 \~/ 8.66 |7.25 3.38 0.00 0.28 1.25
N/N
o
3 8.22 |7.75 3.36 0.00 0.22 1.20
o \*/
/O N/N
o
4
[¢]

\~/ 6.34 |6.71 3.19 0.00 -0.36 0.90
/@)ku/“
(e}
Cl

5 8.58 |7.82 3.57 0.00 -0.30 1.13

6 6.1 6.05 3.53 0.00 0.42 1.65
o
dH/N
[¢]
F F




122

Takahiro Suzukr et al.

7+ \~/ o 1528 589 3.38 0.00 046|131
o]
N
H/ \”/Qic
[¢] Cl
8 @_/{7 63 686 3.31 0.00 030 [1.30
HN——N
o
9 654 |5.74 3.07 0.00 031|155
[e]
v
(o] Cl
.
10 \’/ 636 | 6.58 3.09 0.00 030|107
(o]
- T ;
(e} Cl
1n* \{/ 634 |5.62 3.19 0.00 040 | 144
o] [: J
F. H/N
o) Cl
12* \’/ 577 |555 3.15 0.00 039|144
o]
Cl
| H/N
(e} Cl
13 \‘/ 636 | 6.29 3.18 0.00 035|120
(e}
v
e} Cl
B
14* \i/ 713 |7.14 3.40 0.00 033 |13
o] [: ]
N/N
H
o] Cl
15 ] \i/ 776 | 7.42 3.60 0.00 033 | 1.28
o) Cl




Ecdysone-Agonist-Based Insecticidal Activity 123
16 \~/ 6.47 |6.68 3.33 0.00 -0.36 1.14
]
e T ;
\ [e] Cl
O
17* 8.15 |[8.02 3.76 0.00 -0.30 1.32
v
o
18 7.79 |8.04 3.35 0.00 -0.18 1.17
il \{/
e
o]
19 \{/ 6.96 |7.22 3.37 0.00 -0.36 0.88
[e]
v
o]
20 \~/ 4.66 |4.94 3.33 0.00 -0.45 1.90
o]
e T ;
\ [e] 0.
° )
21 \~/ 5.02 |4.50 3.20 0.00 0.44 1.99
[¢]
v
o 0.
a w
22 \{/ 5.16 |5.18 3.38 0.00 -0.43 1.94
o)
v
(o) OW
23 5.76 |6.14 3.32 0.00 -0.35 1.55
O \~/
/N




124

Takahiro Suzukr et al.

24* 6.47 |6.83 3.38 0.00 -0.29 1.50
v
o Cl
25 595 16.39 3.41 0.09 -0.29 1.42
o \*/
N/N
H
o Cl
26 5.69 ]6.35 3.35 0.00 -0.34 1.49
O \,/
v
o) Cl
~ !
27 5.87 16.51 3.33 0.00 -0.30 1.55
O \~/
N
N/
N
(o] Cl
28 545 |5.78 341 0.19 -0.29 1.38
o \*/
/N
N
(o} Cl
29* 597 16.54 3.32 0.00 -0.30 1.55
O \k
N/N
Ny
o] Cl
Cl
30 717 |7.78 3.57 0.00 -0.26 1.32
\}/ .
N\H
Cl (e}
O
31 \i/ 8.27 18.21 3.56 0.00 -0.24 1.13
[ :] (o]
N\N
Cl o)
(0]




Ecdysone-Agonist-Based Insecticidal Activity 125

e st
Y

] Cl
0W

32 6.49 |6.07 3.40 0.19 -0.32 1.06

33 5.11 |4.86 3.40 0.09 -0.42 1.80

*test compounds

2. Material and methods

Definition of target property and molecular structures

The ecdysone agonistic activity, measured iz vitro based on an ecdysone-dependent
reporter assay using cell lines derived from the lepidopteran species the cotton
leafworm Spodoptera littoralis, expressed as pECso values (Table 1), and was used as
dependent variable.

33 dibenzoylhydrazine insecticides (Table 1) were energy pre-optimized by molecular
mechanics calculations using the MMFF94s force field included in the OMEGA (version
25.1.4, OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com) software
(Hawkins et al, 2010; Hawkins & Nicholls, 2012). Structural 0D, 1D, 2D and 3D
descriptors were calculated for the minimum energy structures using the DRAGON
(Dragon Professional 5.5 (2007), Talete SR.L., Milano, Italy) and InstantJchem (which was
used for structure database management, search and prediction) (InstantJchem 15.10.0,

2012, ChemAxon (http://www.chemaxon.com) software .
MLR method

Multiple linear regression (Wold and Dunn III, 1983) (MLR) calculations were
combined with a genetic algorithm for variable selection included in the QSARINS v.2.2
program (Chirico et al., 2012; Gramatica et al., 2013). The Genetic Algorithm (Depczynski
et al, 2000) (GA) was used for the 1416 structural descriptors calculated for the 33
dibenzoylhydrazine compounds to select multiple linear regression models. GA is a
reliable and extensively approach which uses adaptive heuristic search algorithm based
on the evolutionary ideas of natural selection and genetics. Fitness criteria are employed
during the optimization processes illustrated by the evolution principles of Darwin of
“survival of the fittest”. The genetic algorithm evolves through other operators:
crossover and mutation. In the QSARINS package the following parameters were used:

the RQK fitness function (Todeschini et al, 2004 with leave-one-out cross-validation
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(Hawkins et al, 2003) correlation coefficient as constrained function to be optimized, a
crossover/mutation trade-off parameter of T = 0.5 and a model population size of P =
50.

The dibenzoylhydrazine derivatives were divided into training and test sets by
splitting by response (Gramatica et al, 2012; Gramatica, 2014), for verifying the model on
chemicals in the response domain (chemicals were ordered according to their increasing
activity, and one out of every three chemicals was put in the prediction set, always
including the most and the least active compounds in the training set). Seven
compounds were taken out of the total number of compounds: compounds 7, 11, 12, 14,
17, 24, 29.

Model validation

The MLR models were internally validated using the following robustness were
employed: leave-one-out cross-validation (Qfoo), Y-scrambling (Todeschini et al, 1999) and
Qfvo leave-more-out (LMO) cross-validation (carried out for 21% of data out of training,
each run). In Y-scrambling the process was randomly mixed 2000 times.

The domain of applicability was checked using the Williams plots (standardized
crossvalidated residuals versus leverage (Hat diagonal) values) (Gramatica, 2013). A
threshold of residual value greater than 2.5 times the value of standard error in
calculation was employed for outlier detection.

The root-mean-square error (RMSE) of training and validation sets was compared to
check the data over fitting and model applicability.

The Multi-Criteria Decision Making (MCDM) (Keller et al, 1991) is a technique that
summarizes the performances of a certain number of criteria simultaneously, as a single
number (score) between 0 and 1. This is done associating to every validation criteria a
desirability function which values range from 0 to 1 (where 0 represents the worst
validation criteria value and 1 the best). The geometric average of all the values
obtained from the desirability functions gives the MCDM value. The MCDM all’ scores
were calculated based on the fitting, cross validated and external criteria and were
used to choose the best MLR models.

The model’s predictive power was tested using the Q% (Shi et al, 2001); Q%
(Schiitirmann et al, 2008); Qs (Consonni et al, 2009) - external validation parameters and
the concordance correlation coefficient (CCC) (Chirico & Gramatica, 2011) (having the
thresholds values higher than 0.85, as they have been rigorously determined by a
simulation study (Chirico & Gramatica, 2012)) and r% (with a lowest threshold value of 0.5
to be accepted) (Roy et al, 2009).



Ecdysone-Agonist-Based Insecticidal Activity 127

3. Results and Discussion

A statistical analysis of the dibenzoylhydrazine analogues was performed using the
multiple linear regression method.

A training set of 26 compounds and 7 test compounds (no.. 7, 11, 12, 14, 17, 24, 29)
were used in the MLR calculations (Table 1). Structural parameters were calculated by
Instant]JChem and Dragon programs from the structures of the minimum energy
obtained by molecular mechanics calculations. Variable selection was carried out by the
genetic algorithm, using the leave-one-out fit criterion as constrained function to be

optimized. Several satisfactory MLR models were obtained (Tables 2 to 4).

Table 2. Internal validation parameters of the MLR models (training set)*

Model ruz-ammg qgoo qu l’icu RMSE.: MAE« CCCu ricr qzscr SEE F

MLR1 0797 0711 0688 0758 0500 0403 0887 0163 0313 0556  20.560
MLR2 0786 0682 0647 0745 0513 0400 0880 0164 0297 0570 19.296
MLR3 0778 0673 0318 0735 0523 0406 0875 0161 -0310 0582 18365
MLR4 0776 0690 0661 0734 0524 0409 0874 0161 -0304 0583 18218
MLR5 0756 0650 0618 0710 0547 0429 0861 0159 0304 0609 16.303
MLR6 0750 0655 0620 0702 0555 0422 0857 0163 0296 0617 15731

*rianng - correlation coefficient; qioo - leave-one-out correlation coefficient; givo - leave-more-out
correlation coefficient; RMSEu-root-mean-square errors; MAE-mean absolute error; CCCu-the
concordance correlation coefficient; r’: - scrambled r% g% - scrambled cross-validated g% SEE-standard
error of estimates; F-Fischer test.

Table 3. External validation parameters calculated for the MLR models (test set)*

Model Qil Qﬁz Qfs RMSEext MAEext CCCext

MLR1  0.741 0.740 0.836 0.449 0.374 0.863
MLR2 0629 0.628 0.765 0.537 0.463 0817
MLR3  0.728 0.727 0.828 0.460 0.402 0.843
MLR4 0826 0.826 0.890 0.368 0.342 0.901
MLR5  0.747 0.747 0.840 0443 0.381 0.861
MLR6  0.766 0.766 0.852 0.426 0.294 0.828

*Q#% (Shi et al., 2001), Qf: (Schiiiirmann et al., 2008), Q% (Consonni et al.,
2009)-external validation parameters; RMSEex-root-mean-square errors; MAEex -mean
absolute error; CCCexi-the concordance correlation coefficient
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Table 4. Other predictivity parameters (r%), the Multi-Criteria Decision Making (MCDM) values and
final descriptors selected in the MLR models.

Model re MCDM Descriptors included in the model*
MLR1 0.700 0.773 EEig04r RDF140m Mor32p L3s
MLR2 0.700 0.728 TICO EEig05d EEig04r Mor32p
MLR3 0.730 0.707 TICO EEig04r VRD2 Mor32p
MLR4 0.809 0.784 EEig04r Mor32p L3s Am
MLR5 0.729 0.745 IDMT EEig04r Mor32p L3s
MLR6 0.589 0.742 EEig05d L3s Am FO03[CC]

*EEig04r represents the eigenvalue 4 from edge adj. matrix weighted by resonance integrals;
RDF140m- Radial Distribution Function - 14.0 / weighted by atomic masses; Mor32p- D-MoRSE - signal
32 / weighted by atomic polarizabilities; L3s- 3rd component size directional WHIM index / weighted
by atomic electrotopological states; TICO- total information content index (neighborhood symmetry of
0-order); EEig05d- Eigenvalue 05 from edge adj. matrix weighted by dipole moments; VRD2- average
Randic-type eigenvector-based index from distance matrix; Am- A total size index / weighted by
atomic masses; IDMT- total information content on the distance magnitude; FO3[C-C]- frequency of C-C
at topological distance 3.

The MLR models included in Tables 2 to 4 are completely satisfactory in the fitting,
and have good predictive power. They have been assessed by internal (LOO and LMO)
cross-validation, Y-scrambling.

Best statistical results for model fitting and predictive power were obtained for the
MLR1 model. Experimental versus predicted pECso values, Williams plots and
Y-scramble plots this model are presented in Figure 1, 2 and 3, respectively. The
Williams plots validate the absence of outliers and influential points in the final selected
MLRI1 model.
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Figure. 1. Experimental versus calculated pECso values for the MLR1 model predicted by the model

(left) and leave-one-crossvalidation method (right).
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Figure. 2. Williams plot predicted by the final MLRI (left) model and by the leave-one crossvalidation

approach (right).
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Figure. 3. Y-scramble plots for the MLR1 model.

The RMSE values for the training and validation sets are similar for the MLR1 model.

The chosen models demonstrate a satisfactory stability in internal validation, have high

fitting, internal and external predictivity (verified by different validations). The small

difference of CCC values between the training and test sets of 2.4% (model 1)

demonstrates that this model is able to predict the response for chemicals not used in

the model development (validation set) just as they do for chemicals used to find the

relationship (training set).

The risk of chance correlation was verified by the Y-scrambling procedure. The
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extremely low calculated scrambling values (Table 2) indicate no chance correlation for
the chosen models.

Edge adjacency indices are deduced from the edge (i.e. atom) adjacency matrix
encoding the molecular connectivity between graph edges. The EEig04r (eigenvalue 4
from edge adj. matrix weighted by resonance integrals) descriptor in the MLRI linear
equation has positive coefficient value. Increase of its value will increase the pECso
values.

RDF (The radial distribution function) descriptors are geometrical descriptors based
on the geometrical interatomic distance and constitute a radial distribution function
code. They represent the molecular conformation in 3D with a series of weighting
schema, including weighted by atomic masses, atomic van der Waals volumes, atomic
Sanderson electronegativities and atomic polarizabilities. Low values of the RDF140m
(Radial Distribution Function - 14.0 / weighted by atomic masses) descriptor increase
the pECs values.

Other geometrical descriptors are the 3D-MoRSE (Molecule Representation of
Structure based on Electron) descriptors, which are the sums of atom weights with
different angular scattering function. High values of the Mor32p (3D-MoRSE - signal 32
/ weighted by atomic polarizability) descriptor yield high pECso values.

WHIM (Weighted Holistic Invariant Molecular) descriptors are geometrical
descriptors based on statistical indices calculated on the projections of the atoms along
principal axes. In case of the L3s (3rd component size directional WHIM index /
weighted by atomic electrotopological states) descriptor the atomic electrotopological
states are one of the weighting schemes that are used for computing the weighted
covariance matrix. L3s descriptor in the MLRI linear equation has negative coefficient

value; therefore increase of its value will decrease the pECso values.

4. Conclusion

Dibenzoylhydrazines share the molting hormone receptor, which belong to the
superfamily of nuclear receptors, with endogenous/endocrine-active ecdysteroids
working in arthropods and nonarthropod invertebrates. A series of 33 dibenzoylhydra-
zine derivatives were pre-optimized using molecular mechanics calculations and the
calculated structural features were then related to the ecdysone agonistic activity
(based on an ecdysone-dependent reporter assay using cell lines derived from the the
cotton leafworm Spodoptera littoralis lepidopteran species using the multiple linear
regression (MLR) approach. Good correlations with the ecdysone agonistic activity were
found and good predictive models. Geometrical descriptors related to the ligand

molecular conformation in 3D space weighted by electropological space and
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polarizability influence the insecticidal activity. Based on the proposed MLR models
new active insecticides can be designed.
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IV TAZAMILBEREEEFTHIIOANISMIVERNTD >
FEEDOETEILRIC K 28R

#8AKZ5., Simona Funar-TiMoFEl, Alina Bora,
Luminita CrisaN, Ana BoroTa

Ly TVATuA FLve7y—id, R THIOECEKRA LR T 57200 BRI
MTHDo RFETIE, IXRVIA NV RI Y VEFEERDZ I VY v -TT=ZAMILS
BRESEZ VY - LER=F =T v 12X o TRD, ZOMEIGEAEE % G5
B (MLR) EF WA X o THNT L72e YRV YAV F T YV FEARORE X Omega/ S
=TI EEN TV EMMEFYMs % i o 7250 F 3Rt R X 550 F O iARBLEE D& e %
Mt Ly 2HOER, ZKO Y 2 -+ 5 v ZARERIZOWTH 4 »0D, 1D, 2D, 3Dtk
FEEHEL. ThooitRFEERICIVRkOONI s VY v - T T= A MEE
pECs0 & @ [ 58 5 1M R IG PEAH B 2 ZBORIRO 720 O BRI T NV T X L% F 7 EH
Ja AT (MLR) 12X ) EF Wb L7ze &1MEEWD I b 7HZ T A M &y MIAW,
MLREFIVOLEEEE FRITEZ M L2 & 2 A, &S HEWICHZELZMLRE 7V id,
Fhaining = 0797, 12 = 0.753, qfoo = 0.711, RMSE« = 0499, RMSEex = 0449, 1 = 0.758 D%
FGRIRERZ B Lze YRV AV BT Y VRO RATA 2 58S, Bdut ko i
BRELELGENHLEPHL IR 572,



