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Abstract

　The ecdysteroid receptor is an important potential target site for the development of 
more specific and selective insecticides. In this study the ecdysone agonistic activity, 
based on an ecdysone-dependent reporter assay using cell lines derived from one lepi-
dopteran species (the cotton leafworm Spodoptera littoralis), of a series of dibenzoylhy-
drazine derivatives, was modeled using the multiple linear regression (MLR) approach. 
The dibenzoylhydrazine structures were first energy pre-optimized by molecular me-
chanics calculations using the MMFF94s force field. 0D, 1D, 2D and 3D descriptors were 
calculated for the minimum energy conformers and were related to the experimental 
ecdysone agonistic activity, expressed as pEC50 values, using MLR calculations. Genetic 
algorithm was used for variable selection. Seven out of the total number of thirty three 
compounds were included in the test set. The more stable and predictive MLR model 
had the following statistical parameters: r2

training = 0.797, r2
test = 0.753, q2

LOO = 0.711, RMSEtr = 
0.499, RMSEext = 0.449, r2

adj = 0.758. Geometric dibenzoylhydrazine structural features in-
fluence the insecticidal activity.

Keywords：Ecdysone agonistic activity, Dibenzoylhydrazines, Insecticide, MLR, Ome-
ga, QSARINS

1. Introduction

　The ecdysteroid receptor is an significant potential target site for more specific and 
selective insecticides (Harmatha et al, 2002). Nonsteroidal bisacylhydrazines were found 
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to effective as agonists of the ecdysteroid receptor complex, being successful insect 
control agents. These compounds contribute to the efforts on the reduction effects on 
other animal groups and on lowering the environmental millstone (Dinan, 2003). The 
ecdysteroids themselves have very limited application as pesticides, as they are too 
polar, too complex and metabolically and environmentally too inconstant. Therefore 
ecdysteroid analogues (steroidal or non-steroidal) were studied as potent pesticides for 
trading applications.
　Dibenzoylhydrazine derivatives are insect growth regulators that operate through 
the induction of an early and lethal larval molting process in susceptible insects that 
belong to the species of Lepidoptera and Coleoptera (Swevers et al, 2008). It was 
reported (Soin et al, 2009) the importance of the unusual high affinity for the ecdysone 
receptor of lepidopteran insects of dibenzoylhydrazine non-steroidal ecdysone agonists. 
The ecdysone receptor belongs to the large class of nuclear receptors which are known 
to act as transcription factors controlling a wide range of signaling pathways in many 
organisms (Holmwood and Schindler, 2009). When activated by the steroid hormone 
ecdysone, or more precisely by its active metabolite 20-hydroxyecdysone, the ecdysone 
receptor is responsible for initiating the moulting of insects by binding to ecdysteroid 
binding elements. As result, the insect stays permanently trapped in the molting 
process and is unable to feed, it dies in the period of a few days from desiccation and 
starvation.
　Dibenzoylhydrazines share the molting hormone receptor, which belong to the 
superfamily of nuclear receptors, with endogenous/endocrine-active ecdysteroids 
working in arthropods and nonarthropod invertebrates (Fujita and Nakagawa, 2009). 
The dibenzoylhydrazine derivatives include two benzene rings variously substituted. 
Several classical QSARs (quantitative structure-activity relationships) were applied to 
model the insecticidal activity of substituted dibenzoylhydrazines by correlating their 
insecticidal activity to rice stem borer larvae with several structural parameters, like: 
the 1-octanol/water partition coefficient, the inductive/field electronic effect of ortho 
substituents, the van der Waals volume (V) and ΔV value used as the difference from 
the reference V value of hydrogen and scaled by 0.1 (calculated for different substituent 
positions). The authors concluded an important participation to the activity of 
hydrophobic effect for each substituent, and of electronic effect especially for ortho 
substituents situated in the proximity of ‘side-chain’ carbonyl groups and unfavorable 
steric effects of meta and para substituents. Homology modeling and CoMFA 
(comparative molecular field analysis) approaches were applied as well to model the 
ligand-binding domain of ecdysone receptor.
　Hydrogen bonding was found to be important to the ecdysteroids-ecdysone receptors 
interactions by classical QSAR and CoMFA analysis (Harada et al, 2009). The binding of 
ecdysteroids to the ecdysone receptors of D. melanogaster was significantly correlated 
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with the number of hydrogen bonds. Addition of steric effects slightly improved the 
correlation, even though the contribution of the steric effect was not as large as that of 
HB according to 3-D QSAR analysis.
　In this paper structural features of a series of 33 dibenzoylhydrazine ecdysone 
agonists (Soin et al, 2010) (Table 1), which influence the lethal larval molting process in 
susceptible insects that belong to the orders of one lepidopteran species, namely the 
cotton leafworm Spodoptera littoralis are studied. The quantitative relationship between 
chemical features and the ecdysone agonistic activity was determined by means of the 
multiple linear regression (MLR) approach.

Table 1. The dibenzoylhydrazine structures, the experimental (pEC50) and predicted (pEC50pred) insecti-
cidal activity values and descriptors included in the best the MLR1 model 

No Structure pEC50 pEC50pred EEig04r RDF140m Mor32p L3s
1 5.89 5.79 2.91 0.00 -0.38 0.92

2 8.66 7.25 3.38 0.00 -0.28 1.25

3 8.22 7.75 3.36 0.00 -0.22 1.20

4 6.34 6.71 3.19 0.00 -0.36 0.90

5 8.58 7.82 3.57 0.00 -0.30 1.13

6 6.1 6.05 3.53 0.00 -0.42 1.65
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　7＊ 5.28 5.89 3.38 0.00 -0.46 1.31

8 6.3 6.86 3.31 0.00 -0.30 1.30

9 6.54 5.74 3.07 0.00 -0.31 1.55

10 6.36 6.58 3.09 0.00 -0.30 1.07

　11＊ 6.34 5.62 3.19 0.00 -0.40 1.44

　12＊ 5.77 5.55 3.15 0.00 -0.39 1.44

13 6.36 6.29 3.18 0.00 -0.35 1.20

　14＊ 7.13 7.14 3.40 0.00 -0.33 1.13

15 7.76 7.42 3.60 0.00 -0.33 1.28
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16 6.47 6.68 3.33 0.00 -0.36 1.14

　17＊ 8.15 8.02 3.76 0.00 -0.30 1.32

18 7.79 8.04 3.35 0.00 -0.18 1.17

19 6.96 7.22 3.37 0.00 -0.36 0.88

20 4.66 4.94 3.33 0.00 -0.45 1.90

21 5.02 4.50 3.20 0.00 -0.44 1.99

22 5.16 5.18 3.38 0.00 -0.43 1.94

23 5.76 6.14 3.32 0.00 -0.35 1.55
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　24＊ 6.47 6.83 3.38 0.00 -0.29 1.50

25 5.95 6.39 3.41 0.09 -0.29 1.42

26 5.69 6.35 3.35 0.00 -0.34 1.49

27 5.87 6.51 3.33 0.00 -0.30 1.55

28 5.45 5.78 3.41 0.19 -0.29 1.38

　29＊ 5.97 6.54 3.32 0.00 -0.30 1.55

30 7.17 7.78 3.57 0.00 -0.26 1.32

31 8.27 8.21 3.56 0.00 -0.24 1.13
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2. Material and methods
Definition of target property and molecular structures

　The ecdysone agonistic activity, measured in vitro based on an ecdysone-dependent 
reporter assay using cell lines derived from the lepidopteran species the cotton 
leafworm Spodoptera littoralis, expressed as pEC50 values (Table 1), and was used as 
dependent variable. 
　33 dibenzoylhydrazine insecticides (Table 1) were energy pre-optimized by molecular 
mechanics calculations using the MMFF94s force field included in the OMEGA (version 
2.5.1.4, OpenEye Scientific Software, Santa Fe, NM. http://www.eyesopen.com) software 
(Hawkins et al, 2010; Hawkins & Nicholls, 2012). Structural 0D, 1D, 2D and 3D 
descriptors were calculated for the minimum energy structures using the DRAGON 
(Dragon Professional 5.5 (2007), Talete S.R.L., Milano, Italy) and InstantJchem (which was 
used for structure database management, search and prediction) (InstantJchem 15.10.0, 
2012, ChemAxon (http://www.chemaxon.com) software .

MLR method

　Multiple linear regression (Wold and Dunn III, 1983) (MLR) calculations were 
combined with a genetic algorithm for variable selection included in the QSARINS v.2.2 
program (Chirico et al., 2012; Gramatica et al., 2013). The Genetic Algorithm (Depczynski 
et al, 2000) (GA) was used for the 1416 structural descriptors calculated for the 33 
dibenzoylhydrazine compounds to select multiple linear regression models. GA is a 
reliable and extensively approach which uses adaptive heuristic search algorithm based 
on the evolutionary ideas of natural selection and genetics. Fitness criteria are employed 
during the optimization processes illustrated by the evolution principles of Darwin of 
“survival of the fittest”. The genetic algorithm evolves through other operators: 
crossover and mutation. In the QSARINS package the following parameters were used: 
the RQK fitness function (Todeschini et al, 2004 with leave-one-out cross-validation 

32 6.49 6.07 3.40 0.19 -0.32 1.06

33 5.11 4.86 3.40 0.09 -0.42 1.80

　＊test compounds
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(Hawkins et al, 2003) correlation coefficient as constrained function to be optimized, a 
crossover/mutation trade-off parameter of T = 0.5 and a model population size of P = 
50.
　The dibenzoylhydrazine derivatives were divided into training and test sets by 
splitting by response (Gramatica et al, 2012; Gramatica, 2014), for verifying the model on 
chemicals in the response domain (chemicals were ordered according to their increasing 
activity, and one out of every three chemicals was put in the prediction set, always 
including the most and the least active compounds in the training set). Seven 
compounds were taken out of the total number of compounds: compounds 7, 11, 12, 14, 
17, 24, 29. 

Model validation

　The MLR models were internally validated using the following robustness were 
employed: leave-one-out cross-validation (Q2

LOO), Y-scrambling (Todeschini et al, 1999) and 
Q2

LMO leave-more-out (LMO) cross-validation (carried out for 21% of data out of training, 
each run). In Y-scrambling the process was randomly mixed 2000 times.
　The domain of applicability was checked using the Williams plots (standardized 
crossvalidated residuals versus leverage (Hat diagonal) values) (Gramatica, 2013). A 
threshold of residual value greater than 2.5 times the value of standard error in 
calculation was employed for outlier detection.
　The root-mean-square error (RMSE) of training and validation sets was compared to 
check the data over fitting and model applicability.
　The Multi-Criteria Decision Making (MCDM) (Keller et al., 1991) is a technique that 
summarizes the performances of a certain number of criteria simultaneously, as a single 
number (score) between 0 and 1. This is done associating to every validation criteria a 
desirability function which values range from 0 to 1 (where 0 represents the worst 
validation criteria value and 1 the best). The geometric average of all the values 
obtained from the desirability functions gives the MCDM value. The ‚MCDM all’ scores 
were calculated based on the fitting, cross validated and external criteria and were 
used to choose the best MLR models.
　The model’s predictive power was tested using the Q2

F1 (Shi et al, 2001); Q2
F2 

(Schüürmann et al, 2008); Q2
F3 (Consonni et al, 2009) - external validation parameters and 

the concordance correlation coefficient (CCC) (Chirico & Gramatica, 2011) (having the 
thresholds values higher than 0.85, as they have been rigorously determined by a 
simulation study (Chirico & Gramatica, 2012)) and r2

m (with a lowest threshold value of 0.5 
to be accepted) (Roy et al, 2009).
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3. Results and Discussion

　A statistical analysis of the dibenzoylhydrazine analogues was performed using the 
multiple linear regression method. 
　A training set of 26 compounds and 7 test compounds (no.: 7, 11, 12, 14, 17, 24, 29) 
were used in the MLR calculations (Table 1). Structural parameters were calculated by 
InstantJChem and Dragon programs from the structures of the minimum energy 
obtained by molecular mechanics calculations. Variable selection was carried out by the 
genetic algorithm, using the leave-one-out fit criterion as constrained function to be 
optimized. Several satisfactory MLR models were obtained (Tables 2 to 4). 

Table 2. Internal validation parameters of the MLR models (training set)＊

Model r 2　 　
training q2 　

LOO q 2 　
LMO r2　

adj RMSEtr MAEtr CCCtr r2　
scr q2　

scr SEE F
MLR1 0.797 0.711 0.688 0.758 0.500 0.403 0.887 0.163 -0.313 0.556 20.560
MLR2 0.786 0.682 0.647 0.745 0.513 0.400 0.880 0.164 -0.297 0.570 19.296
MLR3 0.778 0.673 0.318 0.735 0.523 0.406 0.875 0.161 -0.310 0.582 18.365
MLR4 0.776 0.690 0.661 0.734 0.524 0.409 0.874 0.161 -0.304 0.583 18.218
MLR5 0.756 0.650 0.618 0.710 0.547 0.429 0.861 0.159 -0.304 0.609 16.303
MLR6 0.750 0.655 0.620 0.702 0.555 0.422 0.857 0.163 -0.296 0.617 15.731

　＊r2
training - correlation coefficient; q2

LOO - leave-one-out correlation coefficient; q2
LMO - leave-more-out 

correlation coefficient; RMSEtr-root-mean-square errors; MAEtr-mean absolute error; CCCtr-the 
concordance correlation coefficient; r2

scr - scrambled r2; q2
scr - scrambled cross-validated q2; SEE-standard 

error of estimates; F-Fischer test.

Table 3. External validation parameters calculated for the MLR models (test set)＊

Model Q2 　
F1 Q2　

F2 Q2　
F3 RMSEext MAEext CCCext

MLR1 0.741 0.740 0.836 0.449 0.374 0.863
MLR2 0.629 0.628 0.765 0.537 0.463 0.817
MLR3 0.728 0.727 0.828 0.460 0.402 0.843
MLR4 0.826 0.826 0.890 0.368 0.342 0.901
MLR5 0.747 0.747 0.840 0.443 0.381 0.861
MLR6 0.766 0.766 0.852 0.426 0.294 0.828

　 ＊Q 2
F1 (Shi et al., 2001), Q2

F2 (Schüürmann et al., 2008), Q2
F3 (Consonni et al., 

2009)-external validation parameters; RMSEext-root-mean-square errors; MAEext -mean 
absolute error; CCCext-the concordance correlation coefficient
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Table 4. Other predictivity parameters (r2
m), the Multi-Criteria Decision Making (MCDM) values and 

fi nal descriptors selected in the MLR models.

Model r2
m MCDM Descriptors included in the model＊

MLR1 0.700 0.773 EEig04r　RDF140m　Mor32p　L3s
MLR2 0.700 0.728 TIC0　EEig05d　EEig04r　Mor32p
MLR3 0.730 0.707 TIC0　EEig04r　VRD2　Mor32p
MLR4 0.809 0.784 EEig04r　Mor32p　L3s　Am
MLR5 0.729 0.745 IDMT　EEig04r　Mor32p　L3s
MLR6 0.589 0.742 EEig05d　L3s　Am　F03[C-C]

　＊EEig04r represents the eigenvalue 4 from edge adj. matrix weighted by resonance integrals; 
RDF140m- Radial Distribution Function - 14.0 / weighted by atomic masses; Mor32p- D-MoRSE - signal 
32 / weighted by atomic polarizabilities; L3s- 3rd component size directional WHIM index / weighted 
by atomic electrotopological states; TIC0- total information content index (neighborhood symmetry of 
0-order); EEig05d- Eigenvalue 05 from edge adj. matrix weighted by dipole moments; VRD2- average 
Randic-type eigenvector-based index from distance matrix; Am- A total size index / weighted by 
atomic masses; IDMT- total information content on the distance magnitude; F03[C-C]- frequency of C-C 
at topological distance 3.

　The MLR models included in Tables 2 to 4 are completely satisfactory in the fi tting, 
and have good predictive power. They have been assessed by internal (LOO and LMO) 
cross-validation, Y-scrambling. 
　Best statistical results for model fi tting and predictive power were obtained for the 
MLR1 model. Experimental versus predicted pEC50 values, Williams plots and 
Y-scramble plots this model are presented in Figure 1, 2 and 3, respectively. The 
Williams plots validate the absence of outliers and infl uential points in the fi nal selected 
MLR1 model.

Figure. 1. Experimental versus calculated pEC50 values for the MLR1 model predicted by the model 
(left) and leave-one-crossvalidation method (right).
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Figure. 2. Williams plot predicted by the fi nal MLR1 (left) model and by the leave-one crossvalidation 
approach (right).

Figure. 3. Y-scramble plots for the MLR1 model.

　The RMSE values for the training and validation sets are similar for the MLR1 model. 
The chosen models demonstrate a satisfactory stability in internal validation, have high 
fi tting, internal and external predictivity (verifi ed by diff erent validations). The small 
difference of CCC values between the training and test sets of 2.4% (model 1) 
demonstrates that this model is able to predict the response for chemicals not used in 
the model development (validation set) just as they do for chemicals used to fi nd the 
relationship (training set).
　The risk of chance correlation was verified by the Y-scrambling procedure. The 
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extremely low calculated scrambling values (Table 2) indicate no chance correlation for 
the chosen models.
　Edge adjacency indices are deduced from the edge (i.e. atom) adjacency matrix 
encoding the molecular connectivity between graph edges. The EEig04r (eigenvalue 4 
from edge adj. matrix weighted by resonance integrals) descriptor in the MLR1 linear 
equation has positive coefficient value. Increase of its value will increase the pEC50 

values.
　RDF (The radial distribution function) descriptors are geometrical descriptors based 
on the geometrical interatomic distance and constitute a radial distribution function 
code. They represent the molecular conformation in 3D with a series of weighting 
schema, including weighted by atomic masses, atomic van der Waals volumes, atomic 
Sanderson electronegativities and atomic polarizabilities. Low values of the RDF140m 
(Radial Distribution Function - 14.0 / weighted by atomic masses) descriptor increase 
the pEC50 values.
　Other geometrical descriptors are the 3D-MoRSE (Molecule Representation of 
Structure based on Electron) descriptors, which are the sums of atom weights with 
different angular scattering function. High values of the Mor32p (3D-MoRSE - signal 32 
/ weighted by atomic polarizability) descriptor yield high pEC50 values.
　WHIM (Weighted Holistic Invariant Molecular) descriptors are geometrical 
descriptors based on statistical indices calculated on the projections of the atoms along 
principal axes. In case of the L3s (3rd component size directional WHIM index / 
weighted by atomic electrotopological states) descriptor the atomic electrotopological 
states are one of the weighting schemes that are used for computing the weighted 
covariance matrix. L3s descriptor in the MLR1 linear equation has negative coefficient 
value; therefore increase of its value will decrease the pEC50 values.

4. Conclusion

　Dibenzoylhydrazines share the molting hormone receptor, which belong to the 
superfamily of nuclear receptors, with endogenous/endocrine-active ecdysteroids 
working in arthropods and nonarthropod invertebrates. A series of 33 dibenzoylhydra-
zine derivatives were pre-optimized using molecular mechanics calculations and the 
calculated structural features were then related to the ecdysone agonistic activity 
(based on an ecdysone-dependent reporter assay using cell lines derived from the the 
cotton leafworm Spodoptera littoralis lepidopteran species using the multiple linear 
regression (MLR) approach. Good correlations with the ecdysone agonistic activity were 
found and good predictive models. Geometrical descriptors related to the ligand 
molecular conformation in 3D space weighted by electropological space and 
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polarizability influence the insecticidal activity. Based on the proposed MLR models 
new active insecticides can be designed.
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和文要旨

エクジソン-アゴニストによる殺虫活性を有するジベンゾイルヒドラジン
誘導体の計算化学による解析

鈴木孝弘，Simona Funar-Timofei，Alina Bora， 
Luminita Crisan，Ana Borota

　エクジステロイドレセプターは、選択的で効力の高い殺虫剤を開発するための重要な標
的である。本研究では、ジベンゾイルヒドラジン誘導体のエクジソン－アゴニストによる
殺虫活性をエクジソン・レポーターアッセイによって求め、その構造活性相関を重回帰分
析（MLR）モデルによって解析した。ジベンゾイルヒドラジン誘導体の構造は、Omegaパッ
ケージに含まれているMMFF94sを使った分子力場計算による分子の立体配座の安定性を
検討し、 2 種のE体、Z体のシス－トランス異性体について種々の0D、1D、2D、3D記述
子を計算した。それらの記述子と実験により求められたエクジソン－アゴニスト活性
pEC50との間の定量的構造活性相関を変数選択のための遺伝的アルゴリズムを用いた重回
帰分析（MLR）によりモデル化した。全13化合物のうち 7 種をテストセットに用い、
MLRモデルの安定性と予測性を評価したところ、最も統計的に有意なMLRモデルは、
r2

training = 0.797, r2
test = 0.753, q2

LOO = 0.711, RMSEtr = 0.499, RMSEext = 0.449, r2
adj = 0.758の統

計的な指標を有した。ジベンゾイルヒドラジン誘導体の幾何学的な特徴が、殺虫活性に最
も大きな寄与があることが明らかになった。


