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Persistence and Volatility of Hedge Fund Returns:
ARMA-GARCH Modeling

Midori Munechika

1. Introduction

For over two decades hedge funds have been focused the world’s attention on their tremendous growth. At
the same time, the international financial community has expressed serious concern about whether they have
played a crucial role in triggering financial crises. They have also been attracting the attention of institutional
investors such as pension funds since the IT bubble burst in 2003. One of the main reasons for such interest
stems from the peculiar performance characteristics of the hedge fund sector. Hedge fund managers employ
frequently dynamic trading strategies involving short sales, leverage and derivatives, and thus, they tend to
generate returns less uncorrelated to those of market benchmark returns.

Hedge funds are now major market participants and they are no longer preceived as mavericks in global
financial markets. Their dynamic, multi-faceted investment strategies have now penetrated publically traded
ETFs. Investable hedge fund indices are really regarded as the disguise of funds of hedge funds (Jaeger
[2008]). For example, investable hedge fund indices tracking the performances of their strategies are used as
“index” funds, whose purpose is “hedge fund replication” for institutional investors. Replicating hedge fund
returns means replicating their return sources and corresponding risk exposures based on their strategies.
The 2008 financial crisis has significantly decreased the returns of most hedge fund strategies. Many market
participants in the hedge fund industry realized there is no safe place for investors to avoid systematic risk,
and questioned whether diversification across hedge funds as an alternative investment is really as beneficial
as they intended. Therefore, investors who aim to put money into investable hedge fund indices must
understand their return sources to achieve replication.

Univariate time-series data of hedge fund returns themselves exhibit peculiar characteristics of non-
normal distribution such as heavy-tailed and skewed distribution, and volatility clustering. Volatility is one

of the most important concepts of finance. It is often regarded as a measure of financial risk, calculated by
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the variance or standard deviation of an asset’s return. It is well known that there are some periods of high
volatility and other periods of low volatility of asset returns in financial markets. Volatility clustering implies
that volatility shocks today will influence the expectation of volatility many periods in the future. This
phenomenon requires analysts to describe returns and volatility that are nonlinear.

Volatility is not directly observable in the financial market, such as in stock prices. It is described as a
parameter of the stochastic processes that is applied to model variations in financial asset prices. It is only
quantifiable in the context of a model, and thus, the results of the estimates can be quite different depending
on the model and on the market conditions. Many studies have argued that nonlinear processes model the
volatility behavior of hedge fund strategies better (Fiiss, R., D. G. Kaiser and Z. Adams [2007], Blazsek, S.
and A. Downarowicz [2011], Del Brio, E. B., A. Mora-Valencia and J. Perote [2014], Teulon, F., K. Guesmi
and S. Jebri [2014]). In the context of portfolio diversification, including hedge funds, precise volatility
modeling of hedge fund returns may help institutional investors to evaluate the future risk of hedge fund
portfolio and are useful to determine market timing and control the risk limit.

The purpose of this paper is to examine the conditional volatility characteristics of daily management
hedge fund index returns and construct an ARMA-GARCH type modeling. This paper will limit itself to
the univariate time-series analysis of hedge fund returns although the issues studied here will be similar
in multivariate analysis. I focus on the construction of nonlinear time-series models that can be useful for
describing persistence and volatility of hedge fund index returns. This paper is organized as follows. Section
2 describes four main hedge fund strategies and summarizes the empirical properties of their return series
used in this study. Section 3 reviews ARMA modeling and presents the estimation results and diagnostic
checking. In Section 4, GARCH modeling is introduced and discusses the results. Some concluding remarks

are offered in the final section.

2. Hedge Fund Strategies and Data Description

In this paper, four principal hedge fund strategies indices (Equity Hedge, Event Driven, Macro/CTA, and
Relative Value Arbitrage in the HFRX Global Hedge Fund Index) are investigated. Data are daily and span
the period March 31, 2003 to August 11, 2014. The data of hedge fund indices is obtained from the Hedge
Fund Research Inc. (hereafter HFR). The HFRX Global Hedge Fund Index is designed to be representative

of the overall composition of the hedge fund universe and to be investable.” It is comprised of all eligible

1) HFRX Hedge Fund Indices are the global industry standard for performance measurement across all aspects of the
hedge fund industry. Constituents of all indices are selected from an eligible pool of the more than 6,800 funds that
report of the HFR Database. More detailed strategy descriptions can be seen in Hedge Fund Research [2014], HFRX
Hedge Fund Indices: Defined Formulaic Methodology<www.hedgefundresearch.com>.
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hedge fund strategies falling within these four principal strategies. First, Equity Hedge is the strategy
maintaining long and short in primarily equity and equity derivative securities. Its investment decision
includes both quantitative and fundamental techniques; broadly diversified strategies or narrowly focused on
specific sectors, and frequently employed leverage. Equity Hedge is the directional strategy. Second, Event
Driven is the strategy that focuses specifically on corporations involved in special situations or significant
restructuring events such as mergers, liquidations and insolvencies. The goal of this strategy is to take
advantage of price anomalies triggered by special events. Securities include a variety of types from most
senior in the capital structure to most junior or subordinated, and frequently involve additional derivative
securities. Event Driven is categorized as the non-directional and mispricing strategy. Third, Macro is the
directional strategy based on the prediction to future macroeconomic movements, whose managers employ a
variety of techniques. Fourth, Relative Value Arbitrage is the arbitrage strategy that tries to take advantage of
temporarily mispricing valuations in the relationship between multiple securities. The security type involves
the broad range across equity, fixed income, derivative or other security types. Relative Value Arbitrage is the
non-directional strategy.

Figure 1 plots daily index values (upper panel) and returns (lower panel) of (a) Equity Hedge, (b) Event
Driven, (c) Macro/CTA and (d) Relative Value Arbitrage. It offers a first look at the data by showing a
selection of the index values and the corresponding logarithmic returns measured in percentage terms. Index
returns are calculated as continuous compounded returns, defined as 7 = log(p./p:-1)*100 where p, denotes
the corresponding index value over the sample period. It is easy to see the steady growth of all index values
before the subprime crisis and the subsequent sharp decline after the Lehman shock in 2008. The return series
(i.e. daily price changes) are centered around zero throughout the sample period. One of the most important
features of these return series is that the amplitude of the returns is changing. The magnitude of the changes
is sometimes large and sometimes small, that is, it displays time-varying volatility, which is known as
volatility clustering. Volatility clustering stems from positive autocorrelation coefficients of squared returns.
The technical term applied to this phenomenon is autoregressive conditional heteroscedasticity. From a
different viewpoint, volatility measured by squared returns is persistent, hence to some extent predictable.

Table 1 reports summary statistics for the daily returns of four hedge fund indices. The performance
statistics suggest the following points. First, all hedge fund indices indicate that the unconditional
probability distributions of their returns are leptokurtic. Leptokurtosis implies more weight in both tails
of the distribution than in the normal distribution, which indicates a *fat tailed’ distribution. This outcome
means that large negative and positive returns are much more likely than would be the case under a normal

distribution for these indices. Those return distributions show evidences of fat tails and a higher peak.
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Figure 1: Four Hedge Fund Index Returns from April 1, 2003 to August 11, 2014

(a) Equity Hedge: index value

1,400

1,300

1,200 -

1,100 -

1,000

900

e ‘/\/N\/M/\ ra
%

T T T T T T T T T T T
03 04 05 06 07 08 09 10 11 12 13 14

Equity Hedge: return

1,600

T T T T T T T T
03 04 05 06 07 08 09 10 11 12 13 14

(c) Macro/CTA: index value

1,500 -
1,400
1,300
1,200 -
1,100

1,000

900

. T T T T T T T T T T
03 04 05 06 07 08 09 10 11 12 13 14

Macro/CTA: return

1213 14

— T T T T T T T T
03 04 05 06 07 08 09 10 1M1

(b) Event Driven: index value

1,800

1,600 N
1,400 /

1,200 -

1,000 -

800

03 04 05 06 07 08 09 10 11 12 13 14

Event Drien: return

03 04 05 06 07 08 09 10 11 12 13 14

(d) Relative Value Arbitrage: index value
1,300

1,200 | %\
1,100 -
1,000

900 -

800 4 '

700

03 04 05 06 07 08 09 10 11 12 13 14

Relative Value Arbitrage: return

03 04 05 06 07 08 09 10 11 12 13 14

— 204 —



Persistence and Volatility of Hedge Fund Returns: ARMA-GARCH Modeling

Table 1: Summary Statistics of Hedge Fund Index Returns

April 1, 2003 to August 11, 2014

Daily Return Mean STD Skewness Kurtosis J_agce[;l: No.Obs.

HFRX Global Hedge Fund Index
Equity Hedge 0.0052 04066  -0.8442  8.6599 416295 2864
Event Driven 0.0171 0.2959  -1.1558  15.0343 17919.96™" 2864
Macro/CTA 0.0039 04081  -1.0193  10.5510 7300.02"" 2864
Relative Value Arbitrage 0.0065 02712  -1.7268  41.7891  180971.40"" 2864

Source: Author’s calculations, based on data from Hedge Fund Research.

Notes: The Jarque-Bera normality test is asymptotically distributed as a central x* with 2 degrees of freedom under

the null hypothesis, with 10%, 5% and 1% critical values. *, ** *** denote significance at the 10%, 5%, and 1% levels,
respectively.

Second, all hedge fund return distributions are negatively skewed. Negative skewness means that the left tail
is particularly extreme. It indicates that large negative returns are more probable than large positive ones.
Negative skewness and leptokurtosis are unattractive features for risk-averse investors.

The statistical properties of non-normally distributed hedge fund index returns pose difficult problems for
measuring risk. The standard deviations imply average daily volatilities, often used as a risk measurement.
However, it can only be appropriate for a risk if the observed returns are normally distributed. Traditional
risk management based on the mean-variance approach only takes two parameters-mean return and return
variance (and/or standard deviation)-into account to specify the risk-return profile of the investor’s portfolio.
If the returns are normally distributed, the first two moments of the distributions are enough to characterize
their risk-return profile. However, in the case of non-normally distributed returns, skewness and kurtosis

might play a significant role on risk perception for investors. As is evidenced by their significant JB-test

statistics, it seems appropriate to conclude that all hedge fund index returns are not normally distributed.

3. ARMA Modeling: Linear Structure in Univariate Time Series

The univariate time-series of our interest is the hedge fund index value p; at time #. Any time-series data,
p: such as financial asset prices can be thought of as random variables having been generated by a stochastic
process. A concrete set of data, Pr, Pe+1, Pr+2,°°* can be regarded as a particular realization of the underlying
stochastic process (i.e. the values of a random variables).

In time series regression, the idea that historical relationships (i.e. the future is like the past) can be
generalized to the future is formalized by the concept of stationarity. The perception that the future will be
like the past is an important assumption in time series regression, so much so that it is given its own name,

“stationarity”. It is well known that, in most financial time series, prices are non-stationary while the returns
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are stationary. To confirm this for four hedge fund index returns, the unit root tests are used in detecting
whether the returns series are stationary or nonstationary. According to the unit root tests (the augumented
Dicky-Fuller test and the Phillip-Perron test) for the null hypothesis that the series has a unit root (i.e. it is
nonstationary), all index returns can reject the null hypothesis for significance at 99% confidence levels,
which means stationarity for those series.”

With time-series data, it is likely that the observations will be correlated over time because the observation
at time 7 is the consequences of economic actions or decisions taken at time ¢, but also at time #+1, #+2, and so
on. As shown in Figure 2, these effects do not occur instantaneously but are spread over future time periods.

A popular method of modeling stationary time series is the autoregressive moving average (ARMA)
method which assembles two separate tools (AR terms and MA terms) for modeling the serial correlation
in the lagged dependent variable and in the disturbance. It can be saying that the dependent variable ¢ in
one period will depend on what it was in the past periods, z—1, 7t-2, ***, which is the persistence of hedge
fund performance over various time intervals. Another way of modeling the continuing impact of change
over several periods is via the error term, which represents the composition of all factors (apart from the
independent variables) that influence the behavior of the dependent variable. The behavior of these factors in
the current time period might be quite similar to their behavior in the previous time period and suggests the
possibility of some correlation between errors close together in time.

In this section, these two ways in which dynamics can enter regression relationship-lagged values of the
dependent variable (AR terms), and lagged values of the error term (MA terms) are considered.

First, consider the unconditional moments of the return process. The mean p is defined as

u=E[r] 1)
where E[ -] denotes the expectation operator and the expected value of the return (i.e. the expected return) E[r,].
The variance of 7, is a measure of dispersion in the possible values for 7, denoted as var(r;) , is defined as

var[ry] = E[r, — u]? = o2 )
where its square root ¢ is the standard deviation of 7, which is called volatility and a measure of risk.

In general, the return on any asset 7; can be divided into two parts: the expected parts of the return E[r;] and
the unexpected part of the return &.

r, = E[ry] + & 3)

n=u+e )

2) The distribution theory supporting the Dickey-Fuller test assumes that the disturbance terms are uncorrelated and
homogeneous. The augumented Dickey-Fuller test allows the disturbance terms are correlated but still assume to be
homogeneous. Moreover, the Phillip-Perron test allows the disturbance terms to be correlated and heterogeneously
distributed. See Enders [1995], p.239.
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Figure 2: The Distributed Lag Effect

Economic action
at time ¢

Effect Effect Effect Effect
at time ¢ at time £+1 at time £+2 ":> at time t+k

Source: Author’s compilation based on Griffiths, Hill and Lim [2008], p.227.

where &;, is known as the disturbance, or error term.
The error term is a random variable that has the probabilistic properties with zero mean, constant variance

and serially uncorrelated. Such error term is called a white noise error term, which is defined by

E[e,] =0 5)
E[e?] = o2 » (6)
E[e.e] =0 fors #t. @)

In the context of financial analysis, the errors &; are often considered as “shocks” or “news”. They represent
unexpected factors. Then, equation (3) implies that an observed time series 1; is related to an underlying
sequence of shocks &;.

The predictable component of ¢ is often formulated as an autoregressive process since a time series variable

often relates to its past values in many cases.

Te = @1Teq + Boly_p + -+ Qprt—p + &, t=1,..,n ®)
P
= Zi=1 QiTt—p + & (&)
where 94, ..., ¢p are the values of the parameters which measure the impact of the previous return, lies

between -1 to 1. This simple model is called an autoregressive model of order p.

The MA part of the model refers to the structure of the error term. The first-order moving average model,
MA(1), is

=+ +06_, (10)
where @ scales the influence of the white noise process.
The MA(g) process can be written as

=N+ &+ 016 1+ 0,6 5+ -+ 0464 (11)

Equation (11) states that a moving average model is simply a linear condition of white noise process. In other
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words, 7t depends on the current and previous values of a white noise error term. More concisely,

= U"'Z;'I:lej Et—j (12)
By combining the AR(p) and MA(g) models, an ARMA(p,q) model is obtained as follows.

=U+ 011+ Qoo+t Oprep+ & + 0181 + 026 5+ + 0584 (13)
Equation (13) states that the current value of returns series 7; depends linearly on its own pervious values plus
a combination of current and previous values of a white noise error terms. Namely, the autoregressive and

moving average specifications can be combined to form an ARMA(p,q) model.

Model identification

The strategy of an appropriate ARMA model selection is systematic, i.e. the so-called Box-Jenkins
approach. This approach takes three steps: identification, estimation and diagnostic checking.

The first step of building an ARMA model is to identify the order of the model required to capture the
features of data generating process. It is to determine the appropriate AR and MA orders p and g. A central
concern of this approach is to specify for the predictable part as a constant 4 and measure the error term & ,
which is the difference of the series from its mean 1, — x as shown in equations (4).

Identification of the structure in the data is carried out by looking at the autocorrelation and partial
autocorrelation coefficients after plotting the data over time. Autocorrelation is the correlation of a series
with its own lagged values. When the observations in different time periods are correlated, it is said that
autocorrelation exists. The coefficient of correlation between the observations at two adjacent periods is
called the autocorrelation coefficient. Table 2 displays the autocorrelation function (ACF) of the hedge fund
index returns. The estimated autocorrelation coefficients for lag 1 to 20 together with the Ljung-Box (LB)
statistics with five, ten and twenty autocorrelations are reported. At first glance, the ACF of the return series
show that there is a slightly autoregressive structure in the data. In particular, Relative Value Arbitrage shows
highly significant autocorrelations over all lags. Thus, it seems that either an AR or a mixed ARMA process
might be appropriate for modeling these data. In fact, it is not easy to precisely determine the appropriate lag
order given these estimates at this stage.

It is possible to test the joint hypothesis that all of the first m (= maximum lag length) autocorrelation
coefficients are simultaneously (jointly) equal to zero ( Ho: p1 = p1 == pm =0 ). Q-statistics is the
Ljung and Box statistic of ACF (LB-Q), represented in the bottom part of Table 2. The returns of four indices
excepting for Relative Value Arbitrage do not show high autocorrelation coefficients, but some of them are
still highly significant at 95% confidence level. Since the first ACF coefficients of all returns series are highly

significant, the Ljung-Box joint test statistic rejects the null hypothesis of no autocorrelation at the 1% level.

— 208 —



Persistence and Volatility of Hedge Fund Returns: ARMA-GARCH Modeling

Table2: Autocorrelations

ACF Equity Hedge Event Driven Macro/CTA Relative Value
Arbitrage
Lag(1) 0.154" 0.108" 0.104™ 0.195™
Lag(2) 0.027 0.060"" 0.031" 0.107""
Lag(3) 0.031* 0.078™" 0.034' 0.124™
Lag(4) 0.013 0.016 0.040%* 0.125™
Lag(5) -0.014 0.066™" -0.004 0.094™"
Lag(6) -0.017 0.006 -0.017 0.071™
Lag(7) 0.017 0.022 0.009 0.100™"
Lag(8) 0.021 0.039” 0.028 0.092""
Lag(9) 0.028 0.049™ 0.013 0.105™"
Lag(10) 0.050™" 0.032 0.031° 0.094™
Lag(11) 0.001 0.018 0.001 0.041"
Lag(12) 0.021 0.058"" 0.028 0.172™"
Lag(13) 0.021 0.024 0.016 0.151""
Lag(14) 0.005 0.038" 0.024 0.069""
Lag(15) 0.006 0.024 -0.002 0.140™
Lag(16) 0.067"" 0.084"" 0.000 0.175™
Lag(17) 0.027 0.035" -0.021 0117
Lag(18) -0.047" -0.024 -0.009 0.054™"
Lag(19) 0.039" 0.015 0.052™ 0.070™"
Lag(20) 0.018 0.024 -0.013 0.074™"*
LB-Q(5) 73.658™" 74.326™" 41.358™" 25597
LB-Q(10) 85.902"" 89.994™" 47.886™" 380.05™"
LB-Q(20) 1153™ 135617 62.409" 77168

Source:Author’s calculations, based on data from Hedge Fund Research

Note:The significance tests for the autocorrelation coefficients can be constructed by a non-rejection region for an estimated
autocorrelation coefficient to determine whether it is significantly different from zero. Under the assumption that
returns are normally distributed, confidence intervals for the correlations can be constructed.
For a sample size of T, a correlation coefficient is defined as statistically significant at the 10%, 5% and 1% levels
would be given by 11.65/\/7, 1—1.96/\/T and 12.58/\/7, respectively. *, ** and *** denote significance at the
10%, 5%, and 1% levels, respectively.

A way of deciding on the appropriate model orders is to use an information criterion. There are two
popular information criteria: Akaike information criterion (AIC) and Schwarz’s (Bayesian) information

criterion (SIC).Y The approach to choosing numbers of lags, p, g, in ARMA model is to estimate them by

3) These criteria compare the in-sample fit, which is measured by the residual variance £2, against the number of
estimated parameters k. In more detailed explanation about these information criteria, see Franses and van Dijik [2000],
p.38 and Brooks [2008], p.233.
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minimizing information criteria.

Let T and k denote the sample size and the total number of parameters in the ARMA(p,q) model, that is, &
=p+gq+ 1. First, AIC is computed as
AIC(k) =TIné?+ 2k

=Ing2+2% (14)
where 62 = 1/T ¥T_, éZ with & the residuals from the ARMA model.
Second, SIC is computed as
SICk) =TIng?>+kinT

= g2+ nT (15)
The difference between the AIC and the SIC is the second term. “InT " of the second term in the SIC is
replaced by “2” in the AIC. Because InT > 2 for T > 8, the SIC penalizes additional parameters more heavily
than the AIC. For example, for the 2864 observations of the returns series under investigation used to
estimate the ARMA modeling, In(7) = In(2864) = 7.960, so the second term for the SIC is almost four times
as large the term in AIC. Therefore, the model order selected by the SIC is likely to be smaller than that
selected by the AIC.

A natural question to ask of any estimated model is: Which criterion should be preferred if AIC and
SIC suggest different model orders? The principle of parsimony is based on the Box-Jenkins approach. A
parsimonious model is the model that describes all of the features of data of interest using as few parameters
(i.e. as simple a model) as possible.” It fits the data well without incorporating any needless coefficients. In
large samples, the AIC will overestimate the number of lags with nonzero probability since the second term
is not large enough to ensure that the correct lag length is chosen, so the AIC estimator is not consistent.”
On the other hand, the improvement in fit caused by increasing the AR and /or MA orders needs to be quite
substantial for the SIC to favor a more elaborate model. Franses and van Dijk [2000] point out that in

practice, the SIC prefers very parsimonious models, containing only few parameters.

Parameter estimation and residual diagnostics

ARMA modeling of univariate time-series data is not based on any economic or financial theory. The

purpose of constructing these models is to capture relevant features of the observed data under consideration.

4) A parsimonious model is desirable since the residual sum of squares is inversely proportional to the number of degree
of freedom. A model that contains irrelevant lags of the variable or of the error term (and therefore unnecessary
parameters) will usually lead to increased coefficient standard errors, implying that it will be more difficult to find
significant relationships in the data. See Enders [1995] p.95. and Brooks, [2008], pp. 231-232.

5) Stock and Watson [2012] explain the details of this point, in Appendix 14.5. “ Consistency of the BIC Lag Length
Estimator” (pp.623-624).
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Thus, the estimated output of an ARMA model may be better to understand the plausibility of the model as a
whole and to determine whether it exhibits the properties of the data well, and consequently provides accurate
forecasts.

Table 3 shows the estimated ARMA process for four index returns selected by the SIC criterion. For an
ARMA model, a set of statistics of the estimated AR and MA parameters are the serial correlation coefficients
of the lagged dependent and disturbance variables, in which the values lies between -1 (extreme negative
serial correlation) and +1 (extreme positive serial correlation).

Before applying the selected ARMA models for index returns series, it is necessary to look for signs
of model misspecification. Here the procedure for testing the adequacy of an estimated ARMA model
is to investigate whether the estimated residual series &, is approximately white noise. First of all, it is
particularly important that the residuals from an estimated model be serially uncorrelated. Any evidence
of autocorrelation implies a systematic movement in the sequence of 7 that is not accounted for by the
ARMA coefficients included in the model. In the case of given model adequacy, the error term would be
a white noise process with no autocorrelation as shown in equation (7). Therefore, after fitting candidate
ARMA specifications, we should verify that there is no autocorrelation in the residuals of the models. So, I
begin by examining whether or not there are autocorrelation in the error term of an estimated ARMA model.
Autocorrelation diagnostic tests for the residuals were computed to check the adequacy of the estimated
ARMA models by using the Breusch-Godfrey serial correlation LM test for higher order ARMA errors.
The null hypothesis is that there is no serial correlation up to the rth order.”’ In other words, the errors are
uncorrelated with one another. The observed R-squared statistics is the Breusch-Godfrey LM test statistic
and its estimated value (see Serial Cor. LM test) is shown in Table 3. If the test statistic exceeds the critical
value from the Chi-squared statistical tables, the null hypothesis of no autocorrelation can be rejected. The
null hypothesis of no autocorrelation cannot be rejecled by any of the estimated ARMA models,which
means that the models satisfy the assumption that the covariance between the error terms over time is zero,
cov(e;, &) =0 fori #j.

The estimated ARMA processes for Event Driven and Relative Value Arbitrage exhibit statistically
significant large positive values of coefficients of the AR(1) terms and large negative values of coefficients of

the MA(1) terms. These estimates indicate that the returns to the nondirectional strategies of Event Driven

6) The simplest test of detecting autocorrelation is the Durbin-Watson test, which is a test for first-order autocorrelation.
Therefore, Durbin-Watson statistics can verify the null hypothesis of no autocorrelation against the alternative
hypothesis of first-order autocorrelation. In addition, the DW test is no longer valid if there are lagged dependent
variables on the right-hand side of regression such as AR models. The Breusch-Godfrey serial correlation LM test is
a more general test for autocorrelation. For more detailed technical discussion about detecting autocorrelation, see
Brooks [2008], pp.143-150.
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Table 3: ARMA Modeling

Indices Equity Hedge Event Driven Macro /CTA Rekrtll)\i/tera\;aelue
Model AR(1) ARMA(1,2) AR(1) ARMAC(1,2)
Parameter estimation
i 0.0051 0.0145 0.0039 0.0049
(0.0090) (0.0120) (0.0088) (0.0193)
& 0.1539%** 0.973]*** 0.1038*** 0.9818***
(0.0223) (0.0154) (0.0319) (0.0128)
8, — -0.8824%%** — -0.8442%**
(0.0303) (0.0545)
0, — -0.0612%* — -0.0846
(0.0267) (0.0522)
SIC 1.0194 0.3887 1.0400 0.1534
Diagnostic checking
Autocorrelation: £
Serial Cor. LM test 0.0736 0.4824 1.1747 0.4735
Normality: £ 4536.585%%* 17401.09% 6330.741%%* 246580%%+
Jarque-Bera
ARCH effect: & Kok
ARCH LM(1) test 135.081%** 83.228%** 163.198%** 43.391

Notes: Based on daily continuously compounded returns from 04/01/2003 to 08/11/2014; standard errors are presented
in parenthesis; The statistical significance is determined by using HAC autocorrelation-heteroscedasticity -consistent
standard errors (Newey-West); ***, **_* denote significance at 99%, 95% and 90% confidence levels, respectively.

and Relative Value Arbitrage have high serial correlation. The most likely explanation is that the indices
to these hedge fund strategies involve less liquid assets. On the contrary, the directional strategies such as
Equity Hedge and Macro/CTA exhibit relatively low serial correlation.

To get a feel for the fit of the residuals in the models, the residual graphs are depicted in Figure 3. The
actual and fitted values are depicted on the upper portion of the graph. The lower portion depicts the
difference between the actual and fitted values, which provides little control over the process of producing
fitted values. It seems obvious that the residuals of the ARMA models have systematically changing over the
sample period, that is, a sign of heteroscedasticity.

In linear time series models the errors &, in other words, the underlying shocks are assumed to be
uncorrelated but not necessarily to be independently identically distributed (IID).”

g ~IID N(0,0?) (16)

7) See Campbell, Lo and MacKinlay [1997], p.468.
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Figure 3: Residual Graphs of Estimated Models

(a)Equity Hedge: AR(1) (b) Event Driven: ARMA(1,2)
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(¢c)Macro/CTA: AR(1) (d) Relative Value Arbitrage: ARMA(1,2)
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where & is independently, identically and normally distributed with a zero mean and a constant variance g2.
The white noise time series process exhibits no trends or clusters since the observations are independent each
other.

In nonlinear time series models the underlying shocks are typically assumed to be IID. Before proceeding
to the next step for nonlinear models that is sufficient to describe these important features of the data, the
assumption to be IID normal in the error term should be examined to the residuals. One of the most popular
tests for normality is the Jarque-Bera test. According to Jarque-Bera test statistics, any hypothesis that the
residuals of all models are normally distributed can be rejected. In financial modeling, one or two outliers
cause a rejection of the normality assumption. Outliers also appear in the tails of the distribution, which
enters into the value of kurutosis to be large as shown in Table 1.

White noise error term is assumed to be homoscedastic. The expected value of all error terms, when

squared, is the same at any given point. This assumption is called homoscedasticity. Time series data in
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which the variance of the error terms are not equal, in which the error terms may reasonably be expected to
be larger or smaller for some points, are said to be heteroscedastic. Figure 4 depicts the squared residuals of
the estimated ARMA models, in which the error variances are time varying. In addition, the squared residuals
are serially correlated due to their correlograms and autocorrelation coefficients.

The heteroscedasticity specification is examined by the ARCH (autoregressive conditional
heteroscedasticity) effects in the residuals. The ARCH LM test investigates whether the magnitude of
residuals appeared to be related to the magnitude of recent residuals. To test for first order ARCH, regress the
squared regression residuals

& =vo+tnéli+v a”n
where v; is a random term. The null and alternative hypotheses are:

Hp:y, =0

Hyi:y, #0
If there are ARCH effects, the magnitude of £2 depends on its lagged values. More generally, the null
hypothesis is that there is no ARCH up to order g in the residuals £2. The test can be thought of as a test for
autocorrelation in the squared residuals. The ARCH LM test is implemented to make sure that this class of
models is appropriate for the data under investigation before estimating a GARCH-type model.

The outputs of ARCH LM tests for ARCH (1) effects, in which the number of lags to include is 1 are
indicated in Table 3. The null hypothesis that there are no first order ARCH effects can be rejected for all
index returns since the LM-statistics are very significant. It suggests that the presence of ARCH effects in the

squared residuals of the models.

4. GARCH Modeling

So far, I have focused on ARMA modeling for the predictable part of the return E[r;] or u. After diagnostic
testing for residuals, it is clear that the residuals £: are not autocorrelated, but they are not independently,
identically normally distributed or varying over time.

In the context of time-series analysis, the defined unconditional moments in section 3 have referred to
the long-run moments of the series, that is, the unconditional mean, variance and covariance at t - oo. In
addition to the long-rum unconditional moments, the conditional moments can be defined.

The expected parts of the return is what can be predicted using the knowledge from the past, which is
denoted by ,_, the information set of all available information up to and including time # — 1. This expected
part of the return is conditional mean E[r;|Q,_,], which is the mean at time ¢ conditional on the information

set taken by the series in previous periods.
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Figure 4: Squared residuals

(a) Equity Hedge: AR(1) (b) Event Driven: ARMA(1,2)
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1 = E[r|Q1] + & (18)

where E[*|*] denotes the conditional expectation operator, and thus the conditional mean is E[1:|Q;_1] = p.

The white noise error term can also be defined as its conditional mean, variance and covariance.

Ele] = E[&]Q;-4] =0 (19)
E[e?] = E[e?]|Q;_1] = var(g,) = o? for all t (20)
Ele;e5] = cov(es, &) =0 Vs#t. Q1

The important point to note here is that the variance of & is assumed to be both unconditionally and
conditionally homoscedastic — that is, E[¢?] = E[e?|02,—,] = a? for all ¢ in equation (20).

Researchers or traders engaged in forecasting asset prices have often experienced that their ability to
forecast asset prices varies, consequently their returns vary considerably from time to time. For one time
period the forecast errors might be relatively small, while they might be relatively large for another period.
This variability could very well depend on volatility in financial markets.

The forecast error is considered as

o — ElnlQ4] = & (22

From this viewpoint, it seems sensible to explain volatility as a function of the error term & . This would
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suggest that variance of forecast errors is not constant but varies from time to time.

Generalized autoregressive conditional heteroscedastic (GARCH) Model

Now I move to relax the assumption of homoscedasticity. When the error terms do not all have the same
variance, they are said to exhibit heteroscedasticity, which allows the conditional variance of & to vary
overtime, that is, time-varying volatility (Figure 5). The estimated error & is the difference between the
observed and predicted values, given by & =1, —7; . It can be used to obtain the estimated conditional
variance h,. The conditional variance can estimate the variance of a series at a particular point in time 7.

E[ef|0; 1] = of = h, : (23)
Equation (23) states that the new information set () at time ¢ -/ is captured by the most recent squared
residual. Such an updating rule is a simple description of adaptive or learning behavior and might be
expressed as a kind of autocorrelation in the variance of forecast errors. To capture this serial correlation of
volatility, Engle, R. F. [1982] developed the autoregressive conditional heteroscedasticity (ARCH) model.”
The key idea of the ARCH model is that the variance of ¢ at time ¢, that is, h,(= ¢?) depends on the size of
the squared error term at the previous time 7— /, that is, on £2_;.

he = 0% = ag + a;e%, (24)
where the conditional variance depends on only one lagged squared error. This is called an ARCH(1) process.

In general, an ARCH(g) model that includes lags ¢Z ,,...,eZ, has a conditional variance function that is

given by
he = 0f = ag + aye 1 + oy, + aget, 25
If there is no autocorrelation in the error variance, the null hypothesis, Hy: a; = a, = -+ = @, = 0, indicates

the case of homoscedastic error variance.

One of the shortcomings of an ARCH(g) model is that there are g+/ parameters to estimate. The accuracy
of model estimation might be lost as g becomes a large number. This same issue was investigated in the
discussion of parsimony in ARMA modeling in section 3.

The generalized ARCH model, or GARCH, is an alternative method for capturing long-lagged effects with
fewer parameters. First, consider equation (25) and rewrite it as”

hy =0f = ag + aref 1 + Prasel, + Plased 5 + - (26)

where @y, @, , -, as= a7, ayfEY, o, ay BTt Next, subtract and add B, a, in equation (26),

8) Engle [2001a] explains the updating rule and an intuition underlying the ARCH model by using a hypothesized
numerical example.

9) See Griffith, Hill and Lim [2008], p.372.
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Figure 5: Time Varying Volatility
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Source: Alexander [2001], p.13.

he = ag = Byag + ayef_y + Brag + Brasef, + Blajed 5 + -
= (ag = Prao) + ayef s + By + @i + Braged s + ) 27
According to equation (27), the variance of € at time 7— I is expressed as

he_y = ao + aief 5 + Bragef s + fiasel 4 + 28)
Then, equation (24) can be rewritten as

he = (ag = Prao) + ayef g + Brhes

he = 0f = w + arefy + rheq (29)
where w = (ag — 1) . This is the GARCH(1,1) model. o is the conditional variance.

The GARCH(1,1) model states that the current fitted variance, 4, is interpreted as a weighted function
of a long-term average value (dependent on w ) and information about volatility during the previous period
(a,€2_; ) and fitted variance from the model during the previous period (B1h¢—1 ). Large coefficient @; means
that volatility reacts quite intensely to market movements of the previous period (i.e. the ARCH term is a
reaction coefficient). Large coefficient 8, indicates that shocks to conditional variance in the previous period
are persistent and take a long time to die out, so volatility is persistent (i.e. the GARCH term is a persistence
coefficient). If a; is relatively high and B, is relatively low then volatility tend to be more “spiky’ (large
reaction and low persistence). The sum of a + B is referred to as the persistence of the conditional variance
process. The positivity of 4, is ensured by the restrictions: w > 0. a >0, and 3 =0 . This GARCH(1,1)
model is a special case of the more general GARCH(p,q) model, where p is the number of lagged /4 terms and
q is the number of lagged ¢2 terms. It is worth noting that GARCH(p,q) modeling of the conditional variance

is analogous to ARMA(p,g) modeling of the conditional mean.
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The GJR model: asymmetric GARCH model

Positive and negative news are treated asymmetrically in the financial markets. It has been argued that
negative news about stock returns is likely to cause volatility to rise by more than positive news of the
same magnitudes. Such asymmetries are often called leverage effects (Figure 6). The first volatility cluster
illustrates that there is turbulence in the financial market following an unexpected piece of bad news and the
second one indicates an expected announcement of good news.

The threshold ARCH model (i.e. T-ARCH) is a simple extension of GARCH with an additional term added
to account for possible asymmetries. The T-GARCH model is also referred to the GJR model, named after
the authors Glosten, Jagannathan and Runkle [1993]. In the GJR version of the model, the specification of the

conditional variance is:

hi=w+a et + vd,_4 8,2_1 + B:1hs_, (30)
1 & < 0 (bad news)
di = {0 & > 0 (good news 3n

where y is known as the asymmetry or leverage term. When vy is 0, the GJR model converges to the standard
GARCH form. On the other hand, when the shock is positive (i.e. good news) the effect on volatility is a,
but when the news is negative (i.e. bad news) the effect on volatility is a;+y. Thus, so long as Y is significant
and positive, negative shocks have a larger effect on 4, than positive shocks.

The ARMA-GARCH & GJR results are given in Table 4. The mean equations used here are specified by
ARMA modeling in Section 3. The main output of parameter estimation is divided into two parts: the mean
equation in the upper part and the variance equation in the lower part. The conditional mean equation is
specified in an ARMA(p,q) model, whose function consists of the following terms:

* a constant term: {1t

+ autoregressive (AR) terms: @,

* moving average (MA) terms: 6,
The conditional variance equation is specified in an GARCH(1,1) model, whose function consists of the three
terms:

* a constant term: w

* the ARCH term: a;
which means a reaction coefficient to news about volatility from the previous period, measured as the lag of
the squared residual from the mean equation: &1 .

+ the GARCH term: f;

. . . . . 2
which means a persistence coefficient to last period’s forecast variance: 0r—1 = Re-1.
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Figure 6: Leverage Effects
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Engle [2001a] interprets this specification as an updating rule of adaptive or learning behavior of an agent
or trader in a financial context. The trader predicts this period’s variance A, by forming a weighted average
of a long term average (the constant, ®), the forecast variance from last period (the GARCH term, B;) and
information about volatility observed in the previous period (the ARCH term, a; ). The trader must estimate
w, @, B ;updating simply requires knowing the previous forecast h;_, and residual €&,_; . The weights of
the updating rule are (1 — oy — f; , &1, By ). Under the restriction that the weights are positive, requiring
a; >0, f; >0,w >0, thisonly works if@; + By < 1. If the asset return observed today was unexpectedly
highly volatile, then the trader will increase the estimate of the variance for the next period. The conditional
variance equation is consistent with the phenomena of the volatility clustering, that is, the amplitude of the
return varies over time.

Table 4 shows that the parameter restrictions are fulfilled for all hedge fund indices. The coefficients
on both the lagged squared residual and lagged conditional variance terms in the conditional variance
equation are highly statistically significant for all hedge fund index returns. The persistence of the volatility
is measured as the sum of @ and f. The results indicate that the volatility of hedge fund returns is quite
persistent. Especially, the sum of g and 8 for Macro/CTA and Relative Value Arbitrage is very close to unity
(approximately 0.99). This implies that shocks to the conditional variance will be highly persistent and a
large positive and a large negative return will lead future forecasts of the variance to be high for a subsequent
period. A volatility of half-life (i.e. the half-life period: HLP) takes 22.757 days for the Equity Hedge and
29.921 days for the Event Driven, whereby the HLP of 69.668 and 147.131 days for Macro/CTA and Relative
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Table 4 : ARMA-GARCH & GJR Modeling

ARMA-GARCH(1,1) modeling

ARMA-GJR(1,1) modeling

E[%l(ljlgtg g]}:s‘;; Macro/CTA :8;3: ¢ E%lélgtz l}):‘ﬁg:\ Macro/CTA R\e/;:;;, ¢
rbitrage Arbitrage
AR(1) ARMAC(1,2) AR(1) ARMAC(1,2) AR(1) ARMAC(1,2) AR(1) ARMAC(1,2)
Mean equation
a 0.0288***|  0.0319%** -0.0007|  0.0239*** 0.0162| 0.0275%** 0.0051 0.0156*
(0.0071) (0.0055) (0.0067) (0.0058) (0.0076) (0.0054) (0.0064) (0.0081)
$1 0.1791*** 03063 0.0699***| (0.9574***| (.1878*** 0.3809*(  0.0551***|  0.9715***
(0.0198) (0.2503) (0.0209) (0.0131) (0.0197) (0.2210) (0.0200) (0.0106)
28 — -0.2034 —| -0.9009*** — -0.2745 -0.9109***
(0.2510) (0.0249) (0.2219) (0.0246)
6, — 0.0390 —| 00107 — 0.0337 -0.0080
(0.0366) (0.0221) (0.0351) (0.0224)
Variance equation
a) 0.0045%**[  0.0018***| 0.0020*%**|  0.0006***| 0.0077***| 0.0027*** 0.0011**|  0.0006***
(0.0010) (0.0004) (0.0005) (0.0002) (0.0014) (0.0006) (0.0005) (0.0002)
a 0.1080%**(  0.0998***|  0.0851***|  0.124]1%** 0.0119  0.0448***|  0.0961***| 0.0737***
(0.0187) (0.0160) (0.0112) (0.0224) (0.0193) (0.0168) (0.0147) (0.0263)
7 — — — —|  0.1723***|  0.0925%**| -0.0666*** 0.0861**
(0.0284) (0.0263) (0.0160) (0.0421)
a+y — — — — 0.1842 0.1373 0.0295 0.1598
Bl 0.8620%**[  0.8773***|  0.9051***| 0.8712%**| 0.8392***| 0.8668***| 0.9344***| (.8778***
(0.0183) (0.0151) (0.0122) (0.0187) (0.0182) (0.0162) (0.0123) (0.0153)
a, + [?1 0.9700 0.9771 0.9901 0.9953
HLP 22.757 29.921 69.668 147.131
SIC 0.7472 0.0422 0.7750 -0.5957 0.7266 0.0367 0.7672 -0.6023
LogL -1049.69 -32.5273 -1089.5 880.6709 -1016.22 -20.6415 -1074.31 894.0463
ARCH effect:
ARCH LM(1) test 1.9547 0.7942 0.0003 04168  3.9839** 1.1978 2.3625 1.4231
Standarized Residuals:
Mean -0.0429 -0.0271 0.0178 -0.0275 -0.0126 -0.0105 0.0000 -0.0051
Std. Dev. 0.9985 0.9993 0.9996 0.9990 0.9995 0.9998 0.9997 0.9993
Skewness -0.4978 -0.4286 -0.5018 -0.1246 -0.4515 -0.4309 -0.4624 -0.0361
Kurtosis 4.8586 5.1456 6.5193 5.8927 4.9037 5.2338 5.8252 6.1179
Jarque-Bera 530.33***| 636.844***| 1597.628***| 1005.583***| 529.625***| 683.873***|1054.157***| 1160.280***
Ljung-Box statistic Ho. no-autocorrelation
1 Q(12) 6.968]  20.180** 3.754 12.672 7.144 19.107** 4.004 8.516
: QU2) 19.385%* 16.435* 3.118 16.047* 15.456 16.182** 11.550 14.330

Notes: Based on daily, -continuously compounded returns for 2864 observations 04/01/2003 to 08/11/2014; standard errors
are presented in parenthesis; The statistical significance is determined by using Bollerslev-Wooldridge robust standard
errors; ***, ** * denote significance at 99%, 95% and 90% confidence levels.

Value Arbitrage are much higher.'"” Therefore, the return volatilities of four hedge fund indices have quite

long memories. In addition, the sum of @ and g is significantly less than one, which implies the volatility

process does return to its mean (Engle and Patton [2001], p.16), so-called mean reverting behavior.

The ARCH LM(1) test determines whether there are any remaining ARCH effects in the residuals. The

10) Fiiss, Kaiser and Adams [2006] compute the length until half of the volatility (i.e. the half-life period: HLP) as
HLP = log(0.5)/log(@ + f).
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Figure 7: The Standardized Residuals of the GARCH Estimation
Against the QQ-Plot of the Normal Distribution
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null hypothesis is that no ARCH effect in the residuals is not rejected for all hedge fund indices in ARMA-
GARCH(1,1) modeling. The ARCH-LM(1) tests confirm the null hypothesis of no first order ARCH effects
in the squared residuals of the models for four hedge fund index return-series. This result means that the
ARMA-GARCH modeling takes the heteroscedasticity and the changing unconditional and conditional
variance in the return-series into account. Finally, the Jarque-Berra statistics of ARMA-GARCH estimation
suggests that skewness and kurotosis in the standardized residuals are reduced from the ones of ARMA
estimation (Table 3) but not completely eliminated.

One way of further testing the distribution of the residuals is to plot the quantiles. If the residuals are
normally distributed, the points in the QQ-plots should lie alongside a straight line. Figure 7 displays the
QQ-plots for four index returns of the ARMA-GARCH modeling. The plots indicate that Equity Hedge

and Macro/CTA are primarily large negative shocks that are driving the departure from normality and Event
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Figure 8: The Standardized Residuals of the GJR Estimation
Against the QQ-Plot of the Student-t Distribution
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Driven and Relative Value Arbitrage are primarily large negative shocks and are also relatively positive
shocks that are driving the departure from normality.

Next, an examination of asymmetric effects on the conditional variance is conducted through assessment
of ARMA-GJR modeling. The coefficient o implies an impact of good news, while the sum of the @+ ¥
implies an impact of bad news. The coefficient ¥ from Table 4 is positive for Equity Hedge, Event Driven,
and Relative Value Arbitrage, and statistically significant. There is the largest leverage effect for Equity
Hedge since the coefficient ¥ is 0.1723. However, the coefficient ¥ is negative for Macro/CTA, provided
that @+ 79 is 0.0295 > 0. The specification of the GJR model is still admissible. All hedge fund index
return series seem to prefer the GJR model to the GARCH model since all values of SIC decrease and
ones of log likelihood function increase in the ARMA-GJR(1,1) modeling from the ARMA-GARCH(1,1)

modeling. Finally, the standardized residuals are independently identically distributed if the selected model
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is the true model. It can be checked by the Ljung-Box statistics, LB-Q(12) for testing on dependencies of
the standardized residuals and the standardized residuals squared. For Equity Hedge, Macro/CTA, and
Relative Value Arbitrage no-dependencies of the standardized residuals are confirmed and the standardized
residuals are squared. Only for Event Driven the null hypothesis of no-autocorrelations rejected. Finally, it
is important to note that the descriptive statistics of the standardized residuals for all hedge fund index returns
exhibit negative skewness and leptokurtosis (i.e. excess kurtosis), which means that the distributions of the
standardized residuals are fat tailed distributions. To model the thick tail in the residuals, the standardized
residuals are assumed to follow a Student-t distribution. Figure 8 illustrates that the large negative and
positive residuals more closely follow a straight line than those of Figure 7. The residual distributions were

close to Student-t distributions, that is, the fat-tailed distributions.

5. Concluding Remarks

In this paper, the linear ARMA type models and the non-linear volatility models such as GARCH(1,1) and
GJR(1,1) for four primary hedge fund strategies were estimated and compared with each other. Through
the ARMA modeling, the estimated ARMA processes for the returns to the non-directional strategies such
as Event Driven and Relative Value Arbitrage exhibit are highly serially correlated, on the other hand, the
directional strategies such as Equity Hedge and Macro/CTA show relatively low serial correlation.

The return series of four hedge fund indices depict volatility clustering, that is, time varying volatility. To
capture the autoregressive conditional heteroscedasticity, the GARCH structure for hedge fund index returns,
in addition to the ARMA structure, are specified. The examination of the ARMA-GARCH modeling of hedge
fund strategy returns shows the asymmetric effect to volatility, and thus, the GJR models are selected although
their conditional volatilities shows significant differences in persistence and the direction of asymmetry.
Finally, it is worth noting that the distributions of the standardized residuals for all hedge fund strategies
reveal leptokurtosis and the residuals against the quantiles of the Student-t distribution more closely follow a
straight line than those of the normal distribution. Volatility models, such as the GARCH type approach are
often applied to Value at Risk. In the case of VaR measurement including time-varying conditional volatility,
it is important to recognize that the residuals distribution follows the fatter tailed distribution than the normal

one for downside risk evaluation.
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