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Abstract

Cyclin-dependent kinase 5 plays an essential role in the development of the central
nervous system during mammalian embryogenesis, being required for the maintenance
of human neuronal architecture. Its deregulation has profound cytotoxic effects and has
been implicated in the development of neurodegenerative diseases such as Alzheimer’s
disease and amyotrophic lateral sclerosis. 2-Aminothienyl triazolyl derivatives were
reported as potential inhibitors of cyclin-dependent kinase 5/p25 (CDKS5/p25) for
the treatment of Alzheimer’s disease and other neurodegenerative disorders. A series
of 48 triazolyl thienyl derivatives active against CDK5/p25 was previously studied
by conformational analysis performed in vacuum by the OPLS 2005 force field. In
this study the obtained conformers were used to calculate structural descriptors. A
Multiple Linear Regression (MLR) was applied to relate the calculated descriptors
to the CDK5/p25 inhibiting activity in order to reveal important descriptors for this
biological activity.
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1. Introduction

Alzheimer disease (AD) is multi-factorial and heterogeneous (Igbal & Grundke-
Igbal, 2008 ). Independent of the aetiology, this disease is characterized clinically
by chronic and progressive dementia and histopathologically by neurofibrillary
degeneration of abnormally hyperphosphorylated tau seen as intraneuronal
neurofibrillary tangles, neuropil threads and dystrophic neurites, and by neuritic
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(senile) plaques of -amyloid. The neurofibrillary degeneration is apparently required
for the clinical expression of AD and in related tauopathies it leads to dementia in
the absence of amyloid plaques. While normal tau promotes assembly and stabilizes
microtubules, the abnormally hyperphosphorylated tau sequesters normal tau, MAP1
and MAP2 (Microtubule associated protein) and disrupts microtubules. The abnormal
hyperphosphorylation of tau also promotes its self-assembly into tangles of paired
helical and or straight filaments.

Tau is phosphorylated by several protein kinases (Wang et al., 2007). Cyclic AMP-
dependent protein kinase (PKA), calcium, calmodulindependent protein kinas II
(CaMKII), glycogen synthhase kinase-3f (GSK-3f), cyclin-dependent protein kinase
5 and its activator p25 (CDKS5/p25) have been shown to be associated with tangles in
AD brain. Both CDKS5 and GSK-3p are associated with microtubules in the brain and
phosphorylation of tau by CDKS5 promotes its subsequent phosphorylation by GSK-
3B.

Among the phosphatases which regulate the phosphorylation of tau, protein
phosphatase-2A, the activity of which is downregulated in an AD brain, is by far
the major enzyme (Igbal & Grundke-Igbal, 2008). The inhibition of abnormal
hyperphosphorylation of tau is one of the most promising therapeutic targets for the
development of disease modifying drugs.

Cyclin-dependent kinase 5 (CDKS5) plays an essential role in the development of
the central nervous system during mammalian embryogenesis (Mapelli & Musacchio,
2003). In adults, CDKS5 is required for the maintenance of neuronal architecture.
Its deregulation has profound cytotoxic effects and has been implicated in the
development of neurodegenerative diseases such as AD and amyotrophic lateral
sclerosis.

Dhavan and Tsai, (2001) emphasize 2-aminothienyl derivatives as potential
inhibitors of CDK5/p25 for the treatment of AD and other neurodegenerative
disorders (Kim et al., 2002; Misra et al., 2004a; Misra et al., 2004b)

A conformational analysis study (Rad-Curpan et al., 2011) has been previously
reported for a series of triazolyl thienyl derivatives active against cyclin-dependent
kinase 5/p25 (CDK5/p25) (Shiradkar et al., 2007). Its purpose was to identify the
local and global minima on the potential energy surface and to predict the bioactive
conformation of the most active compounds of the title series. The obtained
conformers have been minimized in vacuum and aqueous environment by the
OPLS_2005 force field included in the Macromodel module from Schrédinger suite
(Schrodinger, LLC, New York, NY, 2008).

In this study the conformers generated previously in vacuum were used to determine
the structural features which influence the CDKS5/p25 inhibiting activity of these
compounds. Several structural descriptors were calculated and were related to this
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biological activity by Multiple Linear Regression (MLR). The stability and predictive
power of the MLR models were checked by several statistical criteria.

2. Materials and Methods

Forty-eight triazolyl-thienyl derivatives (Figure 1) with the CDKS5/p25 inhibiting
activity expressed as the logarithm of the ICs, values, in nM, were used in this QSAR
study. The compound structures and experimental activity were taken from reference
(Shiradkar et al., 2007). The training/test sets were built taking randomly 15% of
the entire series, as a test set (compounds: 2a, 4a, 4b, 8a, 10b, 12a, 18a), while the
remaining 85% were used as a training set (Table 1).

Structural parameters

The molecular structures of the triazolyl thienyl derivatives (Figure 1 and Table 1)
were previously minimized in vacuum by the OPLS_2005 force field included in the
Macromodel module from Schrédinger suite (Rad-Curpan et al., 2011).

Twenty-two types of descriptors were calculated by the Dragon software (Dragon
Professional 5.5/2007, Talete S.R.L., Milano, Italy), such as constitutional, functional
groups counts, topological descriptors (MAXDP - maximal electrotopological
positive variation), Burden eigenvalues (BEHel - highest eigenvalue n. 1 of Burden
matrix / weighted by atomic Sanderson electronegativities), eigenvalue-based
indices, Galvez descriptors (topological charge indices), Randic descriptors (Randic
molecular profiles), RDF descriptors (radial distribution function descriptors), MWC
(Molecular walk counts path counts — atomic and molecular descriptors), 3D-MoRSE,
atom-centred fragments (H-050 - H attached to heteroatom, S-108 — R=S group; R
represents any group linked through carbon), information indices, edge adjacency
indices, topological charge indices, connectivity indices, 2D-autocorrelations,
molecular properties, 2D binary fingerprints, and 2D frequency fingerprints.

By MarvinSketch software (MarvinSketch v. 5.11.3, Chemaxon Ltd., Budapest,
Hungary) additional structural parameters were calculated, e.g. strongest acidic pKa,
ASAPlus - solvent accessible surface area of all atoms with positive partial charge,
chiral center count — the number of tetrahedral stereogenic centers, fused aromatic
ring count — number of aromatic rings having common bonds with other rings,
stereoisomer count —the number of R/S and E/Z isomers stereo centers.
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Fig 1. Triazolyl thienyl derivatives structure
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Table 1. The experimental and predicted pICs, values*

No Experimental R R’ No Experimental R R’
pICso pICso
la 7.24 NHCOCH; - 10a 7.27 NHCOCH; -
1b 7.34 NHCOCH,CI - 10b 7.38 NHCOCH,C1 -
2a 6.2 NHCOCH; - 1la 6.38 NHCOCH, -
2b 6.09 NHCOCH,Cl - 11b 6.2 NHCOCH,Cl -
3a 6.19 NHCOCH; - 12a 6.35 NHCOCH; -
3b 6.34 NHCOCH,Cl - 12b 6.43 NHCOCH,C1 -
4a 7.36 NHCOCH, - 13a 7.4 NHCOCH, -
4b 7.14 NHCOCH,Cl - 13b 7.21 NHCOCH,CI -
Sa 747 NHCOCH;, - 14a 7.27 NHCOCH; -
5b 7.19 NHCOCH,Cl1 - 14b 7.52 NHCOCH,CI -
6a 5.49 NHCOCH;, - 15a 5.69 NHCOCH; -
6b 5.13 NHCOCH,Cl - 15b 5.23 NHCOCH,CI -
7a 7.38 NHCOCH; - 16a 7.42 NHCOCH; -
7b 7.52 NHCOCH,C1 - 16b 7.55 NHCOCH,CI -
8a 7.19 NHCOCH; - 17a 7.22 NHCOCH; -
8b 7.28 NHCOCH,CI - 17b 7.32 NHCOCH,CI -
9a 5.63 NHCOCH; H 18a 5.84 NHCOCH; H
9b 5.47 NHCOCH,CI H 18b 5.6 NHCOCH,CI H
9c 5.48 NHCOCH; 2-Cl 18¢ 5.61 NHCOCH; 2-Cl
9d 5.48 NHCOCH,CI 2-Cl 18d 5.61 NHCOCH,Cl1 | 2-Cl
9e 5.47 NHCOCH; 4-Cl 18e 5.61 NHCOCH;, 4-Cl
of 5.53 NHCOCH,CI 4-Cl 18f 5.61 NHCOCH,C1 | 4-Cl
9g 5.52 NHCOCH; 3-NO, 18g 5.61 NHCOCH; 3-NO,
%h 5.51 NHCOCH,CI1 | 3-NO, 18h 5.57 NHCOCH,CI | 3-NO,

* test compounds are bold highlighted

Multiple linear regression (MLR)

Several MLR models (Wold & Dunn TI , 1983) were built after variable selection
carried out by the Genetic Algorithm included in the MobyDigs program (Todeschini
et al., 2004a ) based on the RQK fitness function (Todeschini et al., 2004b ). Genetic
algorithm (GA) (Rogers & Hopfinger, 1994) was applied to search the feature space
and select descriptors relevant to the CDK5/p25 inhibiting activity. The first step of
GA is to generate a set of solutions (chromosomes) randomly which is called an initial
population. Then a fitness function is used to evaluate the fitness of these individuals,
and a new population is formed consisting of the fittest chromosomes as well as
offspring of these chromosomes based on the notion of survival of the fittest. The
leave-one-out crossvalidation fitness function was used in our study as constrained
function to be optimized, a crossover/mutation trade-off parameter 7= 0.5 and a
model population size P = 50. Then crossover and mutation operations are performed
to generate new individuals. In the subsequent selection stage, the fittest individuals
evolve to the next generation. These steps of evolution continue until the stopping
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conditions are satisfied. In the current work, the models were built using the simple
MLR method with the selected variables from GA.

Model validity

All the statistical tests were performed at a significance level of 5 %. In MLR
models, outliers can be detected by the value of residual greater than three times the
value of standard error in calculation (Todeschini & Consonni, 2000), as implemented
in the MobyDigs program. The Kubinyi fitness function (FIT) (Todeschini et al.,
2004b) was used to check the goodness of fit of the obtained MLR models, together
with other statistical criteria included in Table 2. The leave-one-out cross-validation
procedure (Wold, 1978) was employed for internal validation.

The prediction ability of the MLR models was checked by the Akaike Information
Criterion (AIC) (Gentleman & Wilk, 1975), y-scrambling (Lindgren et al., 1996)
and bootstrapping (Efron, 1987). All these statistical metrics were calculated by the
MobyDigs software.

To avoid models with collinearity without prediction power, the K multivariate
correlation index (Todeschini et al., 1999) was calculated. Only models with a global
correlation of [XY] block (Kyy) greater than the global correlation of the X block (K)
variable can be accepted, where X is the descriptor matrix and Y is the dependent
variable. To each model, the K,y and K, values were calculated.

To test the external predictive ability, the following statistical measures were used
(Golbraikh et al., 2003): 1) squared correlation coefficient (R?) between the predicted
and observed activities as well as squared correlation coefficient by cross-validation
(¢7); 2) coefficient of determination for linear regressions with intercepts set to zero,
ie. R (predicted versus observed activities), and RS (observed versus predicted
activities); 3) slopes k and &’ of the above mentioned two regression lines. All these
measures were applied over the test set compounds. The following conditions should
be satisfied for a model with acceptable predictive ability:

q2>0.5 (1)

R*>06 @
2_p2

R=Ro) 0.1 and 085<k<LIS ®
R
2 pu2

R=Ro) (01 and 085<k<115 @

|R: - R3] <03 ©)
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The predictive ability of QSAR models was also checked based on the predictive
parameter Rf,m,( Roy et al., 2009). For a predictive QSAR model, the value of Rim 4
(presented in equation 6) should be higher than 0.5.

) Z (Ypred(lesl) - Y(le.w))z

R: =1-
e Z(Y(resl) - Yrminin‘g)2

©

Additional statistical parameters such as Root Mean Squared Error of Prediction
(RMSEP), Relative Standard Error of Prediction (RSEP (%) ) and Mean Absolute
Error (MAE (%) ) were calculated to investigate the predictive ability of the models
(Goodarzi et al., 2009):

Z(ypred _yabs)z

RMSEP = || -=————— * 0)

Z(ypred _yobs)2

RSEP(%) =100 |4=— ®)
z:(yobx)2
i=l

M4-E(%) = 1_39 il(ypred - yabs) (9)
i=l

where y,;; is the observed inhibiting activity of the compound in the sample, y,,., the
predicted activity (either as internal, cross-validated or external test set prediction) and
n the number of samples in the test set.
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3. Results and Discussion

Several MLR models were built after variable selection carried out by the Genetic
Algorithm. The best prediction of CDK5/p25 inhibiting activity was obtained with the
following MLR model included in Table 2.

An intercorrelation analysis of the selected molecular descriptors from the final
MLR models was performed with the STATISTICA software (STATISTICA 7.1,
Tulsa, StatSoft Inc, OK, USA) and is presented in Tables 3 and 4. The selected
descriptors are not intercorrelated. To test model collinearity variance inflation
factors (VIF) (Neter et al.,1985) were calculated by the STATISTICA software
(STATISTICA 7.1, Tulsa, StatSoft Inc, OK, USA) for the descriptors included in the
final MLR models, in addition to the K multivariate correlation index (Todeschini et
al., 1999). According to Chatterjee and Price (1991), if VIF shows values >10, or if
the tolerance remains below 0.10, then the model present multicolinearity. For VIF <5,
no significant colinearity is present. The VIF, tolerance values and the X multivariate
correlation index indicate the absence of multicollinearity in the final MLR models.

The applicability domain of the model with 41 training compounds was evaluated
by leverage analysis expressed as Williams plot (see Figures 2 and 3), in which the
standardized residuals and the leverage values were plotted. These plots confirm the
absence of outliers and highly influential points (the leverage average value being of
0.146 and 0.122, respectively).

Experimental versus predicted inhibiting activity values are presented in Figures 4
and 5 for the selected MLR models.

Table 3. Correlation matrix, variance inflation factors (VIF) and toleranceof the selected descriptors
included in MLR 1 model

Chiral | ,Fused
Strongest acidic Aromatic | Stereoisomer
pKa ASAPlus (szr:’t:: Ring Count VIF | Tolerance
Count
Strongest
acidic pKa 1 1.57 0.64
ASAPlus 0.43 1 3.03 0.33
Chiral Center
Count 0.08 -0.11 1 1.51 0.66
pused Aromatic 0.14 041 018 1 182 | 055
ing Count
Stereoisomer
Count 0.28 0.69 0.32 -0.57 1 3.13 0.32
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Table 4. Correlation matrix, and variance inflation factors (VIF) and tolerance of the selected descriptors
included in MLR 2 model

MAXDP | BEHel | H-050 | S-108 | VIF [ Tolerance

MAXDP 1 1.69 0.59
BEHel 0.35 1 1.60 0.63
H-050 -0.60 -0.57 1 2.08 0.48

S-108 -0.29 -0.31 0.16 1 1.19 0.84
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Fig. 2. Williams plot: jackknifed residuals of MLR 1 model versus leverages. Training compounds are
marked by white triangles and test compounds by black triangles
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Fig. 3. Williams plot: jackknifed residuals of MLR 2 model versus leverages. Training compounds are
marked by white triangles and test compounds by black triangles.
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Y experimental

A

6
Y predicted

Fig. 4. Observed versus predicted inhibiting activity of MLR 1 model (training compounds are marked by
white triangles and test compounds by black triangles)

Y experimental

;
Y predicted
Fig. 5. Observed versus predicted inhibiting activity of MLR 2 model (training compounds are marked by
white triangles and test compounds by black triangles)
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Model 2 is better internally validated than model 10, according to all statistical tests
(Table 2). The predictive ability of the best MLR models was tested (see Tables 5 and 6)
using (RMSEP), Relative Standard Error of Prediction (RSEP (%)) and Mean Absolute
Error (MAE (%)) (see Model Validity section). Both MLR models present a good
predictive ability. In the mean time higher #* values must be accompanied by g¢” values
as near as possible to the 7 ones (Gramatica, 2007) (to avoid overfitting, which was,
also, checked by the RMSEP, RSEP and MAE values).

Table 5. Predictive power results for the external test set (egs. 1-6)

R*-— R,f R - R(',2 2 o 2
Model R? R? R? k k |R° — R | Riprs
10 0.875 0.01 0.06 1.01 | 0.99 0.05 0913
11 0.927 0.04 0.01 098 | 1.02 0.03 0.898
CoMFA™ 0.605 0.02 0.96 1.00 | 0.99 0.57 0.865
CoMSIA™ | 0.895 0.03 0.14 1.00 | 1.00 0.09 0.592
* predicted pICso values taken from [Ul Hagq, et al.,2011]
Table 6. Predictive power results for the external test set (egs. 7-9)
Model RMSEP RSEP (%) MAE (%)

Training Test Training Test Training Test

10 0.23 0.22 3.60 3.17 6.90 16.78

11 0.33 0.23 5.16 3.42 8.14 15.84
CoMFA™ 0.22 0.58 3.35 0.58 6.06 23.86
CoMSIA” 0.14 0.33 2.13 5.19 5.30 18.41

* predicted pICs, values taken from [Ul Hagq, et al.,2011]

The maximal electrotopological positive variation, the presence of R=S groups,
where R represents any group linked through carbon, high values of strongest acidic
pKa and increased number of R/S and E/Z isomers stereo centers decrease the CDK5/
p25 inhibiting activity. Compounds having increased values of electronegativities,
higher solvent accessible surface area of all atoms with positive partial charge, H
atoms attached to heteroatoms, increased number of tetrahedral stereogenic centers
and of aromatic rings having common bonds with other rings are favourable for the
CDKS5/p25 inhibiting activity.

In a previous study of the same series of compounds (Ul Haq et al., 2011) high
statistical fitting results were obtained by CoMFA (+* = 0.930, ¢° = 0.737, SDEP =
0.46, SEE = 0.24, F = 93.29, 5 components for the steric and electrostatic model) and
CoMSIA (¥ = 0.972, ¢* = 0.779, SDEP = 0.42, SEE = 0.15, F = 193.92, 6 components
for the steric (S), electrostatic (E), hydrophobic (H), hydrogen donor (D) and acceptor
(A) model) analysis. The model predictivity was checked in that study only by the
predictive-r squared (correlation coefficient for test set predictions), having the
value of 0.78 for the CoMFA (S,E) and 0.95 for the CoMSIA (S,E,H,D,A) models,
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the authors concluded good predictive ability of these models. We calculated the
predictivity criteria: Golbraikh-Tropsha tests (Golbraikh et al., 2003), Rf,m, , RMSEP,
RSE (%) and MAE (%) values (Tables 5 and 6) based on the CoMFA and CoMSIA
predicted CDK5/p25 pIC,, values (Ul Haq et al.,2011). The Golbraikh-Tropsha criteria
calculated by egs. 3 and 5 (for the COMFA model) and the criteria calculated by eq. 5
(for the CoMSIA model) were not fulfilled. The predictive ability criteria (eqs. 7-9)
do not indicate predictive COMFA and CoMSIA models. The authors also concluded
that steric requirements are playing a major role in order to optimize the biological
activities of the compounds bearing large substituents at the phenyl ring substituted to
the thiadiazole ring.

The simpler MLR models employed in this study using more accessible descriptors
gave worse fitting results, but a better predictive ability compared to the more
elaborated CoMFA, CoMSIA and docking models. The information derived from the
CoMFA and CoMSIA contour maps indicates (Ul Haq et al.,2011) less information on
structural features of triazolyl thienyl derivatives for the CDK5/p25 inhibiting activity
in comparison to the information derived from the MLR models.

4. Conclusion

Multiple linear regression in combination with a genetic algorithm for variable
selection was used to model the CDK5/p25 inhibiting activity of a series of triazolyl
thienyl derivatives. The most stable conformers of these compounds obtained
previously by conformational analysis performed in vacuum by the OPLS_2005 force
field were used. Structural descriptors were calculated by the Dragon and Chemaxon
software and were used in MLR models to extract structural features important for
CDKS5/p25 inhibiting activity. Several criteria for internal and external validation
were employed. It was found that compounds susceptible to high acidic properties and
with increased number of R/S and E/Z isomers stereo centers decrease the CDK5/p25
inhibiting activity. Favorable for this biological activity are increased positive charges
on compound solvent accessible area, increased number of tetrahedral stereogenic
centers and of aromatic rings having common bonds with other rings. MLR models
obtained by accessible software gave acceptable statistical results with better
predictive ability than the more elaborated previously published CoMFA/CoMSIA/
docking models.
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