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Abstract

　The structure-toxicity relationships for a series of 22 arylamides of Naphthol – AS type are 

presented by computational approaches. The toxicity of the model compounds was 

determined by using the Hydractinia echinata (hydrozoa) test system. Measured toxicity 

values, Mlog(1/MRC50), were considered as dependent variable and were related to 

structural features obtained by molecular and quantum mechanics calculations by multiple 

linear regression (MLR) and artifi cial neural network (ANN) approaches. Variable selection 

was carried out by genetic algorithm. The obtained models showed that arylamide toxicity 

was infl uenced by molecular geometry, as well as by compound polarity.

Keywords: Hydractinia echinata, Naphthol-AS, structure-toxicity relationship, GA-MLR, 

ANN

1.　Introduction

　The anilide of the 2-hydroxy-3-naphthoic acid, also known as Naphthol-AS, exhibits an 

exceptional substantivity for cotton fi bres. Due to this feature, this compound is extensively 

used as coupling component in the synthesis of some disazo compounds which can be 

obtained directly on the fi bre, at low temperatures. These dyes are essentially insoluble and 

are ranged in the class of vat dyes or azotols. They exhibit nice and bright shades and are 

characterized by good fastness to light and washing, as compared to those presented by the 

anthraquinonic dyes. 

　From structural point of view, the Naphthols-AS exhibit most of the features pointed-out by 

Elkins (Elkins et al., 2000), conditions which are necessar y to the binding of these 
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compounds to a peptidase: one carbonylic oxygen atom, a hydrophobic center, and an aminic 

nitrogen atom (hydrogen acceptor area). A low energetic conformation and an adequate 

solubility are also required (Milne et al., 1998). 

　Due to the presence of the strong polarisable carbonylic bond, the hydrolysis reaction of 

the cromophoric group (amidic) occurs perhaps by Hydractinia echinata (hydrozoa) 

enzymatically, by a mechanism similar to the hydrolysis of the peptidic groups (Alberts et al., 

1983). Besides, the rate of the partial biodegradation products formation will depend on the 

rate and intensity of the substrate-enzyme interaction. 

　The aim of the present work was to relate the experimental Naphthol-AS toxicity values 

obtained by the H.echinata test system to structural descriptors derived from minimum 

energy structures obtained by molecular and quantum mechanics calculations, in order to 

have an insight on structural features that infl uence the toxicity. Correlations with toxicity 

values were carried out by multiple linear regression, combined with genetic algorithm (GA-

MLR), which was used for the variable selection. Artifi cial neural networks (ANN) using the 

same set of descriptors  were also applied to the structure-toxicity problem.

2.　Materials and Methods
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Fig 1.　Arylanides of Naphthol – AS type structure
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Fig 1.　(continued)

　The test substances, 22 Naphthol-AS derivatives (Fig. 1), were synthesized at the Institute 

of Chemistry of Timisoara of the Romanian Academy, Romania (Chicu et al., 2011). They 

were used such as or as solutions of known concentrations in methanol or synthetic 

seawater.

　The test conditions and the test method were identical to those described in previous 

works (Chicu et al., 2000; Chicu et al., 2009; Chicu and Simu, 2009). The toxicity of the test 

substances represents the concentration MRC50 (Metamorphosis Reducing Concentration, in 

mol · L
-1
), expressed as the reciprocal value of its logarithm. Mlog(1/MRC50) at which the 

frequency of metamorphosis induction of H. echinata from the larvae to polyp, was reduced 

by 50 % in comparison with our test control and was used as dependent variable. 
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3.　QSAR modeling 

Structural parameters

　The molecular structures of 22 arylamides of Naphthol – AS type (presented in Fig. 1) 

were modeled previously  (Chicu et al., 2011) by the conformational search ability of the 

Omega v.2.3.2 (OpenEye Scientifi c Software, Santa Fe, NM 87507) program (only structures 

having toxic effect on H. echinata test system were considered). 

　From the conformational search of each molecule the minimum energy structure was 

used to derive structural descriptors. Thus, twenty-two types of descriptors were calculated 

by the Dragon software, e.g. Dragon Professional 5.5/2007, Talete S.R.L., Milano, Italy, like: 

constitutional, functional groups counts, topological descriptors, Burden eigenvalues, 

eigenvalue-based indices, Galvez descriptors (topological charge indicies), Getaway 

descriptors: R8u+ - R maximal autocorrelation of lag 8 / unweighted, ISH - standardized 

information content on the leverage equality Randic descriptors (Randic molecular profi les), 

RDF descriptors (radial distribution function descriptors): RDF075m - Radial Distribution 

Function - 7.5 / weighted by atomic masses, RDF080u  - Radial Distribution Function - 8.0 / 

unweighted, RDF055p  - Radial Distribution Function - 5.5 / weighted by atomic 

polarizabilities, RDF060v - Radial Distribution Function - 6.0 / weighted by atomic van der 

Waals volumes, RDF040p - Radial Distribution Function - 4.0 / weighted by atomic 

polarizabilities; MWC (Molecular walk counts path counts – atomic and molecular 

descriptors) and 3D-MoRSE (3D-molecule representation of structure based on electron 

dif fraction descriptors), atom-centred fragments, information indices, edge adjacency 

indices, topological charge indices, connectivity indices, 2D-autocorrelations, molecular 

properties, 2D binary fi ngerprints, and 2D frequency fi ngerprints: F04[C-N]  - frequency of 

C-N at topological distance 4, F08[O-O] – frequency of O-O at topological distance 8. 

　In addition, hydrofobicities were computed by the ALOGPS 2.1 program (Tetko and 

Tanchuk, 2002): logKow (Meylan and Howard, 1995), AlogP, ClogP (see: ClogP v.4.0, 

Biobyte, Claremont, CA, USA, available on http://146.107.217.178/lab/alogps/start.html), 

IA _logP and IA_logS – octanol/water partition coeffi cient, respectively the water solubility 

calculated by Interactive Analysis, using neural networks technology http://146.107.217.178/

lab/alogps/start.html), XlogP (see: http://146.107.217.178/lab/alogps/start.html), COSMO 

frag (Hornig and Klamt, 2005).

　Single point quantum chemical calculations were applied by the MOPAC 2009 software 

(MOPAC2009, James J. P. Stewart, Stewart Computational Chemistry, Colorado Springs, CO, 

USA, http://OpenMOPAC.net, 2008) to the conformations of minimum energy. Several 

descriptors derived from MOPAC calculations were used, like: dipole moment, HOMO and 

LUMO energies calculated for the entire molecule and for the hydroxilic (LUMOhydroxyO), 
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amidic oxygen and nitrogen amidic atoms, electrophilicity index, COSMO area and volume 

(Klamt and Schüümann 1993), Mulliken electronegativity, absolute hardness, nucleophilic 

(Dn(r)) and electrophilic (De(r)) delocalisabilities, atom polarisability (piS(r)) calculated for 

the entire molecule and for the hydroxilic and amidic oxygen and nitrogen amidic atoms and 

charge for the hydroxilic (qhydroxyO), amidic oxygen, and nitrogen amidic atoms, and 

hydroxilic and amidic hydrogen atoms.

Multiple linear regression (MLR)

　Multiple linear regression relates one experimental variable yk to one or several structural 

variables xi by the equation (Wold and Dunn III, 1983):

　　　　　　　　　　　  
(1)

where b represents regression coef ficients and e the deviations and residuals. MLR 

calculations were performed by the STATISTICA 7.1, Tulsa, StatSoft Inc, OK, USA and 

MobyDigs programs (Todeschini et al., 2004a).

　Genetic algorithm (GA) (Rogers and Hopfi nger 1994) was performed to search the feature 

space and select descriptors relevant to toxicity. The fi rst step of GA is to generate a set of 

solutions (chromosomes) randomly which is called an initial population. Then a fitness 

function is used to evaluate the fi tness of these individuals, and a new population is formed 

consisting of the fi ttest chromosomes as well as offspring of these chromosomes based on 

the notion of survival of the fi ttest. The Kubinyi fi tness function (Kubinyi, 1994) was used in 

our study as the RQK fitness function (Todeschini et al., 2004b). Then crossover and 

mutation operations are performed to generate new individuals. In the subsequent selection 

stage, the fi ttest individuals evolve to the next generation. These steps of evolution continue 

until the stopping conditions are satisfi ed. In the current work, the models were built using 

the simple MLR method with the selected variables from GA, called GA-MLR.

Artifi cial neural networks (ANNs)

　The artificial neural networks have an inherent ability to provide non-linear and cross 

product terms for QSAR modeling.  The ANNs are especially useful when a rigid theoretical 

basis and/or mathematical relationship to describe a phenomenon to be modeled are not 

available in advance.  

　The three-layer ANNs with the back-propagation of errors were employed in this study.  

Since the theory and practical application of the ANN are popular, an explanation of the 

methodology can be delegated to the literature (Zupan and Gasteiger, 1999).  The most 

commoly used log sigmoid transfer function and the delta rule for the error correction 

formula were used in the networks.  The ANN calculations were carried out by using our 

inhouse program.



80 Takahiro SUZUKI et al.

Model validity

　All the statistical tests were performed at a signifi cance level of 5 % or less. In GA-MLR 

calculations outliers were tested by estimating the standardized residuals of less than -3.0 or 

more than +3.0 (Frank and Althoen, 1995) and by the value of residual greater than three 

times the value of standard error in calculation (Todeschini and Consonni, 2000a), as 

implemented in the MobyDigs program (Todeschini and Pavan, 2004a). The Kubinyi fi tness 

function (Kubinyi, 1994) was, also, used to check the goodness of fi t of the obtained GA-MLR 

models.　
　The goodness of prediction of the GA-MLR models was checked by the Akaike 

Information Criterion (AIC) (Gentleman and Wilk, 1975), the multivariate K correlation 

index (Todeschini and al, 1999), Y-scrambling (Lindgren and al, 1996), external validation 

(Todeschini and Consonni, 2000b). Y scrambling was applied to exclude the possibility of 

chance correlation and to check for reliability and robustness by permutation testing: new 

models were recalculated for randomly reordered responses (Y scrambling). The resulting 

models obtained with randomized responses should have signifi cantly lower q
2
 values than 

the proposed ones because the relationship between the structure and response is broken. Y 

scrambling was performed by response scrambling with maximum iterations of 500, and 

then the mean values of R
2

Yscrambling (a(r
2
)) and Q

2
Yscrambling (a(q

2
)) were reported. The 

predictive power of a QSAR model can be estimated by the external q
2
est defi ned as follows:

　　　　　　　　　　　  

（2）

where yi and ŷi are the experimental and predicted values of the dependent variable for the 

test set, ytr is the mean value of the dependent variable for the training set, and m is the 

compounds number of the test set.

　All these calculations were performed by the MobyDigs software. The leave-one-out cross-

validation procedure (Wold, 1978) was also employed to check the robustness of the model.

　To avoid models with collinearity without prediction power, regression models were 

calculated only for variable subsets with an acceptable multivariate correlation applying the 

recently proposed QUIK (Q Under Infl uence of K) procedure based on the K multivariate 

correlation index (Todeschini et al., 1999). Only models with a global correlation of [XY] 

block (KXY) greater than the global correlation of the X block (KXX) variable can be accepted, 

where X is the descriptor matrix and Y is the dependent variable. To each model, the KXY and 

KXX values were calculated. Several commonly used statistic terms were adopted to check the 

reliability, robustness and stability of the proposed model such as correlation coeffi cient (r
2
), 

leave-one-out (LOO) cross-validated q
2
LOO, root mean squared error for the training set 

(SDEC) and predictive set (SDEP) (Consonni and al, 2009).
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　Tools of regression diagnostic as residual plots and Williams plots were used to check the 

quality of the best models and defi ne their applicability domain using the Mobydigs software. 

Residual plot shows validated residuals versus response values and enables the search for 

outliers and to verify the assumption of the GA-MLR method on the normal error 

distribution, therefore this plot is a tool to evaluate the existence of a linear relation between 

variables and response. Leverages of test compounds were calculated to check their distance 

from the model experimental space; the greater the distance the more unreliable the 

predicted response (Frank and Todeschini, 1994).

4.　Results and Discussion

GA-MLR results

　The principles for assessing the validity of QSARs for regulatory purposes, e.g. the OECD 

Principles for the Validation of (Q)SARs, http://www.oecd.org/dataoecd/33/37/37849783.

pdf (last accessed November 2008) were verifi ed. Structural descriptors were derived from 

the arylamide structures of minimum energy obtained by conformational analysis. A training 

set of 17  compounds: no. 1, 3, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22 (Fig.1) and a 

test set of 5 compounds: no.: 2, 4, 5, 7, 21 were ordered by their decreasing toxicity values. 

The test set was chosen according to a random selection through toxicity sampling.

　Starting from the total set of calculated descriptors, GA-MLR analysis has been applied to 

model the toxicity of the arylamides. Intercorrelated variables having correlation coeffi cient 

r = 0.7 were removed. Variable selection was carried out to non-correlated variables by the 

genetic algorithm included in the MobyDigs program (Todeschini and al, 2004a), using the 

RQK fi tness function (Todeschini and al, 2004b), with Kubinyi fi tness function as constrained 

function to be optimised, a crossover/mutation trade-off parameter T = 0.5 and a model 

population size P = 50 and maximum generations of 2000. Compound 22 was found as an 

outlier. 

　Standard deviation error in prediction (SDEP), standard deviation error in calculation 

(SDEC), standard error of estimate (SE), inter-correlation of selected descriptors (KXX) and 

the correlation of the X block with response (KXY) are also reported for each model, together 

with the coeffi cient of determination (r
2
), cross-validated explained variance by leave-one-out 

(q
2
LOO) and external validation (q

2
est). 

　The presence of outliers (i.e. compounds with crossvalidated standardized residuals 

greater than three standard deviation units), and chemicals very infl uential in determining 

model parameters were verified by the Williams plot (Mobydigs). The leverage approach 

was also applied for the definition of the chemical domain of each model (Tropsha et al., 

2003). The GA-MLR models are presented in Table 1. Compound 22 was found as an outlier.
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　From all these models, following model was chosen with best results for the 16 compounds 

in the training set, after removing the outlier:

　

M MCR RDF m Hlog( / ) . ( . ) . ( . ) . ( . )1 8 73 2 88 0 20 0 08 075 6 19 1 3150 = − ± − ± + ± 11
1 08 0 45 08
16 0 718 0 610 02 2 2

e
B O O

n r q qLOO boot

− ± −

= = = =

. ( . ) [ ]
; . ; . ; .4477 0 645 0 649 0 488

0 194

2 2 2

2

; . ; . ; ( ) . ;

( ) . ;

q r a r

q r SDEC
ext adj= = =

= = 00 513 0 604 41 45 46 58 3 12 10 23
0 59

. ; . ; . ; . ; ( , ) . ;
.

SDEP K K F
SE

X XY= = = =

= 22 0 585 0 576 0 597; . ; ( ) . ; .AIC SDEP ext RMS= = =  

(3)

　After removing the outlier, the applicability domain of the model with 16 compounds was 

evaluated by leverage analysis expressed as Williams plot (see Fig. 2), in which the 

standardized residuals and the leverage values were plotted. This plot confi rms the absence 

of outliers and infl uential points (the leverage average value being of 0.250).

Table 1.　Models obtained by GA-MLR*

Model Descriptors r
2

q
2
LOO q

2
boot q

2
est a(r

2
) a(q

2
) r

2
adj SDEP SDEC F SE AIC Kx Kxy FIT

1
RDF075m  H1e  

B08[O-O]
0.718 0.610 0.477 0.645 0.488 0.194 0.649 0.604 0.513 10.23 0.592 0.585 41.45 46.58 1.223

2
RDF075m  ISH  

F04[C-N]
0.770 0.644 0.513 0.758 0.132 -0.559 0.717 0.666 0.535 14.53 0.612 0.605 28.18 47.37 1.679

3
ISH  R1e+  

Mor28p
0.753 0.592 0.451 0.360 0.148 -0.651 0.691 0.618 0.481 12.17 0.555 0.514 19.02 36.26 1.455

* r
2
 – correlation coeffi cient, q

2
LOO – leave-one-out crossvalidation parameter, q

2
boot – bootstrapping parameter, 

q
2
est – external q

2
, a(r

2
) and a(q

2
) – Y-scrambling variables, r

2
adj –adjusted r

2
, SDEP – standard deviation error in 

prediction, SDEC – standard deviation error in calculation, F- Fischer test, SE – standard error of estimate, 
AIC- Akaike Information Criterion, the multivariate K correlation indices (Kx-the multivariate correlation 
index of the matrix of X descriptors and Kxy - the multivariate correlation index of the matrix of X descriptors 
and Y response variable), FIT- the Kubinyi fi tness function; results presented in parenthesis correspond to 
models from which the outlier wase removed.

Fig. 2.　 Williams plot: jackknifed residuals of the best model (eq. 3) versus leverages. Training compounds 

are marked by green triangles and test compounds by blue triangles
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　Predicted Mlog(1/MRC50) values of external validation compounds are reported in Figure 

3 together with predicted Mlog(1/MRC50) values of the training compounds. The response 

plot confi rms the model quality, because it shows a good alignment of the heterogeneous 

arylamides along the optimal line. 

Fig. 3.　 Experimental versus predicted Mlog(1/MRC50) values. Training compounds are marked by green 

triangles and test compounds by blue triangles

　The predictive power of the model is guaranteed by the validation made by the leave-more-

out procedure; a q
2
LOO value of 61.02 % was obtained, highlighting the stability of the model. 

The quality of the model was also tested on an external validation set of 5 compounds 

belonging to the model applicability domain mainly on the basis of their leverages. The q
2
ext 

value of 64.5 %, suggests that the efective prediction power of the model is slightly better 

than that obtained by internal validation. 

　The selection criterion used in this study is that the model should have higher cross-

validated q
2
LOO, higher external predictive ability, least dif ference between internal and 

external predictive ability, the fewer chemicals outside the chemical domain and the fewer 

chemicals with large relative errors. On the basis of the above principles, eq. 3 was selected 

as the best single model. From all the statistical parameters, it can be seen that the proposed 

model is stable, robust and predictive. 

　The studied arylamides have similar structures. Looking at the applicability domain of the 

found model compounds 22 (in which the hydrogen bond formed beween the hydrogen 

hydroxy group of the naphthalene moiety and the carbonyl oxygen atom is absent) was 

found as outlier, according to the standardised residuals. 

　The set of molecular descriptors in the above MLR model was used to develop the 

nonlinear models by ANNs based on the same set of 16 training and fi ve test compounds.  

The performance of the back-propagation ANNs, the number of hidden neurons and the 
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number of iteration cycle are the two signifi cant parameters infl uencing the performance of 

this model.  The optimum number of neurons in the hidden-layer and the epochs were 

selected as 3 and 45000, respectively, with learnig rates and gain set of 0.5 and 2, respectively.  

The best network gave a RMS error value of 0.456 for the training set and 0.494 for the 

prediction set, respectively, indicating somewhat better statistical results in comparison to 

the above presented MLR model.  However, the ANN model’s predictive power was inferior 

to that of the MLR model.

　Arylamide toxicity is infl uenced by conformational changes and by the bond lengths that 

account for atom types and bond multiplicity, information, about bond distances, ring types, 

planar and non-planar systems and atom types. For instance increased values of RDF075m 

RDF descriptor, which encodes the Radial Distribution Function - 7.5 / weighted by atomic 

masses and of B08[O-O] 2D binary fingerprint descriptor (which defines the presence/

absence of O-O at topological distance 08) yield more toxic compounds. The H1e Getaway 

descriptor, which represents the H autocorrelation of lag1/weighted by atomic Sanderson 

electronegativities and encodes both the geometrical information given by the molecular 

infl uence matrix H and the topological information given by the molecular graph, weighted 

by selected atomic weights, decrease the arylamide toxicity. 

　Genetic algorithm was applied for the selection of parameters relevant to the compound 

toxicity and GA-MLR models were selected according to the OECD principles for assessing 

the validity of QSARs for regulatory purposes. Models with satisfactory robustness were 

obtained. Structural parameters which describe molecular conformational changes 

(including information about bond distances, ring types, planar and non-planar systems and 

atom types) and polarity infl uence the arylamide toxicity. 

4.　Conclusion

　Multiple linear regressions combined with genetic algorithm for variable selection was 

used to correlate the toxicity of the model compounds, determined by using the Hydractinia 

echinata (hydrozoa) test system, with structural features of Naphthol-AS derivatives. 

Following descriptors: 2D binary fi ngerprint, RDF and Getaway descriptors were present in 

the fi nal MLR model with acceptable statistical results. The MLR model was then compared 

to those obtained by ANN. The most stable models obtained by both approaches had 

comparable statistical results.
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要　旨

ナフトール -AS 誘導体のMLRと ANNによる構造毒性相関

鈴木孝弘 , Simona FUNAR-TIMOFEI, Sergiu Adrian CHICU, 
Georgeta-Maria SIMU, Luminita CRISAN

　22種類のナフトール AS誘導体の構造と毒性との相関を計算化学の手法で検討した。化
合物の毒性は、Hydractinia echinataのバイオアッセイによって決定した。Mlog（1/MRC50）
によって評価された毒性を目的変数として、量子力学計算などによって分子構造から求め
られるパラメータ（記述子）を説明変数として重回帰分析およびニューラルネットワーク
の手法を適用して相関モデルを構築した。変数選択は、遺伝的アルゴリズムを適用した。
その結果、統計的に有意なモデルを構築でき、ナフトール AS誘導体の毒性は、それらの
分子の幾何学的な形状と化合物の極性に依存することが明らかになった。


