
Communicating Process Architectures 2013
P.H. Welch et al. (Eds.)
Open Channel Publishing Ltd., 2013
© 2013 The authors and Open Channel Publishing Ltd. All rights reserved.

21

Successful Termination in Timed CSP
Paul HOWELLS a,1 and Mark D’INVERNO b

a Department of Computer Science & Software Engineering,
University of Westminster, UK

b Department of Computing, Goldsmiths, University of London, UK

Abstract. In previous work the authors investigated the inconsistencies of how suc-
cessful termination was modelled in Hoare, Brookes and Roscoe’s original CSP. This
led to the definition of a variant of CSP, called CSPT . CSPT presents a solution to
these problems by means of adding a termination axiom to the original process ax-
ioms. In this paper we investigate how successful process termination is modelled in
Reed and Roscoe’s Timed CSP, which is the temporal version of Hoare’s original un-
timed CSP. We discuss the issues that need to be considered when selecting termina-
tion axioms for Timed CSP, based on our experiences in defining CSPT . The outcome
of this investigation and discussion is a collection of candidate successful termination
axioms that could be added to the existing Timed CSP models, leading to an improved
treatment of successful termination within the Timed CSP framework. We outline how
these termination axioms would be added to the family of semantic models for Timed
CSP. Finally, we outline what further work needs to be done once these new models
for Timed CSP have been defined. For example, it would then be possible to define
timed versions of the new more flexible parallel operators introduced in CSPT .

Keywords. concurrency, CSP, Timed CSP, CSPT , process termination

Introduction

In the original failure-divergence semantic model for Communicating Sequential Processes
(CSP) [1,2,3] the incomplete treatment of successful process termination, and in particular
parallel termination, permitted intuitively contradictory processes to be defined. For instance,
it is possible to define a parallel process that appears to terminate several times before actually
doing so – see Section 1 for an example.

Several alternative solutions have been proposed for these problems associated with
modelling termination. The solution due to Roscoe [4,5] is seen as the “standard” solution.
However, his solution requires termination to be viewed as a new kind of event, known as
a “signal”, distinct from other events; and only allows asynchronous parallel termination se-
mantics.

Our response was to develop an alternative solution, in the form of a variant of CSP
called CSPT [6,7]. CSPT solves the original termination problems and introduces three dis-
tinct, but related, parallel operators that between them provide a transparent and intuitive
means for specifying a range of termination behaviours for networks of processes. Our aim
for these operators was to remain as consistent as possible with the original model defined
for CSP, whilst giving the system designer precision over the extent of parallel interaction
(by means of a parametrised synchronisation set) and flexibility over the type of parallel ter-
mination.

1Corresponding Author: Paul Howells, Department of Computer Science & Software Engineering, University
of Westminster, 115 New Cavendish St., London, W1W 6RU, UK. E-mail: P.Howells@westminster.ac.uk.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Goldsmiths Research Online

https://core.ac.uk/display/29132639?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

22 P.Howells and M.d’Inverno / Successful Termination in Timed CSP

In this paper, we continue our investigation of the successful termination of processes
within the CSP framework, by considering how successful termination is or should be mod-
elled within the timed version of CSP, known as Timed CSP. We begin this process by con-
sidering the issues that influence the choice of a process axiom to capture the notion of suc-
cessful termination within both the untimed and timed CSP worlds.

Following on from this discussion, we present our proposals for how an improved treat-
ment of successful termination can be incorporated into Timed CSP. To achieve this, we shall
adopt a similar approach to that taken in formulating our solution to the problems associated
with modelling termination in CSP, which led to the definition of CSPT and introduction
of a termination axiom. Since there are several semantic models for Timed CSP (Reed and
Roscoe [8,9,10,11]), this requires the definition of a termination axiom for each model. Once
this task is complete, our intention is to replace the collection of parallel operators available
in these timed versions of CSP with timed versions of those introduced in CSPT .

Outline of the Rest of the Paper

In Section 1, we provide a brief introduction to CSPT . We provide an overview of Timed CSP
in Section 2. In Section 3 we review the issues that influenced the choice of a termination
axiom in CSPT and present a collection of candidate termination axioms that we propose
to add to the existing models of Timed CSP. Related work on improving the modelling of
termination in Timed CSP is discussed in Section 4. Finally, we present our conclusions and
suggestions for future work in Section 5. (The Appendix contains a summary of the notation
and definitions used throughout the paper.)

1. An Introduction to CSPT
1

In this section2,we provide an overview of CSPT , for a complete description please see [6,
7,13]. (For a summary of the CSP and CSPT notation and definitions used throughout the
paper, see the Appendix.)

In Hoare, Brookes and Roscoe’s original CSP [1,2,3,14] there was a well known prob-
lem concerning the incomplete treatment of parallel termination by two of original parallel
operators: alphabetised (A||B)3 and asynchronous/interleaving (|||). In particular, the type of
termination that occurred using these operators was inconsistent and could vary depending
on the termination of the processes being combined.

We shall now give an example to illustrate the type of problems that could arise. First
recall, that the successful termination of a process in CSP (and CSPT) is modelled by the
event tick (X). Now consider the following process equivalence derivable within the original
CSP:

(a→ SKIP)|||(b→ SKIP) ≡ (a→ ((X→ b→ SKIP) ut (b→X→ SKIP)))

ut (b→ ((a→X→ SKIP) ut (X→ a→ SKIP)))

Clearly the Xs on the right hand side cannot be interpreted as the successful termination of
the process (a→ SKIP)|||(b→ SKIP), since it continues to perform a, b and X events. This

1This section contains material extracted from Sections 3.1, 5.2 and 5.6 of [6] and Sections 3.2, 3.3 and 3.4
of [7] by permission of Springer and Elsevier, respectively.

2This section is identical to Section 1 of [12], a companion paper in these same Proceedings (CPA 2013).
This duplication, by permission of the Editors, is to let both papers be self-contained.

3Here and henceforth, A and B represent the alphabets of the processes being composed. For example, as in
PA||BQ, where A = α(P) and B = α(Q) respectively.

P.Howells and M.d’Inverno / Successful Termination in Timed CSP 23

illustrates how the original semantics for CSP could gave rise to these obviously undesirable
and intuitively contradictory processes.

Several solutions have been proposed to this problem, including Tej and Wolf [15],
Roscoe [4,5], Hoare and He [16] and the authors’s own solution CSPT [6]. For a detailed
comparison of these solutions the interested reader is referred to [6].

Our starting point in defining CSPT was the original failure-divergence model devel-
oped by Hoare, Brookes and Roscoe [2]. Our aim in modifying this model was to provide a
more robust treatment of termination through the consistent and special handling of X by the
language (processes and operators) and semantics (failures and divergences).

For CSPT , this was achieved by defining a new process axiom that captured our view of
termination:

t 6= 〈 〉 ∧ (sa〈X〉at,∅) ∈ F ⇒ s ∈ D (T1)

where s and t are traces, F and D are the failure and divergence sets respectively of a process.
This axiom means that if a process indicates that it has terminated (by means of the X) but
continues to perform events (t), then it must have started diverging before it performed the X
(i.e. s ∈ D). For the rational behind this axiom, see Section 3.1.

This new termination axiom resolves the termination issues of the original semantics,
and it is added to the existing CSP process axioms (D1) to (N5), see Appendix, to define
CSPT . Note that our view of tick (X) is consistent with Hoare’s, i.e. that it is a normal event,
and have not adopted Roscoe’s view that it is a special signal event. In doing this, we have
defined a sub-model of the original failure-divergence model NT such that, within this sub-
model, all processes are well-behaved with respect to termination. In addition, three new
forms of parallel operators were defined for CSPT , each with a different form of termination
semantics, as replacements for the original ones. We now introduce the language and model
for CSPT ; we begin by introducing the three new parallel operators.

1.1. Parallel Operators of CSPT

Our three new parallel operators are defined to be used as replacements for the original syn-
chronous (||), interleaving (|||) and alphabetised (A||B) parallel operators. It is necessary to de-
fine replacements for ||| and A||B, as they do not satisfy (T1). These new parallel operators are
generalised (or interface) style parallel operators, i.e. are parameterised by the set of events
the processes are required to synchronise on. Each of these three operators has a distinct type
of parallel termination semantics, and thus are distinct operators, see [7] for details. We call
them synchronous, asynchronous and race, that we define here.

Synchronous: requires the successful termination of both P and Q; and the synchronisa-
tion of their termination, that is, X.

Asynchronous: requires the successful termination of both P and Q; and P and Q termi-
nated asynchronously, i.e. they do not synchronise on X. (Roscoe [4,5] refers to this type of
parallel termination semantics as distributed termination.)

Race: requires the successful termination of either P or Q asynchronously. Successful
termination fails to occur only if both P and Q fail to terminate. Unlike synchronous and
asynchronous termination where the environment observes a single X, under race termina-
tion semantics it can observe any X that is performed by P or by Q. Consequently, the first X
the environment observes is taken as representing the termination of the parallel composition
and whichever of P or Q did not terminate, i.e. did not preform the X, is aborted. Hence, with
this type of termination semantics termination occurs as soon as either P or Q does so.

Note that in [4,5] Roscoe chooses to reject race termination semantics, due to the prob-
lems of dealing with the non-terminated process, e.g. the need for some powerful mechanism
to manage its termination. We however, believe that it is preferable to at least offer system

24 P.Howells and M.d’Inverno / Successful Termination in Timed CSP

specifiers the choice of using this type of termination semantics and let them resolve these
issues, rather than ban it outright. We believe that this is not against the spirit of CSP, since
there are other features available in CSP that also raise similar implementation issues, e.g.
the various interrupt style operators.

The CSPT parallel operators with these different forms of parallel termination semantics,
are given in Table 1. Each operator is parametrised by a synchronisation set (Ω,∆,Θ), that is
the set of events on which the combined processes are required to synchronise. Events which
are not in the synchronisation set but that can be performed by either P or Q or both are
asynchronous events.

Table 1. CSPT parallel operators.

Termination Semantics Operator Synchronisation Set Notes
Generalised P||ΩQ ∅ ⊆ Ω ⊆ Σ

Synchronous P||∆Q {X} ⊆ ∆ ⊆ Σ X ∈ ∆

Asynchronous P|||ΘQ ∅ ⊆ Θ ⊆ Σ− {X} X /∈ Θ

Race P|ΘQ ∅ ⊆ Θ ⊆ Σ− {X} X /∈ Θ

We define a generalised parallel operator (denoted P||ΩQ) that is used to define the op-
erators with synchronous and race termination semantics. To distinguish this from the syn-
chronous termination operator we denote the synchronisation set by Ω rather than ∆. The
synchronous parallel operator ||∆ is simply the generalised one ||Ω, with the constraint that
X ∈ ∆, thus ensuring synchronous termination. The race termination operator |Θ can also be
defined using ||Ω and SKIP as follows:

P|ΘQ =̂ (P||ΘQ); SKIP [∅ ⊆ Θ ⊆ Σ− {X}]

where Σ is the set of all events and, for CSPT , includes X. Note that CSPT does not have
the law (P; SKIP = P), otherwise the above would mean the race and generalised operators
were the same. To illustrate how this definition behaves, consider the process (P||ΘQ); R,
with Θ ⊆ Σ− {X}. Whichever of the two Xs R (the environment) observes first is taken as
representing the termination of P||ΘQ and, hence, R proceeds to execute; whichever of P or
Q did not terminate is aborted.

The asynchronous parallel operator |||Θ is defined independently, as its form of termina-
tion semantics is not compatible with ||Ω, i.e. it cannot be used to define |||Θ. Both process
operands must terminate for |||Θ to terminate, so it is not the same as ||Θ (see previous para-
graph). Both processes must terminate for ||∆, if ∆ = Θ ∪ {X}, but they synchronise on their
Xs (i.e. a non-terminating process can prevent the other operand from terminating, which is
not the case for |||Θ).

Here are examples of the three parallel operators of CSPT , that illustrate the difference
between |Θ and the two others (which for these examples, |||∅ and ||∅, are the same):

a→ SKIP||∅b→ SKIP ≡ a→ SKIP|||∅b→ SKIP

≡ (a→ b→ SKIP) ut (b→ a→ SKIP)

a→ SKIP|∅b→ SKIP ≡ (a→ (SKIP u (SKIP ut b→ SKIP)))

ut (b→ (SKIP u (SKIP ut a→ SKIP)))

It is important to note that we do not include the generalised parallel operator ||Ω in
the language of CSPT , since this would defeat the purpose of the whole exercise. Since, it
would again result in inconsistent processes, similar to the one given above in Section 1, with
multiple ticks in its traces. However, by restricting its use to defining ||∆ and |Θ we ensure
these forms of processes do not occur. Full details, including the operational semantics and
semantic functions, can be found in [6,7].

P.Howells and M.d’Inverno / Successful Termination in Timed CSP 25

1.2. The Model and Language of CSPT

The model for CSPT , NT is defined by adding the Termination axiom (T1) to the process
axioms (D1) to (N5) of the original CSP model N, given in the Appendix. Hence, in NT the
failure and divergence sets of a process are defined as for N, except that they also satisfy the
process axiom (T1) as well as (D1) to (N5). The semantic functions F and D for NT are the
same as for N, and are given in [6].

The language for CSPT is the same as that of the original CSP, but uses the more recent
form of relational renaming instead of functional renaming and uses the three new parallel
operators as replacements for ||, ||| and A||B, see Table 2. It is defined as follows:

P ::= ⊥ | STOP | SKIP | a→ P | P u P | P ut P | P; P | P\a
| P[[R]] | µ p.F(p) | p | P||∆P | P|||ΘP | P|ΘP

where a ∈ Σ− {X}. ⊥ is the divergent process (can be defined as µ p.p). STOP is the dead-
locked process and SKIP is the successfully terminating process. a→P is action prefix. PuQ
is nondeterministic choice and PutQ is deterministic choice. P; Q is sequential composition.
P\a is event hiding. P[[R]] is action (relational) renaming, with the usual constraint [4,5] ap-
plying to the renaming relation R with respect to X, i.e. that no other event is mapped to it
or that it is mapped to another event. p is a process variable, µ p.F(p) is recursion and in the
definition of F(p), only the above processes and operators can be used. P||∆Q, P|||ΘQ and
P|ΘQ are the generalised synchronous, asynchronous and race parallel operators respectively.
The processes and operators of CSPT are well-defined and well-behaved in NT .

Table 2. CSPT replacements for ||, ||| and A||B.

Termination Semantics ||| A||B ||
Synchronous (||∆) ∆ = {X} ∆ = (A ∩ B) ∪ {X} ∆ = (A ∪ B) ∪ {X}
Asynchronous (|||Θ) Θ = ∅ Θ = (A ∩ B)− {X} Θ = (A ∪ B)− {X}
Race (|Θ) Θ = ∅ Θ = (A ∩ B)− {X} Θ = (A ∪ B)− {X}

1.3. Summary of Differences between CSP and CSPT

The essential differences between Hoare, Brookes and Roscoe’s original CSP and CSPT can
be summarised as follows:

• Termination axiom (T1) has been added to the original axioms (D1) - (N5). See Section
3.1 and the Appendix for details and explanation.

• Use relational renaming (P[[R]]), instead of functional and inverse renaming.
• Replaced the interleaving (|||), synchronous (||) and alphabetised (A||B) parallel operators

with generalised synchronous (||∆), asynchronous (|||Θ) and race (|Θ) operators.

For a more detailed account of the development of CSPT , the interested reader is referred
to our previous work [6,7]. In the next section we provide an overview of the new concepts
introduced for Timed CSP.

2. An Overview of Timed CSP

In this section we provide a brief introduction to the new notions introduced by moving
from untimed to Timed CSP. We begin by outlining the different models for Timed CSP
(Section 2.1), the timed versions of traces, refusals and failures and the new notion of stability
(Section 2.2). Finally, we discuss the different forms of parallel operator used in the existing
versions of Timed CSP and their termination behaviour (Section 2.3).

26 P.Howells and M.d’Inverno / Successful Termination in Timed CSP

2.1. Timed CSP Models

Timed CSP was first introduced by Reed and Roscoe [8] and is the timed extension of Hoare’s
CSP [3]. The only extra component added to the original language of CSP was the delay
process WAIT t, this process introduces an explicit delay of t ≥ 0 time units (usually sec-
onds). WAIT t is a delayed form of SKIP, which successfully terminates after time t, where
WAIT 0 = SKIP.

Since the introduction of Timed CSP, it has been developed by the addition of different
semantic models [9], additional operators [17], proof systems [18,19,20,21,22] and the notion
of timewise refinement [23] and operational semantics [24]. For general introductions to
Timed CSP see the work of Davies and Schneider [17,25,26,27].

There are several semantic models for Timed CSP, developed by Roscoe and Reed [8,9,
10,28,29,11]. The models form a hierarchy, see Figure 1, ordered by the information content
of the observations that can be made in each model. The untimed models occupy the lowest
position (the inner diamond of Figure 1) in the hierarchy; above them (the outer diamond) are
the timed models. The lowest model is the Untimed Trace model MT , and the highest (most
complex and comprehensive) is the Timed Failure-Stability model TMFS . The mathematics
for the semantic models for untimed CSP have largely been based on lattice theory, whereas
for Timed CSP it is topology [9,30], and in particular complete (ultra) metric spaces.

M
FS

M
S

M
T

M
F

TM
F

TM
FS

TM
S

TM
T

Figure 1. Reed’s Hierarchy of Timed and Untimed CSP models. The suffices T , S and F stand for Traces,
Stability and Failures respectively.

2.2. Timed Traces, Refusals, Failures and Stability

There are several new notions that are central to the semantics of Timed CSP: timed events,
timed traces, timed refusal sets and stability values, which we now describe.

2.2.1. Timed Events and Traces

A timed trace is a finite sequence of observable events performed by a process, such that
each event is labelled with the time at which it occurs. The events in the sequence are ordered
chronologically. There are two forms of timed traces, one for the TMF and TMFS models,
and one for the TMT and TMS models.

The set of all observable events is Σ. The time domain is the non-negative reals TIME =
[0,∞). A timed event is an ordered pair (t, a), where a ∈ Σ and t ∈ TIME. The set of all
timed events is T Σ = TIME × Σ. The set of all timed traces for the TMF and TMFS models
is defined as follows:

P.Howells and M.d’Inverno / Successful Termination in Timed CSP 27

(T Σ)∗≤ = {s ∈ T Σ∗ | 〈(t1, a1), (t2, a2)〉 4 s⇒ t1 ≤ t2} (Timed Traces)

where s1 4 s2 iff s1 is a subsequence of s2.
In addition Σ(s) is the set of events occurring in s. If s, w ∈ (T Σ)∗≤ then define s ∼= w if

and only if s and w are the same, except that the order of events at the same time may differ.
In both of the TMT and TMS models it is necessary to record when an event is performed

as soon as it becomes available. This is required to provide a correct treatment of hiding
(\) in these models, because a hidden event is required to occur as soon as is possible. (For
the other timed models TMF and TMFS this information can be inferred from the timed
refusals associated with the trace.) This information is indicated in a trace for these models
by denoting the event with a circumflex, e.g. â. This set of events is denoted by: Σ̂ = Σ∪{â |
a ∈ Σ}. This is then used to define timed traces for these two models as follows:

(T Σ̂)∗≤ = {s ∈ T Σ̂
∗
| 〈(t1, a1), (t2, a2)〉 4 s⇒ t1 ≤ t2} (Timed Traces)

In these models, it is also the case that when an â event occurs, it can also occur normally as
simply an a event. To facilitate this, the function s̃ is defined over these types of traces and
simply removes the circumflexes from all of the â events in s.

To illustrate this point consider the processWAIT 1; (a→P). For this process, if a occurs
at time 1, then it has occurred as soon as it becomes available and this information is captured
by the trace 〈(1, â)〉; it also results in the trace 〈(1, a)〉. However, if a occurs after time 1, say
time 2, then it has not occurred when first available, so results in traces 〈(1, â)〉 and 〈(2, a)〉.

2.2.2. Timed Refusals and Failures

In the untimed CSP models that use failures, (s,X), to denote processes, the refusal set X
represents the set of events that may be refused after the process has performed the trace s.
In the timed models TMF and TMFS a timed failure not only represents what a process may
refuse after performing a timed trace, but can also include a record of the refusals as the
trace is being performed – for example, before the first event is performed, during the time
between consecutive events or after the final event of the trace. Consequently, a timed refusal
set is a (finite) union of “initial”, “intermediate” and “final” sets of timed refusal tokens that
each describe refusal information (with timings) at various stages during the execution of the
associated timed trace.

An additional factor (introduced by Reed and Roscoe [9,11]) that affects the definition
of timed refusal sets is the “realism” requirement: a process can only change state a finite
number of times during a finite time period. This is known as finite variability. The effect of
this requirement on timed refusal sets is that they can only be formed from a finite number of
refusal tokens, as each one corresponds to a state change.

A timed failure is then straightforwardly defined as a timed trace combined with a timed
refusal. This represents an observation of a process performing the timed trace while refusing
sets of events during the time intervals described by the timed refusal.

These informal notions are captured by the following formal definitions:

I : TINT = { [l(I), r(I)) | 0 ≤ l(I) < r(I) <∞} (Time Intervals)

RT : RTOK = { I × X | I ∈ TINT ∧ X ∈ P(Σ) } (Refusal Tokens)

ℵ : RSET = {
⋃

Z | Z ⊆ RTOK ∧ Z finite } (Refusal Sets)

(s, ℵ) : TFAIL = { (s, ℵ) | s ∈ (T Σ)∗≤ ∧ ℵ ∈ RSET } (Time Failures)

A time interval is a finite half-open time interval. The set of all time intervals is TINT4. A
refusal token RT is a set product, I×X, where I is a time interval and X is a set of events that

4In this definition r(I) and l(I) are the projection functions that return the two values for a time interval I.

28 P.Howells and M.d’Inverno / Successful Termination in Timed CSP

can be refused continuously during the time interval. The set of all refusal tokens is RTOK.
A timed refusal N is a finite union of refusal tokens. The set of all timed refusals is RSET .
In summary, a timed refusal represents the times at which events may be refused during the
execution of a timed trace, e.g. a set of (time, event) pairs. A timed failure (s, ℵ) is a pair
composed of a timed trace s and a timed refusal ℵ.

There are two standard functions (see [11]) defined on timed refusals: I(ℵ) returns the
time interval covered by the refusal set ℵ and Σ(ℵ) returns the set of events in ℵ. These two
functions are defined as follows:

I(ℵ) = { t ∈ [0, ∞) | ∃ a ∈ Σ.(t, a) ∈ ℵ}
Σ(ℵ) = { a ∈ Σ | ∃ t ∈ [0, ∞).(t, a) ∈ ℵ}

2.2.3. Stability

In Timed CSP, stability is used to model the internal activity of a process. It is the dual
of divergence, as is used in the failure-divergence model of CSP. A process is defined as
being stable once it has ceased all internal activity. When a process is stable it cannot change
state without performing an external event. The stability value associated with an observation
(timed trace or failure) of a process is the earliest time by which all internal activity of the
process is guaranteed to have stopped. It is formally defined to be the least upper bound of all
the times when the process becomes stable given the observation. A process which diverges
has a stability value of∞. α is usually used to denote stability values as follows:

α : TSTAB = TIME ∪ {∞} (Stability Values)

Stability values are not used in either the TMT timed traces or TMF timed failures models.
However, in the TMS stability model, a stability value is associated with every timed trace.
For example, (s, α) where s is a timed trace and α is the stability value for the trace s, i.e.
the time by which internal activity has ceased after performing s. Similarly, for the TMFS

failure-stability model, a stability value is associated with every timed failure. For example,
(s, α, ℵ) where α is the stability value associated with the failure with trace s and refusal ℵ.

2.3. Termination and Parallel Operators in Timed CSP 5

We now discuss the different forms of parallel operators used in the different versions of
Timed CSP. Although the termination semantics of ||| can result in inconsistent processes in
untimed CSP (as shown in Section 1), it has been used to advantage by Davies and Schnei-
der [18,17,22] to define event interrupt and timed interrupt (tireout) operators in Timed CSP.
These operators were originally defined using ||| and “;” in such a way to ensure that Xs only
occur at the end of traces. However, in Schneider’s later treatment [27], these operators are
defined directly. The problem of inconsistent termination semantics associated with the use
of the original version of ||| in Timed CSP suggests that this form of ||| should not be used in
CSP or Timed CSP explicitly, but at best only as a means to define other operators.

The use of a generalised or interface style parallel operator is now standard within the
CSP community, examples in (untimed) CSP can be found in [5,15,27]. A version has also
been defined for the timed failures model TMF for Timed CSP by Davies [18] called the com-
municating parallel operator. However, there are slight differences between the definitions
used by various authors. For example, whether X is an element of the synchronisation set.

In their early work on Timed CSP, Davies and Schneider [26] also use synchronous
termination semantics for all their parallel operators in Timed CSP. Their method is similar to

5This section contains material extracted from Section 6.4 of [6] by permission of Springer.

P.Howells and M.d’Inverno / Successful Termination in Timed CSP 29

the one used by the authors in CSPT . In particular, they use their generalised parallel operator
P[|X|]Q with X = {X} to re-define |||. In the definition of A||B they require X to be implicitly
included in A and B. However, they still use the old version of ||| to define the event and time
interrupt operators and have not added a termination axiom.

3. Factors Influencing the Definition of a Termination Axiom

In this section we begin by summarising the factors and issues the authors considered relevant
when defining and selecting a termination axiom for CSPT . This was done in relation to
Brookes and Roscoe’s [2] original CSP model N. (For full details see [6]). We shall then
consider the factors that we believe should be considered when selecting a termination axiom
for Timed CSP, in relation to the Reed and Roscoe Timed CSP models of Figure 1.

3.1. Factors in CSPT
6

It was our intention that in CSPT a X signifies the successful termination of any (non-
divergent) process, whether it is a sequential or parallel process. This means that if a X oc-
curs at the end of the trace of a (non-divergent) parallel process, then it has successfully ter-
minated. Our aim was to ensure that a X signified not just sequential process termination but
also parallel termination, which was not the case in the original CSP. This is captured by the
following property on traces:

Definition 1: A process trace satisfies the X-requirement if a X only occurs at the end of the
trace.

We extend this definition to processes as follows:

Definition 2: A process satisfies the X-requirement if all its traces satisfy the X-requirement.

Next, we considered how to capture this intuitive idea by considering four candidate
termination axioms. The selected one was added to the existing CSP process axioms (D1)
to (N5), see Appendix. The consequence of adding our chosen axiom to the existing process
axioms was to exclude from this new failure-divergence model all processes whose traces do
not satisfy our X-requirement. The resulting CSPT model (NT) is a sub-model of the original
CSP failure-divergence model (N), such that, within this new sub-model all processes satisfy
the X-requirement.

In our search to define an axiom that captures our notion of successful termination, it
became clear that we needed to decide what types of processes the axiom should be applied
to. Thus, we needed to resolve the following questions.

• Should the X-requirement apply only to those processes which can never diverge (i.e.
those with no divergent traces) or to all processes?

• If it does apply to all processes should it apply to all traces of the process or only to
the non-divergent ones?

It is necessary to consider the X-requirement in relation to divergence because in the
original CSP model N (see [2]), a diverging process can perform any and every trace; in
particular it can perform traces which do not satisfy the X-requirement. Hence, it is necessary
to decide to which processes and traces the X-requirement should be applied. We considered
three main types of termination axioms:

6This section contains material extracted from Sections 4.1 and 4.2 of [6] and Section 3.1 of [7] by permission
of Springer and Elsevier, respectively.

30 P.Howells and M.d’Inverno / Successful Termination in Timed CSP

1. those that apply only to non-divergent processes;
2. those that apply to divergent and non-divergent processes;
3. those that apply only to the non-divergent traces of both divergent and non-divergent

processes.

From these three cases we formalised the following four termination axioms: (TA1)
corresponds to the first case, (TA2) and (TA3) are alternatives corresponding to the third case
and (TA4) corresponds to the second case.

t 6= 〈 〉 ∧ D = ∅ ∧ (sa〈X〉,∅) ∈ F ⇒ (sa〈X〉at,∅) /∈ F (TA1)

If the divergent set of a process is empty and (sa〈X〉,∅) ∈ F (i.e. sa〈X〉 is a trace) then
sa〈X〉at is not a trace for any non-null extension t (i.e. no more events can be performed
after a X has occurred). However, if divergence is possible (i.e. D 6= ∅), there are no con-
straints on what can happen after a X (even for non-divergent traces).

t 6= 〈 〉 ∧ (sa〈X〉at,∅) ∈ F ⇒ sa〈X〉 ∈ D (TA2)

If a process can perform the trace sa〈X〉at, where t 6= 〈 〉, then the process must have started
diverging no later than after performing the X.

t 6= 〈 〉 ∧ (sa〈X〉at,∅) ∈ F ⇒ s ∈ D (TA3)

If a process can perform the trace sa〈X〉at, where t 6= 〈 〉, then the process must have started
diverging no later than after performing the s (i.e. before the X). A consequence of this is
that after such a process has performed s, no matter what (if any) further events it performs,
it can always refuse any set of events.

t 6= 〈 〉 ∧ (sa〈X〉,∅) ∈ F ⇒ (sa〈X〉at,∅) /∈ F (TA4)

If sa〈X〉 is any trace, then the process cannot perform any further events after the X. Intu-
itively this means that once a X has been performed the process stops, even if it was diverging
at the time.

3.1.1. Comparison of the Four Termination Axioms

Having defined our four candidate termination axioms, we investigated their potential effect
on various forms of both divergent and non-divergent parallel processes.

The first axiom, (TA1) reflects the view that if it is possible for a process to diverge then
we do not expect it to be well-behaved with respect to successful termination. (TA2) and
(TA3) capture the idea that if a process can diverge after some trace it is still required to be
well-behaved with respect to successful termination as long as it is not actually diverging.
However, when it is diverging it is allowed to misbehave with respect to successful termina-
tion. (TA4) captures the view that a process is still required to be well-behaved with respect
to successful termination even when it is diverging.

Reflecting on these, (TA4) is immediately incompatible with Hoare’s original axioms
since it excludes divergent processes and we can abandon it. (Recall that a guiding principal
is that we want to minimise any change to the original semantics.) However, (TA1), (TA2)
and (TA3) are all compatible. One possible reason for adopting (TA1) is that it captures the
view that if a process can diverge then we do not care whether it is well-behaved with respect
to termination. At first, this seems appealing because we might argue that we do not care
whether it violates the X-requirement given that it can diverge. However, the reason for not
adopting it is that it is too weak to enforce the X-requirement over all processes. We therefore
reject (TA1). However, this does not happen with (TA2) or (TA3) and they are both suitable
for the following reasons.

P.Howells and M.d’Inverno / Successful Termination in Timed CSP 31

• They enforce the X-requirement on all non-divergent traces of a process irrespective
of whether it diverges or not, which (TA1) does not. This view seems to capture more
closely our intuitive ideas which originally lead to the X-requirement and the search
for a termination axiom.

• If a process can perform a trace of the form sa〈X〉at, where t 6= 〈 〉, then we now
know that it is diverging; whereas without this axiom this was not the case. So the
only processes which can now exhibit the undesirable behaviour of not satisfying the
X-requirement are those which do so because they are diverging, which is consistent
with their interpretation as the most chaotic process.

The difference between (TA2) and (TA3) is at what point the process must have started
diverging to produce the undesired trace. In (TA2) the process must have started no later than
after the X whereas in (TA3) it must have started before the X. In this sense we view (TA3)
as being stronger than (TA2), and in fact we can prove (see [13]) that by adopting (TA3) in
favour of (TA2), that all processes which are equivalent to, or contain as a subprocess the
following process, would be excluded:

X→⊥

So our final choice depends on whether we wish to eliminate processes of the form X→⊥.
The intuitive meaning of this process is that it first successfully terminates then diverges,
which is at least intuitively contradictory, if nothing else. Therefore, on this basis, we choose
to adopt the termination axiom (TA3) in favour of (TA2).

To summarise, the main reasons for choosing (TA3) (renamed T1) was that it solved the
termination problems7, most closely captured our intuitive views of termination and achieved
this with only a minimal modification to the original semantics. In particular, (T1) reflects the
view that even if a process can diverge after some trace it is still required to be well-behaved
with respect to successful termination. That is to say it satisfies the X-requirement when it
is not actually diverging; but when it is diverging it is allowed to misbehave with respect
to successful termination. In this respect, (T1) also maintains the original view of Hoare,
Brookes and Roscoe that a diverging process cannot recover by performing a X.

This concludes the outline of the process by which the authors selected a termination
axiom for an untimed version of CSP, i.e. CSPT . Once the (T1) axiom was chosen, it was
necessary to prove that all of the processes and operators of CSPT satisfied it and that this
new model NT was consistent and well-defined – see [6] for details. In the next section we
discuss the issues that need to be considered in selecting termination axioms for each of the
timed models for Timed CSP.

3.2. Factors in Timed CSP

Clearly the new notions of timed traces, timed refusals and stability values that are central to
Timed CSP, need to be taken into account when defining suitable termination axioms to add
to the various timed models. Of these, probably the most significant is the use of a stability
value (the time at which a process ceases internal activity, i.e. becomes “stable”) to model
divergence, as compared to a divergence trace (a trace after which infinite internal activity is
possible) used in CSP.

In addition, in the timed models that include stability values (Timed Stability TMS and
Timed Failures-Stability TMFS), there appears to be an implicit notion of “immediate sta-
bility at termination”. That is the stability value for a process that performs a X is the same
as the time at which the X was performed. This can be inferred from the stability values
associated with traces that end in X, as defined in the semantic functions for SKIP, WAIT t

7For example, the intuitively contradictory processes described in Section 1 are eliminated.

32 P.Howells and M.d’Inverno / Successful Termination in Timed CSP

and “;” (see [11]). This contrasts with the stability values defined for other traces, as defined
in the semantic function for→, where the delay constant “δ”, associated with non-X events,
is added to the time of the event to produce the stability value. Thus, any termination axiom
that is to be introduced must be consistent with these additional requirements as well as our
earlier X-requirement.

Another constraint on the introduction of a termination axiom relates to the addition of
various timeout and interrupt operators added to Timed CSP by Davies and Schneider [18,
17,22]. The definition of these operators [17] relies on the use of |||, thus the introduction of
a termination axiom into the timed models would appear to prohibit the definition of these
operators. However, it is the race termination semantics of ||| that is used to define these
additional operators. Thus, if the race termination semantics version |∅ of ||| was introduced
into the language of Timed CSP and used to define the timeout and interrupt operators, no
inconsistency would arise.

However, recalling the following definition of |Θ:

P|ΘQ =̂ (P||ΩQ); SKIP

It is important to note that this would only be the case in versions of Timed CSP where the
time postulates [9], concerning the lower bound delay, δ, on the length of the time interval
between any two consecutive events in the history of a sequential process, is zero when the
first event is X, and that hidden events occur as soon as they become available. In the case of
P|ΘQ, this is the X of the first process in the sequential composition, i.e. P||ΩQ. These two
conditions ensure that the race termination semantics version of |||, i.e. |∅, will not introduce
an additional delay into the timeout and interrupt operators.

It is currently not clear to the authors whether there are other factors, to those given
above, which would need to be considered when defining termination axioms for the timed
models. However, based on this preliminary analysis we now present candidate termina-
tion axioms for the four timed models that would be a starting point for any future research
aimed at providing a consistent treatment of termination within these Timed CSP models
(Section 5).

3.3. Adding Termination Axioms to the Timed Models

In this section, we outline how termination axioms could be added to the process axioms of
the timed semantic models from Reed’s hierarchy, shown in Figure 1. In the following sec-
tions, we present candidate termination axioms for each of them: Timed Traces (TMT), Timed
Stability (TMS), Timed Failures (TMF) and Timed Failures-Stability (TMFS). Reed’s original
axioms for these models, which do not consider termination, can be found elsewhere [9,11].

If a termination axiom (TA) were added to a Timed CSP model, then it would be nec-
essary to prove that each new model, for example (TMFS + TA, d), is a well-defined metric
space, where the processes satisfying the axioms TMFS + TA form the “set of points” of the
metric space. The “metric”, d, is a function that measures the “distance” between two points,
i.e. processes. The distance metric used by Reed and Roscoe [9,11] is based on the length of
time it takes to tell two processes apart, based on the observations made (e.g. timed traces
and timed refusals). In essence, if two processes can be distinguished very quickly, then the
“distance” between them is large; but if it takes a long time to distinguish between them, then
the “distance” is small.

Processes are formally denoted by their observable behaviours, S, where what is ob-
served depends on the semantic model (e.g. S is a set of timed failures in the TMF model).
These observations, S, are elements in the point set of the metric space, provided they sat-
isfy the axioms of the model under consideration. So, a process P is denoted by a set of
observations S that satisfy the axioms for the particular semantic model.

P.Howells and M.d’Inverno / Successful Termination in Timed CSP 33

3.3.1. A Termination Axiom for TMT

The Timed Trace model TMT , models processes by denoting them by sets of timed traces s.
The termination axiom that we believe is the most suitable candidate for this model is the
following:

s ∈ S ∧ X ∈ Σ(s) ⇒ ∃ t ∈ [0, ∞) • ∼s = s′a〈(t,X)〉 ∧ X /∈ Σ(s′) (TAT)

The TAT axiom8 captures the notion that if a process can perform the timed trace s and
a X has occurred in the trace then:

(i) only one X can have occurred; and
(ii) it must have been the last event.

In other words, this axiom would then ensure that the X-requirement was enforced on
the timed trace s.

3.3.2. A Termination Axiom for TMS

The Timed Stability model TMS models processes by denoting them by sets of pairs (s, α)
consisting of a timed trace s and an associated stability value α. The termination axiom we
believe is the most suitable candidate for this model is the following:

(s, α) ∈ S ∧ X ∈ Σ(s) ⇒ ∼
s = s′a〈(α,X)〉 ∧ X /∈ Σ(s′) (TAS)

The TAS axiom captures the notion that if a process can perform the timed trace s with a
stability value of α and a X has occurred in the trace then:

(i) the X-requirement is satisfied; and
(ii) the X occurred at time α, the time of stability.

This axiom and the trace prefix closure axiom together would ensure that the X-
requirement was enforced and that stability on termination was maintained.

3.3.3. A Termination Axiom for TMF

The Timed Failures model TMF models processes by denoting them by sets of timed failures
(s,ℵ), consisting of a timed trace s and a timed refusal set ℵ. The termination axiom we
believe is the most suitable candidate is the following:

(s,ℵ) ∈ S ∧ X ∈ Σ(s) (TAF)

⇒ ∃ t : [0, ∞) • s = s′a〈(t,X)〉 ∧ X /∈ Σ(s′) ∧ (s,ℵ ∪ ℵ1) ∈ S

where I(ℵ1) ⊆ [t,∞). The TAF axiom captures the notion that if a process can perform the
timed trace s while refusing ℵ and a X has occurred in the trace then:

(i) the X-requirement is satisfied; and
(ii) from the time t at which the X occurred it can henceforth refuse all further events.

8See Section 2.2.1 for the reason why there is an
∼
s in axioms TAT and TAS , but not TAF and TAFS .

34 P.Howells and M.d’Inverno / Successful Termination in Timed CSP

3.3.4. A Termination Axiom for TMFS

The Timed Failures-Stability model TMFS models processes by denoting them by sets of
timed failures paired with associated stabilities. For simplicity, we flatten these pairs into
triples (s, α,ℵ), consisting of a timed trace s, a stability value α and a timed refusal set ℵ. We
believe the most suitable termination axiom for this model is the following:

(s, α,ℵ) ∈ S ∧ X ∈ Σ(s) (TAFS)

⇒ s = s′a〈(α,X)〉 ∧ X /∈ Σ(s′) ∧ (s, α,ℵ ∪ ℵ1) ∈ S

where I(ℵ1) ⊆ [α,∞).
The TAFS axiom captures the notion that if a process can perform the timed trace s with

a stability value of α while refusing ℵ and a X has occurred in the trace then:

(i) the X-requirement is satisfied;
(ii) the X occurred at the time of stability α; and
(ii) that from time α it can henceforth refuse all further events.

4. Related Work

The authors are only aware of these particular issues regarding the modelling of success-
ful termination within Timed CSP, having been addressed by the work of Schneider [27].
In [27] Schneider, presents an updated version of Reed and Roscoe’s original Timed-Failures
model [9], but does not consider any of the other timed models.

Schneider’s Timed-Failures model has removed the use of the after action delay constant
“δ”; all actions are instantaneous and there is no lower bound on the time between sequential
actions, as there was in the original models of Reed and Roscoe [8,9,10]. In addition, an
equivalent X-requirement has also been introduced, captured in the definition of the set of
timed traces TT (see page 336 of [27]), i.e. that if a X occurs in a timed trace then it must
be the final event, even if other events occur at the same time. Together, these modifications
result in an improved treatment of termination, within the Timed-Failures model.

However, all of the parallel operators Schneider defines in this version of Timed CSP:
alphabetised (A||B), interleaving (|||) and interface (generalised) (||A) use synchronous termi-
nation semantics. Therefore, this version of Timed CSP could be augmented by the introduc-
tion of timed versions of our asynchronous (|||Θ) and race (|Θ) parallel operators, and thus,
provide a more flexible language for designing parallel systems.

Currently, the authors are not aware of any other modification of the models for
Timed CSP developed by Reed and Roscoe [9,8,11], by either the addition of any termination
axioms or by the modification to the existing axioms, in order to capture a more consistent
use of X in these models.

5. Conclusions and Further Work

We began this paper by outlining how the authors defined an improved model for untimed
CSP, with respect to termination, called CSPT . This was achieved by adding a termination
axiom to the original failure-divergence model for CSP and replacing the original parallel
operators with more flexible ones. Based on our experience of having successfully achieved
this process for untimed CSP, we outlined the various issues that determined our choice of a
termination axiom that best captured our notion of successful termination within the context
of an untimed model.

P.Howells and M.d’Inverno / Successful Termination in Timed CSP 35

Our goal in this paper was to achieve the same outcome for Timed CSP. Thus, we decided
to adopt a similar approach for defining alternative models for Timed CSP. To this end, we
have proposed a collection of termination axioms for several of the models for Timed CSP. As
with untimed CSP, we have considered several factors that influence the choice and definition
of a termination axiom within the family of Timed CSP models, the most significant of these
is the notion of stability. In particular, when should a process become stable on termination:
either at termination or at some time afterwards? In the axioms we have proposed, we have
chosen to adopt the former, which we believe is the most appropriate, within the Timed CSP
world.

As noted in Section 3.3, the next step in this work is formally to add each axiom to its
respective model, by proving that each new model, for example (TMFS + TA, d), represents
a complete, bounded, ultra-metric space and further, that the operators are all well-defined in
the new model. The authors assume that these proofs would be similar to those presented by
Reed and Roscoe [9,11] for the existing axioms of TMFS .

In analysing the timed versions of CSP our intention is to lay the ground work for the
definition of timed equivalents of our three untimed parallel operators (synchronous, asyn-
chronous and race) that were introduced in CSPT . To be able to achieve this goal, it will
first be necessary to ensure that successful termination is well-defined within the models of
Timed CSP, which we believe we have begun by the definition of these candidate termination
axioms.

Acknowledgements

We are extremely indebted to the anonymous reviewers of this paper who provided very
valuable feedback and helped us to improve the readability of the paper. Thank you. We
would like to gratefully acknowledge the advice and assistance of the following individuals
from whom at various stages we benefited a great deal over several very detailed discussions
on our work: Jonathan Bowen, Michael Luck and Steve Schneider. We would also like to
acknowledge both Springer and Elsevier for granting us permission to use extracts from our
previous papers. Finally, we would like to acknowledge the help and assistance of the CPA
2013 Editors, especially Peter Welch, in preparing this paper.

References

[1] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A Theory of Communicating Sequential Processes.
Journal of the ACM, 31(7), 1985.

[2] S. D. Brookes and A. W. Roscoe. An improved failures model for Communicating Sequential Processes.
In Proceedings of Pittsburgh Seminar on Concurrency, LNCS 197, pages 281–305. Springer-Verlag, 1985.

[3] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985. ISBN: 0-131-
53271-5.

[4] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall International, 1997. ISBN: 0-13-
674409-5.

[5] A.W. Roscoe. Understanding Concurrent Systems. Springer, 2010. ISBN: 978-1-84882-257-3.
[6] P. Howells and M. d’Inverno. A CSP model with flexible parallel termination semantics. Formal Aspects

of Computing, 21(5):421–449, 2009.
[7] P. Howells and M. d’Inverno. Specifying Termination in CSP. Theoretical Computer Science, 2013. DOI:

10.1016/j.tcs.2013.05.008.
[8] G.M. Reed and A.W. Roscoe. A Timed Model for Communicating Sequential Processes. In Proceedings

of ICALP’86, LNCS 226, pages 314–323. Springer-Verlag, 1986. (Also, Theoretical Computer Science,
58, pages 249–261, 1988.).

[9] G.M. Reed. A Uniform Mathematical Theory of Distributed Computing. PhD thesis, Oxford University,
1988.

36 P.Howells and M.d’Inverno / Successful Termination in Timed CSP

[10] G.M. Reed and A.W. Roscoe. Analyzing TMFS: A Study of Nondeterminism in Real-Time Concurrency.
In Proceedings of 2nd UK-Japan CS Workshop, LNCS 491, pages 36–63. Springer-Verlag, 1991.

[11] G.M. Reed and A.W. Roscoe. The timed failures - Stability model for CSP. Theoretical Computer Science,
211(12):85 – 127, 1999.

[12] P. Howells and Mark d’Inverno. Specifying and Analysing Networks of Processes in CSPT (or In Search
of Associativity). In Proceedings of Communicating Process Architectures 2013 (CPA13), 2013.

[13] P. Howells. Communicating Sequential Processes with Flexible Parallel Termination Semantics. PhD
thesis, University of Westminster, 2005.

[14] S. D. Brookes. A Model for Communicating Sequential Processes. PhD thesis, Oxford University, 1983.
[15] H. Tej and B. Wolff. A Corrected Failure-Divergence Model for CSP in Isabelle/HOL. In Proceedings of

the FME ’97 – Industrial Applications and Strengthened Foundations of Formal Methods, LNCS 1313.
Springer-Verlag, 1997.

[16] C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice-Hall, 1998.
[17] J. Davies and S. Schneider. An Introduction to Timed CSP. Technical Mono-

graph PRG-75, Programming Research Group, Oxford University, 1989. Available from
https://www.cs.ox.ac.uk/files/3399/PRG75.pdf.

[18] J. Davies. Specification and Proof in Real-Time Systems. Cambridge University Press, 1993.
[19] J. Davies, D. Jackson, and S. Schneider. Broadcast Communication for Real-time Processes. In Proceed-

ings of Symposium on Real-time and Fault-tolerant Systems, LNCS 571, pages 149–169. Springer-Verlag,
1991.

[20] J. Davies and S. Schneider. Factorizing Proofs in Timed CSP. Technical Monograph PRG-75, Program-
ming Research Group, Oxford University, 1989. (Also, LNCS 442, pages 129–159, Springer-Verlag,
1990).

[21] J. Davies and S. Schneider. Using CSP to Verify a Timed Protocol over a Fair Medium. In Proceedings of
CONCUR’92, LNCS 630, pages 355–369. Springer-Verlag, 1992.

[22] S. Schneider. Correctness and Communication in Real-time Systems. Technical Mono-
graph PRG-84, Programming Research Group, Oxford University, 1990. Available from
https://www.cs.ox.ac.uk/files/3408/PRG84.pdf.

[23] S. Schneider. Timewise Refinement for Communicating Processes. In Proceedings of 9th Workshop on
Mathematical Foundations of Programming Language Semantics, LNCS 802, pages 162–193. Springer-
Verlag, 1993.

[24] S. Schneider. An Operational Semantics for Timed CSP. Information and Computation, 116(2):193–213,
1995.

[25] J. Davies, D.M. Jackson, G.M. Reed, J.N. Reed, A.W. Roscoe, and S. Schneider. Timed CSP: Theory and
Practice. In Proceedings of REX Workshop on Real-Time: Theory in Practice, LNCS 600, pages 640–675.
Springer-Verlag, 1992.

[26] J. Davies and S. Schneider. A Brief History of Timed CSP. Theoretical Computer Science, 138(2):243–
271, 1995.

[27] S. Schneider. Concurrent and Real-time Systems: The CSP Approach. Wiley, 2000. ISBN: 0-471-62373-3.
[28] G.M. Reed. A Hierarchy of Domains for Real-time Distributed Computing. In Proceedings of 5th Work-

shop on Mathematical Foundations of Programming Language Semantics, LNCS 442, pages 80–128.
Springer-Verlag, 1990.

[29] G.M. Reed and A.W. Roscoe. Metric-spaces as Models for Real-time Concurrency. In Proceedings of
3rd Workshop on Mathematical Foundations of Programming Language Semantics, LNCS 298, pages
331–343. Springer-Verlag, 1987.

[30] W.A. Sutherland. Introduction to Metric and Topological Spaces. Oxford University Press, 1981.

Appendix: CSPT Semantic Definitions

This appendix contains a summary of the notation and definitions used in the paper; for a
more detailed description of CSP see [3,4,5] and for CSPT see [6,7].

The notation used in CSP and CSPT is the following. Σ is the set of all events, and is
countable; denoted by a, b, c. P(Σ) is the power set of Σ; denoted by X, Y , Z. F(X) is the set
of finite subsets of X. Σ∗ is the set of finite sequences of events, i.e. traces; denoted by r, s,
t, u. 〈 〉 represents the empty sequence. 〈a, b, c, d〉 represents the sequence with members a,
b, c, d. sat represents the concatenation of the two sequences s and t. s ≤ t is the sequence
prefix relation and s < t is the proper prefix relation. #s is the length of the sequence s.

P.Howells and M.d’Inverno / Successful Termination in Timed CSP 37

a in s is sequence membership. X represents the set complement of X, with respect to Σ, i.e.
X ∩ X = ∅ and X ∪ X = Σ. X − Y is the set difference of X and Y , i.e. X − Y = X ∩ Y .
Processes are denoted by P, Q, R and A, B, C denote their alphabets. The set of all process
identifiers (used to define recursive processes) is denoted by Ide, and we use p, q, . . . to range
over Ide.

In the failure-divergence models for CSP and CSPT a process P is denoted by an ordered
pair 〈F, D〉, where F is the set of failures of P and D is the set of divergence traces of P. A
failure is an ordered pair (s,X), where s is a trace and X is a set of events called a refusal set.
If the failure (s,X) is in the set of failures for P then P can perform the trace s and then may
refuse to participate in any of the events in X. A divergence trace s is one that P can perform
but after it has done so, P may then be diverging, i.e. performing an unbounded sequence of
internal events.

The formal definition of the traces and alphabet (set of events that it can perform) for a
process P = 〈F, D〉 are defined as follows:

traces(P) = { s | ∃X ∈ P(Σ) : (s,X) ∈ F }
α(P) = {a | ∃ t ∈ traces(P) : a in t }

The failure set F and divergence set D for a process are then any sets that satisfy the
following conditions:

F ⊆ Σ∗ × P(Σ) D ⊆ Σ∗

In addition, they must also satisfy the following standard set of process axioms for the original
model of CSP, see [2], as well as our CSPT Termination axiom (T1):

s ∈ D⇒ sat ∈ D (D1)

s ∈ D⇒ (sat,X) ∈ F (D2)

(〈 〉,∅) ∈ F (N1)

(sat,∅) ∈ F ⇒ (s,∅) ∈ F (N2)

(s,X) ∈ F ∧ Y ⊆ X ⇒ (s,Y) ∈ F (N3)

(s,X) ∈ F ∧ (∀ c ∈ Y : (sa〈c〉,∅) /∈ F)⇒ (s,X ∪ Y) ∈ F (N4)

(∀Y ∈ F(X) : (s,Y) ∈ F)⇒ (s,X) ∈ F (N5)

t 6= 〈 〉 ∧ (sa〈X〉at,∅) ∈ F ⇒ s ∈ D (T1)

A natural language interpretation of these axioms is as follows:

(D1) states that the divergence set of a process is suffix closed. This captures the idea that
once a process has started to diverge it does so for ever and that it is impossible for the
process to recover, i.e. stop diverging, by perform some event, even X.

(D2) implies that if a process is diverging then it may also fail, i.e. it may refuse any set
of events offered to it at any later stage. This captures the totally nondeterministic and
chaotic nature of a diverging process in that it is seen as being catastrophic. This axiom
enforces the consistency requirement between the divergence set and the failure set of
a process.

(N1) and (N2) together imply that the traces of a process form a non-empty prefix closed
set, i.e. the traces of a process form a tree.

(N3) if a process can refuse a set of events X then it can refuse all the subsets of X. If a
process is unable to perform any of the events in X then it could not perform a subset
of them.

38 P.Howells and M.d’Inverno / Successful Termination in Timed CSP

(N4) if at some point a process can refuse the set of events X and there is another set of
events Y that it also can can refuse at that point then clearly the process can refuse both
of them together, i.e. X ∪ Y . Basically this means that if it is impossible for a process
to perform an event at some point then it can be added to the refusal set at that point.

(N5) means that if a process can refuse all of the finite subsets Y of a (possibly infinite) set X
then it can also refuse the set X. This is a closure property for refusal sets which allows
us to deduce that infinite sets are refusable if all of their finite subsets are refusable.

(T1) means that if a process indicates that it has terminated (by means of the X) but contin-
ues to perform events (t), then it must have started diverging before it performed the X
(i.e. s ∈ D). See Sections 1 and 3.1.

Finally, there is a refinement ordering (v) defined on CSP processes in terms of the re-
verse subset ordering on the failure and divergence set components of processes. This order-
ing then induces an equivalence relation (≡) on processes where: two processes are equiva-
lent in the model NT when their failure and divergent set components are equal. This space
of processes together with the ordering, i.e. (PROCT , v) is a partially ordered set, with least
element ⊥. The semantic functions for CSPT can be found in [6,7].

