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ABSTRACT

We present preliminary outcomes of a feasibility study
of a novel application of machine learning technology
to the sound diffusion work of an electroacoustic com-
poser/performer. We propose a simple but effective visu-
alisation method for diffusion data, and present evidence
that simple learning technology can learn the necessary
structure to facilitate diffusion performance.

1. INTRODUCTION

Diffusion is the performance practice of real-time spatial
deployment of fixed acousmatic music compositions of
two source audio channels around a multi-channel sound
system. It is distinct from multi-channel composition,
which works with more than two channels, using dis-
tinct, pre-determined speaker outputs that are not manipu-
lated in real time. Concern for real-time spatial movement
in electroacoustic music dates back to Pierre Schaeffer
and Pierre Henry’s inaugural concert of musique concrète
at the Ecole Normale de Musique on 18th March, 1950
[3]. Since then, a number of unique, purpose-built dif-
fusion systems have been built, such as the Groupe de
Recherches Musicales’ Acousmonium in 1974 and Univer-
sity of Birmingham’s BEAST (Birmingham ElectroAcous-
tic Sound Theatre) in 1982. Ranging from 4 to the ex-
treme 48 outputs of the Acousmonium, diffusion has be-
come common performance practice in the UK, France
and Canada and is now increasingly popular in the USA.

In performance, the diffuser (who is not always the
composer) provides a live interpretation of an otherwise
fixed work. A work can thus be greatly enhanced. Often a
diffuser will create a diffusion score to help prepare for ap-
proaching musical events. Ideally, there will be significant
rehearsal the performance with a given diffusion system
in a given performance space (since systems and perform-
ance spaces vary greatly), but, in reality, rehearsal time is
often limited. In consequence, in performance, there is
inevitably a dimension of improvisation, contingent upon
the requirements of the work and its interpretation. Com-
posers of music with diffusion intended as its definitive
presentation consider the eventual diffusion in the making
of the piece. So, in mere stereo playback of such works,
an important dimension is missing.

Our project is investigating whether machine learn-
ing technology—in this case, artificial neural networks
(ANNs) [8]—can be deployed to assist the diffuser. The
simplest case would be to reduce the number of paramet-
ers required, allowing the performer to use just one hand-

ful of sliders instead of two. In order to do this, we had
first to establish that there were patterns in our diffuser-
subject’s performance, and second to select and train ap-
propriate ANN technology to learn and reproduce them.

2. RELATED WORK

Machine learning [9] has been used frequently in music-
related work, in many ways. For example: Widmer and
Tobudic [11] studied the extraction of symbolic perform-
ance expression rules from performance data; Ponsford
et al. [10] modelled harmonic movement using Markovian
statistical models; Arcos and López de Mántaras [1] used
case-based reasoning to control expressive performance of
synthesised saxophone solos 1 ; and many music-related
applications of ANNs have been reported over a long
period [2, 6, 7, for example].

However, no work on learning systems in diffusion
seems to have been published. Perhaps this is either be-
cause researchers are unwilling to dilute the remaining
live element of electroacoustic performance, or because
diffusion is less clearly understood in the AI/music world
than activities which lead obviously to the production of
sound. Neither of these is a reason for not studying the
topic: even if we keep diffusion live, appropriate enquiry
can yield new insight into performance practice, and need
not necessarily lead to further automation. Performance
practice is a major focus of the current work.

3. RETHINKING DIFFUSION AS
PERFORMANCE PRACTICE

Diffusion usually constitutes the live element of tape- or
CD-based electroacoustic performance. Multiple loud-
speakers are arranged around the audience, usually, ho-
rizontally and symmetrically about the audience’s axis of
vision. Speakers are then associated with output channels
of a multichannel sound mixer, and the diffuser uses this
device to do their work: the source signal is usually in two
channels only. The diffuser’s job is to manipulate the re-
corded stereo signal into the multichannel performance by
allocating the two source channels to different combina-
tions of output channels, fading between them (to produce
the illusion of movement) and so on. Sound projection
rigs have as many as thirty channels, and since a diffuser

1 We include CBR-based work under the heading of “machine learn-
ing” because it relies on the analogical application of prior knowledge,
and can build (“learn”) a library of cases as it goes along.
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will want very detailed individual control over each, inde-
pendently, they will need to manipulate at least as many
sliders as there are channels.

The problem with this is that manual control of a
high-dimensional controller is difficult, and in this case
rendered more so because the controller being used (a
mixing desk) was not originally designed for this use, and
is not optimised for it. One solution would be to explore
alternative controllers, but this would mean that the per-
former has to learn to use them, and that the intuition
behind live performance usage (having the diffusion “un-
der one’s fingers”, just like a pianist) has to be relearned
afresh. For this reason, we explore alternatives which
maintain that well-established intuition, mapping move-
ments of sliders on to perceived movements in sound in
more complex ways than is possible with an ordinary mix-
ing desk, but leaving the actual user-interface unaltered.

The bottleneck for the conventional diffuser is, simply,
the number of volume sliders that they can manage with
just two hands. This is not as simple as being restricted to
ten movements at once: the physiology of the human hand
and the physical layout of the mixer constrain the space of
possibilities much more than the number of digits alone.

The existence of these strong constraints means that
that, notwithstanding the high dimensionality of the space
being explored by the diffuser, they cannot actually ex-
plore much of it. Therefore it should be possible to re-
duce that dimensionality so that the diffuser can achieve
the same effects (for a given piece) with a smaller number
of sliders, possibly even with just one hand. This would
have the advantage of leaving the diffuser with one hand
free to manipulate other parameters of the performance.

Our thinking, then, was to build some intelligence into
the diffusion system, to allow diffusers to use a famil-
iar interface, but also to reduce the complexity of direct
control required while maintaining expressivity. Since
the actual usage of the space of diffusion possibilities is
tightly constrained (and so only a small section of it is
actually explored), we hypothesised that it should be pos-
sible to construct a function from some relatively small
number of control inputs to a larger number of outputs,
which would model a diffuser’s interpretation of a given
piece on a given diffusion system. The justification for
this is that since only a subset of the points in the higher-
dimensional space can be explored by the diffuser, those
points should in principle be mappable onto the points in a
smaller space. If that space has lower dimensionality (and
so can be directly explored with fewer sliders), then the
important question is whether trajectories in the higher-
dimensional space can be modelled accurately with fewer
dimensions—otherwise, for example, sounds which move
smoothly in the unintelligent system might jump unac-
ceptably around in the intelligent one.

To explore our hypothesis, we chose a simple, rel-
atively well-understood learning system, a feed-forward
perceptron network trained by back-propagation [8]. This
kind of network learns a continuous function mapping its
inputs to its outputs, and is capable of interpolation (gen-
eralisation) between the datapoints on which it is trained.
This is crucial for our work, for two reasons: first, we need
to be able to maintain smooth trajectories in the space of
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Figure 1. (a) The control setup for the output training
data gathering phase. (b) The control setup for the input
training data gathering phase.

control parameters of our system; and, second, we wish
to use the interpolated points to suggest new performance
gestures to the performer, in future work.

4. A PRELIMINARY EMPIRICAL STUDY

We worked with a simple performance setup, so as not
to obscure the data in our study. It had nine channels,
one multidirectional woofer and eight unidirectional mid-
range/tweeters. The diffuser sat centrally facing speakers
A and H. The setup is shown in Figure 1a, with the eight
physical mid/high-frequency channels labelled A to H.

We used a MIDI slider box as our mixing console,
playing back the sound from Logic Audio, running under
Mac OS X, via a MoTU 828 Mk2 multi-channel sound
output module. Logic Audio software control units were
used to apply the MIDI volume control signals generated
by the faders controlling the output levels of the appropri-
ate channels. Thus, we could record the diffuser’s per-
formance as a MIDI file, synchronised with the stereo
source recording and subsequently interpose our software
between the diffuser and the level controls. The result-
ing MIDI files contained our data, conveniently labelled
by MIDI channel and time-stamped. We did not use the
woofer control signal in learning, because, since bass fre-
quencies are less directional than higher ones, it did not
contribute significantly to the diffusion.

In this data-gathering phase, the controller was set up
as in Figure 1a, which may be surprising: a more obvi-
ous layout is where the sliders correspond spacially with
the physical speakers. In order to achieve certain com-
mon musical gestures (for example, smooth transitions of
sound from front to back on both sides simultaneously),
human hand physiology requires that certain sliders be
placed close together: otherwise the gesture cannot be
adequately controlled. Therefore, our diffuser used this
setup when composing and performing his music.

In a feasibility study such as this, the first step is to
examine one’s data to ensure that there really is structure
for a learning system to learn—otherwise, results could
be misleading. We invited our diffuser to record several
takes of each of two of his pieces, [4, 5]. This multipli-
city of data would enable us to verify, first, that there was
structure in each take, and, second, that there was correl-
ation between the different performances, confirming that
it was reasonable to generalise across these data. Finally,



we used two pieces so that we could look at both inter- and
intra-opus learned generalisations. To train a network, it is
necessary to have lots of data, so that generalisations can
be statistically reasonable. Aside from the multiple takes
mentioned above, the pieces used were long (in excess of
20 minutes) and so generated large amounts of data from
each performance, given that variation in the diffusion was
continuous in both mathematical and vernacular senses.

Having captured the data, examining it was a non-
trivial problem, because it was expressed as impenetrably
large numbers of integers stored in text files. We devised a
simple but effective visualisation method: on a time line,
we laid out the eight channels, in two groups of four, for
left and right, using a heat colour scale. Between the two
groups of four is a monochrome scale, indicating over-
all energy in the sound, and the channels are graphed in
terms of their relative contribution to this overall energy.
Examples are shown (in monochrome) in Figure 2, with
the timeline running down the page. As an example of
how to read the graphs: the very first data of all perform-
ances shown has very low energy (the central line is very
dark), and that energy is all in channels A and H, shown
by the maxima in the two left-most columns of each group
of four and minima in all other channels.

Study of the three visualisations shows that: there are
areas of consistency and other areas where there is less
consistency between performances; there is a strong tend-
ency for the diffusion to be symmetrical about the visual
axis of the diffuser (this is not surprising, as the original
signal is in stereo and so diffusion in this spatial dimen-
sion is pre-definined); and (on the rather smaller scale)
there are diffusion gestures which recur within the indi-
vidual performances. So we concluded that it was reason-
able to proceed with training a network from this data, to
reduce the dimensionality of the data as proposed above.

To train a network to do our dimensionality reduction,
we needed not just the control data for the physical chan-
nels, but also some desired “virtual” control data for per-
formance. Methodology for recording this data was a sig-
nificant issue, because data generated in a situation which
was unnatural for the performer would probably be arti-
ficial, and our approach would be invalidated. As a first
step to overcoming this, we used a very similar setup to re-
record our diffuser’s control signals, but with pre-recorded
diffusion, and the diffuser “miming” with a configuration
of sliders different from his usual: the same number of
sliders, but mapped to different physical channels, as in
Figure 1b. We gave our diffuser adequate opportunity to
get used to the new setup, to encourage him to think about
how to achieve the gestures he wanted with the new setup,
but to liberate him from implicit habits based on the pre-
vious one. On the basis of the symmetry in our initial
data, which suggested significant amounts of redundancy
between the left and right hand gestures (see Figure 2), we
took the data from the diffuser’s left hand only, and used
it, in time series (see below), for our input data.

Because diffusion is about changes in spatial projec-
tion, we needed a temporal context in our system. For
this, we used time-series training: each set of four data
(one per slider at each time step) was presented to the net-
work in the training phase along with the data from 40ms

Figure 2. Visualisations of the diffusion data from four
different performances of Hippocampus [5]. Time runs
down the page; the visualisations are synchronised in
time, to within 2 or 3 seconds; overall time is 23m 45s.
Physical channels are in the order ABCDHGFE.

previously, 80ms previously, 160ms previously and so on
in powers of 2, to 40.96s. Thus, each set of data is related
by the network with its context in the piece.

We chose a well-understood, simple network archi-
tecture, to facilitate comprehension of the outcomes.
We used the public-domain SNNS system [12] to build
feed-forward perceptron networks, trained by back-
propagation, with one hidden layer, an input layer and an
output layer; the input layer is fully connected to the hid-
den layer, and the hidden layer to the output layer, but the



input and output layers are not directly connected. The
input layer used the geometric time-series representation,
above, giving 12 sets of 4 data in 48 nodes; the input
layer training values were taken from the four left-hand
virtual channel data, above. The output layer’s eight nodes
were assigned one each of the physical channel levels A-
H; their training data was the normalised physical channel
volume data as described above. The actual output values
must then be reconstructed from the overall sound volume
described by the diffuser with the four input sliders. The
size of the hidden layer was a parameter of the study, and
is discussed below. All data were synchronised in time,
and the different takes of each piece were used together to
train two separate piece-specific networks. Thus, we ex-
pected intra-opus generalisations to be reinforced; inter-
opus generalisations are left for future study.

We ran several experiments with different networks,
having between 6 and 30 hidden nodes, and with no hid-
den layer. The data were divided into training and test sets
as usual: we divided the pieces into 150 second sections,
using the first 30 seconds of each for testing and the rest
for training. This sampling approach ensures that a good
spread of each piece’s gestural content was both learned
and tested: it guarantees that the test set is fundamentally
different from the training set.

Testing and pruning of the networks suggested an op-
timal hidden layer size of about 16. In this case, the mean
square error obtained on testing was 0.214 on average,
spread across all eight channels. It is not yet clear what
proportion of error was due to inconsistencies in the data
and what was due to the limitations of the system. Also,
more study is required of the effect of these inaccuracies
on the diffuser in performance.

5. IMPLICATIONS: PERFORMANCE PRACTICE

This work has implications for diffusion practice. Some
direct effects of the approach are beneficial, even before
the system has been deployed in performance. Our dif-
fuser reported that use of the system seems to lead to
a deeper understanding of the music and the diffusion,
and of what can be done in future performance and com-
position. This is because the diffuser is forced—and
enabled—to think in more detail and with more prepar-
ation about what they are doing, as follows.

Because the network must be trained, there is no altern-
ative to spending time on rehearsal, and listening to the
music many times. Producing the input training data re-
quires an unusual approach: diffusing a work while hear-
ing a previous performance; this is a good training tech-
nique: it develops listening skills. Also because of the
need for input training data, one must experiment with dif-
ferent fader configurations, and then reflect in new ways
on how the configuration affects the performance.

Our diffuser reported that the visualisation graphs are
valuable in the analysis of diffusion. We believe that no
similar support tool exists for diffusers. They allow the
diffuser to compare performances, to reflect on strategies
used, and to match them directly with post hoc analysis.
The visualisation tools imbue what is often an improvisat-
ory process with informed reflective practice.

6. CONCLUSION & FUTURE WORK

We have presented a novel approach to the automatic as-
sistance of electroacoustic music diffusion. We have car-
ried out a preliminary feasibility study, whose positive res-
ults we have presented here. We believe that this work
could potentially add a new dimension to the often sterile
performance of electroacoustic music by allowing the dif-
fuser to control more parameters of the performance and
thus to add more live expression to the medium.

The interim results presented here suggest that the
simple learning technology used will be able to bridge the
gap between the diffuser’s chosen physical interface and
the level of control required for diffusion. The next step
will be to record performances using the neural network to
map between one-handed control and the full eight chan-
nels. This data will then be evaluated in terms of the abil-
ity of the diffuser to achieve the gestures he requires.
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