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DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS∗

KATHARINA T. HUBER† AND GEORGE KETTLEBOROUGH‡

Abstract. The ease with which genomic data can now be generated using Next Generation
Sequencing technologies combined with a wealth of legacy data holds great promise for exciting new
insights into the evolutionary relationships between and within the kingdoms of life. At the subspecies
level (e.g., varieties or strains) dendograms, that is, certain edge-weighted rooted trees whose leaves
are the elements of a set X of organisms under consideration, are often used to represent those
relationships. As is well known, dendrograms can be uniquely reconstructed from distances provided
all distances on X are known. More often than not, real biological datasets do not satisfy this
assumption, implying that the sought dendrogram need not be uniquely determined by the available
distances with regard to topology, edge-weighting, or both. To better understand the structural
properties a set L ⊆ (X

2

)
has to satisfy to overcome this problem, various types of lassos have been

introduced. Here, we focus on the question of when a lasso uniquely determines the topology of a
dendrogram; that is, it is a topological lasso for its underlying tree. We show that any set-inclusion
minimal topological lasso for such a tree T can be transformed into a structurally nice minimal
topological lasso for T . Calling such a lasso a distinguished minimal topological lasso for T , we
characterize it in terms of the novel concept of a cluster marker map for T . In addition, we present
novel results concerning the heritability of such lassos in the context of the subtree and supertree
problems.
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1. Introduction. In many topical studies in computational biology ranging from
gene onthology [9] via genome-wide association studies in population genetics [22] to
evolutionary genomics [21], the following fundamental mathematical problem is en-
countered: Given a distance D on some set X of objects, find a dendrogram D on
X (essentially a rooted tree T = (V,E) with no degree-two vertices but possibly the
root whose leaf set is X together with an edge-weighting ω : E → R≥0; see Figure 2
for examples) such that the distance induced by D on any two of its leaves x and y
equals D(x, y). In the ideal case that the distances between any two elements of X
are available, it is well understood when such a tree is uniquely determined by them,
and fast algorithms for reconstructing it from them are known (see, e.g.,[10, Chapter
9.2] and [28, Chapter 7.2], where dendrograms are considered in the slightly more gen-
eral forms of dated rooted X-trees and equidistant representations of dissimilarities,
respectively, and [2, Chapter 3] as well as the references in all three of these sources
for more on this).

The reality, however, tends to be different in many cases in that distances be-
tween pairs of objects might be missing or are not sufficiently reliable to warrant
inclusion of that distance in an analysis; see, e.g., [25, 26, 29] for more on this topic
in an evolutionary genomics context. Exclusion of such a distance might therefore
be tempting. Recent studies in [5] and [18] suggest this may, however, have adverse
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DISTINGUISHED MINIMAL TOPOLOGICAL LASSOS 941

effects on the outcomes of a study which raises interesting mathematical, statistical,
and algorithmical questions (see, e.g.,[7, 12, 27] for a study concerning the latter and
[12, 14, 15, 23] for results concerning its unrooted variant). One such question is the
focus of this paper: Calling any subset of a finite set X of size two a cord of X and
referring to the distance between the two elements of a cord as distance on a cord, for
what sets L of cords of X do we need to know the distances so that both the topology
of the underlying tree and the edge-weights of the dendrogram on X that induced the
distances on the cords in L are uniquely determined by L?

To help illustrate the intricacies of this question, which is concerned with the
structure of the set L and not so much with the actual distances on the cords in
L, denote for any two distinct elements a, b ∈ X the cord {a, b} by ab. Consider
the dendrogram D with leaf set X = {a, . . . , e} depicted in Figure 1(i), and assume
that the distances on the cords of L = {ac, de, bc, ce, cd} are induced by D; so, for
example, the distance on the cord ab is four. Then the dendrogram D′ depicted in
Figure 1(ii) induces the same distances on the cords in L as D, but the topologies of
the underlying trees T and T ′ of D and D′, respectively, are clearly not the same in
the sense that there exists no bijection from V (T ) to V (T ′) that is the identity on
{a, . . . , e} and induces a rooted graph isomorphism from T to T ′. Thus, L does not
uniquely determine T and thus also does not uniquely determine D. However, as can
be quickly checked, the situation changes if and only if the cord ab (or a subset of(
X
2

)
containing that cord) is added to L. To make this more precise, let L′ denote

the resulting set of cords on X , and let D1 denote a dendrogram on X for which the
topology of the underlying tree is the same as that of D. If D2 is a dendrogram on X
such that the distances on the cords in L′ induced by D1 and D2 coincide, then, as is
easy to verify, the topologies of the underlying trees of D1 and D2, respectively, must
be the same and so must be their edge-weightings. Thus, L′ uniquely determines D.

D ′:D :

a b c d e a b c d e
(i) (ii)

Fig. 1. For X = {a, . . . , e} and L = {ac, de, bc, ce, cd} the dendrograms D and D′ are depicted
in (i) and (ii), respectively. Bold edges in D have weight two, and all other edges as well as all edges
in D′ have weight one.

Although an intriguing question, apart from some recent results in [19], not much
is known about it (see [11] and [20] for some partial results in the case of the tree in
question being unrooted). By formalizing a dendrogram in terms of a certain edge-
weighted X-tree (see the next section for a precise definition of this concept as well as
all the other concepts mentioned below) and using the concept of a topological lasso,
which was originally introduced for unrooted phylogenetic trees with leaf set X in
[11] and extended to X-trees in [19], we study this question in the context of when a
set of cords of X is a topological lasso for a given X-tree T . In this context, we are
particularly interested in (set-inclusion) minimal topological lassos L for T for which⋃
L :=

⋃
A∈LA = X holds.

For T an X-tree, we show for any such minimal topological lasso L for T that
in case the graph Γ(L), whose vertex set is X and any two distinct elements x and
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942 KATHARINA T. HUBER AND GEORGE KETTLEBOROUGH

y in X joined by an edge if xy ∈ L (see Fig 2(i) for an example of that graph for
L = {ab, cd, ef, ac, ce, ea}), is a block graph, then the blocks of Γ(L) are in one-to-one
correspondence with the nonleaf vertices of T (Corollary 4.3). However, it is clearly
too much to hope for that Γ(L) is a block graph for any minimal topological lasso
L, and even if it is, it need not be claw-free, that is, contains the complete bipartite
graphK1,3 as an induced subgraph [17], as is suggested by the example of the minimal
topological lasso presented in Figure 2.

Claw-free graphs have been widely studied and shown to enjoy numerous proper-
ties relating them to, for example, perfect graphs, perfect matchings, and maximum
independent sets (see, e.g., [13] and [6] for overviews). Furthermore, claw-free graphs
that are block graphs were related in [4] to k-leaf powers of trees, and their spectrum
was studied in [16, 24] (see also [1] for a more general study of the adjacency matrix
of such graphs). In Theorem 5.2 we provide a link between this rich body of literature
and minimal topological lassos by establishing that any minimal topological lasso L
for T can be transformed into a minimal topological lasso L∗ for T such that Γ(L∗)
is a claw-free block graph. Reflecting this, we call a minimal topological lasso L for T
distinguished if Γ(L) is a claw-free block graph and remark that in [21] we exploit this
concept to formulate an efficient algorithm for constructing edge-weighted X-trees
from sets L of cords provided that all the actual distance values for the cords in L
are available. Among a number of attractive properties enjoyed by this algorithm is
consistency, by which we mean that in case L is a distinguished minimal topologi-
cal lasso, then it will return the unique edge-weighted X-tree that is lassoed by it.
In Theorem 7.2 we present a characterization of a distinguished minimal topological
lasso for T in terms of the novel concept of a cluster marker map for T . Finally,
we characterize when a distinguished minimal topological lasso for T gives rise to a
distinguished minimal topological lasso for a subtree of T (Theorem 8.1) and also
present a partial answer to the canonical analogue of a question raised for supertrees
of unrooted phylogenetic trees in [11].

The paper is organized as follows. In section 2, we introduce relevant terminology
surrounding X-trees and lassos. In section 3, we collect first properties of the graph
Γ(L) associated to a topological lasso L, and in section 4, we establish Corollary 4.3.
In section 5, we commence our study of a distinguished minimal topological lasso
and establish Theorem 5.2. In section 6, we present a sufficient condition for when a
minimal topological lasso is distinguished (Theorem 6.3), and in section 7, we prove
Theorem 7.2. We conclude with section 8, where we establish Theorem 8.1 and also
outline directions for further research.

2. Basic terminology and assumptions. In this section, we introduce some
relevant basic terminology surrounding X-trees, their edge-weighted counterparts,
and lassos. Assume throughout the paper that X is a finite set with at least three
elements and that, unless stated otherwise, all sets L of cords of X considered in this
paper satisfy the property that X =

⋃
L.

2.1. X-trees. A rooted tree T is a tree with a unique distinguished vertex called
the root of T , denoted by ρT . Throughout the paper, we assume that the degree of
the root of a rooted tree is at least two. A rooted phylogenetic X-tree, or X-tree for
short, is a rooted tree T = (V,E) with no degree-two vertices but possibly the root
ρT whose leaf set is X . We call an X-tree T a star-tree on X if every leaf of T is
adjacent with the root of T .

Suppose for the following that T is an X-tree. Then we call a vertex of T that is
not a leaf of T an interior vertex of T and denote the set of interior vertices of T by
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V̊ (T ). We call an edge of T that is incident with a leaf of T a pendant edge of T and
every edge of T that is not a pendant edge an interior edge of T . Extending some of
the terminology for directed graphs to X-trees, we call for all vertices v ∈ V (T )−{ρT}
an edge e ∈ E(T ) a parent edge of v if e is incident with v and lies on the path from
the root ρT of T to v. We refer to the vertex incident with e but distinct from v as a
parent of v.

Suppose for the following that v is an interior vertex of T . If v is not the root of
T , then we call an edge e ∈ E(T ) a child edge of v if e is incident with v but is not
crossed by the path from ρT to v. In addition, we call every edge incident with ρT a
child edge of ρT . We call the vertex incident with a child edge of an interior vertex w
of T but distinct from w a child of w and denote the set of all children of v by chT (v).
We call a vertex w ∈ V (T ) distinct from v a descendant of v if either w is a child of
v or there exists a path from v to w that crosses a child of v. We denote the set of
leaves of T that are also descendants of v by LT (v). If v is a leaf of T , then we put
LT (v) := {v}.

We call a nonempty subset L � X of leaves of T such that L = L(v) holds for
some v ∈ V̊ (T ) a pseudo-cherry of T . In that case, we also call v the parent of that
pseudo-cherry. Note that every X-tree on three or more leaves must contain at least
one pseudo-cherry. Also note that a pseudo-cherry of size two is a cherry in the usual
sense (see, e.g., [28]).

For x and y distinct elements in X , we call the unique vertex of T that simulta-
neously lies on the path from x to y, on the path from x to ρT , and on the path from
y to ρT the last common ancestor of x and y, denoted by lcaT (x, y). More generally,
for any subset Y ⊆ X of size three or more, we denote the subtree of T with leaf
set Y and vertices of degree two suppressed (except the root if there exist x, y ∈ Y
such that ρT lies on the path joining x and y) by T |Y and call the root of T |Y the
last common ancestor of Y , denoted by lcaT (Y ). If there is no ambiguity as to which
X-tree T we are referring to, we simplify our notation by omitting, for all v ∈ V (T )
and all subsets B ⊆ X of size at least three, the index in chT (v), LT (v), and lcaT (B).

Finally, suppose that T ′ is a further X-tree. Then we say that T and T ′ are
equivalent if there exists a bijection φ : V (T ) → V (T ′) that extends to a graph
isomorphism between T and T ′ that is the identity on X and maps the root ρT of T
to the root ρT ′ of T ′.

2.2. Edge-weighted X-trees and lassos. Suppose for the following again that
T is an X-tree. An edge weighting ω of T is a map ω : E(T ) → R≥0 that maps every
edge of T to a nonnegative real. Suppose that ω is an edge weighting for T . Then we
call the pair (T, ω) an edge-weighted X-tree and ω proper if ω(e) > 0 holds for every
interior edge e of T . We denote the distance induced by (T, ω) on the vertices of T
by D(T,ω) and call ω equidistant if

(i) D(T,ω)(x, ρT ) = D(T,ω)(y, ρT ) for all x, y ∈ X , and
(ii) D(T,ω)(x, u) ≥ D(T,ω)(x, v) for all x ∈ X and all u, v ∈ V (T ) such that u is

encountered before v on the path from ρT to x.
Note that if ω is an equidistant edge weighting for an X-tree T , then D(T,ω) is an
ultrametric [28, Lemma 7.2.4].

Suppose L is a set of cords of X . Then we call two edge-weighted X-trees (T1, ω1)
and (T2, ω2) L-isometric if D(T1,ω1)(x, y) = D(T2,ω2)(x, y) holds for all cords xy ∈ L.
We say that L is a topological lasso for T if, for every X-tree T ′ and any equidistant,
proper edge weightings ω of T and ω′ of T ’, we have that T and T ′ are equivalent
whenever (T, ω) and (T ′, ω′) are L-isometric. If L is a topological lasso for T , then
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we also say that T is topologically lassoed by L. Moreover, we say that L is a (set-
inclusion) minimal topological lasso for T if L is a topological lasso for T but no cord
A ∈ L can be removed from L such that L−{A} is still a topological lasso for T . For
ease of readability, if the X-tree to which a topological lasso L refers is of no relevance
to the discussion, we will simply say that L is a topological lasso.

To illustrate some of these definitions, let X = {a, . . . , f}, and let L be the
set of cords such that Γ(L) is the graph depicted in Figure 2(i). Using, e.g., [19,
Theorem 7.1] (see also Theorem 3.1 below), it is easy to see that the X-trees depicted
in Figure 2(ii) and (iii), respectively, are topologically lassoed by L. In fact, L is a
minimal topological lasso for both of them.

a b c d e f b fa c d ece

a

f b

d
(i) (ii) (iii)

Γ(L ): T : T ′:

Fig. 2. (i) The graph Γ(L) with vertex set X = {a, b, . . . , f} for the set L =
{ab, cd, ef, ac, ce, ea}. (ii)–(iii) Two nonequivalent X-trees T and T ′ that are both topologically las-
soed by L. In fact, L is a minimal topological lasso for either one of them.

3. The graphs Γ(L) and G(L, v). In this section, we investigate properties
of the graph Γ(L) associated to a set L of cords of X . We start by remarking that if
there is no danger of confusion, we denote an edge {a, b} of Γ(L) by ab rather than
{a, b}.

To establish our first structural result for Γ(L) (see Proposition 3.3), we require
further terminology. Suppose T is an X-tree, v ∈ V̊ (T ), and L is a set of cords of
X . Then we call the graph GT (L, v) = (VT,v , ET,v) with vertex set VT,v the set of

all child edges of v and edge set ET,v the set of all {e, e′} ∈
(
VT,v

2

)
for which there

exist leaves a, b ∈ X such that e and e′ are edges on the path from a to b in T and
ab ∈ L holds the child-edge graph of v (with respect to T and L). Note that when
there is no danger of ambiguity regarding the X-tree T to which we refer, we will
write G(L, v) rather than GT (L, v) and Vv and Ev rather than VT,v and ET,v. The
next result, which was originally established in [19, Theorem 7.1], states a crucial
property of child-edge graphs.

Theorem 3.1. Suppose T is an X-tree and L is a set of cords of X. Then the
following are equivalent:

(i) L is a topological lasso for T .
(ii) For every vertex v ∈ V̊ (T ), the graph G(L, v) is a clique.
Denoting for an X-tree T , a topological lasso L for T , and an interior vertex

v ∈ V̊ (T ) the set of all cords ab ∈ L for which v = lca(a, b) holds by A(v), Theorem 3.1

readily implies |A(v)| ≥
(|ch(v)|

2

)
. The next observation is almost trivial yet central to

the paper and concerns the special case that L is a minimal topological lasso for T .
Its proof, which combines a straightforward counting argument with Theorem 3.1, is
left to the interested reader. To be able to state it, we denote for an interior vertex
v ∈ V̊ (T ) and a child edge e ∈ E(T ) of v the child of v incident with e by ve.

Lemma 3.2. Suppose T is an X-tree and L is a minimal topological lasso for T .
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Then, for all v ∈ V̊ (T ), we have |A(v)| =
(|ch(v)|

2

)
. In particular, for any two distinct

child edges e1 and e2 of v there exists precisely one pair (a1, a2) ∈ L(ve1) × L(ve2)
such that a1a2 ∈ L.

Note that Lemma 3.2 immediately implies that any two minimal topological lassos
for the same X-tree must be of equal size.

To be able to establish Proposition 3.3, we require a further definition. Suppose
T is an X-tree and L is a topological lasso for T . Then for all v ∈ V (T ), we denote
by Γv(L) the subgraph of Γ(L) induced by L(v). Note that in case v is a leaf of T
and thus an element in X the only vertex in Γv(L) is v (and E(Γv(L)) = ∅).

Proposition 3.3. Suppose T is an X-tree and L is a topological lasso for
T . Then, for all v ∈ V (T ), the graph Γv(L) is connected. In particular, Γ(L) is
connected.

Proof. Assume for contradiction that there exists some vertex v ∈ V (T ) such
that Γv(L) is not connected. Then v cannot be a leaf of T , and so v ∈ V̊ (T ) must
hold. Without loss of generality we may assume that v is such that for all descendants
w ∈ V (T ) of v the induced graph Γw(L) is connected. Since L is a topological lasso for
T and so G(L, v) is a clique, it follows for any two distinct children v1, v2 ∈ ch(v) that
there exists a pair (x1, x2) ∈ L(v1)×L(v2) such that x1x2 ∈ L. Since the assumption
on v implies that the graphs Γw(L) are connected for all children w ∈ ch(v), it
follows that Γv(L) is connected, which is impossible. Thus, Γv(L) is connected for all
v ∈ V (T ). That Γ(L) is connected is a trivial consequence.

4. The case that Γ(L) is a block graph. To establish a further property of
Γ(L), which we will do in Proposition 4.1, we require some terminology related to
block graphs (see, e.g., [8]). Suppose G is a graph. Then a vertex of G is called a cut
vertex if its deletion (plus its incident edges) disconnects G. A graph is called a block
if it has at least one vertex, is connected, and does not contain a cut vertex. A block
of a graph G is a maximal connected subgraph of G that is a block, and a graph is
called a block graph if all of its blocks are cliques. For convenience, we refer to a block
graph with vertex set X as a block graph on X.

As the example of the two minimal topological lassos {ab, cd, ef, ac, ce, ea} and
{ab, bc, cd, de, ef, fa} for the {a, . . . , f}-tree depicted in Figure 2(ii) indicates, the
graph Γ(L) associated to a minimal topological lasso L may be but need not be a
block graph. However, if it is, then Lemma 3.2 can be strengthened to the following
central result where for all positive integers n we put 〈n〉 := {1, . . . , n} and set 〈0〉 := ∅.

Proposition 4.1. Suppose T is an X-tree and L is a minimal topological lasso
for T such that Γ(L) is a block graph. Let v ∈ V̊ (T ), and let v1, . . . , vl ∈ V (T ) denote
the children of v where l = |ch(v)|. Then, for all i ∈ 〈l〉, there exists a unique leaf
xi ∈ L(vi) such that xsxt ∈ L holds for all s, t ∈ 〈l〉 distinct.

Proof. For all v ∈ V̊ (T ) and all w ∈ ch(v), put

Lvw := {x ∈ L(w) : there exist w′ ∈ ch(v)− {w} and y ∈ L(w′) such that xy ∈ L}.

We need to show that |Lvw| = 1 holds for all v ∈ V̊ (T ) and all w ∈ ch(v). To see this,
note first that since G(L, v) is a clique for all v ∈ V̊ (T ), we have, for all w ∈ ch(v)
with v ∈ V̊ (T ), that Lvw 	= ∅. Thus, |Lvw| ≥ 1 holds for all such v and w.

To establish equality, suppose there exists some interior vertex v ∈ V̊ (T ) and
some child v1 ∈ ch(v) such that |Lvv1 | ≥ 2. Choose two distinct leaves x1 and y1 of T
contained in Lvv1 , and denote the parent edge of v1 by e1. Note that v1 = ve1 . Since
y1 ∈ Lvv1 , there exists a child edge e2 of v distinct from e1 and some x2 ∈ L(ve2) such
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that y1x2 ∈ L. In view of x1 ∈ Lvv1 , we distinguish between the cases that (i) x1z 	∈ L
holds for all z ∈ L(ve2) and (ii) there exists some z ∈ L(ve2) such that x1z ∈ L.

Assume first that Case (i) holds. Then since x1 ∈ Lvv1 there exists a further child
edge e3 of v and some y3 ∈ L(ve3) such that x1y3 ∈ L. Since, by Theorem 3.1, G(L, v)
is a clique and so {e2, e3} is an edge in G(L, v), there must exist leaves y2 ∈ L(ve2) and
x3 ∈ L(ve3) such that y2x3 ∈ L. By Proposition 3.3, the graphs Γvei (L), i = 2, 3, are
connected and, by definition, clearly do not share a vertex. Hence, there must exist a
cycle in Γ(L) whose vertex set contains

⋃
j∈〈3〉{xj , yj}. But then x1x2 ∈ L must hold

since Γ(L) is a block graph, and so every block in Γ(L) is a clique. By Lemma 3.2
applied to e1 and e2, it follows that x1 = y1 as x1, y1 ∈ L(v1) and y1x2 ∈ L, which is
impossible.

Now assume that case (ii) holds; that is, there exists some z ∈ L(ve2) such that
x1z ∈ L. Then Lemma 3.2 applied to e1 and e2 implies x1 = y1 as y1x2 ∈ L also
holds, which is impossible.

To illustrate Proposition 4.1, let T be the X-tree depicted in Figure 2(ii), and let
L be the set of cords of X whose Γ(L) graph is pictured in Figure 2(i). Using the
notation from Proposition 4.1 and labeling the children of the root of T from left to
right by v1, v2, and v3, it is easy to see that Proposition 4.1 holds for x1 = a, x2 = c,
and x3 = e.

The next result is the main result of this section and lies at the heart of Corol-
lary 4.3, which provides for an X-tree T and a minimal topological lasso L for T such
that Γ(L) is a block graph a close link between the blocks of Γ(L), the interior vertices
of T , and, for all v ∈ V̊ (T ), the child-edge graphs G(L, v). To establish it, we denote
for all v ∈ V (T )−{ρT } the parent edge of v by ev and the set of blocks of a graph G
by Block(G).

Theorem 4.2. Suppose T is an X-tree and L is a minimal topological lasso for
T such that Γ(L) is a block graph. Then, for all v ∈ V̊ (T ), there exists a unique block
B ∈ Block(Γ(L)) such that v = lca(V (B)).

Proof. We first show existence. Suppose v ∈ V̊ (T ). Let v1, . . . , vl ∈ V (T ) denote
the children of v where l = |ch(v)|. By Proposition 4.1, there exists, for all i ∈ 〈l〉,
a unique leaf xi ∈ L(vi) such that, for all s, t ∈ 〈l〉 distinct, we have xsxt ∈ L. Put
A = {x1, . . . , xl}. Clearly, v = lca(A), and the graph G(v) with vertex set A and edge
set E = {{x, y} ∈

(
A
2

)
: xy ∈ L} is a clique. Then, since Γ(L) is a block graph, there

must exist a block B ∈ Block(Γ(L)) that contains G(v) as an induced subgraph.

We claim that the graphs G(v) and B are equal. In view of the facts that A ⊆
V (B), the blocks in a block graph are cliques, and G(v) is a clique, it suffices to show
that V (B) ⊆ A. Suppose for contradiction that there exists some y ∈ V (B)−A. Note
first that yx ∈ L must hold for all x ∈ A. Next note that y cannot be a descendant
of v since otherwise there would exist some i ∈ 〈l〉 such that y ∈ L(vi). Choose some
j ∈ 〈l〉− {i}. Then Lemma 3.2 applied to evi and evj implies xi = y as yxj , xixj ∈ L,
which is impossible.

Choose some z ∈ A, and put w = lca(z, y). Then v is a descendant of w, and
w = lca(x, y) holds for all x ∈ A. Let w1 ∈ V (T ) and w2 ∈ V̊ (T ) denote two distinct
children of w such that y ∈ L(w1) and z ∈ L(w2). Then Lemma 3.2 applied to ew1

and ew2 implies xi = xj for all i, j ∈ 〈l〉 distinct since yx ∈ L holds for all x ∈ A,
which is impossible. Thus, V (B) ⊆ A, as required. This concludes the proof of the
existence part of the theorem.

We next show uniqueness. Suppose for contradiction that there exists some v ∈
V̊ (T ) and distinct blocks B,B′ ∈ Block(Γ(L)) such that lca(B) = v = lca(B′).
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Since every block of Γ(L) contains at least two vertices as Γ(L) is connected and
|X | ≥ 3, we may choose distinct vertices b1, b2 ∈ V (B) and b′1, b′2 ∈ V (B′) such that
lca(b1, b2) = lca(B) = v = lca(B′) = lca(b′1, b

′
2). Note that b1b2 and b′1b

′
2 must be

cords in L as B and B′ are cliques of Γ(L). We distinguish between the cases that (i)
{b1, b2} ∩ {b′1, b′2} = ∅ and (ii) {b1, b2} ∩ {b′1, b′2} 	= ∅.

We first show that case (i) cannot hold. Assume for contradiction that {b1, b2} ∩
{b′1, b′2} = ∅. We claim that lca(b1, b

′
1) = v. Assume for contradiction that w :=

lca(b1, b
′
1) 	= v. Let v1 ∈ ch(v) such that v1 lies on the path from v to w. If v 	=

lca(b2, b
′
2), then there exists a descendant w′ ∈ V (T ) of v such that lca(b2, b

′
2) = w′.

Let v2 ∈ ch(v) such that v2 lies on the path from v to w′. Then Lemma 3.2 applied
to ev1 and ev2 implies b1 = b′1 and b2 = b′2 as b1b2, b

′
1b

′
2 ∈ L, which is impossible.

Thus, lca(b2, b
′
2) = v must hold. Let v2, v

′
2 ∈ ch(v) such that b2 ∈ L(v2) and b′2 ∈

L(v′2). Then, since b1, b
′
1 ∈ L(v1) and b1b2, b

′
1b

′
2 ∈ L, Proposition 4.1 implies b′1 = b1.

Consequently, {b1, b2}∩{b′1, b′2} 	= ∅, which is impossible. Thus, lca(b2, b
′
2) = v cannot

hold, and so

lca(b1, b
′
1) = v,

as claimed. Swapping the roles of b1, b
′
1 and b2, b

′
2 in the previous claim implies that

v = lca(b2, b
′
2) must hold, too. For i = 1, 2 let vi, v

′
i ∈ ch(v) such that bi ∈ L(vi)

and b′i ∈ L(v′i). Then, by Lemma 3.2, there exist pairs (c, c′) ∈ L(v1) × L(v′1) and
(d, d′) ∈ L(v2) × L(v′2) such that cc′, dd′ ∈ L. Since (b1, b2) ∈ L(v1) × L(v2) and
(b′1, b′2) ∈ L(v′1) × L(v′2) and b1b2, b

′
1b

′
2 ∈ L, Proposition 4.1 implies that c = b1,

b2 = d, d′ = b′2, and c
′ = b′1. But then C: c′ = b′1, b

′
2 = d′, d = b2, b1 = c, c′ is a cycle

in Γ(L). Since Γ(L) is a block graph, it follows that there must exist a block BC in
Γ(L) that contains C. Since {b1, b2} ⊆ V (BC) ∩ V (B) and two distinct blocks of a
block graph can share at most one vertex, it follows that BC and B must coincide.
Since {b′1, b′2} ⊆ V (BC) ∩ V (B′) holds, too, similar arguments imply that BC must
also coincide with B′. Thus, B and B′ must be equal, which is impossible. Hence
case (i) cannot hold, as required.

Thus, case (ii) must hold; that is, {b1, b2} ∩ {b′1, b′2} 	= ∅. Since any two distinct
blocks in a block graph can share at most one vertex, it follows that |{b1, b2} ∩
{b′1, b′2}| = 1. Without loss of generality, we may assume that b1 = b′1. We first claim
that

lca(b2, b
′
2) = v.

Assume to the contrary that lca(b2, b
′
2) 	= v. Then there exist distinct children v1, v2 ∈

ch(v) such that b1 ∈ L(v1) and b2, b
′
2 ∈ L(v2) hold. Since both b1b2 and b′1b

′
2 =

b1b
′
2 are cords in L, Lemma 3.2 applied to ev1 and ev2 implies b′2 = b2. Hence,

|{b1, b2} ∩ {b′1, b′2}| = 2, which is impossible. Thus, lca(b2, b
′
2) = v, as claimed.

Let v1, v2, v
′
2 ∈ ch(v) such that b1 ∈ L(v1), b2 ∈ L(v2), and b′2 ∈ L(v′2). By

Lemma 3.2, there exist some (c, c′) ∈ L(v2) × L(v′2) such that cc′ ∈ L. Since we also
have (b1, b2) ∈ L(v1)× L(v2) with b1b2 ∈ L holding and (b1, b

′
2) ∈ L(v1)× L(v′2) with

b′2b1 = b′2b
′
1 ∈ L holding, Proposition 4.1 implies that b2 = c and b′2 = c′. Hence, C:

b1 = b′1, b′2 = c′, c = b2, b1 is a cycle in Γ(L), and so arguments similar to those in
the corresponding subcase for case (i) imply that B and B′ must coincide, which is
impossible. Thus, lca(b2, b

′
2) = v cannot hold, which concludes the discussion of case

(ii) and thus the proof of the uniqueness part of the theorem.
In view of Theorem 4.2, we denote, for T an X-tree, a minimal topological lasso

L for T such that Γ(L) is a block graph, and a vertex v ∈ V̊ (T ) the unique block B
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948 KATHARINA T. HUBER AND GEORGE KETTLEBOROUGH

in Γ(L) for which v = lca(V (B)) holds by BL
v , or simply by Bv if the set L of cords

is clear from the context. Moreover, we denote for all x ∈ L(v) the child of v on the
path from v to x by vx.

Corollary 4.3. Suppose T is an X-tree and L is a minimal topological lasso
for T such that Γ(L) is a block graph. Then the map

ψ : V̊ (T ) → Block(Γ(L)) : v �→ Bv

is a bijection with inverse map ψ−1 : Block(Γ(L)) → V̊ (T ) : B �→ lca(V (B)). More-
over, the map

χ : Block(Γ(L)) → {G(L, v) : v ∈ V̊ (T )} : B �→ G(L, ψ−1(B))

is bijective, and, for all B ∈ Block(Γ(L)), the map

ξB : V (B) → Vψ−1(B) : x �→ e(ψ−1(B))x

induces a graph isomorphism between B and the child-edge graph G(L, ψ−1(B)).
Proof. In view of Theorem 4.2, the map ψ is clearly well defined and injective.

To see that ψ is surjective, let B ∈ Block(Γ(L)), and put vB = lca(V (B)). Clearly,
vB ∈ V̊ (T ). Since BvB = ψ(vB) is a block in Γ(L) for which vB = lca(V (BvB ))
also holds, Theorem 4.2 implies that ψ(vB) and B must coincide. Consequently, ψ
must also be surjective and thus bijective. That the map ψ−1 is as stated is trivial.
Combined with Theorem 3.1, the bijectivity of the map ψ implies in particular that,
for all B ∈ Block(Γ(L)), the map ξB : V (B) → Vψ−1(B) from V (B) to the vertex set
Vψ−1(B) of the child-edge graph G(L, ψ−1(B)) induces a graph isomorphism between
B and G(L, ψ−1(B)).

To see that the map χ is bijective, note first that χ is well defined since ψ−1(B) ∈
V̊ (T ) holds for all blocks B ∈ Block(Γ(L)). To see that χ is injective, assume that
there exist blocks B1, B2 ∈ Block(Γ(L)) such that χ(B1) = χ(B2) but B1 and B2 are
distinct. Then ψ−1(B1) 	= ψ−1(B2) as ψ is a bijection from V̊ (T ) to Block(Γ(L)).
Combined with the fact that, for all B ∈ Block(Γ(L)), the map ξB induces a graph
isomorphism between B and G(L, ψ−1(B)), it follows that χ(B1) = G(L, ψ−1(B1)) 	=
G(L, ψ−1(B2)) = χ(B2), which is impossible. Thus, χ must be injective. Since
|Block(Γ(L))| = |V̊ (T )| = |{G(L, v) : v ∈ V̊ (T )}|, it follows that χ must also be
surjective and thus bijective.

5. A special type of minimal topological lasso. Returning to the example
depicted in Figure 2, it should be noted that, in addition to being a block graph, Γ(L)
is also claw-free (and thus L is a distinguished minimal topological lasso). Claw-free
block graphs are precisely the line graphs of (unrooted) trees where for any graph G
the associated line graph has vertex set E(G) and two vertices a, b ∈ E(G) are joined
by an edge if a ∩ b 	= ∅ [17]. In this section, we relate them with minimal topological
lassos in Theorem 5.2 by establishing that for any X-tree T any minimal topological
lasso L for T can be transformed into a distinguished minimal topological lasso L∗

for T via a repeated application (i.e., l ≥ 0 applications) of the following rule:
(R) If xy, yz ∈ L and lca(y, z) is a descendant of lca(x, y) in T , then delete xy

from the edge set of Γ(L), and add the edge xz to it.
Before we make this more precise, which we will do next, we remark that since

a topological lasso for a star-tree is in particular a distinguished minimal topologi-
cal lasso for it, we will for this and the next two sections restrict our attention to
nondegenerate X-trees, that is, X-trees that are not star-trees on X .
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Suppose T is a nondegenerate X-tree and L is a set of cords of X . Let V̊ (T )
denote a set of colors, and let

γ(L,T ) : L → V̊ (T ) : ab �→ lca(a, b)

denote an edge coloring of Γ(L) in terms of the interior vertices of T . Note that if L is
a topological lasso for T , then Theorem 3.1 implies that γ(L,T ) is surjective. Returning
to rule (R), note that a repeated application of that rule to such a set L of cords results
in a set L′ of cords that is also a topological lasso for T . Furthermore, note that if L
is a minimal topological lasso for T , then L′ is necessarily also a minimal topological
lasso for T . Finally, note for all v ∈ V̊ (T ) that |γ−1

(L,T )(v)| = 1 or |γ−1
(L,T )(v)| ≥ 3 must

hold in this case.

Lemma 5.1. Suppose T is a nondegenerate X-tree and L is a minimal topological
lasso for T . Put γ = γ(L,T ), and assume that v ∈ V̊ (T ) such that |γ−1(v)| ≥ 3. Then
for any three pairwise distinct cords c1, c2, c3 ∈ γ−1(v), there exists a cycle Cv in
Γ(L) such that c1, c2, c3 ∈ E(Cv) and, for all c ∈ E(Cv), γ(c) either equals v or is a
descendant of v.

Proof. Let v ∈ V̊ (T ), and let c1 = x1y1, c2 = x2y2, and c3 = x3y3 denote three
pairwise distinct cords in γ−1(v). For all i ∈ 〈3〉, let vi ∈ ch(v) such that vi lies on
the path from v to xi in T , and let wi ∈ ch(v) such that wi lies on the path from v
to yi in T . Then, by Lemma 3.2, there exists unique pairs (s1, t1) ∈ L(v1) × L(v2),
(s2, t2) ∈ L(w2) × L(w3), and (s3, t3) ∈ L(w1) × L(v3) such that, for all i ∈ 〈3〉, we
have siti ∈ L. Since for all such i, we also have that xi ∈ L(vi) and yi ∈ L(wi) and,
by Proposition 3.3, the graphs Γvi(L) and Γwi(L) are connected, it follows that there
exists a cycle Cv in Γ(L) that contains, for all i ∈ 〈3〉, the cords ci and siti in its edge
set.

It remains to show that for every edge c ∈ E(Cv), we have that γ(c) either equals
v or is a descendant of v. Suppose c ∈ E(Cv). If there exists some i ∈ 〈3〉 such
that c ∈ {ci, siti}, then γ(c) = v clearly holds. So assume that this is not the case.
Without loss of generality, we may assume that c lies on the path P from x1 to s1
in Cv that does not cross y1. Since P is a subgraph of Γv1(L) and, as implied by
Proposition 3.3, every edge in Γv1(L) is colored via γ with a descendant of v1, it
follows that γ(c) is a descendant of v.

To establish Theorem 5.2, we require further terminology. Suppose T is a
nondegenerate X-tree, L is a minimal topological lasso for T , and v ∈ V̊ (T ). Then we
denote by HL(v) the induced subgraph of Γ(L) whose vertex set is the set of all x ∈ X
that are incident with some cord c ∈ L for which γ(L,T )(c) = v holds. Moreover, we
denote the set of cut vertices of a connected block graph G by Cut(G). Note that in
every connected block graph G there must exist a vertex that is contained in at most
one block of G. This last observation is central to the proof of Theorem 5.2(ii).

Theorem 5.2. Suppose T is a nondegenerate X-tree and L is a minimal topo-
logical lasso for T . Then there exists an ordering σ : v0, v1, . . . , vk = ρT , k = |V̊ (T )|,
of V̊ (T ) such that the following hold:

(i) There exists a sequence Lv0 = L,Lv1 , . . . ,L† = Lvk of minimal topological
lassos Lvi for T , i ∈ 〈k〉, such that for all such i, we have the following:
(L1) Lvi is obtained from Lvi−1 via a repeated application of rule (R), and

HLvi
(vi) is a maximal clique in Γ(Lvi).

(L2) For all j ∈ 〈i− 1〉, HLvi
(vj) is a maximal clique in Γ(Lvi ).

In particular, Γ(L†) is a block graph.
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(ii) If Γ(L) is a block graph, then there exists a sequence Lv0 = L,Lv1 , . . . ,L∗ =
Lvk of minimal topological lassos Lvi for T , i ∈ 〈k〉, such that for all such i,
we have the following:
(L1′) Lvi is obtained from Lvi−1 via a repeated application of rule (R), and

Γ(Lvi) is a block graph.
(L2′) Γvi(Lvi) is a claw-free block graph.
In particular, L∗ is a distinguished minimal topological lasso for T .

Proof. For all i ∈ 〈k〉, put Li = Lvi and γi = γ(Li,T ). Clearly, if L is a distin-
guished minimal topological lasso, then the sequences as described in (i) and (ii) exist.
So assume that this is not the case. For all v ∈ V̊ (T ), let l(v) denote the length of
the path from the root ρT of T to v, and put h = maxv∈V̊ (T ){l(v)}. Note that h ≥ 1

as T is nondegenerate. For all i ∈ 〈h〉, let V (i) ⊆ V̊ (T ) denote the set of all interior
vertices v of T such that l(v) = i. Let σ denote an ordering of the vertices in V̊ (T )
such that the vertices in V (h) come first (in any order), then (again in any order) the
vertices in V (h− 1), and so on, with the last vertex in that ordering being ρT .

(i) Suppose v ∈ V̊ (T ). If v ∈ V (h), then we may assume without loss of generality
that v = v1. Then v1 is the parent of a pseudo-cherry of T , and so Theorem 3.1 implies
that HL(v1) is a maximal clique in Γ(L). Thus, L1 := L is a minimal topological lasso
for T that satisfies properties (L1) and (L2).

So assume that v 	∈ V (h). Then there exists some |V (h)| < i ≤ k such that v = vi.
Without loss of generality, we may assume that vi is such that, for all j ∈ 〈i − 1〉,
Lj is a minimal topological lasso for T that satisfies properties (L1) and (L2). If vi
is the parent of a pseudo-cherry of T , then arguments similar to those above imply
that Li := Li−1 is a minimal topological lasso for T that satisfies properties (L1) and
(L2). So assume that vi is not the parent of a pseudo-cherry of T . We distinguish
between the cases that HLi−1(v) is a maximal clique in Li−1 and that it is not.

Assume first that HLi−1(v) is a maximal clique in Li−1. Then since Li−1 is a
minimal topological lasso for T that satisfies properties (L1) and (L2), it is easy to see
that Li := Li−1 is also a minimal topological lasso for T that satisfies properties (L1)
and (L2). To see that HLi−1(v) is a maximal clique in Li−1, let e1 = x1y1, e2 = x2y2,
and e3 = x3y3 denote three pairwise distinct edges in HLi−1(v). For all i ∈ 〈3〉, put
zi = lca(xi, yi). By Lemma 5.1 there exists a cycle Cv in HLi−1(v) that contains
{e1, e2, e3} in its edge set. A repeated application of rule (R) to Li−1 implies that,
for all i ∈ 〈3〉, we can find elements x′i ∈ L(zi) such that

L′
i−1 := Li−1 − {x1y1, x2y2, x3y3} ∪ {x′1x′2, x′2x′3, x′3x′1}

is a minimal topological lasso for T and the cords x′1x
′
2, x

′
2x

′
3, and x′3x

′
1 form a

3-clique in HL′
i−1

(v). Transforming L′
i−1 further by processing any three pairwise

distinct edges in HL′
i−1

(v) that do not already form a 3-clique in the same way and

so on eventually yields a minimal topological lasso Li for T such that HLi(v) is a
maximal clique in Γ(Li). Thus, property (L1) is satisfied by Li. Since only edges e of
Γ(Li−1) have been modified by the above transformation for which γi−1(e) = v holds
and, by assumption, Li−1 satisfies property (L2), it follows that Li also satisfies that
property.

Processing the successor of vi in σ in the same way and so on yields a minimal
topological lasso L† for T for which Γ(L†) is a block graph. This completes the proof
of (i).

(ii) For all i ∈ 〈k〉 and all vertices w ∈ V̊ (T ), put Biw = BLi
w . Suppose that

v ∈ V̊ (T ). If v ∈ V (h), then we may assume without loss of generality that v =
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v1. Then v is the parent of a pseudo-cherry of T , and so L1 := L clearly satisfies
properties (L1’) and (L2’).

So assume that v 	∈ V (h). Then there exists some |V (h)| < i ≤ k such that
v = vi. Without loss of generality, we may assume that vi is minimal; that is, for
all j ∈ 〈i − 1〉, we have that Lj is a minimal topological lasso for T that satisfies
properties (L1’) and (L2’). If v is the parent of a pseudo-cherry of T , then arguments
similar to those above imply that Li := Li−1 satisfies properties (L1’) and (L2’). So
assume that v is not the parent of a pseudo-cherry of T . If Γv(Li−1) is a claw-free
block graph, then setting Li := Li−1 implies that Li satisfies properties (L1’) and
(L2’).

So assume that this is not the case, that is, that there exists a vertex x ∈ L(v) that,
in addition to being a vertex in the block Bi−1

v of Γ(Li−1) and thus of Γv(Li−1), is also
a vertex in l ≥ 2 further blocks B1, . . . , Bl of Γv(Li−1). Clearly, B1, . . . , Bl are also
blocks in Γ(L). Then there exists a path P from v to x in T that contains, for all l ≥ 2,
the vertices ψ−1(B1), . . . , ψ

−1(Bl) in its vertex set, where ψ : V̊ (T ) → Block(Γ(L))
is the map from Corollary 4.3. Let w ∈ ch(v) denote the child of v that lies on
P . Note that since l ≥ 2, we have w ∈ V̊ (T ). Without loss of generality, we may
assume that w = vi−1. The fact that Γvi−1(Li−1) is connected combined with the
fact that Γ(Li−1) is a block graph and so Γvi−1(Li−1) is also a block graph implies,
in view of the observation preceding Theorem 5.2, that we may choose some y ∈
L(vi−1)−Cut(Γvi−1(Li−1)). Then y is a vertex in precisely one block of Γvi−1(Li−1)
and thus can be a vertex in at most two blocks of Γv(Li−1). Consequently, y 	= x.
Applying rule (R) repeatedly to Li−1, let Li denote the set of cords obtained from Li−1

by replacing, for all i ≤ q ≤ k, every cord of Li−1 of the form xa with a ∈ V (Bi−1
vq ) by

the cord ya. Then, by construction, Li is a minimal topological lasso for T and Γ(Li)
is a block graph. Hence, Li satisfies property (L1’). Moreover, since Γvi−1(Li−1) is
claw-free, it follows that Li satisfies property (L2’), too.

Applying the above arguments to the successor of vi in σ and so on eventually
yields a minimal topological lasso Lk for T that satisfies properties (L1’) and (L2’).
Thus, Γvk(Lk) is a claw-free block graph, and so L∗ is a distinguished minimal topo-
logical lasso for T .

To illustrate Theorem 5.2, letX = {a, . . . , f}, and consider theX-tree T ′ depicted
in Figure 2(iii) along with the set L = {ad, ec, fa, ef, cd, bd} of cords of X which we
depict in Figure 3(i) in the form of Γ(L). Using, for example, Theorem 3.1, it is

a

df

e

c
b

(ii)

Γ(L †) :a

d

ce

f
b

(i)

Γ(L ) : a

b

d

c

f

e

(iii)

Γ(L ∗) :

Fig. 3. For X = {a, . . . , f} and the X-tree T ′ pictured in Figure 2(iii), we depict in (i) the
minimal topological lasso L = {ad, ec, fa, fe, cd, bd} for T ′ in the form of Γ(L). In the same way
as in (i), we depict in (ii) the transformed minimal topological lasso L† for T ′ such that Γ(L†) is
a block graph, and we depict in (iii) the distinguished minimal topological lasso L∗ for T ′ obtained
from L†; see text for details.
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straightforward to check that L is a minimal topological lasso for T ′, but Γ(L) is
clearly not a block graph, and so L is also not distinguished. To transform L into
a distinguished minimal topological lasso L∗ for T ′ as described in Theorem 5.2,
consider the ordering v1 = lca(e, f), v2 = lca(c, d), v3 = lca(a, d), v4 = ρT ′ of the
interior vertices of T ′. For all i ∈ 〈4〉, put Li = Lvi . Then we first transform L into a
minimal topological lasso L† for T ′ as described in Theorem 5.2(i). For this we have
L = L0 = L1 = L2, and L3 is obtained from L2 by first applying rule (R) to the
cords ec, cd ∈ L2, resulting in the deletion of the cord ce from L2 and the addition
of the cord ed to L2, and then applying rule (R) to the cords fe, ed ∈ L2, resulting
in the deletion of the cord ed from L2 and the addition of the cord fd to L2. The
graph Γ(L3) is depicted in Figure 3(ii). Note that L3 = L† and that, although Γ(L†)
is clearly a block graph, L† is not distinguished.

To transform L† into a distinguished minimal topological lasso L∗ for T ′, we next
apply Theorem 5.2(ii). For this, we need only consider the vertex d of Γ(L†); that
is, we have L† = L0 = L1 = L2 = L3. Since the child of v4 on the path from v4 to
d is v3, we may choose a as the element y in L(v3) − Cut(Γv3(L3)). Then applying
rule (R) to the cords bd, da ∈ L3 implies the deletion of bd from L3 and the addition
of the cord ab to L3. The resulting minimal topological lasso for T ′ is L∗, which we
depict in Figure 3(iii) in the form of Γ(L∗).

We conclude this section by remarking in passing that, combined with Theo-
rem 3.1, which implies that any minimum-sized topological lasso for an X-tree T
must have

∑
v∈V̊ (T )

(|ch(v)|
2

)
cords, Theorem 5.2 and Corollary 4.3 imply that the

minimum-sized topological lassos of an X-tree T are precisely the minimal topologi-
cal lassos of T .

6. A sufficient condition for a minimal topological lasso to be distin-
guished. In this section, we turn our attention toward presenting a sufficient condi-
tion for a minimal topological lasso for some X-tree T to be a distinguished minimal
topological lasso for T . In the next section, we will show that this condition is also
necessary.

We start our discussion by introducing some more terminology. Suppose T is
a nondegenerate X-tree. Put cl(T ) = {L(v) : v ∈ V̊ (T ) − {ρT}}, and note that
cl(T ) 	= ∅. For all A ∈ cl(T ), put clA(T ) := {B ∈ cl(T ) : B � A}, and note
that a vertex v ∈ V̊ (T ) − {ρT} is the parent of a pseudo-cherry of T if and only if
clL(v)(T ) = ∅. For σ a total ordering of X and minσ(C) denoting the minimal element
of a nonempty subset C of X , we call a map of the form

f : cl(T ) → X : A �→
{

minσ(A− {f(B) : B ∈ clA(T )}) if clA(T ) 	= ∅,
minσ(A) else

a cluster marker map (for T and σ). Note that since |V̊ (T ′)| ≤ |X | − 1 holds for all
X-trees T ′ and so A − {f(B) : B ∈ clA(T )} 	= ∅ must hold for all A ∈ cl(T ) with
clA(T ) 	= ∅, it follows that f is well defined. Also note that if v ∈ V̊ (T ) is the parent
of a pseudo-cherry C of T , then f(L(v)) = f(C) = minσ(C) as clC(T ) = ∅ in this
case. Finally, note that it is easy to see that a cluster marker map must be injective
but need not be surjective.

We are now ready to present a construction of a distinguished minimal topo-
logical lasso which underpins the aforementioned sufficient condition that a minimal
topological lasso must satisfy to be distinguished. Suppose that T is a nondegenerate
X-tree, that σ is a total ordering of X , and that f : cl(T ) → X is a cluster marker
map for T and σ. We first associate to every interior vertex v ∈ V̊ (T ) a set L(T,f)(v)
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defined as follows. Let l1, . . . , lkv denote the children of v that are leaves of T , and
let v1, . . . , vpv denote the children of v that are also interior vertices of T . Note that

kv = 0 or pv = 0 might hold but not both. Put
(∅
2

)
=

(〈1〉
2

)
= ∅. Then we set

L(T,f)(v) :=
⋃

{i,j}∈(〈kv〉
2 )

{lilj}∪
⋃

{i,j}∈(〈pv〉
2 )

{f(L(vi))f(L(vj))}∪
⋃

i∈〈kv〉, j∈〈pv〉
{lif(L(vj))}.

Note that |L(T,f)(v)| ≥ 1 must hold for all v ∈ V̊ (T ). Finally, we set

L(T,f) :=
⋃

v∈V̊ (T )

L(T,f)(v).

To illustrate these definitions, consider the X = {a, . . . , f}-tree T ′ depicted in
Figure 2(iii). Let σ denote the lexicographic ordering of the elements in X . Then the
map f : cl(T ′) → X defined by setting

f({c, d}) = c, f({e, f}) = e, and f(X − {b}) = a

is a cluster marker map for T ′ and σ, and L(T,f) (or more precisely the graph
Γ(L(T ′,f))) is depicted in Figure 2(i).

To help establish Theorem 6.3, we require some intermediate results which are of
interest in their own right.

Lemma 6.1. Suppose T is a nondegenerate X-tree, σ is a total ordering of X,
and f : cl(T ) → X is a cluster marker map for T and σ. Then the following hold:

(i) L(T,f) is a minimal topological lasso for T .
(ii) Γ(L(T,f)) is connected.
(iii) If v and w are distinct interior vertices of T , then |

⋃
L(T,f)(v)∩

⋃
L(T,f)(w)| ≤

1.
(iv) Suppose x ∈ X. Then there exist distinct vertices v, w ∈ V̊ (T ) such that

x ∈
⋃
L(T,f)(v)∩

⋃
L(T,f)(w) if and only if there exists some u ∈ V̊ (T )−{ρT}

such that x = f(L(u)).
Proof. For all v ∈ V̊ (T ), set L(v) = L(T,f)(v).

(i) This is an immediate consequence of Theorem 3.1 and, for v ∈ V̊ (T ), the
respective definitions of the set L(v) and the graph G(L′, v), where L′ is a set of cords
of X .

(ii) This is an immediate consequence of Proposition 3.3 combined with
Lemma 6.1(i).

(iii) This is an immediate consequence of the fact that, for all vertices u ∈ V̊ (T )
and all x, y ∈

⋃
L(u) distinct, we have u = lca(x, y).

(iv) Let x ∈ X , and assume for contradiction that there exist distinct vertices
v, w ∈ V̊ (T ) such that x ∈

⋃
L(v)∩

⋃
L(w) but x 	= f(LT (u)) for all u ∈ V̊ (T )−{ρT}.

Then x must be a leaf of T that is simultaneously adjacent with v and w, which is
impossible. Thus, there must exist some u ∈ V̊ (T ) such that x = f(L(u)).

Conversely, assume that x = f(L(u)) for some u ∈ V̊ (T )−{ρT }. Then x ∈ L(u).
Let w denote the parent of x on the path from u to x. Then x ∈

⋃
L(w). Let v

denote the parent of u in T which exists since u 	= ρT . Then x = f(L(u)) ∈
⋃
L(v),

and so x ∈
⋃
L(v) ∩

⋃
L(w), as required.

Note that u ∈ {v, w} need not hold for u, v, and w as in the statement of
Lemma 6.1(iv). Indeed, suppose T is the X = {a, b, c, d}-tree with unique cherry
{a, b} and d adjacent with the root ρT of T . Let σ denote the lexicographic ordering
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of X , and let f : cl(T ) → X be (the unique) cluster marker map for T and σ.
Set x = b, v = lca(a, b), w = ρT . Then x = f(L(u)), where u = lca(a, c) and
x ∈

⋃
L(v) ∩

⋃
L(w) but u 	∈ {v, w}.

Proposition 6.2. Suppose T is a nondegenerate X-tree, σ is a total ordering
of X, and f : cl(T ) → X is a cluster marker map for T and σ. Then Γ(L(T,f)) is a

connected block graph, and every block is of the form Γ(L(T,f)(v)) for some v ∈ V̊ (T ).

Proof. Put L = L(T,f), and, for all v ∈ V̊ (T ), put L(v) = L(T,f)(v). We claim
that if C is a cycle in Γ(L) of length at least three, then there must exist some
v ∈ V̊ (T ) such that C is contained in Γ(L(v)). Assume to the contrary that this is
not the case; that is, there exists some cycle C : u1, u2, . . . , ul, ul+1 = u1, l ≥ 3, in
Γ(L) such that, for all v ∈ V̊ (T ), we have that C is not a cycle in Γ(L(v)). Without
loss of generality, we may assume that C is of minimal length. For all i ∈ 〈l〉, put
vi = lcaT (ui, ui+1). Then, by the construction of Γ(L), we have for all such i that
uiui+1 is an edge in Γ(L(vi)) and, by the minimality of C, that vi 	= vj for all i, j ∈ 〈l〉
distinct. Put Y = V (C), and let T ′ = T |Y denote the Y -tree obtained by restricting
T to Y . Note that lcaT (ui, ui+1) = lcaT ′(ui, ui+1) holds for all i ∈ 〈l〉. Thus, the map
φ : E(C) → V̊ (T ′) defined by putting uiui+1 �→ lcaT (ui, ui+1), i ∈ 〈l〉, is well defined.
Since |E(C)| = l and for any finite set Z with three or more elements a Z-tree has at
most |Z| − 1 interior vertices, it follows that there exist i, j ∈ 〈l〉 distinct such that
φ(ui, ui+1) = φ(uj , uj+1). Consequently, vi = lcaT (ui, ui+1) = lcaT (uj , uj+1) = vj ,
which is impossible and thus proves the claim. Combined with Lemma 6.1(ii) and
(iii), it follows that Γ(L) is a connected block graph. That the blocks of Γ(L) are of
the required form is an immediate consequence of the construction of Γ(L).

To be able to establish that L(T,f)(v) is indeed a distinguished minimal topological
lasso for T and f as above, we require a further concept. Suppose A,B ⊆ X are
two distinct nonempty subsets of X . Then A and B are said to be compatible if
A ∩ B ∈ {∅, A,B}. As is well known (see, e.g., [10, 28]), for any X-tree T ′ and any
two vertices v, w ∈ V (T ′) the subsets L(v) and L(w) of X are compatible.

Theorem 6.3. Suppose T is a nondegenerate X-tree, σ is a total ordering of
X, and f : cl(T ) → X is a cluster marker map for T and σ. Then L(T,f) is a
distinguished minimal topological lasso for T .

Proof. Put L = L(T,f), and, for all v ∈ V̊ (T ), put L(v) = L(T,f)(v). In view of
Proposition 6.2 and Lemma 6.1(i), it suffices to show that Γ(L) is claw-free. Assume to
the contrary that this is not the case and that there exists some x ∈ X that is contained
in the vertex set of m ≥ 3 blocks A1, . . . , Am of Γ(L). Then, by Proposition 6.2, there
exist distinct interior vertices v1, . . . , vm of T such that, for all i ∈ 〈m〉, we have
V (Ai) =

⋃
L(vi) ⊆ L(vi). Since for all v, w ∈ V (T ) distinct, the sets L(v) and L(w)

are compatible, it follows that there exists a path P from ρT to x that contains the
vertices v1, . . . , vm in its vertex set. Without loss of generality, we may assume that
m = 3 and that, starting at ρT and moving along P , the vertex v1 is encountered
first, and then v2 is encountered, followed by v3. Note that clL(vi)(T ) 	= ∅ for i = 1, 2.
Since T is a tree and so x can be adjacent neither with v1 nor with v2, it follows that
there must exist for i = 1, 2 some Bi ∈ clL(vi)(T ) such that x = f(Bi). But this is
impossible since B2 ∈ clL(v1)(T ), and so f(B1) 	= f(B2) as f is a cluster marker map
for T and σ.

7. Characterizing distinguished minimal topological lassos. In this sec-
tion, we establish the converse of Theorem 6.3 which allows us to characterize dis-
tinguished minimal topological lassos of nondegenerate X-trees. We start with a
well-known construction for associating an unrooted tree to a connected block graph
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(see, e.g, [8]). Suppose that G is a connected block graph. Then we denote by TG the
(unrooted) tree associated to G whose vertex set is Cut(G) ∪ Block(G) and whose
edges are of the form {a,B}, where a ∈ Cut(G), B ∈ Block(G), and a ∈ B. Note
that if a vertex v ∈ V (TG) is a leaf of TG, then ({v}, ∅) ∈ Block(G).

Suppose T is a nondegenerateX-tree and L is a distinguished minimal topological
lasso for T . Let v denote an interior vertex of T whose children are v1 . . . , vl, where
l = |ch(v)|. Then Corollary 4.3 combined with Proposition 4.1 implies that for all
i ∈ 〈l〉 there exists a unique leaf xi ∈ L(vi) of T such that, for all i, j ∈ 〈l〉 distinct,
xixj ∈ L and {x1, . . . , xl} = V (Bv). Since Γ(L) is claw-free, every vertex of Bv is
contained in at most one further block of Γ(L). Thus, if there exists some w ∈ V (Bv)
such that w ∈ V (B) holds too for some block B ∈ Block(Γ(L)) distinct from Bv, then
w must be a cut vertex of Γ(L). For every vertex v′ ∈ V̊ (T ) that is the child of some
vertex v ∈ V̊ (T ), we denote the unique element x ∈ L(v′) contained in V (Bv) by cBv′
in case x ∈ Cut(Γ(L)). Note that it is not difficult to observe that, in the tree TΓ(L),
the vertex cBv′ is the vertex adjacent with Bv that lies on the path from Bv to Bv′ .

The following result lies at the heart of Theorem 7.2 and establishes a crucial
relationship between the nonroot interior vertices of T and the cut vertices of Γ(L).

Lemma 7.1. Suppose T is an X-tree and L is a distinguished minimal topological
lasso for T . Then the map

θ : V̊ (T )− {ρT} → Cut(Γ(L)) : v �→ cBv

is bijective.
Proof. Clearly, θ is well defined and injective. To see that θ is bijective, let

T−
Γ(L) denote the tree obtained from TΓ(L) by suppressing all vertices that were con-

tained in Cut(Γ(L)). Then Block(Γ(L)) = V (T−
Γ(L)). Corollary 4.3 implies that

|Block(Γ(L))| = |V̊ (T )| as Γ(L) is a block graph. Since Γ(L) is claw-free, we clearly
also have |Cut(Γ(L))| = |E(T−

Γ(L))|. Combined with the fact that |V (T ′)| = |E(T ′)|+1

holds for every tree T ′, it follows that |Cut(Γ(L))| = |Block(Γ(L))|−1 = |V̊ (T )|−1 =
|V̊ (T )− {ρT }|. Thus, θ is bijective.

Armed with this result, we are now ready to establish the converse of Theorem 6.3,
which yields the aforementioned characterization of distinguished minimal topological
lassos of nondegenerate X-trees.

Theorem 7.2. Suppose T is a nondegenerate X-tree and L is a set of cords of X.
Then L is a distinguished minimal topological lasso for T if and only if there exists a
total ordering σ of X and a cluster marker map f for T and σ such that L(T,f) = L.

Proof. Assume first that σ is some total ordering of X and that f : cl(T ) → X is
a cluster marker map for T and σ. Then, by Theorem 6.3, L(T,f) is a distinguished
minimal topological lasso for T .

Conversely, assume that L is a distinguished minimal topological lasso for T , and
consider an embedding of T in the plane. By abuse of terminology, we will refer to this
embedding of T also as T . We start with defining a total ordering σ of X . To this end,
we first define a map t : V̊ (T )−{ρT } → N by setting, for all v ∈ V̊ (T )−{ρT }, t(v) to
be the length of the path from ρT and v. Put h = max{t(v) : v ∈ V̊ (T )−{ρT}}, and
note that h ≥ 1 as T is nondegenerate. Starting at the leftmost interior vertex v of T
for which t(v) = h holds and moving, for all l ∈ 〈h〉, from left to right, we enumerate
all interior vertices of T but the root. We next put n = |X | and X = 〈n〉 and relabel
the elements in X such that when traversing the circular ordering induced by T on
X ∪ {ρT } in a counterclockwise fashion we have ρT , 1, 2, 3, . . . , n, ρT . To reflect this
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with regard to L, we relabel the elements of the cords in L accordingly and denote
the resulting distinguished minimal topological lasso for T also by L.

By Lemma 7.1, the map θ : V̊ (T )− {ρT } → Cut(Γ(L)) defined in that lemma is
bijective. Put m = |Cut(Γ(L))|, and let v1, v2, . . . , vm denote the enumeration of the
vertices in V̊ (T ) − {ρT } obtained above. Also, set Y = X − {θ(vi) : i ∈ 〈m〉}. Let
y1, y2, . . . , yl denote an arbitrary but fixed total ordering of the elements of Y where
l = |Y |. Then we define σ to be the total ordering of X given by

σ : θ(v1), θ(v2), . . . , θ(vi−1), θ(vi), θ(vi+1), , . . . , θ(vm), y1, y2, . . . , yl,

where θ(v1) is the minimal element and yl is the maximal element. Note that if
v ∈ V̊ (T ) is the parent of a pseudo-cherry C of T , then θ(v) = minσ C.

We briefly interrupt the proof of the theorem to illustrate these definitions by
means of an example. Put X = 〈13〉, and consider theX-tree T depicted in Figure 4(i)
(ignoring the labeling of the interior vertices for the moment) and the distinguished
minimal topological lasso L for T pictured in the form of Γ(L) in Figure 4(ii). Then the
labeling of the interior vertices of T gives the enumeration of those vertices considered
in the proof of Theorem 7.2. The total ordering σ of X restricted to the elements in
{θ(v1), . . . , θ(v6)} is 3, 5, 12, 1, 10, 7.

v4
v3

T : ρT

v6

97 8 10 11 13121 2 4 5 6

v1 v2

v5

(i)
3

3
1

8 9
12

11
107

5
6

2

13
4

(ii)

Γ(L ):

Fig. 4. For X = 〈13〉 and the depicted X-tree T , the enumeration of the interior vertices of T
considered in the proof of Theorem 7.2 is indicated in (i). With regard to this enumeration and the
distinguished minimal topological lasso L for T pictured in the form of Γ(L) in (ii), the total ordering
σ of X considered in that proof restricted to the elements in {θ(v1), . . . , θ(v6)} is 3, 5, 12, 1, 10, 7.

Returning to the proof of the theorem, we claim that the map f : cl(T ) → X
given, for all A ∈ cl(T ), by setting f(A) = θ(lca(A)) is a cluster marker map for
T . Indeed, suppose A ∈ cl(T ). Then θ(lca(A)) = cBlca(A)

∈ L(lca(A)) holds by
construction. We distinguish between the cases that clA(T ) 	= ∅ and clA(T ) = ∅.
If clA(T ) 	= ∅, then since θ is bijective, it follows that θ(lca(A)) 	= θ(v) holds for all
descendants v ∈ V̊ (T ) of lca(A). Combined with the definition of σ, we obtain f(A) =
θ(lca(A)) = minσ(A−{θ(lca(D)) : D ∈ clA(T )}) = minσ(A−{f(D) : D ∈ clA(T )}),
as required. If clA(T ) = ∅, then, as was observed above, f(A) = θ(lca(A)) = minσ A.
Thus, f is a cluster marker map for T and σ, as claimed.

It remains to show that L(T,f) = L. To see this, note first that, by Theorem 6.3,
L(T,f) is a distinguished minimal topological lasso for T . Since Lemma 3.2 implies
that any two minimal topological lassos for T must be of the same size and thus
|L(T,f)| = |L| holds, it therefore suffices to show that L ⊆ L(T,f). Suppose a, b ∈ X

are distinct such that ab ∈ L. Then there exists some interior vertex v ∈ V̊ (T ) such
that v = lca(a, b). Hence, a, b ∈ V (Bv). We claim that ab ∈ L(T,f)(v). To establish
this claim, we distinguish between the cases that (i) a ∈ ch(v) and (ii) a 	∈ ch(v).

Assume first that case (i) holds, that is, that a is a child of v. If b ∈ ch(v),
then the claim is an immediate consequence of the definition of L(T,f)(v). So assume
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that b 	∈ ch(v). Let v′ ∈ V̊ (T ) denote the child of v for which b ∈ L(v) holds. Then
b = cBv′ = θ(v′) = f(L(v′)) follows by the observation preceding Lemma 7.1 combined
with the fact that b ∈ V (Bv). Hence, ab = af(L(v′)) ∈ L(T,f)(v), as claimed.

Assume next that case (ii) holds, that is, that a is not a child of v. In view of
the previous subcase, it suffices to consider the case that b 	∈ ch(v). Let v′, v′′ ∈
V̊ (T ) denote the children of v such that a ∈ L(v′) and b ∈ L(v′′). Then, again
by the observation preceding Lemma 7.1 combined with the fact that a, b ∈ V (Bv),
we have a = cBv′ = θ(v′) = f(L(v′)) and b = cBv′′ = θ(v′′) = f(L(v′′)), and so
ab = f(L(v′))f(L(v′′)) ∈ L(T,f)(v) follows, as claimed. This concludes the proof of
the claim and thus the proof of the theorem.

We now take a brief break from our study of distinguished minimal topological
lassos to point out a sufficient condition for a set of cords to be a strong lasso for
some X-tree which is implied by Theorem 7.2. To make this more precise, we need to
introduce some more terminology from [19]. Suppose T is an X-tree and L is a set of
cords of X . Then L is called an equidistant lasso for T if, for all equidistant, proper
edge weightings ω and ω′ of T , we have that ω = ω′ holds whenever (T, ω) and (T, ω′)
are L-isometric. Moreover, L is called a strong lasso for T if L is simultaneously
an equidistant and a topological lasso for T (see [11] for more on such lassos in the
unrooted case).

Like a topological lasso for an X-tree T , an equidistant lasso L for T can also
be characterized in terms of a property of the child-edge graph G(L, v) associated
to T and L where v ∈ V̊ (T ). Namely, a set L of cords of X is an equidistant lasso
for an X-tree T if and only if, for every vertex v ∈ V̊ (T ), the graph G(L, v) has
at least one edge (see [19, Theorem 6.1]). Since for σ some total ordering of X and
f : V̊ (T )−{ρT} → X a cluster marker map for T and σ the graphs G(L(T,f), v) clearly

satisfy this property for all v ∈ V̊ (T ), it follows that L(T,f) is also an equidistant lasso
for T and thus a strong lasso for T . Defining a strong lasso L of an X-tree to be
minimal in analogy to when a topological lasso is minimal, Theorem 7.2 implies the
following corollary.

Corollary 7.3. Suppose T is a nondegenerate X-tree, L is a set of cords of X,
σ is a total ordering of X, and f : cl(T ) → X is a cluster marker map for T and σ.
Then L(T,f) is a minimal strong lasso for T .

8. Heredity of distinguished minimal topological lassos. In this section,
we turn our attention to the problems of characterizing when a distinguished minimal
topological lasso of anX-tree T induces a distinguished minimal topological lasso for a
subtree of T and, conversely when distinguished minimal topological lassos of X-trees
can be combined to form a distinguished minimal topological lasso of a supertree
for those trees (see, e.g., [3] for more on such trees). This will also allow us to
partially answer the rooted analogue of a question raised in [11] for supertrees within
the unrooted framework. To make this more precise, we require further terminology.
Suppose L is a set of cords of X and Y ⊆ X is a nonempty subset. Then we set

L|Y = {ab ∈ L : a, b ∈ Y }.

Clearly, Γ(L|Y ) is the subgraph of Γ(L) induced by Y but Y =
⋃
L|Y need not

hold. Moreover, if L is a minimal topological lasso for an X-tree T and |Y | ≥ 3 such
that every interior vertex of T is also an interior vertex of T |Y , then Theorem 3.1
implies that L|Y is a minimal topological lasso for T |Y . In particular, Γ(L|Y ) must
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be connected in this case. The next result is a strengthening of this observation.
Theorem 8.1. Suppose T is an X-tree, L is a distinguished minimal topological

lasso for T , and Y ⊆ X is a subset of size at least three. Then L|Y is a distinguished
minimal topological lasso for T |Y if and only if Γ(L|Y ) is connected.

Proof. Assume first that L|Y is a distinguished minimal topological lasso for T |Y .
Then, by Proposition 3.3, Γ(L|Y ) is connected.

Conversely, assume that Γ(L|Y ) is connected. Then the statement clearly holds
if T is the star-tree on X . So assume that T is nondegenerate. Let Y ⊆ X be of size
at least three, and assume first that T |Y is the star-tree on Y . We claim that Γ(L|Y )
is a clique. Assume to the contrary that this is not the case, that is, that there exist
elements y, y′ ∈ Y distinct such that yy′ 	∈ L. Since Γ(L|Y ) is connected, there must
exist a path P : x1 = y, x2, . . . , xl = y′, l ≥ 2, in Γ(L|Y ) from y to y′. Since the vertex
set of Γ(L|Y ) is Y , it follows that X ′ = {x1, x2, . . . , xl} ⊆ Y . Combined with the fact
that lcaT (x, x

′) = lcaT (Y ) holds for all x, x′ ∈ X ′ distinct as T |Y is a star-tree on
Y , we obtain X ′ ⊆ V (BlcaT (Y )). Thus, yy′ ∈ L, which is impossible and thus proves
the claim. That L|Y is a distinguished minimal topological lasso for T |Y is a trivial
consequence.

So assume that T |Y is nondegenerate. Since L is a distinguished minimal topo-
logical lasso for T , Theorem 7.2 implies that there exists a total ordering ω of X and
a cluster marker map fω : cl(T ) → X for T and ω such that L = L(T,fω). Moreover,
Lemma 6.1(iv) implies that the cut vertices of Γ(L) are of the form fω(LT (v)), where
v ∈ V̊ (T ).

To see that L|Y is a distinguished minimal topological lasso for T |Y and some
total ordering of Y , note first that the restriction σ of ω to Y induces a total ordering
of Y . Furthermore, the aforementioned form of the cut vertices of Γ(L) combined
with the assumption that Γ(L|Y ) is connected implies that, for all A ∈ cl(T ) with
A ∩ Y 	= ∅, we must have fω(A) ∈ Y . For all A ∈ cl(T |Y ) denote by AT the set-
inclusion minimal superset of A contained in cl(T ). Then, since fω is a cluster marker
map for T and ω, it follows that the map

fσ : cl(T |Y ) → Y : A �→ fω(A
T )

is a cluster marker map for T |Y and σ. By Theorem 7.2 it now suffices to establish
that L|Y = L(T |Y ,fσ). Since both L|Y and L(T |Y ,fσ) are minimal topological lassos
for T |Y and so |L|Y | = |L(T |Y ,fσ)| is implied by Lemma 3.2, it suffices to show that
L|Y ⊆ L(T |Y ,fσ).

Suppose ab ∈ L|Y ; that is, ab ∈ L and a, b ∈ Y . Since Y is the leaf set of T |Y ,
there must exist a vertex v ∈ V̊ (T |Y ) such that v = lcaT |Y (a, b). Clearly, v ∈ V̊ (T ).
If a and b are both adjacent with v in T , then a and b are also adjacent with v in
T |Y . Thus ab ∈ L(T |Y ,fσ)(v) in this case. So assume that at least one of a and b is
not adjacent with v in T . Without loss of generality, let a denote that vertex. Then
since ab ∈ L = L(T,fω), it follows that there must exist a unique child v′ ∈ V̊ (T ) of
v such that a ∈ LT (v

′) and a = fω(LT (v
′)). Hence, a ∈ V (Bv) and a cut vertex of

Γ(L).
We claim that v′ ∈ V̊ (T |Y ). Assume for contradiction that v′ 	∈ V̊ (T |Y ). Then

since fω is a cluster marker map for T and ω, it follows that a cannot be a cut
vertex in Γ(L|Y ). Since Γ(L) is a claw-free block graph, no edge in the unique block
B′ ∈ Block(Γ(L))−{Bv} that also contains a in its vertex set can therefore be incident
with a in Γ(L|Y ). Since Γ(L|Y ) is assumed to be connected, it now suffices to show
that there exists some c ∈ Y ∩LT (v′) distinct from a such that every path from c to b
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in Γ(L) crosses a. But this is a consequence of the facts that v is not the parent of a
in T |Y and, as implied by Proposition 3.3, that the subgraph Γv′(L) of Γ(L) induced
by LT (v

′) is the connected component of Γ(L) containing a obtained from Γ(L) by
deleting all edges in Bv that are incident with a. This concludes the proof of the
claim.

To conclude the proof of the theorem, note that if b is adjacent with v in T |Y , then
ab = fω(LT (v

′))b = fω((LT |Y (v
′))T )b = fσ(LT |Y (v

′))b ∈ L(T |Y ,fσ)(v) ⊆ L(T |Y ,fσ). If

b is not adjacent with v in T |Y , then there exists a child v′′ ∈ V̊ (T ) of v such
that b = fω(LT (v

′′)). In view of the previous claim, we have v′′ ∈ V̊ (T |Y ). But now
arguments similar to those used before imply that ab ∈ L(T |Y ,fσ)(v) ⊆ L(T |Y ,fσ).

We now turn our attention to supertrees, which are formally defined as follows.
Suppose T = {T1, . . . , Tl}, l ≥ 1, is a set of Yi-trees Ti with Yi ⊆ X and |Yi| ≥ 3,
i ∈ 〈l〉, and T is an X-tree. Then T is a called a supertree of T if T displays every
tree in T where we say that some X-tree T displays some Y -tree T ′ for Y ⊆ X with
|Y | ≥ 3 if T |Y and T ′ are equivalent. More precisely, we have the following result,
which relies on the fact that in case L is a distinguished minimal topological lasso for
a binary X-tree T , that is, every vertex of T but the leaves has two children, Γ(L)
must be a path. In particular, L induces a total ordering of the elements in X in
this case. For Y ⊆ X a nonempty subset of X , we denote the maximal and minimal
elements in Y with regard to that ordering by minL(Y ) and maxL(Y ), respectively.

Corollary 8.2. Suppose X ′ and X ′′ are two nonempty subsets of X such that
X = X ′∪X ′′ and X ′∩X ′′ 	= ∅ and T ′ and T ′′ are X ′-trees and X ′′-trees, respectively.
Suppose also that L′ and L′′ are distinguished minimal topological lassos for T ′ and T ′′,
respectively, such that L′|X′∩X′′ = L′′|X′∩X′′ and Γ(L′′|X′∩X′′) is connected. If T is a
binary X-tree that displays both T ′ and T ′′, then L = L′∪L′′ is a distinguished minimal
topological lasso for T if and only if minL′(X ′ ∩X ′′) ∈ {minL′(X ′),minL′′(X ′′)} and
maxL′(X ′ ∩X ′′) ∈ {maxL′(X ′),maxL′′(X ′′)}.

Continuing with the assumptions of Corollary 8.2, we also have that if minL′(X ′∩
X ′′) ∈ {minL′(X ′),minL′′(X ′′)} and maxL′(X ′ ∩ X ′′) ∈ {maxL′(X ′),maxL′′(X ′′)}
hold, then L′ ∪ L′′ is a (minimal) strong lasso for T as every minimal topological
lasso for an X-tree is also an equidistant lasso for that tree. However, not all strong
lassos for T are of this form. An example for this is furnished for X ′ = {a, c, d} and
X ′′ = {a, b, c} by the X ′-tree T ′, the X ′′-tree T ′′, and the X ′ ∪ X ′′-tree T depicted
in Figure 5 along with the set L′ = {cd} and L′′ = {ab, bc} of cords of X ′ and X ′′,
respectively. Clearly, T is a supertree of {T ′, T ′′}, and L = L′∪L′′ is a strong lasso for
T , but L′ is not even an equidistant lasso for T ′. Further investigating the interplay
between minimal topological lassos for X-trees and minimal topological lassos for
supertrees that display them might therefore be of interest.

a b c d a c d b ca

T ′′:T : T ′:

Fig. 5. For X′ = {a, c, d} and X′′ = {a, b, c} the X′ ∪X′′-tree T is a supertree for the depicted
X′ and X′′ trees T ′ and T ′′, respectively. Clearly, L′ = {cd} and L′′ = {ab, bc} are sets of cords of
X′ and X′′, respectively, and L = L′ ∪L′′ is a strong lasso for T , but L′ is not even an equidistant
lasso for T ′.

We conclude with returning to Figure 2, which depicts two nonequivalent X-trees
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that are topologically lassoed by the same set L of cords of X . In fact, L is even a
minimal topological lasso for both of them. A better understanding of the relationship
between X-trees that are topologically lassoed by the same set of cords of X might
be an interesting topic of future study.

Acknowledgment. Both authors thank the reviewer for helpful comments.
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[2] J. P. Barthélemy and A. Guénoche, Trees and Proximity Representations, Wiley, New York,
1991.

[3] O. R. P. Bininda-Emonds, Phylogenetic Supertrees: Combining Information to Reveal the
Tree of Life, Springer, New York, 2004.
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à partir des matrices de distances incomplètes, in Proc. 8e Rencontres Soc. Francoph.
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