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A mixed effect model for bivariate meta-analysis of diagnostic
test accuracy studies using a copula representation of the

random effects distribution

Aristidis K. Nikoloulopoulos∗

Abstract

Diagnostic test accuracy studies typically report the number of true positives, false positives,
true negatives and false negatives. There usually exists a negative association between the num-
ber of true positives and true negatives, because studies that adopt less stringent criterion for
declaring a test positive invoke higher sensitivities and lower specificities. A generalized lin-
ear mixed model (GLMM) is currently recommended to synthesize diagnostic test accuracy
studies. We propose a copula mixed model for bivariate meta-analysis of diagnostic test ac-
curacy studies. Our general model includes the GLMM as a special case and can also operate
on the original scale of sensitivity and specificity. Summary receiver operating characteristic
curves are deduced for the proposed model through quantile regression techniques and differ-
ent characterizations of the bivariate random effects distribution. Our general methodology is
demonstrated with an extensive simulation study and illustrated by re-analysing the data of two
published meta-analyses. Our study suggests that there canbe an improvement on GLMM in
fit to data and makes the argument for moving to copula random effects models. Our modelling
framework is implemented in the packageCopulaREMADA within the open source statistical
environmentR.

Keywords:copula models; diagnostic tests; multivariate meta-analysis; random effects mod-
els; SROC, sensitivity/specificity.

1 Introduction

Synthesis of diagnostic test accuracy studies is the most common medical application of multivariate
meta-analysis [21, 30]. Meta-analysis is broadly defined as the quantitative review of the results of
related but independent studies [41]. The purpose of a meta-analysis of diagnostic test accuracy
studies is to combine information over different studies, and provide an integrated analysis that will
have more statistical power to detect an accurate diagnostic test than an analysis based on a single
study. Accurate diagnosis plays an important role in the disease control and prevention [29].

Diagnostic test accuracy studies observe the result of a gold standard procedure which defines
the presence or absence of a decease and the result of a diagnostic test. They typically report the
number of true positives (diseased people correctly diagnosed), false positives (non-diseased people
incorrectly diagnosed as diseased), true negatives and false negatives. As the sensitivity (proportion
of those with the disease) and specificity (proportion of those without the disease) are estimated
from different samples in each study (diseased and non-diseased patients), they can be assumed
to be independent so that the within-study correlations areset to zero [30]. However, there may
be a negative between-studies association which should be accounted for. A negative association
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between these quantities across studies is likely because studies that adopt less stringent criterion
for declaring a test positive invoke higher sensitivities and lower specificities [21].

In situations where studies compare a diagnostic test with its gold standard, heterogeneity arises
between studies due to the differences in disease prevalence, study design as well as laboratory and
other characteristics [7]. Because of this heterogeneity, a generalized linear mixed model (GLMM)
has been recommended in the biostatistics literature [4, 1, 14, 29] to synthesize information. Note in
passing that it is equivalent with the hierarchical summaryreceiver operating characteristic model in
Rutter and Gatsonis [46] for the case without covariates [15, 5]. The GLMM assumes independent
binomial distributions for the true positives and true negatives, conditional on the latent pair of
transformed (via a link function) sensitivity and specificity in each study. The random effects (latent
pair of transformed sensitivity and specificity) are jointly analysed with a bivariate normal (BVN)
distribution.

Chu et al. [7] propose an alternative mixed model which operates on the original scale of
sensitivity and specificity. The random effects follow the bivariate Sarmanov’s [47] family of dis-
tributions with beta margins [28]. However, this random effects distribution has a limited range
of dependence and is inappropriate for general modelling unless the responses are weakly depen-
dent. Hence, this model is too restrictive in the context of diagnostic accuracy studies where strong
(negative) dependence is likely.

We propose a copula mixed model as an extension of the GLMM andmixed model in Chuet
al. [7] by rather using a copula representation of the random effects distribution with normal and
beta margins, respectively. Copulas are a useful way to model multivariate data as they account for
the dependence structure and provide a flexible representation of the multivariate distribution. The
theory and application of copulas have become important in finance, insurance and other areas, in
order to deal with dependence in the joint tails. Here, we indicate that this can also be important in
meta-analysis of diagnostic test accuracy studies. Diagnostic test accuracy studies is a prime area
of application for copula models, as the traditional assumption of multivariate normality is invalid
in this context.

A copula approach for meta-analysis of diagnostic accuracystudies was recently proposed by
Kusset al. [27] who explored the use of a copula model for observed discretevariables (number
of true positives and true negatives) which have beta-binomial margins. This model is actually
an approximation of a copula mixed model with beta margins for the latent pair of sensitivity and
specificity. Although, this approximation can only be used under the unrealistic case that the number
of observations in the respective study group of healthy anddiseased probands is the same for
each study. In real data applications, the number of true positives and negatives do not have a
common support over different studies, hence, one cannot conclude that there is a copula. The
natural replicability is in the random effects probabilityfor sensitivity and specificity.

The remainder of the paper proceeds as follows. Section2 summarizes the standard GLMM
for synthesis of diagnostic test accuracy studies. Section3 has a brief overview of relevant copula
theory and then introduces the copula mixed model for diagnostic test accuracy studies and discusses
its relationship with existing mixed models. Section4 discusses suitable parametric families of
copulas for the copula mixed model, deduces summary receiver operating characteristic curves for
the proposed model through quantile regression techniquesand different characterizations of the
bivariate random effects distribution, and demonstrates that they can show the effect of different
model assumptions. Section5 contains small-sample efficiency calculations to investigate the effect
of misspecifying the random effects distribution on parameter estimators and standard errors and
compare the proposed methodology to existing methods. Section 6 summarizes the assessment
of the proposed models using the Vuong’s statistic [53], which is based on sample difference in
Kullback-Leibler divergence between two models and can be used to differentiate two parametric
models which could be non-nested. Section7 presents applications of our methodology to four data
frames with diagnostic accuracy data from binary test outcomes. We conclude with some discussion
in Section8, followed by a section with the software details and a technical Appendix.

2 The standard GLMM

We first introduce the notation used in this paper. The focus is on two-level (within-study and
between-studies) cluster data. The data are are(yij, nij), i = 1, ..., N, j = 1, 2, wherej is an index
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for the within study measurements andi is an index for the individual studies. The data, for study
i, can be summarized in a2 × 2 table with the number of true positives (yi1), true negatives (yi2),
false negatives (ni1 − yi1), and false positives (ni2 − yi2); see Table1.

Table 1: Data from an individual study in a2× 2 table.

Test Disease (by gold standard)
Yes No

Positive yi1 ni2 − yi2
Negative ni1 − yi1 yi2

Total ni1 ni2

The standard two-level model of meta-analysing diagnostictest accuracy studies [4, 15, 1, 14,
29] lies in the framework of mixed models [8]. The within-study model assumes that the number
of true positivesYi1 and true negativesYi2 are conditionally independent and binomially distributed
given X = x, whereX = (X1,X2) denotes the bivariate latent (random) pair of transformed
sensitivity and specificity. That is

Yi1|X1 = x1 ∼ Binomial
(
ni1, l

−1(x1)
)
;

Yi2|X2 = x2 ∼ Binomial
(
ni2, l

−1(x2)
)
, (1)

wherel(·) is a link function such as the commonly used logit. The between studies model assumes

thatX is BVN distributed with mean vectorµ =
(
l(π1), l(π2)

)⊤
and variance covariance matrix

Σ =

(
σ21 ρσ1σ2

ρσ1σ2 σ22

)
. That is

X ∼ BVN
(
µ,Σ

)
. (2)

The models in (1) and (2) together specify a GLMM with joint likelihood

L(π1, π2, σ1, σ2, ρ) =
N∏

i=1

∫ ∫ 2∏

j=1

g
(
yij;nij , l

−1(xj)
)
φ12(x1, x2;µ,Σ)dx1dx2,

where

g
(
y;n, π

)
=

(
n

y

)
πy(1− π)n−y, y = 0, 1, . . . , n, 0 < π < 1,

is the binomial probability mass function (pmf) andφ12(·;µ,Σ) is the BVN density with mean
vectorµ and variance covariance matrixΣ. The parametersπ1 andπ2 are those of actual interest
denoting the meta-analytic parameters for the sensitivityand specificity, respectively, while the
univariate parametersσ21 andσ22 are of secondary interest denoting the variability betweenstudies.

3 The copula mixed model for diagnostic test accuracy studies

In this section, we introduce the copula mixed model for diagnostic test accuracy studies and discuss
its relationship with existing mixed models. Before that, the first subsection has some background
on copula models. In Subsection3.2 and Subsection3.3 a copula representation of the random
effects distribution with normal and beta margins respectively is presented. We complete this section
with details on maximum likelihood estimation.

3.1 Overview and relevant background for copulas

A copula is a multivariate cumulative distribution function (cdf) with uniformU(0, 1) margins [22,
33, 25]. If F12 is a bivariate cdf with univariate marginsF1, F2, then Sklar’s [51] theorem implies
that there is a copulaC such that

F12(x1, x2) = C
(
F1(x1), F2(x2)

)
. (3)
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The copula is unique ifF1, F2 are continuous, but not if some of theFj have discrete components.
If F12 is continuous and(X1,X2) ∼ F12, then the unique copula is the distribution of(U1, U2) =
(F1(X1), F2(X2)) leading to

C(u1, u2) = F12

(
F−1
1 (u1), F

−1
2 (u2)

)
, 0 ≤ uj ≤ 1, j = 1, 2,

whereF−1
j are inverse cdfs. In particular, ifΦ12(·; ρ) is the BVN cdf with correlationρ and standard

normal margins, andΦ is the univariate standard normal cdf, then the BVN copula is

C(u1, u2) = Φ12

(
Φ−1(u1),Φ

−1(u2); ρ
)
.

The power of copulas for dependence modelling is due to the dependence structure being considered
separate from the univariate margins; see e.g., [22, Section 1.6]. IfC(·; θ) is a parametric family of
copulas andFj(·; ηj) is a parametric model for thejth univariate margin, then

C
(
F1(x1; η1), F2(x2; η2); θ

)

is a bivariate parametric model with univariate marginsF1, F2. For copula models, the variables
can be continuous or discrete [38].

3.2 The copula mixed model for the latent pair of transformedsensitivity and specificity

Here we generalize the GLMM by proposing a model that links the two random effects using a
copula function rather than the BVN distribution.

The within-study model is the same as in the standard GLMM; see (1). The stochastic represen-
tation of the between studies model takes the form

(
Φ
(
X1; l(π1), σ

2
1

)
,Φ
(
X2; l(π2), σ

2
2

))
∼ C(·; θ), (4)

whereC(·; θ) is a parametric family of copulas with dependence parameterθ andΦ(·;µ, σ2) is the
cdf of the N(µ, σ2) distribution. The joint densityf12(x1, x2) of the transformed latent proportions
can be derived as a double partial derivative of the cdf in (3)

f12(x1, x2;π1, π2, σ1, σ2, θ) =
∂C
(
Φ
(
x1; l(π1), σ

2
1

)
,Φ
(
x2; l(π2), σ

2
2

)
; θ
)

∂x1∂x2
(5)

= c
(
Φ
(
x1; l(π1), σ

2
1

)
,Φ
(
x2; l(π2), σ

2
2

)
; θ
)
φ
(
x1; l(π1), σ

2
1

)
φ
(
x2; l(π2), σ

2
2

)
,

wherec(u1, u2; θ) = ∂2C(u1, u2; θ)/∂u1∂u2 andφ(·;µ, σ2) is the copula and N(µ, σ2) density,
respectively. The models in (1) and (4) together specify a copula mixed model with joint likelihood

L(π1, π2, σ1, σ2, θ) =
N∏

i=1

∫
∞

−∞

∫
∞

−∞

2∏

j=1

g
(
yij;nij, l

−1(xj)
)
c
(
Φ
(
x1; l(π1), σ

2
1

)
, (6)

Φ
(
x2; l(π2), σ

2
2

)
; θ
) 2∏

j=1

φ
(
xj; l(πj), σ

2
j

)
dx1dx2

=
N∏

i=1

∫ 1

0

∫ 1

0

2∏

j=1

g
(
yij;nij , l

−1
(
Φ−1(uj ; l(πj), σ

2
j )
))
c(u1, u2; θ)du1du2.

It is important to note that the copula parameterθ is a parameter of the random effects model
and it is separated from the univariate parameters. The univariate parametersπ1 andπ2 are those
of actual interest denoting the meta-analytic parameters for the sensitivity and specificity, while the
univariate parametersσ21 andσ22 are of secondary interest expressing the variability between studies.
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3.2.1 Relationship with the GLMM

In this subsection, we show what happens when the bivariate copula is the BVN copula. The
resulting model is the same as the GLMM.

The BVN copula density is

c(u1, u2; ρ) =
1√

1− ρ2
exp

(
z21 + z22 − 2ρz1z2

2
√

1− ρ2

)
exp

(
z21 + z22

2

)
,

wherezj = Φ−1(uj), j = 1, 2. Then foruj = Φ
(
xj ; l(πj), σ

2
j

)
we havezj =

(
xj−l(πj)

)
/σj , j =

1, 2. Hence, the joint density in (5) becomes

f12(x1, x2;π1, π2, σ1, σ2, ρ) =
1

2πσ1σ2
√

1− ρ2
exp
[ 1

2
√

1− ρ2

{(x1 − l(π1)
)2

2σ21
+

(
x2 − l(π2)

)2

2σ22
− 2ρ

(
x1 − l(π1)

)(
x2 − l(π2)

)

σ1σ2

}]
,

which apparently is the BVN densityφ12(x1, x2;µ,Σ).

3.3 The copula mixed model for the latent pair of sensitivityand specificity

The within-study model also assumes that the number of true positivesYi1 and true negativesYi2 are
conditionally independent and binomially distributed givenX = x, whereX = (X1,X2) denotes
the bivariate latent random pair of sensitivity and specificity. That is

Yi1|X1 = x1 ∼ Binomial(ni1, x1);
Yi2|X2 = x2 ∼ Binomial(ni2, x2). (7)

So one does not have to transform the latent sensitivity and specificity and can work on the original
scale. The Beta(α, β) distribution can be used for the marginal modeling of the latent proportions
and its density is

f(x;α, β) =
xα−1(1− x)β−1

B(α, β)
, 0 < x < 1, α, β > 0.

In the sequel we will use the Beta(π, γ) parametrization, whereπ = α
α+β (mean parameter) and

γ = 1
α+β+1 (dispersion parameter).

The stochastic representation of the between studies modelis
(
F (X1;π1, γ1), F (X2;π2, γ2)

)
∼ C(·; θ), (8)

whereC(·; θ) is a parametric family of copulas with dependence parameterθ andF (·;π, γ) is the
cdf of the the Beta(π, γ) distribution. The models in (7) and (8) together specify a copula mixed
model with joint likelihood

L(π1, π2, γ1, γ2, θ) =
N∏

i=1

∫ 1

0

∫ 1

0

2∏

j=1

g(yij ;nij, xj)c
(
F (x1;π1, γ1), F (x2;π2, γ2); θ

)

×
2∏

j=1

f(xj;πj , γj)dx1dx2 (9)

=
N∏

i=1

∫ 1

0

∫ 1

0

2∏

j=1

g
(
yij;nij , F

−1(uj ;πj , γj)
)
c(u1, u2; θ)du1du2.

As before, the copula parameterθ is a parameter of the random effects model and it is separated
from the univariate parameters, the univariate parametersπ1 andπ2 are the meta-analytic parameters
for the sensitivity and specificity, but, nowγ1 andγ2 express the variability between studies.
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3.3.1 Relationship with existing models

Chuet al. [7], instead of using a copula for the random effects distribution or a copula density for
X in (9), use the Sarmanov’s [47] family of bivariate densities

f12(x1, x2) = f1(x1)f2(x2)
(
1 + θψ1(x1)ψ2(x2)

)
,

wherefj(·) is the marginal density ofXj,ψj(·) is a bounded non-constant function such as
∫
∞

−∞
fj(x)

ψj(x)dx = 0, and1 + θψ1(x1)ψ2(x2) ≥ 0 for all x1, x2. For the Sarmanov’s densities if one uses
ψj = 1 − 2Fj(xj), j = 1, 2, then the Farlie–Gumbel–Morgenstern copula (density) is obtained.
However in [7], “kernels” of the typeψj(xj) = xj − E(Xj) are considered as in [28]. The advan-
tage of this choice is that the corresponding likelihood function has a closed form, since the product
of integrals can be evaluated analytically. The joint likelihood takes the form

L(π1, π2, γ1, γ2, θ) =
N∏

i=1

∫ 1

0

∫ 1

0

2∏

j=1

g(yij ;nij , xj)f(xj ;πj , γj)
(
1 + θ

2∏

j=1

(
xj − πj

))
dx1dx2

=

N∏

i=1

2∏

j=1

h(yij ;nij, πj , γj)
(
1 + θ

2∏

j=1

yij − nijπj

γ−1
j + nij − 1

)
,

where

h(y;n, π, γ) =

(
n

y

)B
(
y + π/γ − π, n− y + (1− π)(1 − γ)/γ

)

B
(
π/γ − π, (1− π)(1 − γ)/γ

) , y = 0, 1, . . . , n, 0 < π, γ < 1,

is the pmf of a Beta-Binomial(n, π, γ) distribution with meannπ and variancenπ(1−π)
(
1+ (n−

1)γ
)
. The disadvantage of this mixed model is that the Sarmanov’sdensity with beta margins in [28]

has a limited range of dependence and is inappropriate for general modeling unless the responses
are weakly dependent.

Kuss et al. [27] proposed a copula model with beta-binomial margins in thiscontext. This
model is actually an approximation of the copula mixed modelwith beta margins for the latent pair
of sensitivity and specificity in (7) and (8). They attempt to approximate the likelihood in (9) with
the likelihood of a copula model for observed discrete variables which have beta-binomial margins.

The approximation that they suggest is

L(π1, π2, γ1, γ2, θ) ≈
N∏

i=1

c
(
H(yi1;ni1, π1, γ1),H(yi2;ni2, π2, γ2); θ

) 2∏

j=1

h(yij ;nij, πj , γj),

whereH(·;n, π, γ) is the cdf of the the Beta-Binomial(n, π, γ) distribution. In their approxima-
tion the authors also treat the observed variables which have beta-binomial distributions as being
continuous, and model them under the theory for copula models with continuous margins. Kuss
et al. [27], referring to Genest and Nešlehová [9], claim that there are problems on applying cop-
ula to discrete data especially in extreme cases with very small numbers of support points for the
discrete marginal distributions. Genest and Nešlehová [9] only warn against estimation for discrete-
margined copula models using rank-based methods, instead recommending maximum likelihood
estimation. Essentially, Genestet al. [10] apply copula models to multivariate binary data (the ex-
treme case of discreteness) and call on composite likelihood techniques for estimation. Multivariate
copulas for discrete response data have been in use for a considerable length of time, e.g., in Joe
[22], and earlier for some simple copula models. Several examples of copula models for multivari-
ate discrete data can be found in the literature; see e.g., [40] for an application in biostatistics and
[34] for a survey of copula models and methods for multivariate discrete response data.
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However, the main problem in [27] is that the approximation (even if treating the observed
variables which have beta-binomial distributions as beingdiscrete) can only be used under the un-
realistic case that the number of observations in the respective study group of healthy and diseased
probandsnij is the same for each studyi. In real data applications, the discreteYij do not have a
common support over different studies ori, hence, one cannot conclude that there is a copula for
(Yi1, Yi2) that applies when thenij vary with different studiesi. The natural replicability is in the
random effects probability for sensitivity and specificity.

3.4 Maximum likelihood estimation and computational details

Estimation of the model parameters(π1, π2, σ1, σ2, θ) and(π1, π2, γ1, γ2, θ) can be approached by
the standard maximum likelihood (ML) method, by maximizingthe logarithm of the joint likelihood
in (6) and (9), respectively. The estimated parameters can be obtained by using a quasi-Newton [32]
method applied to the logarithm of the joint likelihood. This numerical method requires only the
objective function, i.e., the logarithm of the joint likelihood, while the gradients are computed nu-
merically and the Hessian matrix of the second order derivatives is updated in each iteration. The
standard errors (SE) of the ML estimates can be also obtainedvia the gradients and the Hessian
computed numerically during the maximization process. Assuming that the usual regularity condi-
tions [49] for asymptotic maximum likelihood theory hold for the bivariate model as well as for its
margins we have that ML estimates are asymptotically normal. Therefore one can build Wald tests
to statistically judge any effect.

For mixed models of the form with joint likelihood as in (6) and (9), numerical evaluation of the
joint pmf is easily done with the following steps:

1. Calculate Gauss-Legendre quadrature points{uq : q = 1, . . . , nq} and weights{wq : q =
1, . . . , nq} in terms of standard uniform; see e.g., [52].

2. Convert from independent uniform random variables{uq1 : q1 = 1, . . . , nq} and{uq2 : q2 =
1, . . . , nq} to dependent uniform random variables{uq1 : q1 = 1, . . . , nq} and{C−1(uq2 |uq1 ; θ) :
q1 = q2 = 1, . . . , nq} that have distributionC(·; θ). The inverse of the conditional distribu-
tionC(v|u; θ) = ∂C(u, v; θ)/∂u corresponding to the copulaC(·; θ) is used to achieve this.

3. Numerically evaluate the joint pmf, e.g.,

∫ 1

0

∫ 1

0

2∏

j=1

g
(
yj;nj, F

−1(uj ;πj , γj)
)
c(u1, u2; θ)du1du2

in a double sum:

nq∑

q1=1

nq∑

q2=1

wq1wq2g
(
y1;n, F

−1(uq1 ;πj , γj)
)
g
(
y2;n, F

−1
(
C−1(uq2 |uq1 ; θ);πj , γj

))
.

With Gauss-Legendre quadrature, the same nodes and weightsare used for different functions;
this helps in yielding smooth numerical derivatives for numerical optimization via quasi-Newton
[32]. Our comparisons show thatnq = 15 is adequate with good precision to at least at four
decimal places; hence it also provides the advantage of fastimplementation.

To sum up, our mixed effect model for meta-analysis of diagnostic test accuracy studies using
a copula representation of the random effects distributionwith a double integral is straightforward
computationally. Note in passing that the linear mixed model in [43] can also provide handy com-
putations, but it has limitations due to the use of continuity correction and normal approximation
[4, 29].
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4 Choices of parametric families of copulas

In our candidate set, families that have different strengths of tail behaviour (see e.g., [17]) are in-
cluded. In the descriptions below, a bivariate copulaC is reflection symmetricif its density satisfies
c(u1, u2) = c(1 − u1, 1 − u2) for all 0 ≤ u1, u2 ≤ 1. Otherwise, it is reflection asymmetric often
with more probability in the joint upper tail or joint lower tail. Upper tail dependencemeans that
c(1 − u, 1 − u) = O(u−1) asu → 0 and lower tail dependencemeans thatc(u, u) = O(u−1)
asu → 0. If (U1, U2) ∼ C for a bivariate copulaC, then (1 − U1, 1 − U2) ∼ C180◦ , where
C180◦(u1, u2) = u1 +u2− 1+C(1−u1, 1−u2) is the survival (or rotated by 180 degrees) copula
of C; this “reflection” of each uniformU(0, 1) random variable about1/2 changes the direction of
tail asymmetry.

• Reflection symmetric copulas with tail independence satisfyingC(u, u) = O(u2) andC(1−
u, 1− u) = O(u2) asu→ 0, such as the Frank copula with inverse conditional cdf

C−1(v|u; θ) = −1

θ
log

[
1− (1− e−θ)

(v−1 − 1)e−θu + 1

]
, θ ∈ (−∞,∞) \ {0}.

• Reflection symmetric copulas with intermediate tail dependence [18] such as the BVN copula,
which satisfiesC(u, u, θ) = O(u2/(1+θ)(− log u)−θ/(1+θ)) asu→ 0 with inverse conditional
cdf

C−1(v|u; θ) = Φ
(√

1− ρ2Φ−1(v) + ρΦ−1(u)
)
, θ ∈ [−1, 1].

• Reflection asymmetric copulas with lower tail dependence only such as the Clayton copula
with inverse conditional cdf

C−1(v|u; θ) =
{
(v−θ/(1+θ) − 1)u−θ + 1

}−1/θ
, θ ∈ (0,∞).

• Reflection asymmetric copulas with upper tail dependence only such as the rotated by 180
degrees Clayton copula with inverse conditional cdf

C−1(v|u; θ) = 1−
[{

(1− v)−θ/(1+θ) − 1
}
(1− u)−θ + 1

]−1/θ
, θ ∈ (0,∞).

The Frank and BVN copulas interpolate from the Fréchet lower (perfect negative dependence) to
the Fréchet upper (perfect positive dependence) bound, and, thus they are sufficient from bivariate
studies on diagnostic accuracy where negative dependence between the number of true positives
and true negatives is expected. The Clayton copula belongs in the Archimedean class of copulas.
Archimedean copulas, see e.g. [22], have the form,

C(u1, u2 ; θ) = φ
(
φ−1(u1 ; θ) + φ−1(u2 ; θ) ; θ

)
, (10)

where the generatorφ(u ; θ) is the Laplace transform (LT) of a univariate family of distributions of
positive random variables indexed by the parameterθ, such thatφ(·) and its inverse have closed
forms. The Clayton copula interpolates from the independence (θ → 0) to the Fréchet upper
(comonotonic copula) bound (θ → ∞). For extension of the Laplace transform forθ ∈ [−1, 0), the
Clayton family extends to countermonotonicity (θ → −1). However this extension is not generally
useful for applications because the support of (10) is not all of (0, 1)2 [22, page 109]. Negative
dependence in Clayton copulas can be introduced by applyingdecreasing transformations to the
“oppositely” ordered variables. If(U1, U2) ∼ C whereC is a copula with positive dependence, one
could always get some negative dependence, by supposingC90◦ is the copula of(U1, 1−U2) (rota-
tion by 90 degrees) orC270◦ the copula of(1−U1, U2) (rotation by 270 degrees). So it is worthwhile
to rotate the Clayton copula by 90 and 270 degrees to model negative dependence. These rotated
copulas interpolate from the Fréchet lower (perfect negative dependence) (θ → ∞) to the indepen-
dence (θ → 0). Negative upper-lower tail dependencemeans thatc(1 − u, u) = O(u−1) asu → 0
andnegative lower-upper tail dependencemeans thatc(u, 1 − u) = O(u−1) asu → 0 [24]. So in
order to model negative (tail) dependence the choices are:

8



• Reflection asymmetric copula family with negative upper-lower tail dependence, such as the
rotated by 90 degrees Clayton copula with inverse conditional cdf

C−1(v|u; θ) =
{
(vθ/(1−θ) − 1)(1 − u)θ + 1

}1/θ
, θ ∈ (0,∞).

• Reflection asymmetric copula family with negative lower-upper tail dependence, such as the
as the rotated by 270 degrees Clayton copula with inverse conditional cdf

C−1(v|u; θ) = 1−
[{

(1− v)θ/(1−θ) − 1
}
uθ + 1

]1/θ
, θ ∈ (0,∞).

For this paper, the above copula families are sufficient for the applications in Section7, since
tail dependence is a property to consider when choosing amongst different families of copulas and
the concept of upper/lower tail dependence is one way to differentiate families. Nikoloulopoulos
and Karlis [39] have shown that it is hard to choose a copula with similar properties from real data,
since copulas with similar (tail) dependence properties provide similar fit. Kusset al. [27] used, in
addition to these copulas, the Placket copula. Plackett copula is a reflection symmetric copula [22,
pages 221-22] with tail independence [33, page 215] (not reflection asymmetric copula as stated in
[27]) and is not used here since we have included another choice of copulas with similar properties
i.e., the Frank copula.

4.1 Summary receiver operating characteristic curves

Rutter and Gatsonis [46] proposed a hierarchical summary receiver operating characteristic (SROC)
curve which for some cases is the same with the correspondingGLMM SROC curve [5]. For the
GLMM model, the model parameters control the shape of the SROC curve. The GLMM SROC
curve can be obtained through a characterization of the estimated bivariate normal distribution by a
line [5, 6, 7]. Based on the bivariate normality of the random effects, the expected sensitivity for a
chosen specificity in the transformed scale is given in a closed form:

E[X1|X2 = x2] = [l(π1)− ρl(π2)σ1/σ2] + ρl(x2)σ1/σ2. (11)

In general, however,E[X1|X2 = x2] is not in closed form and thus does not have simple expressions
in terms of distribution functions and copulas.

An alternative to the mean for specifying “typical” values of X1 for each value ofX2 is the
median, which leads to the notion of median regression ofX1 onX2. For x2 in range ofX2, let
x1 := x̃1(x2) denote a solution to the equationPr(X1 ≤ x1|X2 = x2) = 1/2. Then the scatter plot
of x̃1(x2) andx2 is the median regression curve ofX1 onX2.

For copula models, median regression curves [33, pages 217–218] can be easily calculated,
since

Pr(X1 ≤ x1|X2 = x2) = Pr
(
U1 ≤ F1(x1)|U2 = F2(x2)

)
= C(u1|u2)

∥∥∥∥∥ u1 = F1(x1)
u2 = F2(x2)

,

but their shape also depends on the choice of bivariate copulas. Furthermore, as emphasized in [45],
since there is no unique definition of a SROC curve, it is preferable and will make more sense to
deduce confidence regions as well. To this end in addition of using just median regression curves
we will also exploit the use of quantile regression curves with a focus on high (q = 0.99) and
low quantiles (q = 0.01) which are strongly associated with the upper and lower taildependence
imposed from each parametric family of copulas. These can bealso seen as confidence regions
of the median regression SROC curve. Note that Kendall’s tauonly accounts for the dependence
dominated by the middle of the data, and it is expected to be similar amongst different families
of copulas. However, the tail dependence varies, as explained in Section4, and is a property to
differentiate amongst different families of copulas.

To find the quantile regression curves:
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1. SetC(u1|u2; θ) = q.

2. Solve for the quantile regression curveu1 := ũ1(u2, q; θ) = C−1(q|u2; θ).

3. For j = 1, 2 replaceuj by Fj(xj ;πj , γj) for beta margins orΦj

(
xj ; l(πj), σj

)
for normal

margins.

4. Plotx1 := x̃1(x2, q) versusx2.

Of course, the quantile regression curvex2 := x̃2(x1, q) of X2 on X1 is defined similarly.
However, there is no priori reason to regressx1 onx2 instead of the other way around [1]. In fact,
if one wants to reserve the nature of a bivariate response instead of a univariate response along
with a covariate, then a contour graph can be easily plotted.The contour plot can be seen as the
predictive region (analogously to [43]) of the estimated pair of sensitivity and specificity. However,
the resulted shape of the prediction region is not depended on the assumption of bivariate normality
for the random effects.
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Figure 1: Contour plots and quantile regression curves fromthe copula representation of the random effects distribution
with normal margins and BVN, Frank, and Clayton by 90 and 270 copulas with the same model parameters

{
π1 =

0.7, π2 = 0.9, σ1 = 2, σ2 = 1, τ = −0.5
}

. Red and green lines represent the quantile regression curvesx1 :=
x̃1(x2, q) andx2 := x̃2(x1, q), respectively; forq = 0.5 solid lines and forq ∈ {0.01, 0.99} dotted lines.

To depict the different shapes of the SROC curves, in Figures1 and2 we plot them from the
copula representation of the random effects distribution with normal and beta margins, respectively,
and BVN, Frank Clayton by 90 and 270 copulas with the same model parameters

{
π1 = 0.7, π2 =

0.9, σ1 = 2, σ2 = 1, τ = −0.5
}

and
{
π1 = 0.7, π2 = 0.9, γ1 = 0.2, γ2 = 0.1, τ = −0.5

}
,

respectively. We convert fromτ to the BVN, Frank and rotated Clayton copula parameterθ via the
relations

τ =
2

π
arcsin(θ), (12)
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τ =

{
1− 4θ−1 − 4θ−2

∫ 0
θ

t
et−1dt , θ < 0

1− 4θ−1 + 4θ−2
∫ θ
0

t
et−1dt , θ > 0

, (13)

τ =

{
θ/(θ + 2) , by 0 or 180 degrees

−θ/(θ + 2) , by 90 or 270 degrees
(14)

in [19], [11], and [12] respectively.
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Figure 2: Contour plots and quantile regression curves fromthe copula representation of the random effects distribution
with beta margins and BVN, Frank, and Clayton by 90 and 270 copulas with the same model parameters

{
π1 = 0.7, π2 =

0.9, γ1 = 0.2, γ2 = 0.1, τ = −0.5
}

. Red and green lines represent the quantile regression curvesx1 := x̃1(x2, q) and
x2 := x̃2(x1, q), respectively; forq = 0.5 solid lines and forq ∈ {0.01, 0.99} dotted lines.

5 Small-sample efficiency – Misspecification of the random effects distribution

An extensive simulation study is conducted (a) to gauge the small-sample efficiency of the ML and
approximation in Kusset al. [27]’s (hereafter KHS) methods, and (b) to investigate in detail the
misspecification of the parametric margin or family of copulas of the random effects distribution.

To simulate the data we have used the generation process in [42] to get heterogeneous study
sizes; the simulation steps follow:

1. Simulate the study sizen from a shifted gamma distribution, i.e.,n ∼ sGamma(α = 1.2, β =
0.01, lag = 30) and round off to the nearest integer.

2. Simulate(u1, u2) from a parametric family of copulasC(; τ); τ is converted to BVN, Frank
and Clayton rotated by 90/270 dependence parameterθ via the relations in (12), (13), and
(14).

3. Convert to beta realizations viaxj = F−1
j (uj , ∂j , γj) or normal realizations viaxj = Φ−1

j

(
uj, l(πj), σj

)

for j = 1, 2; for the latter convert to proportions viaxj = l−1(xj).
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4. Draw the number of diseasedn1 from aB(n, 0.43) distribution.

5. Setn2 = n− n1, yj = njxj and then roundyj for j = 1, 2.

We randomly generatedB = 104 samples of sizeN = 20, 50 from the Clayton rotated by
270 degrees copula mixed model with beta margins. Table2 contains the resultant biases, root
mean square errors (RMSE), and standard deviations (SD), along with average theoretical variances
scaled byN , for the MLEs under different copula choices and margins. The theoretical variances
of the MLEs are obtained via the gradients and the Hessian computed numerically during the max-
imization process. We also provide biases, RMSEs and SDs forthe KHS estimates under the ‘true’
model, i.e., the Clayton rotated by 270 degrees copula mixedmodel with beta margins.

Conclusions from the values in the table are the following:

• ML with the the ‘true’ copula mixed model is highly efficient according to the simulated
biases and standard deviations.

• The MLEs of the meta-analytic parameters are slightly underestimated under copula mis-
specification. That is, there is some downward bias for theseparameters, especially if the
“working” model is not close to Kullback-Liebler distance with the “true” model, i.e., it is
misspecified. For example in the table there is more bias for the Clayton rotated by 90 de-
grees and Frank copulas since they have different tail dependence from the ‘true’ model, i.e.,
the rotated Clayton by 270 degrees. An interesting result isthat the BVN copula performed
rather well under misspecification.

• The SDs are rather robust to the copula misspecification.

• The meta-analytic MLEs and SDs are not robust to the margin misspecification, while the
MLE of τ and its SD is.

• The KHS approximation method yields to biased univariate parameter estimates.

• The efficiency of the KHS approximation method is low for the dependence parameterτ . The
parameterτ is substantially underestimated.

The simulation results indicate that the KHS approximationmethod in [27] is an inefficient;
hence flawed method. This was expected, since theoreticallythere are serious problems on mod-
elling assumptions under the case of heterogeneous study sizes. If the number of true positives
and negatives do not have a common support over different studies, then one cannot conclude that
there is a copula. To make our study complete, we perform theoretical calculations, similarly to
[23, 35, 37], to investigate the accuracy of the approximate copula likelihood method in [27] for
the special case of a constant sizen of groups of diseased and healthy people in the single studies
and show whether or not this leads to consistent estimate of the parameters of the bivariate random
effects distribution. As shown in the Appendix, the KHS method leads to asymptotic bias for both
the univariate and copula parameters and hence there is no consistency. Also given the resultant
substantial asymptotic downward bias for the dependence parameter, the approximation deterio-
rates, and, hence cannot be used e.g., for prediction purposes via SROC curves. To this end, the
KHS approximation method is not used in the sequel, since itsinefficiency has been shown, and, it
should be avoided for bivariate meta-analysis of diagnostic test accuracy studies.

The effect of misspecifying the copula choice can be seen as minimal for both the univariate
parameters and Kendall’s tau. However, note that (a) the meta-analytic parameters are a univariate
inference, and hence it is the univariate marginal distribution that matters and not the type of the
copula, and, (b) as previously emphasized Kendall’s tau only accounts for the dependence dom-
inated by the middle of the data (sensitivities and specificities), and it is expected to be similar
amongst different families of copulas. However, the tail dependence varies, as explained in Section
4, and is a property to consider when choosing amongst different families of copulas, and, hence
affects the shape of SROC curves, i.e., prediction. SROC will essentially show the effect of different
model (random effect distribution) assumptions, since it is an inference that depends on the joint
distribution.
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Table 2: Small sample of sizesN = 20, 50 simulations (104 replications) from the Clayton rotated by 270 degrees copula mixed model with beta margins and resultant biases, root mean
square errors (RMSE) and standard deviations (SD), along with the square root of the average theoretical variances (

√
V̄ ), scaled byN , for the MLEs under different copula choices and

margins. We also provide biases, RMSEs and SDs for the KHS estimates under the ‘true’ model.

Margin Copula π1 = 0.7 π2 = 0.9 γ1 = 0.2 γ2 = 0.1 τ = −0.5
N = 20 N = 50 N = 20 N = 50 N = 20 N = 50 N = 20 N = 50 N = 20 N = 50

N Bias Beta BVN -0.02 -0.09 0.00 -0.06 -0.64 -1.24 -0.32 -0.51 -1.54 -2.31
Frank -0.23 -0.72 0.10 0.27 -0.59 -1.08 -0.39 -0.72 -2.01 -3.77

Clayton by 90 -0.11 -0.31 -0.02 -0.13 -0.50 -0.81 -0.20 -0.14 -0.23 2.74
Clayton by 270 -0.01 -0.08 0.03 0.04 -0.65 -1.25 -0.40 -0.78 -2.30 -4.57

Normal BVN 0.71 1.87 0.63 1.64 - - - - -1.56 -2.26
Frank 0.46 1.11 0.68 1.79 - - - - -1.95 -3.52

Clayton by 90 0.62 1.65 0.64 1.67 - - - - -0.25 2.66
Clayton by 270 0.70 1.89 0.62 1.62 - - - - -2.39 -4.69

KHS Clayton by 270 1.99 5.58 -0.26 -0.55 -0.48 -1.01 -1.44 -3.87 7.42 20.09
N SD Beta BVN 0.94 1.47 0.44 0.72 1.01 1.63 0.71 1.22 3.31 4.83

Frank 1.00 1.58 0.42 0.68 1.01 1.62 0.67 1.13 3.36 4.84
Clayton by 90 0.97 1.50 0.46 0.78 1.10 1.80 0.87 1.52 4.83 7.15
Clayton by 270 0.94 1.47 0.43 0.70 0.97 1.56 0.64 1.07 3.12 4.54

Normal BVN 1.06 1.66 0.38 0.59 4.77 7.35 5.02 7.93 3.35 4.76
Frank 1.11 1.76 0.38 0.59 4.70 7.24 5.04 7.99 3.40 4.92

Clayton by 90 1.11 1.72 0.38 0.60 5.19 8.13 5.52 8.88 4.76 6.74
Clayton by 270 1.06 1.66 0.38 0.59 4.52 6.86 4.97 7.77 3.18 4.62

KHS Clayton by 270 1.17 1.95 0.56 0.77 1.04 1.68 0.76 0.72 1.82 1.48

N
√
V̄ Beta BVN 0.76 1.25 0.40 0.66 0.79 1.29 0.61 1.02 2.67 3.86

Frank 0.77 1.27 0.37 0.59 0.82 1.33 0.58 0.95 2.62 3.78
Clayton by 90 0.77 1.25 0.39 0.65 0.83 1.34 0.64 1.10 3.00 4.11
Clayton by 270 0.75 1.22 0.38 0.60 0.77 1.25 0.56 0.90 2.56 3.72

Normal BVN 0.87 1.45 0.32 0.53 3.70 5.82 4.58 7.35 2.90 3.84
Frank 0.87 1.45 0.31 0.50 3.74 5.92 4.58 7.31 2.56 3.69

Clayton by 90 0.89 1.48 0.33 0.54 3.87 6.15 4.57 7.44 2.90 3.94
Clayton by 270 0.84 1.36 0.31 0.49 3.52 5.47 4.46 6.96 2.45 3.48

N RMSE Beta BVN 0.94 1.47 0.44 0.72 1.19 2.05 0.78 1.32 3.65 5.35
Frank 1.02 1.74 0.43 0.73 1.17 1.95 0.77 1.34 3.92 6.13

Clayton by 90 0.97 1.53 0.46 0.80 1.21 1.97 0.89 1.53 4.84 7.65
Clayton by 270 0.94 1.47 0.43 0.70 1.17 2.00 0.75 1.33 3.87 6.44

Normal BVN 1.27 2.50 0.74 1.74 - - - - 3.69 5.27
Frank 1.20 2.08 0.78 1.88 - - - - 3.92 6.05

Clayton by 90 1.27 2.39 0.75 1.77 - - - - 4.77 7.24
Clayton by 270 1.27 2.52 0.73 1.73 - - - - 3.98 6.58

KHS Clayton by 270 2.31 5.91 0.62 0.94 1.15 1.96 1.63 3.93 7.64 20.14
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6 Vuong’s test for model comparison

In this section we provide a methodology for the comparison of non-nested models. It would be
used as a tool to show if the copula mixed model provides better fit than the standard GLMM. We
will call a test proposed by Vuong [53]. The Vuong’s test is the sample version of the difference in
Kullback-Leibler divergence between two models and can be used to differentiate two parametric
models which could be non-nested.This test has been used extensively in the copula literature to
compare copula models, see e.g., [2, 3, 25]

Assume that we have Models 1 and 2 with parametric densitiesf (1) andf (2) respectively. We
can compare

∆1fz = N−1
[∑

i

{Efz [log fz(Y1, Y2)]− Efz [log f (1)(Y1, Y2;θ
(1))]}

]
,

and
∆2fz = N−1

[∑

i

{Efz [log fz(Y1, Y2)]− Efz [log f (2)(Y1, Y2;θ
(2))]}

]
,

whereθ(1),θ(2) are the parameters in Models 1 and 2 respectively that lead tothe closest Kullback-
Leibler divergence to the truefz; equivalently they are the limits in probability of the MLEsbased
on models 1 and 2 respectively. Model 1 is closer to the truefz, i.e., is the better fitting model if
∆ = ∆1fz −∆2fz < 0, and Model 2 is the better fitting model if∆ > 0. The sample version of

∆ with MLEs θ̂
(1)
, θ̂

(2)
is

D̄ =

N∑

i=1

Di/N,

whereDi = log

[
f(2)

(

Y1,Y2;θ̂
(2)

)

f(1)
(

Y1,Y2;θ̂
(1)

)

]
. Vuong [53] has shown that asymptotically

√
ND̄/s ∼ N(0, 1),

wheres2 = 1
N−1

∑N
i=1(Di − D̄)2.

7 Illustrations

We illustrate the use of the copula mixed model by re-analysing the data of two published meta-
analysis [48, 13]. These data have been frequently used as an example for methodological papers
on meta-analysis of diagnostic accuracy studies [43, 4, 46, 44, 16, 27].

We fit the copula mixed model for all different choices of parametric families of copulas and
margins. To make it easier to compare strengths of dependence, we convert the copula parameters to
Kendall’sτ ’s via the relations in (12), (13), and (14) for BVN, Frank and rotated Clayton copulas,
respectively. Since the number of parameters is the same between the models, we use the log-
likelihood at estimates as a rough diagnostic measure for goodness of fit between the models. We
further compute the Vuong’s tests with Model 1 being the BVN copula mixed model with normal
margins, i.e., the standard GLMM, to reveal if any other copula mixed model provides better fit than
the standard GLMM.

Finally, we demonstrate SROC curves and summary operating points (a pair of average sensi-
tivity and specificity) with a confidence region and a predictive region as deduced in Section4.1.

7.1 The telomerase and computed tomography data

In Glaset al. [13] the telomerase marker for the diagnosis of bladder cancer is evaluated using 10
studies. The size in each study ranges from 35 to 195. The interest was to define if this non-invasive
and cheap marker could replace the standard of cystoscopy orhistopathology. Rileyet al. [44]
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applied the GLMM with different starting values and all produced a between-study correlation esti-
mate of−1 but with different meta-analytic parameter point estimates and standard errors. Clearly
at this example, it is not possible to estimate the correlation between the logit sensitivity and speci-
ficity, and the maximum likelihood estimator should truncate the correlation to the left boundary of
its parameter space, i.e.,−1. In [27] it is acknowledged that the copula model for observed discrete
variables which have beta-binomial margins yields sensible estimates for the dependence parameter
and its standard error. This result is in error and due to the fact that the KHS method underestimates
the dependence parameter as emphasized in Section5 and shown in the Appendix forρ = −1.

Fitting the copula mixed model for all different choices of parametric families of copulas and
margins, the resultant estimate of the dependence parameter was close to the boundary of its param-
eter space. If the dependence parameter estimate is so large(on absolute value), the copula should
be set to countermonotonic (Fréchet lower bound), and, then optimize over the remaining (univari-
ate) parameters. With other words there exists negative perfect dependence, and thus there is only
one copula: the countermonotonic copula. This is a limitingcase for all the parametric families
of copulas, listed in Section4, when the dependence parameter is fixed to the left boundary of its
parameter space.

This was also the case for the analysis of the data on 17 studies of computed tomography (CT)
for the diagnosis of lymph node metastasis in women with cervical cancer, one of three imaging
techniques in the meta-analysis in [48]. The size in each study ranges from 20 to 253. Diagnosis of
metastatic disease by CT relies on nodal enlargement.

Table 3: Maximised log-likelihoods, estimates and standard errors (SE), along with the Vuong’s statistics andp-values
for the telomerase and computed tomography data.

Telomerase Computed Tomography
Normal margins Beta margins Normal margins Beta margins

Est. SE Est. SE Est. SE Est. SE
π1 0.77 0.03 π1 0.76 0.03 π1 0.46 0.07 π1 0.46 0.06
π2 0.91 0.05 π2 0.81 0.06 π2 0.93 0.01 π2 0.92 0.01
σ1 0.43 0.13 γ1 0.03 0.02 σ1 1.00 0.27 γ1 0.17 0.07
σ2 1.83 0.40 γ2 0.28 0.10 σ2 0.60 0.23 γ2 0.02 0.02

logL -50.37 logL -51.14 logL -69.37 logL -69.58
Vuong’s test Vuong’s test√

ND̄/s -
√
ND̄/s -1.580 - -1.416

p-value - p-value 0.114 - 0.157

Table3 gives the estimated univariate parameters, standard errors, and log-likelihoods for both
normal and beta margins for both datasets. For telomerase data, both models agree on the esti-
mated sensitivitŷπ1 but the estimate of specificitŷπ2 is larger under the standard GLMM. The
log-likelihood is−50.37 for normal margins and−51.14 for beta margins, and thus a normal mar-
gin seems to be a better fit for the data. Furthermore, according to the Vuong’s test the copula
mixed model with normal margins (i.e., the standard GLMM) provides marginally better fit (p-
value= 0.114). For computed tomography data, both models agree on the estimated sensitivitŷπ1
and specificitŷπ2. The log-likelihood is−69.37 for normal margins and−69.58 for beta margins,
and thus a normal margin seems to be a better fit for the data. However, according to the Vuong’s test
the copula mixed model with normal margins (i.e., the standard GLMM) does not provide statistical
significant better fit (p-value= 0.157).

Finally, figure3 also shows the SROC curves for both datasets and the visual fitis consistent
with the model fitting and comparison in Table3. Note in passing since we are dealing with the
countermonotonic copula all the quantile regression curves almost coincide, and hence we just
depict one median regression curve for each model.
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Figure 3: SROC curves from the countermonotonic copula representation of the random effects distribution with normal
margins (black line) and beta (red line) margins for the telomerase and computed tomography data.

7.2 The lymphangiography data

In this section we apply the copula mixed models to data on 17 studies of lymphangiography for the
diagnosis of lymph node metastasis in women with cervical cancer, one of three imaging techniques
in the meta-analysis in [48]. The size in each study ranges from 21 to 300. Diagnosis of metastatic
disease by lymphangiography is based on the presence of nodal-filling defects.

Table 4: Maximised log-likelihoods, estimates and standard errors (SE), along with the Vuong’s statistics andp-values
for the lymphangiography data.

Normal margins
BVN Frank Clayton by 180 Clayton by 270

Estimate SE Estimate SE Estimate SE Estimate SE
π1 0.67 0.03 0.68 0.03 0.67 0.03 0.67 0.03
π2 0.84 0.03 0.84 0.03 0.84 0.03 0.84 0.04
σ1 0.35 0.19 0.36 0.18 0.34 0.18 0.34 0.19
σ2 0.91 0.22 0.91 0.22 0.91 0.22 0.90 0.22
τ 0.16 0.29 0.18 0.28 0.14 0.21 0.19 0.29

logL -91.38 -91.32 -91.32 -91.15
Vuong’s test√

ND̄/s - 0.523 0.274 1.280
p-value - 0.601 0.784 0.201

Beta margins
BVN Frank Clayton by 180 Clayton by 270

Estimate SE Estimate SE Estimate SE Estimate SE
π1 0.67 0.03 0.67 0.03 0.67 0.03 0.67 0.03
π2 0.81 0.03 0.81 0.03 0.81 0.03 0.81 0.03
γ1 0.03 0.03 0.03 0.03 0.02 0.03 0.02 0.03
γ2 0.09 0.04 0.09 0.04 0.10 0.04 0.09 0.04
τ 0.15 0.30 0.18 0.32 0.16 0.40 0.19 0.28

logL -90.67 -90.61 -90.60 -90.44
Vuong’s test√

ND̄/s 1.668 1.798 1.877 2.248
p-value 0.095 0.072 0.061 0.025

In Table4 we report the resulting maximized log-likelihoods, estimates, and standard errors of
the copula mixed models with different choices of parametric families of copulas and margins. All
models agree on the estimated sensitivityπ̂1, but the estimatêπ2 of specificity is smaller when beta
margins are assumed. The log-likelihoods show that a copulamixed model with rotated by 270
degrees Clayton copula and beta margins provides the best fit. It is revealed that a copula mixed
model with the sensitivity and specificity on the original scale provides better fit than the GLMM,
which models the sensitivity and specificity on a transformed scale. The improvement over the
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Figure 4: Contour plots and quantile regression curves fromthe copula representation of the random effects distribution
with normal margins and BVN, Frank, and Clayton by 180 and 270copulas for the lymphangiography data. Red and
green lines represent the quantile regression curvesx1 := x̃1(x2, q) andx2 := x̃2(x1, q), respectively; forq = 0.5 solid
lines and forq ∈ {0.01, 0.99} dotted lines.

GLMM is small in terms of the likelihood principle, but for the Vuong’s statistic there is enough
improvement to get a statistical significant difference (p-value= 0.025).

Figures4 and5 show the fitted SROC curves along with their confidence and prediction regions
for the copula mixed models with normal and beta margins, respectively. Note that the predictive
regions cover a greater range of specificity rather than sensitivity.

7.3 The magnetic resonance imaging data

In this section we apply the copula mixed models to data on 10 studies of magnetic resonance
imaging for the diagnosis of lymph node metastasis in women with cervical cancer, the last imaging
technique in the meta-analysis in [48]. The size in each study ranges from 20 to 272. Diagnosis of
metastatic disease by lymphangiography relies on nodal enlargement.

In Table5 we report the resulting maximized log-likelihoods, estimates, and standard errors of
the copula mixed models with different choices of parametric families of copulas and margins. All
models roughly agree on the estimated sensitivityπ̂1 and specificitŷπ2, but both are slightly smaller
when beta margins are assumed. The log-likelihoods show that a rotated by 270 degrees Clayton
copula mixed model with normal or beta margins provides the best fit. Although, the rotated by 270
degrees Clayton copula mixed model provides better fit than the GLMM, the difference, according
to Vuong’s test, is not statistical significant (p-value=0.156).

Figures6 and7 show the fitted SROC curves along with their confidence and prediction regions
for the copula mixed models with normal and beta margins, respectively. Note that the predictive
regions cover a greater range of sensitivity rather than specificity.
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Figure 5: Contour plots and quantile regression curves fromthe copula representation of the random effects distribution
with beta margins and BVN, Frank, and Clayton by 180 and 270 copulas for the lymphangiography data. Red and green
lines represent the quantile regression curvesx1 := x̃1(x2, q) andx2 := x̃2(x1, q), respectively; forq = 0.5 solid lines
and forq ∈ {0.01, 0.99} dotted lines.

Table 5: Maximised log-likelihoods, estimates and standard errors (SE), along with the Vuong’s statistics andp-values
for the magnetic resonance imaging data.

Normal margins
BVN Frank Clayton by 90 Clayton by 270

Estimate SE Estimate SE Estimate SE Estimate SE
π1 0.55 0.11 0.54 0.10 0.54 0.11 0.55 0.10
π2 0.95 0.02 0.96 0.02 0.95 0.02 0.96 0.02
σ1 1.16 0.39 1.14 0.38 1.21 0.41 1.13 0.37
σ2 0.87 0.34 0.83 0.32 0.85 0.34 0.87 0.32
τ -0.51 0.29 -0.47 0.28 -0.48 0.33 -0.49 0.26

logL -46.26 -46.35 -46.72 -45.90
Vuong’s test√

ND̄/s - -0.815 -2.175 1.419
p-value - 0.415 0.030 0.156

Beta margins
BVN Frank Clayton by 90 Clayton by 270

Estimate SE Estimate SE Estimate SE Estimate SE
π1 0.54 0.08 0.53 0.08 0.53 0.08 0.54 0.08
π2 0.94 0.02 0.94 0.02 0.94 0.02 0.94 0.02
γ1 0.21 0.10 0.21 0.10 0.22 0.10 0.21 0.09
γ2 0.04 0.03 0.03 0.02 0.03 0.03 0.04 0.02
τ -0.53 0.28 -0.47 0.28 -0.50 0.33 -0.50 0.25

logL -46.27 -46.39 -46.75 -45.86
Vuong’s test√

ND̄/s -0.014 -0.422 -1.326 0.935
p-value 0.989 0.673 0.185 0.350
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Figure 6: Contour plots and quantile regression curves fromthe copula representation of the random effects distribution
with normal margins and BVN, Frank, and Clayton by 90 and 270 copulas for the magnetic resonance imaging data. Red
and green lines represent the quantile regression curvesx1 := x̃1(x2, q) andx2 := x̃2(x1, q), respectively; forq = 0.5
solid lines and forq ∈ {0.01, 0.99} dotted lines.

8 Discussion

We have proposed a copula mixed model for bivariate meta-analysis of diagnostic test accuracy
studies. This is the most general meta-analytic model, withunivariate parameters separated from
dependence parameters. Our general model includes the GLMMas a special case and can provide
an improvement over the latter based on log-likelihood and Vuong’s [53] statistic, and thus can
provide a better statistical inference for the SROC. This improvement relies on the fact that the
random effects distribution is expressed via copulas whichallow for flexible dependence modelling,
different from assuming simple linear correlation structures, normality and tail independence, which
makes them well suited to the aforementioned application area.

Building on the basic model proposed in this paper, there areseveral extensions that can be
implemented. The copula mixed model can also easily be extended in any context where clinical
trials or observational studies report more than a single outcome and to inclusion of covariates.
However, larger sample sizes will be required to estimate the effect of covariates in bivariate meta-
regression, where the underlying treatment effects dependon covariates. This is typical in the
univariate meta-regression [20].

Another direction of future research is to extend our copula-based meta-analytic model to the
d-variate (d > 2) case. There are many simple bivariate copula families, butgenerally their mul-
tivariate extensions have limited dependence structures.However, in recent years, a popular and
useful approach is the vine pair-copula construction, see e.g., [26, 25], which is based ond(d−1)/2
bivariate copulas. Some studies also may not report alld outcomes. In such cases our model can be
extended for missing data via pattern mixture models. Pattern mixture models are studied in [50]
for copulas and in [31] for pairwise and network meta-analysis.
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Figure 7: Contour plots and quantile regression curves fromthe copula representation of the random effects distribution
with beta margins and BVN, Frank, and Clayton by 90 and 270 copulas for the magnetic resonance imaging data. Red
and green lines represent the quantile regression curvesx1 := x̃1(x2, q) andx2 := x̃2(x1, q), respectively; forq = 0.5
solid lines and forq ∈ {0.01, 0.99} dotted lines.

Software

A contributedR packageCopulaREMADA [36] has functions to implement the copula mixed model
for meta-analysis of diagnostic test accuracy studies and produce SROC curves and summary oper-
ating points (a pair of average sensitivity and specificity)with a confidence region and a predictive
region. All the analyses presented in Section7 are given as code examples in the package. The
R packageVGAM [54] and specifically the functionspbetabinom anddbetabinom have been
used to implement the marginal distributions for the KHS approximation method in [27].

Appendix

We study the asymptotics of the KHS approximation method in [27], and we assess the accuracy
based on the limit (as the number of clusters increases to infinity) of the maximum KHS likelihood
estimate (KHSMLE). By varying factors such as the marginal and copula parameters we demon-
strate patterns in the asymptotic bias of the KHSMLE, and assess the performance of KHS . We
will compute these limiting KHSMLE in a variety of situations to show clearly if the KHS method
is good. By using this limit, we show whether or not this leadsto consistent estimate of the param-
eters of the bivariate random effects distribution; hence prove whether the KHS approach is valid
or not. For the cases where we compute the probability limit,we will take a constant sizen of
groups of diseased and healthy people in the single studies that increases. For ease of exposition,
we also consider the case that the univariate marginal parameters are common to different univariate
margins.

Let theT distinct cases for the discrete response be denoted as

(y
(1)
1 , y

(1)
2 ), . . . , (y

(T )
1 , y

(T )
2 ).
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In a random sample of sizeN , let the corresponding frequencies be denoted asN (1), . . . , N (T ). Let
p(t) be the limit in probability ofN (t)/N asN → ∞.

Table A1: Limiting KHSMLE for a BVN copula mixed model with beta margins.

ρ ρKHS π πKHS γ γKHS

n = 20 n = 100 n = 20 n = 100 n = 20 n = 100

-0.2 -0.047 -0.163 0.7 0.701 0.701 0.05 0.050 0.050
-0.5 -0.160 -0.412 0.7 0.705 0.702 0.05 0.049 0.050
-0.8 -0.277 -0.664 0.7 0.709 0.703 0.05 0.046 0.050
-1 -0.356 -0.825 0.7 0.711 0.704 0.05 0.044 0.049

-0.2 -0.051 -0.174 0.7 0.702 0.701 0.1 0.099 0.100
-0.5 -0.164 -0.438 0.7 0.708 0.703 0.1 0.095 0.099
-0.8 -0.289 -0.708 0.7 0.714 0.705 0.1 0.085 0.096
-1 -0.381 -0.885 0.7 0.718 0.706 0.1 0.075 0.089

-0.2 -0.030 -0.122 0.7 0.703 0.702 0.2 0.199 0.198
-0.5 -0.129 -0.320 0.7 0.715 0.707 0.2 0.187 0.187
-0.8 -0.242 -0.558 0.7 0.728 0.714 0.2 0.162 0.161
-1 -0.338 -0.788 0.7 0.738 0.722 0.2 0.133 0.116

-0.2 -0.007 -0.155 0.8 0.800 0.801 0.05 0.050 0.050
-0.5 -0.076 -0.396 0.8 0.804 0.802 0.05 0.049 0.049
-0.8 -0.148 -0.642 0.8 0.808 0.804 0.05 0.045 0.048
-1 -0.191 -0.802 0.8 0.811 0.805 0.05 0.041 0.045

-0.2 -0.005 -0.130 0.8 0.800 0.801 0.1 0.100 0.099
-0.5 -0.084 -0.339 0.8 0.808 0.804 0.1 0.095 0.094
-0.8 -0.168 -0.575 0.8 0.817 0.808 0.1 0.084 0.082
-1 -0.230 -0.765 0.8 0.823 0.813 0.1 0.073 0.064

-0.2 0.026 -0.062 0.8 0.795 0.803 0.2 0.202 0.196
-0.5 -0.064 -0.187 0.8 0.814 0.812 0.2 0.188 0.182
-0.8 -0.165 -0.348 0.8 0.837 0.825 0.2 0.156 0.148
-1 -0.248 -0.535 0.8 0.853 0.837 0.2 0.122 0.104

-0.2 0.084 -0.075 0.9 0.890 0.901 0.05 0.052 0.049
-0.5 0.031 -0.214 0.9 0.896 0.904 0.05 0.051 0.046
-0.8 -0.025 -0.377 0.9 0.903 0.907 0.05 0.048 0.039
-1 -0.062 -0.515 0.9 0.908 0.910 0.05 0.045 0.031

-0.2 0.114 -0.035 0.9 0.878 0.902 0.1 0.110 0.098
-0.5 0.045 -0.141 0.9 0.891 0.908 0.1 0.105 0.089
-0.8 -0.034 -0.269 0.9 0.908 0.916 0.1 0.092 0.071
-1 -0.092 -0.396 0.9 0.920 0.923 0.1 0.078 0.051

-0.2 0.182 0.032 0.9 0.837 0.893 0.2 0.241 0.193
-0.5 0.127 -0.054 0.9 0.858 0.911 0.2 0.225 0.168
-0.8 0.050 -0.179 0.9 0.894 0.936 0.2 0.178 0.115
-1 -0.032 -0.324 0.9 0.926 0.954 0.2 0.126 0.061

For the KHS log-likelihood we have the limit,

N−1ℓ(π, γ, θ) →
T∑

t=1

p(t) log
[
c
(
H(y

(t)
1 ;n, π, γ),H(y

(t)
2 ;n, π, γ); θ

) 2∏

j=1

h(y
(t)
j ;n, π, γ)

]
. (15)

The limit of the KHSMLE (asN → ∞) is the maximum of (15); we denote this limit as(πKHS, γKHS , θKHS).
Thep(t) in (15) are the model based probabilities and are computed to at least five significant digits
using Gauss-Legendre quadrature [52] with a sufficient number of quadrature points as described in
Subsection3.4. For the log-likelihood in (9), we have the limit,

N−1ℓ(π, γ, θ) →
T∑

t=1

p(t) log

∫ ∫ 2∏

j=1

g
(
y
(t)
j ;n, F−1(uj ;π, γ)

)
c(u1, u2; θ)du1du2. (16)

The limit of the MLE (asN → ∞) is the maximum of (16); we denote this limit as(π̂, γ̂, τ̂).
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Representative results are shown in TableA1 for a BVN copula mixed model with beta margins,
with MLE results omitted because they were identical with the true values up to four or five decimal
places. Therefore, our method leads to unbiased estimatingequations. Regarding the KHS method,
conclusions from the values in the table and other computations that we have done are that for the
KHS method there is asymptotic bias (decreases asn increases) for the univariate parametersπ and
γ asπ, γ andρ increase, and substantial asymptotic downward bias for thedependence parameter
ρ; note that this slightly decreases asn increases.
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