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Recent advances in the field of data mining have led to major concerns about

privacy. Sharing data with external parties for analysis puts private information

at risk. The original data are often perturbed before external release to protect

private information. However, data perturbation can decrease the utility of the

output. A good perturbation technique requires balance between privacy and

utility. This study proposes a new method for data perturbation in the context of

distance-based data mining.

We propose the use of non-metric multi-dimensional scaling (MDS) as a suit-

able technique to perturb data that are intended for distance-based data mining.

The basic premise of this approach is to transform the original data into a lower

dimensional space and generate new data that protect private details while main-

taining good utility for distance-based data mining analysis. We investigate the

extent the perturbed data are able to preserve useful statistics for distance-based

analysis and to provide protection against malicious attacks. We demonstrate that

our method provides an adequate alternative to data randomisation approaches

and other dimensionality reduction approaches. Testing is conducted on a wide

range of benchmarked datasets and against some existing perturbation methods.

The results confirm that our method has very good overall performance, is com-

petitive with other techniques, and produces clustering and classification results

at least as good, and in some cases better, than the results obtained from the

original data.
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Chapter 1

Introduction

Modern technology enables easy storage and processing of large amounts of data

relating to everyday activities, such as making a phone call, buying an item from

a shop, and visiting a doctor. Data mining aims to discover new knowledge about

an application domain, utilising huge amounts of data from within that domain.

Typically, these data represent various individual entities such as persons, compa-

nies, and transactions. Driven by mutual benefits or by regulations that require

certain data to be cooperatively analysed, there is a demand for the exchange and

analysis of data between diverse parties. Data in their original form, however,

typically contain sensitive information about individuals or other confidential in-

formation, and analysing or sharing such data would violate individual privacy

and risk disclosing the confidential information.

There is a growing anxiety about personal information being open to potential

misuse. This is not necessarily limited to sensitive data, such as medical and

genetic records. Other personal information, although not as sensitive as health

records, can also be considered to be confidential and vulnerable to malicious

exploitation. For example, the publication of Netflix data, which contained movie

ratings of a large number of subscribers led to substantial controversy regarding

the identification of individuals and their preferences [123]. Public concern is

mainly focused on the so-called secondary use of personal information without the

consent of the individual. Consumers feel strongly that their personal information

should not be made available to other organisations without their prior consent.

The term “Privacy-Preserving Data Mining” (PPDM) has no single definition

or meaning. One possible definition is a method that obtains valid data mining

results without revealing the underlying data values. Generally, PPDM aims to

achieve two fundamental objectives—data privacy and utility. That is, producing

1
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accurate mining results without disclosing “private” information. These two ob-

jectives are contradictory in nature. Many completely different approaches have

been proposed to tackle privacy preservation in the context of retaining utility

and privacy. However, in most cases, the proposed methods make a trade-off be-

tween these two objectives instead of providing a perfect solution that meets them

altogether.

Data perturbation methods are concerned with distorting the original values

and producing new data that have similar properties to the original data as much

as possible while preserving privacy. The perturbation process can be performed

using a number of transformations or modifications. However, some modifications

can reduce the granularity of representation and downgrade the information em-

bedded in the data and resulting in low data utility. In distance-based data mining,

the algorithm usually optimises a criterion function, which is often described in

terms of the interpoint distances between data objects. That is, the choice of

which clusters/classes to assign to a data point is determined by a similarity or

distance function. Intuitively, in such cases, data mining results will be influenced

by the objects’ distances to other objects. If the distances are well preserved, the

data utility will be high for the data mining algorithm, and more accurate results

can be obtained.

Non-metric multi-dimensional scaling (MDS) is an exploratory technique used

to visualise proximities in lower dimensional space [21]. It allows insight into the

underlying structure of relationships between data objects by providing a geo-

metrical representation of these relationships in lower dimensionality. The input

for non-metric MDS is the relationship between a pair of data objects, which are

interpreted as either similarity or dissimilarity measures. These relationships are

non-linearly transformed into a set of data points in a lower dimensional space

where each point represents an object in the higher dimensional space. The re-

sulting data have altered data values from the original values, yet they preserve

many distance-related properties. We are interested in PPDM in particular, for

application to distance-based data mining. In this context, non-metric MDS may

provide privacy by perturbing the data into a lower dimensional space with dis-

guised data values while retaining the distance relationships between objects.

Our approach is largely inspired by recent work on data perturbation [26, 101,

110, 121, 174]. However, our method differs significantly from the method used to

transform original data and produce perturbed data, which can then be published

or shared for data mining. It considers data attributes confidential data and
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attempts to generate perturbed data that retain distance information.

1.1 Motivation

Technology has enabled an exponential rise in an organisation’s ability to gather,

store, and share large quantities of data. As large scale applications of data mining

become more common, there are large amounts of data stored in many databases

worldwide. The IBM Multinational Consumer Privacy Survey [146] published in

1999 illustrates public awareness towards privacy in online transactions. The key

finding from among the more than 3,000 people who responded in the United

States, the United Kingdom, and Germany is a clear desire for merchants and

service providers to properly address privacy concerns and establish policies that

strengthen trust and confidence. Most respondents (80%) feel that consumers have

lost control over how personal information is collected and used by companies. The

majority of respondents (94%) are concerned about the possible misuse of their

personal information. This survey also demonstrates that, when it comes to the

confidence that their personal information is properly handled, consumers have

the most trust in health care providers and banks and the least trust in credit

card agencies and internet companies.

Data mining techniques are used for many purposes, such as medical research,

financial fraud, counter-terrorism, national security, etc. Many of those applica-

tions may be highly beneficial for society and individuals. Government and private

organisations may wish to exploit their data in this way, but privacy and confi-

dentiality considerations stand in the way of fully utilising the benefits of such

services and architectures [60]. In this context, the concept of PPDM has become

more significant.

Allowing access to data in original form without any protection may indeed

violate privacy constraints. For example, a theft of information regarding more

than 163,000 consumers was reported in 2005 at ChoicePoint [35], which maintains

and sells personal information for government and industry. The firm has been

charged $10 million for not providing sufficient protection for the data it holds.

Another privacy breach occurred at Acxiom [135], which offers marketing and

information management services to companies for competitive purposes. In 2003,

over 1.6 billion customer records were stolen during the transmission of information

to and from Acxiom’s clients. A further example is the publication of Netflix data,

which contained 100 million ratings for 18,000 movie titles from 480,000 randomly
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chosen users. In 2006, Netflix announced a challenge with a $1 million prize for

the participants that could improve its recommendation system based on client

preferences [10]. In 2007, Narayanan and Shmatikov [123] were able to identify

individual users by matching the datasets with movie ratings.

In 2003, SIGKDD (an ACM special interest group on knowledge discovery and

data mining) issued a letter (“Data Mining” is NOT Against Civil Liberties) [130]

to eliminate some misguided impressions regarding privacy concerns in the applica-

tions of data mining. The letter stated that data mining is concerned with analysis

techniques and is separate from issues of data collection and data aggregation. It

also pointed out the following:

“However, the best (and perhaps only) way to overcome the “limita-

tions” of data mining techniques is to do more research in data mining,

including areas like data security and privacy-preserving data mining,

which are actually active and growing research areas.”

The issue of privacy has been investigated from different aspects. One direc-

tion of the work is data anonymisation, which concentrates on reducing the risk

of identifying individuals using key attributes (known as quasi-identifiers) or the

private information held in certain sensitive attributes. Many methods based on

data anonymisation were proposed in literature [13, 59, 158] to prevent such link-

age attacks. Although data anonymisation can provide good privacy protection,

the data mining results can compromise the privacy of the original data [139].

Moreover, some anonymisation methods may alter attribute distribution and also

affect the distance between data objects [3].

Another research direction utilises the techniques of data randomisation to dis-

guise sensitive data by randomly modifying the data values, often using additive

or multiplicative noise. In fact, the size of the noise added to an individual value

gives an indication of the difficulty in recovering the original values. Thus, using

sufficiently high levels of noise may provide good privacy protection. However,

the most significant inadequacy of some data randomisation methods is that dis-

tances between data objects are not always preserved, leading to reduced accuracy

for distance-based data mining tasks [25]. Another drawback is the possibility of

separating the noise from the perturbed data by studying the spectral properties

of the data to estimate the random matrix and then estimate the original data

values [25].
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A further direction uses data transformation approaches, such as dimension-

ality reduction, which seeks a meaningful representation of the original data in

some lower dimensional space. We will discuss these approaches in more detail

in Chapter 2. Ideally, to guarantee the suitability of the transformed data for

PPDM, both utility and privacy should be quantified and measurable.

We believe that any PPDM model should be task-specific since generic solutions

would be ineffective at achieving the required utility for the data mining task.

For instance, k-means clustering relies heavily on the Euclidean distance between

objects while attribute distribution would be more interesting than distances when

building a decision tree.

This research aims to develop a new method for PPDM that can overcome the

inadequacies of the above approaches. The new perturbation method offers mul-

tiple advantages over the existing methods used for the same purpose. First, it

preserves information for distance-based data mining tasks leading to more accu-

rate results. Second, it produces the perturbed data under uncertain conditions,

limiting the disclosure risk as much as possible. Third, it does not require any

modification on the existing data mining algorithms, as all of the modifications

remain limited to the original data.

1.2 Problem Description

The main focus of our work is to ensure that outsourcing or sharing data for certain

types of computations does not compromise the privacy of the original data. It is a

very common practice for organisations with limited computational resources and

lack of in-house expertise to outsource their data and operations to third party

service providers, which can offer storage resources and large scale computations.

For example, a supermarket chain may release its operational transactional data

to a third party to learn useful patterns of customer buying behaviour. In this

example, the supermarket chain is the data owner and the third party is referred

to as a service provider.

Another important issue arises when the data owner has his or her own private

data and would like to make it publicly available for one or more external parties

to obtain benefits from the analysis personally or for the third party. For instance,

hospitals in California are required by law to accurately report patient information

to be used by the government and private sector for decision-making regarding

healthcare [126].



Chapter 1. Introduction 6

Service Provider

Data Owner

Original Data

X

Perturbed Data

Y

External Parties

Data Users

Y

Analysis Results

Perturbed Data

Y

Figure 1.1: Data outsourcing and sharing scenarios.

Such scenarios may lead to privacy breach. This demonstrates the value of

data and the need to protect it. In the context of PPDM, perturbation techniques

may provide some of the necessary protection. That is, the perturbed data can

be published, manipulated, and mined without compromising the privacy of the

original data. A typical graphical representation of data outsourcing and sharing is

illustrated in Figure 1.1. The data owner can be any public or private organisation

who holds the original data, performs the perturbation, and releases the perturbed

data to the service provider who will conduct data mining on the perturbed data.

The service provider can also allow users to access the perturbed data or the results

of analysis.

In the other scenario, the data owner may share the computation with external

parties so that s/he can enable them to access the perturbed data and perform the

required analysis yet learn nothing about the original data values. This scenario

is relatively similar to privacy-preserving distributed data mining [87, 167], in

which the data are assumed to be distributed horizontally or vertically over many

different sites and the data mining is performed at one predefined site. However,

the scenario we are interested in makes no particular assumptions, but describes

ordinary access to the data hosted by the data owner.
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1.3 Thesis Objectives

This research will examine the issue of privacy preservation for distance-based

data mining and propose a new perturbation method to sanitise the original data.

Particularly, we hypothesise that non-metric MDS is a good tool for distance-based

PPDM. To assess this, the perturbed data will be examined in terms of data utility

and privacy, and the overall performance of our method will be compared with

existing methods. The main objectives are summarised as follows:

1. Propose a perturbation method using non-metric MDS to perturb the orig-

inal data and explore its characteristics for PPDM (Chapter 3).

2. Examine and evaluate the privacy and utility associated with the proposed

method and compare the results with existing perturbation techniques (Chap-

ter 4).

3. Examine and evaluate the usefulness of the perturbed data for distance-based

data mining tasks using a set of real-world datasets, and compare against

existing perturbation techniques (Chapter 5).

1.4 Thesis Contributions

In this study, we propose a task-specific PPDM perturbation method based on

non-metric MDS. We evaluate our method in the context of k-means clustering,

hierarchical clustering, density-based clustering, k-nearest neighbour classification

(k-NN), and Support Vector Machine (SVM) with different kernels. The overall

performance of our method is compared with some existing dimensionality reduc-

tion methods including random perturbation [110, 129], PCA-based approaches

[11, 174], SVD-based approaches [101, 178], and Fourier transforms [121]. The

main contributions of this study are summarised as follows:

1. We introduce non-metric MDS as perturbation tool for distance-based data

mining tasks (Chapter 3).

2. We investigate two potential adversary attacks: a distance-based attack (Sec-

tion 4.4) and a PCA-based attack (Section 4.5) and use specific measures to

quantify the associated privacy. We show how these attacks would fail to

disclose the original data values since our perturbation technique effectively
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downgrades the information embedded in the perturbed data and limits dis-

closure risk.

3. We show that perturbation using non-metric MDS preserves utility for dis-

tance-based data mining tasks. We evaluate our method using a number

of clustering and classification algorithms and compare the overall perfor-

mance with other well-known perturbation methods (Sections 5.2 and 5.3).

We propose a number of metrics to measure the size of distance distortion

caused by the perturbation in the original and perturbed spaces and to as-

sess neighbourhood preservation and group compactness before and after the

perturbation. The results demonstrate reliable performance of our method

in comparison with the other methods.

4. For each privacy attack, we investigate to what extent our method is able

to provide a trade-off between privacy and utility at different number of

dimensions (Sections 4.4.4 and 4.5.4). Similarly, we investigate the trade-

off between the privacy and the accuracy of data mining model at different

number of dimensions (Sections 5.2.3.4 and 5.3.4.4). We demonstrate that

the desired trade-off between privacy and utility level can be determined

according to the data owner’s preference.

1.5 Thesis Organisation

This section outlines the remainder of the thesis and briefly introduces the main

topics addressed in each chapter.

Chapter 2 offers an overview of privacy preservation in the context of distance-

based data mining. It discusses some essential concepts of distance-based data

mining and reviews the properties of certain distance metrics. It also introduces

various privacy-preserving techniques and methods that have been developed in

literature and explores their limitations and drawbacks.

Chapter 3 presents a privacy-preserving method and describes the rationale

for non-metric MDS, its mechanism, and its geometric characteristics.

Chapter 4 addresses the issue of privacy and utility of the perturbed data.

It discusses the issue of information loss and suggests a measure to quantify the

distortion caused by the perturbation. It also describes the concept of the uncer-

tainty produced by non-metric MDS and investigates how the perturbed data are

resilient to some potential privacy attacks, developed especially for this purpose.
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Different measures are proposed to measure the disclosure risk of the perturbed

data.

Chapter 5 evaluates the privacy-preserving method in the context of distance-

based data mining and explores its suitability using different clustering and classi-

fication algorithms. It tests and compares the overall performance of the proposed

method with other perturbation techniques through a set of experiments. This

chapter also discusses the trade-off between privacy and utility in terms of the

accuracy of data mining models.

Chapter 6 summarises the thesis, discusses the research limitations, and out-

lines directions for future work.



Chapter 2

Privacy-Preserving in

Distance-Based Data Mining

The privacy issue in data mining began to be addressed after 2000 [7]. Over

the past several years, a large and growing number of methods were proposed

in this area both of theoretical and applied nature, several of which aim to ob-

tain valid data mining results while preserving privacy as much as possible. This

chapter describes the concept of distance-based data mining as well as some re-

lated topics, including distance metrics, mining tasks, neighbourhood preservation

and invariance of transformation. It also reviews the existing techniques used for

privacy-preserving data mining and outlines their related research issues.

This Chapter is organised as follows. Section 2.1 introduces some definitions

and general objectives of privacy-preserving data mining. Section 2.2 describes the

concept of data utility and its impact on the effectiveness of the privacy model.

Section 2.3 reviews distance-based data mining and defines some related concepts

and properties. Section 2.4 considers the methods and the techniques used in

data anonymisation, and discusses their potential attacks. The methods used for

data randomisation and the different attacks to those methods are presented in

Section 2.5. Section 2.6 introduces dimensionality reductions methods used for

PPDM and discuses some potential privacy attacks to these methods. Section

2.7 briefly describes the concept of space distortion. Section 2.8 presents the main

characteristics of our method. Finally, a summary of the chapter is given in Section

2.9.

10
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2.1 Introduction

Privacy is becoming an increasingly important issue, especially with respect to

counter-terrorism and national security; these may require the creation of personal

profiles and the construction of social network models in order to detect terrorist

communications in a distributed privacy-sensitive multi-party data environment.

Recent advances in the data mining field have also led to increased concerns about

privacy. Clifton et al. [33] argue that data mining techniques are considered a

challenge to privacy preservation since their accurate results depend on the use

of sensitive information about individuals. Therefore, there is a crucial need to

build algorithms that can mine data while guaranteeing that the privacy of the

individuals is not compromised. As defined in Chapter 1, PPDM attempts to

obtain valid data mining results without disclosing the underlying data values.

Data privacy in data mining refers to the keeping of all private or confidential

data secret. Although the concept of what is meant by privacy is not clearly de-

fined, Vaidya and Clifton [168] provided a roadmap for defining and understanding

privacy constraints. In their work, the term “privacy” is discussed in relation to

three different aspects: keeping information about individuals from being available

to others, protecting information from being misused, and protecting information

about a collection of data rather than just an individual (corporate privacy). In

accordance with these, many completely different approaches to privacy preserving

data mining have been proposed. However, all of them share the same generic goal,

which is to produce accurate mining results without disclosing private information.

The privacy threats caused by data mining can be viewed from two perspectives

[33]. The first is when the original data are published to external parties; if the

publication is conducted without any restrictions, privacy could be compromised.

For instance, publishing some medical data of patients in a hospital could lead

to identifying the patients. The second is once the data are analysed using the

data mining techniques, the output results themselves may violate privacy. For

example, the association rules or classification rules can compromise the privacy

of the data.

The ultimate goal of PPDM is to strive for a win-win-win situation: extracting

useful knowledge from the data, protecting the individual’s privacy, and preventing

any misuse or disclosure of the data. The research community in this field has

begun to address all these issues from two points of view—data perturbation and

the separation of authority. Data perturbation aims to provide modified data
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Figure 2.1: A taxonomy of the main techniques used for PPDM.

for the data analyst, whereas the separation of authority (also known as Secure

Multi-party Computation (SMC)) enables two or more data holders to share data

mining results without exposing their private information to each other. In the

SMC model, data are assumed to be distributed horizontally or vertically over

many different sites, and the data mining is performed at one predefined site.

Each participating site owns some private data and all sites should follow a specific

secure protocol to compute public functions in a polynomial time without revealing

any private information. There is a large and growing corpus of work in the area

of SMC (see, e.g. [87, 106, 131, 167]) but this is beyond the scope of this thesis.

Figure 2.1 shows the general structure of the main techniques used for PPDM.

The data perturbation techniques for privacy-preserving data mining originate

from methods that were used to protect the individual data prior to publication by

statisticians. These methods are known as inference control in statistical databases

or Statistical Disclosure Control (SDC) [48]. The idea behind SDC techniques is

to modify data that are intended to be publicly available in such a way that

makes it difficult to disclose the private information of individuals or to use such

information to identify individuals.
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Data perturbation aims to randomly perturb the data while preserving the

underlying probabilistic properties, so that the patterns can still be accurately

extracted. In order to perform this, a random noise, from a known distribution, is

added to the sensitive data before the data is sent to the data miner. However, the

probability of estimating the original data is one of the potential threats that can

affect this kind of perturbation. For instance, Kargupta et al. [88, 89] proposed

a spectral filtering technique to retrieve original data from the dataset distorted

by adding random values. They then exploited the spectral properties of the data

in order to reconstruct the distribution of the original data. Generally, the per-

turbation techniques used in this area can be categorised into three groups: data

anonymisation, data randomisation and dimensionality reduction. Data anonymi-

sation aims to reduce the risk of identifying individuals using some key attributes

(quasi-identifiers). Techniques such as generalisation, suppression and discretisa-

tion can be used for this purpose. Data randomisation, on the other hand, aims

to minimise the probabilities of estimating the original values of the sensitive at-

tributes. To achieve this, the original data values can be distorted by using either

additive or multiplicative random values or a combination of both. Dimensional-

ity reduction aims to project the data into a predefined lower dimensional space

which inevitably introduces uncertainty about the original data values.

2.2 Data Utility versus Privacy

Most perturbation methods typically result in some modifications of the original

data, which decrease effectiveness in the underlying data, i.e. information loss or

reduced data utility. This may involve the elimination of some information that

would be used during the analysis. Therefore, it is important to assess the quality

of the perturbed data for a specific data mining task. Different applications in

data mining usually require different levels of information to be available in the

data. For instance, for some clustering and classification algorithms, the data

must preserve distance between objects. More accurate data mining results can

be obtained when such data is used to build classification or clustering models.

Data utility refers to a measurement of data properties held in the data after

perturbation and needed by the mining task [25]. Measuring the utility of the

perturbed data is a challenging task. Currently, no single utility measure is broadly

accepted [15]. Information loss may be more usefully measured in relation to a

particular data mining task. For example, if the data mining task utilises the
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distance between objects, it would be appropriate to measure how the distance

deviates in the perturbed data. Without specifying which property the analysis is

going to utilise, it is meaningless to make judgement on whether data are “useful”

or “useless”. Hua and Pei [77] argue that data utility in the context of PPDM

is both relative and specific. The term “relative” implies that the utility is an

approximation ratio of how much the perturbed data can preserve some data

properties. The term “specific” implies that the measurement of utility depends

on the specific data mining application such as association rules, classification and

clustering.

Satisfying privacy constraint is one of the most important objective for any

PPDM technique. Although reducing the amount of information can increase the

uncertainty about the original data, the utility of data will decrease. Unfortu-

nately, this tension between privacy and utility is unavoidable. However, these

two concepts should not be compromised in any PPDM algorithm. Indeed, the

ideal perturbation algorithm should minimise both privacy loss and information

loss [28, 109]. However, in practice, finding such an algorithm is difficult as privacy

and utility are typically contradictory in nature. Therefore, preservation of privacy

versus loss of information is always a trade-off in perturbation-based approaches

[72].

2.3 Distance-based Data Mining

The data mining task is an essential process in Knowledge Discovery in Databases

(KDD) where statistical and intelligent approaches are applied in order to extract

useful patterns from data [45]. When considering a set of objects in a multivariate

dataset and given proximity measurements between these objects, the analysis may

concern two situations. The first is examining data to see if some natural groups

or clusters exist. The other is classifying the objects according to a set of existing

groups or classes. Distance-based analysis deals with tools and methods concerning

these two situations. It aims to perform an inference on the available data and

attempts to predict the behaviour of new data instances. Some data mining tasks

utilise the distance between the data objects (e.g. k-NN classification, k-means

clustering, linear discriminant analysis and SVM) so they are known as distance-

based tasks [96]. When the dataset comprises a set of groups and the analysis

requires to find in which group an object should be placed, these tasks generally

use the distance between the objects as a guiding criterion.
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For distance-based clustering, algorithms often measures the distance between

each new object and the centroid, or representative object, of each cluster and

then assigns the new object to the cluster for which its distance to the centroid is

the smallest [160]. The data mining task of clustering is described in Section 5.3.

In general, distance-based clustering consists of two fundamental steps:

1. Defining a proximity measure: Check each pair of objects for the similar-

ity of their values. A proximity measure is defined to measure the closeness

(distance) of the objects. The closer they are, the more similar they are.

2. Grouping objects: On the basis of the distance measures the objects are

assigned to groups so that differences between groups become large and

objects in a group become as close as possible.

For distance-based classification, each object that is mapped to the same class

may be thought of as more similar to the other objects in that class than it is

to the objects found in other classes. Again, proximity measure may be used to

identify the similarity of different objects in the data. Given a test example and

a set of classes, one can compute its distance to the rest of the objects in the

training set and then classify the example according to the class of the majority

of its closest neighbours. For example, in k-NN classification [160], to classify a

new object, the algorithm first finds the k nearest neighbours of that object using

a predefined distance metric. Then, it votes on the class labels of the k nearest

neighbours in order to choose the majority class which is then assigned to the new

object. The k-NN classification is introduced in greater detail in Section 5.3.1.

2.3.1 Distance Measures

Entities in the domain of interest are usually mapped to symbolic representation

by means of some measurement procedure. The relationships between objects are

represented by numerical relationships between variables. Defining a measure is a

crucial process as it underlies all subsequent data analytic and data mining tasks.

Many data mining techniques are based on similarity measures between data ob-

jects, for example, cluster analysis, nearest neighbour classification, and anomaly

detection. There are essentially two ways to obtain measures of similarity. First,

they can be obtained directly from the objects. For example, a marketing sur-

vey may ask respondents to rate pairs of objects according to their similarity.

Alternatively, measures of similarity may be obtained indirectly from vectors of
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measurements or characteristics describing each object. Here, it is necessary to

define precisely what we mean by “similar” so that we can calculate formal simi-

larity measures. Conversely, we can also refer to dissimilarities. When similarities

or dissimilarities are computed, the initial data may no longer be needed as the

analysis can be done on either of them. The term “proximity” is often used as a

general term to denote either a measure (metric) of similarity or dissimilarity [40].

The similarity between two objects is a numerical measure of the degree to

which the two objects are alike. It is non-negative and is often between 0 (no

similarity) and 1 (complete similarity). The dissimilarity between two objects is a

numerical measure of the degree to which the two objects are different. It is also

non-negative and is in the range [0, 1], if it is compared with the similarity, or in

the range [0,∞] otherwise [160]. The term “dissimilarity” is very often used in the

context of data mining to refer to the distance between any two data objects [69].

Once either similarity or dissimilarity has been formally defined, we can easily

define the other by applying a suitable monotonically decreasing transformation.

It is straightforward to transform similarities to dissimilarities and vice versa. For

example, if s(xi, xj) denotes the similarity and d(xi, xj) denotes the dissimilarity

between objects xi and xj, then some transformations may be admissible, e.g.

d(xi, xj) = 1− s(xi, xj), d(xi, xj) = −s(xi, xj), or d(xi, xj) =
√

2(1− s(xi, xj)).
In practice, data may have variables that are not commensurate and thus the

comparison between data objects may not be fair if this is not taken into account.

For instance, when comparing people based on two variables, say, age and income,

the difference in income will likely be much higher than the difference in age. If

the difference in the ranges of values of age and income are not take into account

during the analysis, then the comparison between people will be dominated by

differences in income. Therefore, to avoid the problem of having a variable with

large values dominate the results of the calculation, we should find some way such

that all variables are regarded as equally important. A common strategy is to

standardise (normalise) the data by dividing each of the variables by its standard

deviation. Let Xk be the kth variable of data X. Two possible techniques for

normalisation can be applied on each value xi of variable Xk. These techniques

are as follows:

1. Min-max normalisation: The variable Xk is scaled so that its values fall

within the range [0, 1], i.e.
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x′i =
xi −min(Xk)

max(Xk)−min(Xk)
, (2.1)

where min(Xk) and max(Xk) are the minimum and the maximum values of

the variable Xk, respectively.

2. Zero-mean normalisation: The values of the variable Xk are transformed

so that Xk has zero mean and unit variance, i.e.

x′i =
xi − µk
σk

, (2.2)

where µk is the mean (average) of the attribute values and σk is the standard

deviation.

In addition, if we have some idea about the relative importance that should be

assigned to each variable, then we can weight them to yield the weighted distance

measure [41], which can be defined by

δ(xi, xj)w =

n∑
k=1

wk δ(xi, xj)

n∑
k=1

wk

, (2.3)

where wk is a positive value represents the weight associated with the kth variable

and n is the number of variables.

The weighted distance measure standardises the data only in the direction of

each variable. That means it does not take into account the covariances between

the variables. When some variables are strongly correlated, they may not con-

tribute anything to what we really want to measure. Thus, to eliminate the effect

of redundant variables, one can compute the covariance between all variables. The

covariance of two variables measures their tendency to vary together. It will have

a large positive value if small and large values of one variable tend to be associated

with small and large values of the other variable, respectively. If large values of

one variable tend to be associated with small values of the other, it will take a

negative value. Let µi be the mean of the variable Xi and µj be the mean of the

variable Xj and m be the number of objects. Then the covariance of variable Xi

and variable Xj is defined by

cov(Xi, Xj) =
1

m

m∑
l=1

(xil − µi)(xjl − µj). (2.4)
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That is, the effect of the correlated variables can be discounted by incorporating

the covariance matrix in the defined distance metric. This leads to the Mahalanobis

distance, which will be defined in Section 2.3.3.1.

The concept of correlation is quite related to the covariance as it also measures

the dependency between two variables. The correlation between two variables Xi

and Xj is defined by

corr(Xi, Xj) =
1

σi σj
cov(Xi, Xj), (2.5)

where σi and σj are the standard deviation of Xi and Xj, respectively.

The correlation is positive when Xi and Xj have a strong linear relationship

(both increase or decrease together); and negative when Xi and Xj have a weak

linear relationship (one variable increases, the other decreases); and zero when Xi

and Xj are independent, That is, the value of corr(Xi, Xj) is such that −1 ≤
corr(Xi, Xj) ≤ 1. Note that if Xi and Xj are standardised, they will each have

a mean of zero and a standard deviation of 1 so that the above formula can be

reduced to the average of the scalar product, i.e.

corr(Xi, Xj) =
m∑
l=1

xilxjl. (2.6)

If the analysis requires to show how statistically similar all pairs of variables are

in their distributions across the data object, then the inter-correlation coefficients

between objects themselves can be calculated. This is equivalent to thinking of

the objects as columns rather than rows in the data matrix.

2.3.2 Properties of a Distance Metric

The word “distance” relates to a measure of how far or close two quantities are.

It is therefore necessary to consider spaces with some sort of distance that can

be defined on them. Such spaces are known as metric spaces. The metric space

is a set of points with a global function that measures the degree of closeness or

distance of pairs of points in this set [117]. To define a distance metric for a set of

data objects in any n-dimensional space, we should first give a rule, δ(xi, xj), for

measuring closeness (conversely, far-awayness) between any two objects, xi and

xj, in the space. Mathematically, a distance metric is a function, δ, which maps

any two objects, xi and xj, into a real number, such that it satisfies the following

three properties [117]:
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1. δ(xi, xj) is positive definite: If the objects xi and xj are different, the

distance between them must be positive. If the objects are the same, then

the distance must be zero. That is, for any two objects xi and xj, we have

(a) δ(xi, xj) > 0 if and only if xi 6= xj,

(b) δ(xi, xj) = 0 if and only if xi = xj.

2. δ(xi, xj) is symmetric: The distance from xi and xj is the same as the

distance from xj and xi. That is, for any two objects xi and xj, we have

δ(xi, xj) = δ(xj, xi).

3. δ(xi, xj) satisfies triangle inequality: The distance between two objects

can never be more than the sum of their distances from some third object.

That is, for any three objects xi, xj and xk, we have

δ(xi, xk) ≤ δ(xi, xj) + δ(xj, xk).

In other words, the triangle inequality states that if point xi is close to point

xj and xj is close to point xk, xi has to be close to xk as well. This is very

important property when the analysis utilises the distance between objects

since when a predefined metric violates this property, the implicit structure

of similarity between objects may also be violated causing incorrect results.

Measures that satisfy only positivity and symmetry, but not the triangle in-

equality are known as semi-metrics. It is worth noting that the ideal distance

metric should be invariant under admissible data transformations. In other words,

it should be independent of the scale of the data it measures so that more accurate

data mining results can be obtained [151, 176].

2.3.3 Distance Metrics for Numerical, Categorical and

Mixed Data

Often a number of interesting metrics can be defined on a space X; a metric

emphasises some feature of interest while ignoring others. For instance, let X

be a journey from city a to city b. Three possible metrics are dg(a, b), which

measures geographical distance; dc(a, b), which measures travel cost; and dt(a, b),
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which measures travel time. In distance-based data mining tasks, we always mean

the first distance or the distance between real numbers. The most frequently used

and the most natural distance function is the Euclidean distance. It corresponds

to the length of the straight line segment (shortest path) that connects two points.

Given a metric space, one can compute the distance between any two of its

objects, xi and xj. There are many natural ways to measure the distance between

objects in terms of the properties correspond to relationships between values of

their measured variables. The choice of a particular proximity measure often

depends on many factors [64]. However, any chosen metric should capture as

much as possible the essential differences between objects. For instance, to ensure

the consistency and the reliability of the analysis, some factors such as application

of data mining, data distribution and computational complexity would be taken

into consideration when choosing a distance measure.

In this section, various examples of distance metrics are defined since they are

the basis for both non-metric MDS and distance-based data mining. Although it

is easy to show that all metrics we consider in this chapter satisfy the first two

properties (positivity and symmetry) defined in Section 2.3.2, it would be lengthy

to verify the triangle inequality for each metric. The proofs can be found in, e.g.

[122, 138].

2.3.3.1 Dissimilarities Between Numerical Data

The type of proximity measure should fit the type of data [69]. Proximity between

numerical attributes is most often expressed in terms of differences (dissimilarities),

and distance measures provide a well-defined way to quantify such differences into

an overall proximity measure. In this section, we present specific examples of some

dissimilarity measures that are widely used with numerical data.

• Minkowski Distance

The general form of the Euclidean distance is the Minkowski distance. Con-

sider two points, xi and xj, in n-dimensional space, X, the Minkowski dis-

tance is defined by

d(xi, xj) =

(
n∑
k=1

|xik − xjk|r
)1/r

, (2.7)

where r is a positive parameter and xik and xjk are the kth attributes of xi

and xj, respectively.
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• Manhattan Distance

When r = 1, the Minkowski distance is called Manhattan distance (L1 norm).

The distance between two points, xi and xj, is the sum of the absolute

differences of their coordinates; and measured along axes at right angles.

For example, the distance between two points, xi at coordinates (xi1, xi2)

and xj at coordinates (xj1, xj2) in R2, is |xi1− xj1|+ |xi2− xj2|. This metric

is also known as city-block and it can be defined by

d(xi, xj) =
n∑
k=1

|xik − xjk|. (2.8)

This is obviously equivalent to the Hamming distance [68], which is the

number of coefficients in which two objects that have only binary attributes

differ.

• Euclidean Distance

When r = 2, the Minkowski distance is known as Euclidean distance (L2

norm). The Euclidean distance between two points, xi and xj, is defined by

d(xi, xj) =

(
n∑
k=1

|xik − xjk|2
)1/2

. (2.9)

That is, it is equal to the square root of the sum of the intra-dimensional

differences, xik−xjk, which is simply the Pythagorean theorem for the length

of the hypotenuse of a right triangle.

• Max Distance

When r =∞, the Minkowski distance is known as Max distance (L∞ norm),

which is defined by

d(xi, xj) =
n

max
k=1
|xik − xjk|. (2.10)

This metric, like Manhattan Distance, examines the absolute magnitude

of the element-wise differences, xik − xjk, in the pair of vectors for two

objects and chooses the largest one. Thus, it is equal to the maximum

of the differences.

Figure 2.2 shows various proximity contours for the case where point xi is

fixed at the origin, (0, 0), and point xj is moved to different position in the
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Figure 2.2: Contour plot of the neighbourhood for a point at the origin (0, 0)
using different distance measures. Contour lines close to (0, 0) have low values,

whereas further away lines have higher values.

space. The contour lines show the set of positions where xj has the same

proximity to xi. Each distance has its own isosimilarity shape, which is the

curve representing the set of all points (neighbourhood) with same distance

to the point at origin, i.e. xi. The isosimilarity curve looks like a diamond,

circle and square for the case when r = 1, r = 2 and r =∞, respectively.

Example 2.1. Let x1 = (2, 3, 1) and x2 = (0, 1, 2). Then,

the Manhattan distance is

d(x1, x2) =
n∑
k=1

|x1k − x2k| = |2− 0|+ |3− 1|+ |1− 2| = 5,

the Euclidean distance is

d(x1, x2) =

(
n∑
k=1

|x1k − x2k|2
)1/2

=
√

(2− 0)2 + (3− 1)2 + (1− 2)2 = 3,

the Max distance is

d(x1, x2) =
n

max
k=1
|x1k − x2k| = max(|2− 0|, |3− 1|, |1− 2|) = 2,

• Mahalanobis distance

Sometimes it is worth taking into account the correlations of the attributes

when measuring the distance between objects. For this purpose, the Maha-

lanobis distance is suggested. The Mahalanobis distance is mathematically

defined by
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Figure 2.3: Mahalanobis distances between the points represented by squares
and the remaining points represented by circles. The colour bar represents how
far the points represented by squares are from the points represented by circles.

The more blue is the colour the closer is the point.

d(xi, xj) =

(
(xi − xj) Σ−1 (xi − xj)T

)1/2

, (2.11)

where Σ−1 is the inverse of the covariance matrix of the data.

It can be seen that since Σ is a non-singular covariance matrix, it is positive-

definite and hence d(xi, xj) is a metric. The Mahalanobis distance is analyti-

cally preferred to other metrics when attributes are correlated, have different

variance, and the data has normal distribution [160]. Figure 2.3 shows an

example of calculating the Mahalanobis distance between some points with

two variables, X and Y . The points in Y with equal coordinate values are

much closer to X than points with opposite coordinate values, even though

all points are approximately equidistant from the mean of X in Euclidean

distance. This indeed implies that the isosimilarity curve of the neighbour-

hood in the Mahalanobis distance takes an elliptical shape.

Example 2.2. Table 2.1 shows five data objects in 2-dimensional space, X. The

Mahalanobis distances between these objects and the objects y1 = (1, 2), y2 =

(2, 2), and y3 = (−1, 0) are shown in Table 2.2. Since the object y1 is close to the

mean of the data X, it has a low Mahalanobis distance (d(y1, X) = 2.2) compared

with other objects y2 and y3.
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Table 2.1: An example of five data objects in 2-dimensional space.

Object X1 X2

x1 0 1
x2 2 1
x3 1 1
x4 -1 2
x5 1 -1

Mean 0.6 0.8

Table 2.2: Mahalanobis distance between the data objects in data X and the
objects y1, y2 and y3.

Object Y1 Y2 d(yi, X)

y1 1 2 2.2
y2 2 2 5.2
y3 -1 0 4.5

2.3.3.2 Similarities of Categorical Data

The notion of “similarity” is often used with data that contains categorical at-

tributes and thus it is sometimes called similarity coefficient. The similarity be-

tween two objects is related to the differences between them. The more differences

they have, the less similar they are. If s(xi, xj) is the similarity between two objects

xi and xj, then s(xi, xj) typically has the following properties:

1. s(xi, xj) is positive definite, i.e.

s(xi, xj) =

1 if and only ifxi = xj,

0 otherwise.

This implies that when s(xi, xj) equals 1 the two objects, xi and xj, are

completely similar, whereas when s(xi, xj) equals 0 the objects xi and xj are

different.

2. s(xi, xj) is symmetric, i.e.

s(xi, xj) = s(xj, xi) for all xi and xj.

For most similarity measures, the triangle inequality typically may not hold

and thus they cannot be a metric [64, 166]. However, it is easy to convert any

non-metric similarity measure to a metric distance as described above in Section
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2.3.1. For instance, a simple similarity measure, s(xi, xj) = 1 when xi and xj are

equal, and s(xi, xj) = 0 otherwise, does not satisfy the triangle inequality, but

s′(xi, xj) =
√

1− s(xi, xj) does and thus s′(xi, xj) is a metric and equivalent to

the Euclidean distance.

To measure the distance between two objects with categorical attributes, it is

natural to construct a so-called contingency table, which contains in its cells the

frequencies with which two attributes were sorted into the same group. Let xil

and xjl be two attributes of interest in the objects xi and xj, respectively. Let

z = f(xil, xjl) be the frequency of an event (xil, xjl). In particular, let a = f(0, 0)

be the frequency of the event where both xil and xjl are absent, b = f(0, 1) be

the frequency of the event where xil is absent and xjl is present, c = f(1, 0) be

the frequency of the event where xil is present and xjl is absent, and d = f(1, 1)

be the frequency of the event where both xil and xjl are present. Some possible

similarity measures are defined as follows:

• Simple matching coefficient

s(xi, xj) =
a+ d

a+ b+ c+ d
. (2.12)

• Jaccard coefficient

s(xi, xj) =
d

b+ c+ d
. (2.13)

• Hamman coefficient

s(xi, xj) =
(a+ d)− (b+ c)

a+ b+ c+ d
. (2.14)

• Cosine similarity

s(xi,xj) =
xi.xj

||xi|| ||xj||
, (2.15)

where xi and xj are two vectors each of which has n elements and each ele-

ment contains the frequency that a predefined event is present. The notation

“.” denotes the dot product and ||.|| is the length of the vector.

The cosine similarity indeed is a measure of the cosine of the angle between xi

and xj. Thus, the smaller the angle, the more similar are the two vectors.
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Similarity measures are generally distinguished according to whether or not the

0-0 matching, i.e. a = f(0, 0), is included to the measure’s formula. Many various

similarity measures are proposed in the literature (see, e.g, [81] for a comprehensive

list of similarity measures). Nevertheless, the particular choice of which to use

depends on the application. For instance, if the analysis requires to calculate the

similarity between two documents where each document is represented as a vector

and each attribute contains the frequency with which a particular word occurs

in the document, then the most common and appropriate measure is the cosine

similarity [44].

Example 2.3. Let x1 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) and x2 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 1).

Then we have

s(x1, x2) =
a+ d

a+ b+ c+ d
=

7 + 0

7 + 2 + 1 + 0
= 0.7,

for the simple matching coefficient, and

s(x1, x2) =
d

b+ c+ d
=

0

2 + 1 + 0
= 0,

for the Jaccard coefficient, and

s(x1, x2) =
(a+ d)− (b+ c)

a+ b+ c+ d
=

(7 + 0)− (2 + 1)

7 + 2 + 1 + 0
= 0.4,

for the Hamman coefficient, and

s(x1, x2) =
xi.xj

||xi|| ||xj||
=

0

1× 1.41
= 0,

for the cosine similarity.

2.3.3.3 Similarities of Mixed Data

In real world, the data often contains objects with attributes of mixed data type.

Therefore, to guarantee the quality of comparing objects, one may calculate the

distance by combining the methods mentioned in the above previous sections (Sec-

tion 2.3.3.1 and 2.3.3.2). For instance, when calculating the distance between ob-

jects, xi and xj, using the Euclidean distance, one may calculate the difference

between nominal and binary attributes as 0 or 1, i.e. “match” or “mismatch”,

respectively. Similarly, the difference between numeric attributes as the squared

difference between their normalised values. That is, the total distance is obtained
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by taking the summation over each difference. Note that it would be easy to

transform some categorical values, for example “low”, “medium” and “high”, into

numeric values, and thus deal with the data using one numeric metric. However,

when the categorical attributes contain unordered values like “red”, “green” and

“blue”, the transformation would be challenging since these kind of attributes

cannot be ordered naturally, and hence we cannot assign them numerical values.

Let xi and xj be two data objects that have attributes with mixed data types

(numerical and categorical), the similarity measure [78, 79] between them can be

introduced as follows:

s(xi, xj) =

(
n∑
k=1

|xik − xjk|2
)1/2

+ wk

c∑
k=1

δ(xik, xjk), (2.16)

where the first term is the Euclidean distance measured on the n numerical at-

tributes and the second term is the weighted simple matching similarity measured

on the c categorical attributes and wk is the weight associated with the kth cate-

gorical attribute.

Alternative similarity measure for mixed data was proposed by Grower [63] as

follows:

s(xi, xj) =

n∑
k=1

wk δ(xik, xjk)

n∑
k=1

wk

, (2.17)

where δ(xik, xjk) is the similarity between the kth variable of the objects xi and

xj and wk is the associated weight, which equals to one if the two objects xi

and xj can be compared on the kth variable and equals zero otherwise. If the

kth variable is categorical, then the similarity, δ(xik, xjk), is defined as a simple

matching coefficient. Whereas if the kth variable is numerical, then δ(xik, xjk) is

defined as δ(xik, xjk) = 1 − |xik − xjk|/max(Xk) − min(Xk), where max(Xk) −
min(Xk) represents the range of the values for the kth variable, Xk. This definition

ensures that 0 ≤ δ(xik, xjk) ≤ 1 for all xi and xj.

Once the similarities are calculated, the data mining algorithm can work on

them in order to minimise the cost function associated with the mining task. For

example, in each iteration of the k-means clustering algorithm, each data object

can be assigned to its nearest cluster centre according to one of the similarity

metrics defined above. Then the cluster centres are re-calculated as the mean of

all the objects belonging to that cluster [9].
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2.3.4 Distance-Based Tasks

The main distance-based tasks in data mining are briefly described as follows:

• Classification and Prediction

The classification problem is described as assigning objects to one of sev-

eral predefined categories. For example, a patient data may have a class

attribute called Diagnosis along with several other attributes that describe

various properties and conditions of a patient. Given a set of patients, one

can classify each individual into separate and distinct categories that allow

medical decisions about treatment to be made. The input data for classifi-

cation is a collection of objects (also known as instances or examples) each

of which is characterised by a tuple (x1, x2, . . . , xn, ci), where xi is non-class

attribute and ci is the class attribute (also known as label or target attribute).

The non-class attribute set may include data from different types while the

class attributes is often discrete. Classification is the task of learning a target

function f that maps each attribute set, x1, x2, . . . , xn, to one of predefined

class label, ci. It discovers a pattern (model) that explains the relationship

between the class and the non-class attributes [160].

The classification model is often used as either descriptive or predictive.

In the former, the classification model can serve as an explanatory tool to

distinguish between objects of different classes, whereas the later aims to

use the classification model to predict the class label of unlabelled objects.

The predictive modelling involves two steps: (1) an inductive step where

the classification model is constructed from the training dataset, and (2) a

deductive step where the model is applied to the testing dataset. When the

classification algorithm optimises a distance function in order to build the

model, then classification is a distance-based task. An example of distance-

based classification is the k-NN algorithm, which classifies the new test object

based on the class label of its neighbours. In the case where the neighbours

have more than one label, the object is assigned to the majority class of its

neighbours. The classification model is sometimes called classifier, which

can be expressed in different ways such as decision tree, rule-based classifier,

neural network, support vector machine or näıve Bayes classifier.
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• Clustering

Clustering is the process of arranging similar objects in groups so that the

objects belonging to the same cluster have high similarity, while objects

belonging to different clusters are well separated [69]. Unlike classification,

clustering does not rely on predefined classes but rather derives the class label

from the data so that it is sometimes referred to as unsupervised learning.

Typical applications of clustering include discovery of medicine and genes,

identification of loyal customers, risk analysis, detection of banking fraud

and many other applications [57].

The major clustering methods can be classified into the following categories

[67]:

– Partitioning Clustering: This method generally divides m data ob-

jects into k non-overlapping and mutually exclusive subsets (clusters),

where k is a specified number and k ≤ m. The method then iteratively

improves the quality of the partitions by grouping similar objects, in

terms of their distances to the representative object or centroid. Var-

ious kinds of criteria can be used for judging the quality of partitions

[67]. The most common algorithms used for partitioning clustering are

k-means [73], PAM [91] and CLARANS [125].

– Hierarchical Clustering: These methods arrange a set of objects in

a hierarchy with a tree-like structure based on the distance or similarity

between the objects. In general, they are classified into two categories—

agglomerative and divisive. The agglomerative approach begins with

each object placed in a separate cluster. Then the distance between all

possible combinations of two objects is calculated using a selected dis-

tance measure. The two most similar clusters are then grouped together

and form a new cluster. In subsequent steps, the distance between the

new cluster and all remaining clusters is recalculated. Clusters are

merged until only one cluster remains. On the other hand, the divisive

approach starts with all objects in a single cluster and then splits a

cluster into two clusters such that the quality of the overall clustering

is improved. The algorithm stops when a termination condition is met

or each object is assigned into a different cluster.

– Density-Based Clustering: This method typically locates regions

of high density that are separated from one another by regions of low
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density. DBSCAN [55] is well-known algorithm of this category. The

algorithm searches for clusters by checking the neighbourhood of each

object in the data. Given input parameters such as neighbourhood

radius, ε, and minimum number of objects, MinPts, each object x is

examined to determine whether or not its neighbourhood contains at

least MinPts objects. If this condition is satisfied, then a new cluster

with x as a core object is created. The algorithm then iteratively collects

directly density-reachable objects from these core objects, which may

involve the merge of a few density-reachable clusters. The algorithm

terminates when no new object can be added to any cluster.

– Grid-Based Clustering: These methods perform all clustering oper-

ations on a grid-like structure obtained by quantising the data space

into a finite number of cells. The main advantage of these methods is

their fast processing time since they mainly depend only on the num-

ber of cells in each dimension in the quantised space. STING [177] is a

typical example of a grid-based clustering in spatial databases.

– Fuzzy Clustering: These methods allow the objects to belong to sev-

eral clusters at the same time, with different degrees of membership.

Intuitively, fuzzy clustering is more natural than hard (crisp) cluster-

ing because objects on the boundaries between several clusters are not

forced to fully belong to one of the clusters but rather are given a mem-

bership degree between 0 and 1 indicating their partial membership. A

common algorithm for fuzzy clustering is FCM [16].

2.3.5 Neighbourhood Space of an Object

In order to guarantee the correctness of data analysis of perturbed data, partic-

ularly in the context of distance-based data mining, the neighbourhood relations

between objects in the perturbed space should be accurately measured. Indeed,

preserving neighbourhood’s relations in the mapping may help to discover the

hidden structures (groups and clusters) underlying the original data [14].

A distance metric is a function of two variables on a set X, i.e. a function of

the Cartesian product, X ×X, of X with itself, which is non-negative, symmetric

and satisfies the triangle inequality [117]. Given a set X, one can define an open

ball or radius r > 0 around a point x ∈ X as the set of all points at a distance less

that r from x. The neighbourhood space of point x is the set of all points, N , such
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that each point in N is within a specified distance, r, from x. Mathematically, it

is defined as follows:

Definition 2.1 (Neighbourhood space). In a metric space (X, d), a set N is a

neighbourhood of a point p if there exists an open ball with centre p and radius

r > 0, such that N = {x ∈ X : d(x, p) ≤ r}.

The elements in N are called the nearest neighbours of p with respect to the

distance r and the metric d. The parameter r is the radius of the neighbourhood

space. The set of points B satisfying d(p,B) = r, is called the boundary of the

neighbourhood.

As mentioned earlier in Section 2.3.3, different distance metrics result in neigh-

bourhoods with different sizes and different shapes. For instance, the neighbour-

hood of point x, in a two dimensional space, using Manhattan distance metric is

a diamond. The centre of the neighbourhood is the intersection point of its diago-

nals. The length of each side of the diamond is
√

2r and each side makes angle of

45 ◦ with the axes and the length of the diagonals is 2r. For Euclidean distance,

the neighbourhood space is a circle with radius r and centre x; the centre of the

circle is the centre of the neighbourhood. For Max distance, the neighbourhood is

a square with sides 2r and centre x. The sides of the square are paralleled to the

axes.

2.3.6 Decision Boundaries for Distance Metrics

The decision boundary between two classes is a hyperplane that partitions the

underlying data space into two sets, one for each class, so that the classifier can

assign all the objects on one side of the decision boundary to one class and all

those on the other side to the other class. To illustrate this, consider the following

example. Let a and b be two points in 2-dimensional space, where each point

belongs to a distinct class, ci, and let x be a moving point in the space (see

Figure 2.4(a)). All possible locations of the point x that satisfy the condition

d(x, a) = d(x, b) form a hyperplane H (a line in a 2-dimensional space), which

divides the space into two half planes. The points in the half plane R1 are closer

to the point a; the points in the half plane R2 are closer to the point b and the

points on the hyperplane H have the same distance from a and b. This hyperplane

H is called the decision boundary between the two classes for the metric d. The

regions R1 and R2 are called decision regions of the predefined classes c1 and c2,

respectively.



Chapter 2. Privacy-Preserving in Distance-Based Data Mining 32

d(x,b)

d(x,a)R2 R1

x

a

b

H

Decsion
Boundary

(a) Linear case

R1

R2

(b) Non-linear case

Figure 2.4: An example of the decision boundary between two classes (blue
and red) for linear data (a) and non-linear data (b). The hyperplane H is the
optimal decision boundary that separates the two classes. The region R1 denotes
that part of input space classified as blue, while the region R2 is classified as

red.

The distance measure, d, determines the geometry of the decision boundary. For

example, when d is Euclidean distance, the hyperplane, H, is the perpendicular

bisector to the line segment matching the points a and b. When d is Manhattan

distance, H is a 3-segment line such that the middle segment is a straight line of

45 ◦ with the x-axis and the other two segments are parallel to the y-axis. When

d is Max distance, H is also a 3-segment line such that the middle segment is

parallel to the y-axis and the other two segments are a straight lines of 45 ◦ with

the x-axis.

However, data, in most real cases, are non-linear, i.e. classes are not linearly

separable and may possibly have discontinuous decision boundaries, and thus a

linear decision boundary is unlikely to be optimal. In such cases, the optimal

decision boundary is non-linear, disjoint and more difficult to obtain [74]. Figure

2.4(b) shows an example of a non-linear decision boundary.

In distance-based learning, the algorithm attempts to assign unseen objects

to the closest group under the guidance of a predefined distance measure. The

performance of the algorithm often depends on the underlying topological struc-

ture of the data, i.e. data distribution or the relationship between a point and

its neighbours. Therefore, it is important for any PPDM transformation to pre-

serve as far as possible the essential topology of the original data such that nearby

and far away points in the original space are mapped into nearby and far away

points, respectively, in the transformed space. When the underlying structure of
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the data is well preserved, the decision boundaries are likely to remain unchanged

[75, 103]. This propriety is very important for many distance-based algorithms

particularly those seeking a hyperplane that separates the feature space into a set

of classes with a maximum margin. For instance, SVM [36] employs optimisa-

tion functions to find optimal boundaries between classes such that the optimal

boundaries should generalise to unseen samples with least errors among all pos-

sible boundaries separating the classes. In other words, it maximises the margin

between the classes on the training data and thus better classification performance

on test data can be obtained.

2.3.7 Transformation-Invariant Data Mining

The utility of the data can be measured in two ways either by quantifying in-

formation loss incurred by the transformation process or by assessing how well

the transformed data support a certain data mining task. Since the distance are

most important in the analysis, one can measure the size of distance deviation in

the original and the transformed spaces. This gives how much information is lost

during the transformation. Alternatively, one can evaluate the accuracy of results

obtained from the original and the transformed data. For instance, if the task

is classification, the accuracy of the classifier on both the original data and the

transformed version can be used as a measure for data utility.

Data perturbation can be seen as a transformation from the original space to

the perturbed space. When the data mining results obtained from the original

and the perturbed data are similar, one can say that the data mining algorithm

that operated on both of them is invariant under the transformation. However,

since most transformation methods typically downgrade some properties required

by the analysis, the term “invariant” would be better understood as maintaining

as small a discrepancy as possible. Let acc(X) and acc(T (X)) be the accuracies

obtained by an algorithm A on the original data, X, and the transformed data,

T (X), respectively. The transformation-invariant algorithm is defined as follows:

Definition 2.2 (Invariant data mining algorithm). A data mining algorithm A is

invariant to a transformation T if and only if acc(X)− acc(T (X)) ≤ e, where e is

a small value such that 0 ≤ e ≤ 1.

This implies that perturbation should be performed so the data analysis on the

perturbed data yields conclusions that are invariant with the conclusions derived

from the original data. That is, replacing an object x by an object T (x) does not
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change the accuracy of data mining algorithm. If acc(X) − acc(T (X)) = 0, then

the algorithm is strictly invariant to the transformation.

As we will see in Chapter 3, non-metric MDS usually aims at preserving both

the Euclidean distance and the underlying data structure with small error. The

overall group topology approximately remains unchanged before and after the

perturbation [42]. Therefore, any distance-based algorithm should be able to de-

termine the right group membership for each data object and thus invariant results

can be obtained.

2.4 Data Anonymisation Methods

Published data may violate individual privacy when one can easily identify a single

record from a set of data records. The anonymisation methods aim to mask the

detailed information of any sensitive attributes and minimise the probability of

re-identifying the record owner. The sensitive attributes are those that contain

confidential or private information as pre-specified by the data owner.

In the area of data publishing, many methods of data anonymisation have been

developed in order to prevent the re-identification of individual identities. The

k-anonymisation method [158] guarantees privacy by ensuring that any record in

a published dataset be indistinguishable from at least (k− 1) other records in the

data. The re-identification of a given record usually depends on a set of attributes

known as quasi-identifiers which are non-sensitive attributes but could potentially

uniquely identify record owners [60]. Thus, in the k-anonymity model, the risk of

re-identification is maintained under an acceptable probability, i.e. 1/k [119]. One

drawback of k-anonymisation is that the distribution of some quasi-attributes may

be lost as a result of the generalisation process. For instance, an attribute, let’s

say Age, can be generalised to a set of domain intervals, and therefore, the specific

distribution information of this attribute is lost. To overcome this problem, Kifer

and Gehrke [94] proposed a technique to inject additional information into the

k-anonymous tables using marginal tables. The marginal table of any generalised

attribute is a simple count of all tuples sharing the same value in the original

domain of that attribute.

Despite the effectiveness and simplicity of implementing the k-anonymisation,

it is vulnerable to different kinds of attacks such as record linkage and attribute

linkage. Record linkage [173] can occur when the attacker is able to link a record

owner to a record in the anonymised data, whereas, attribute linkage [31] can occur
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when the attacker is able to link a record owner to a sensitive attribute. There-

fore, the technique of `-diversity [113] was proposed which not only maintains the

minimum group size of k records, but also maintains the diversity of the sensitive

attributes. This model would provide a stronger protection against attacks since

the larger the value of `, the more difficult it becomes to discover the possible

values of the sensitive attribute. However, in some cases, the sensitive values are

naturally more frequent than others in a single group. Therefore, the `-diversity

model may fail to prevent probabilistic inference attacks [2].

In [8], a further enhancement for k-anonymisation and `-diversity was suggested.

This method randomly chooses whether to keep or replace each record in the

anonymised data with another record, randomly chosen from the domain of all

variables in such a way that the proportion of retained records is no less than a

predefined threshold. However, it has been shown in [134] that all theses data

anonymisation methods are often subject to low privacy and low utility. The

t-closeness model [102] is a further enhancement of the `-diversity model. This

model requires that the distribution of a sensitive attribute in any equivalence

class is close to the overall distribution of the attribute in the data, i.e. the

distance between the two distributions should be no more than a threshold t. The

equivalence class is simply defined as a set of records that have the same values for

quasi-identifiers [32]. Aggarwal and Yu [2] argue the t-closeness approach would

provide a more effective solution than many other PPDM methods particularly

when the sensitive attribute is numeric. However, Domingo-Ferrer and Torra [49]

criticise this model since enforcing t-closeness may minimise the data utility, and

thereby affect the discovery of data patterns.

Due to the limitation of data anonymisation methods in preserving most of data

properties such as distances between data points, data distribution and granularity

of data, they are not effective for most data mining applications since, in practice,

most data mining techniques are highly dependent on these data properties.

2.5 Data Randomisation Methods

Data randomisation is one of the traditional techniques used for protecting the

private information of individuals in statistical databases (SDB) whilst maintain-

ing the statistical properties [95, 104, 164]. Data randomisation methods attempt

to disguise the sensitive data by randomly modifying the data values often using

either additive noise or multiplicative noise or a combination of these two methods
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all together. In fact, the size of the noise added to an individual value gives an in-

dication of how difficult it is to recover the original value. Thus, using sufficiently

high levels of noise may provide good privacy protection.

In the additive perturbation [7, 111], random numbers drawn from a normal

distribution with zero mean, µ = 0, and standard deviation σ are added to the

original data values. In contrast, in the multiplicative perturbation, the original

data points are either projected to a randomly chosen lower-dimensional space

[110, 129] or rotated using an orthogonal transformation [24]. In [27, 28], an

enhancement of rotation perturbation was suggested where extra components are

added to the perturbation model including translation matrix and noise addition.

Kenthapadi et al. [92] propose a privacy model using both projection and additive

perturbation.

One of the unique features that distinguishes rotation perturbations from other

perturbations is that it provides good data utility for some data mining tasks,

including classification and clustering. Since many data mining models utilise

Euclidean distance or inner product, as long as such information is preserved,

models trained on perturbed data will have similar accuracy to those trained on the

original data [24]. However, in projection perturbation, the pairwise distances are

not strictly preserved but rather maintained with some distortion, and therefore,

the accuracy of a data mining model may still be negatively affected.

Despite the fact that multiplicative perturbations preserve some data proper-

ties, they may not provide effective protection for private data. Liu et al. [110]

argue that if the original data vectors are statistically independent and do not

follow a Gaussian distribution, it is possible to estimate their original forms quite

accurately. Liu et al. [108] also proposed a PCA-based attack by which the at-

tacker can use prior knowledge to estimate the original data from the perturbed

data. Similarly, Turgay et al. [165] proposed a similar PCA-based attack but

with different assumptions. Guo and Wu [66] proposed a method that is based

on Independent Component Analysis (ICA) to derive the original from the per-

turbed data. However, the ICA approach is not efficient because the order of the

independent components of the original data cannot be determined and the vari-

ance of the original data signals cannot be preserved even though the order of the

independent components can be successfully determined [28, 127].
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2.6 Dimensionality Reduction for Privacy-Pre-

serving Data Mining

Methods of dimensionality reduction provide a way to understand and visualize

the structure of complex data. Recently, they have been proposed for ensuring

that a given data, in a lower space, are protected against privacy threats, and

meanwhile expose many of the useful and interesting properties of the original data.

Dimensionality reduction methods assume that the data records are represented

as vectors in a multidimensional space where each dimension represents a single

attribute. The entire database is represented as an m× n matrix with m records

and n attributes. In general, these methods aim to map each data object in the

high dimensional space, Rn, into a point in the lower dimensional space, Rp such

that a distinct property of data is maintained, i.e. T : X → Y where X is the

original data and Y is the perturbed data. The basic problem inherent in these

type of mapping is that they usually result in some distortion of the data being

mapped. It is very rare to find a mapping between two spaces of interest in which

distances are exactly preserved, and hence, we often have to allow the mapping to

alter the distances in some fashion but hopefully with restricted damages as much

as possible. This section presents a brief summary and review of dimensionality

reduction methods used for PPDM and comments on their characteristics.

2.6.1 Random Projection Perturbation

Random Projection (RP) aims to protect the original data values, whilst preserving

the data utility, by projecting data objects in n-dimensional space into a lower p-

dimensional space, where p < n, capturing as much of the variation of the data as

possible. The RP can be defined by

Y = XR, (2.18)

where R is an n×p RP matrix onto p-subspace such that each column is orthogonal

and the elements rij have zero mean and unit variance [129]. Let A be a matrix

whose columns are linearly independent vectors, then the projection of matrix X

into the subspace of the columns of A is known to be R = A(ATA)−1AT [118].

Note that even though A still embeds X into the lower dimensional space, it is no

longer an isometry in general.
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This approach is fundamentally based on the result of Johnson-Lindenstrauss

lemma [85] which says that any n points subset of Euclidean space can be embed-

ded into a random subspace of p = O(log n/ε2) dimensions without distorting the

pairwise distances by more than a factor of (1 ± ε), for any 0 < ε < 1. This im-

plies that there is a transformation T : Rn → Rp such that the distances between

the points are approximately preserved. Let x and y be two points in the higher

dimension, Rn, T (x) and T (y) be their images in the lower dimension, Rp, there

exists ε > 0 such that the distance between x and y and their images T (x) and

T (y) is bounded by

(1− ε)||x− y|| ≤ ||T (x)− T (y)|| ≤ (1 + ε)||x− y||. (2.19)

By using such a transformation, it would be possible to change the original form

of data whilst maintaining the distance properties by a small error ε. However,

since the pairwise distances are not strictly preserved but rather maintained with

some distortion ε, the accuracy of data mining model may still be negatively

affected. Assume that data points of the original data are represented as column

vectors in matrix X, i.e. X is an n×m matrix, Liu and Kargupta [110] define a

perturbation model that preserves the inner product as

Y =
1√
pσ

XR, (2.20)

where each entry rij of R is independent and identically distributed chosen from

a distribution with mean µ = 0 and standard deviation σ. It has been proved

in [107] that E[RTR] = nσ2I, where n is the number of rows of matrix R, and

I is the identity matrix. The values of the original data X can be estimated

as E[Y TY ] = XTX since the entries of the random matrix are independent and

identically distributed.

2.6.2 PCA-based Perturbation

Principal Component Analysis (PCA) is a linear transformation method which

aims to find a lower subspace that preserves much of the variance. It seeks new

uncorrelated features that explain most of the total variance of data, and thus

reject noisy features that account for low variance. Let Σ = 1
n−1

XTX be the

covariance matrix of the original data. The matrix Σ can be decomposed as

UΛUT where U is an m× n matrix containing the eigenvectors corresponding to
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eigenvalues of Σ and Λ is an n × n diagonal matrix containing the eigenvalues,

λ1, λ2, . . . , λn. Without loss of generality, the eigenvalues of Σ can be ordered in

a non-increasing order, λ1 ≥ λ2 ≥ . . . ≥ λn, thus the columns of Y have also

non-increasing variances. To project the data to a p-dimensional space, we keep

the first p columns in U that count for most of the variance and discard the rest

of the columns. The perturbed data Y can then be generated by

Y = XUp.

The subspace, Y , spanned by the first p eigenvectors has the smallest sum

of squared Euclidean distances’ deviation from the original space X. In other

words, the “best-fit” that minimizes the distortion of distances in the subspace,

Y , is determined by the first principle components [86]. Banu and Nagaveni [11]

proposed a PCA-based approach to perturb the data using a set of samples that

are randomly drawn from the original data but no rigorous analysis of privacy

preservation was given. Later they generalised their approach for a multi-party

clustering scenario [174].

2.6.3 SVD-based Perturbation

Single Value Decomposition (SVD) is quite close to PCA because the idea of

eigenvalue decomposition can be generalized to an arbitrary (non-symmetric, non-

square) matrix X. The matrix X can be factorized into USV T where U is an

m × n orthogonal matrix containing the eigenvectors of XXT and S is an n × n
diagonal matrix containing the singular values, σ1, σ2, . . . , σn and V is an n × n
orthogonal matrix containing the eigenvectors of XTX. Each σi is equal to

√
λi,

the square root of the eigenvalues of Σ. Similarly, we can order singular values in

decreasing order of magnitude, σ1 ≥ σ2 ≥ . . . ≥ σn and retain the p eigenvectors

that capture the maximum variation; and project the data into the p-dimensional

space to generate the perturbed data Y , i.e.

Y = USpV
T .

Note that the smallest singular values are often considered to be due to noise,

and thus removing them will not affect the difference of Euclidean distances be-

tween the original data, X, and the perturbed data, Y . Xu et al. [178] used SVD

to transform the data to a lower dimension and then, to enhance the privacy, they
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modified some entries of the matrix U and V that are less than a pre-specified

threshold. A similar approach was suggested in [101] to perturb different sam-

ples of data using different setting of the pre-specified threshold. However, the

modification of some entries values causes much loss of information and heavily

distorts the distances between the data points as the dimensionality decreases.

This would affect the data analysis and lead to poor data mining results as we

will see in Chapter 5. Lin et al. [105] proposed a method that first reduces the

dimensionality of the original data using a filter-based feature selection method

and then distorts the selected subset using SVD. Lakshmi and Rani [99] used a

combination of SVD and random multiplication to generate the perturbed data.

2.6.4 Fourier Transform Perturbation

Fourier Transform (FT) is widely used for dimensionality reduction of time series

data[6]. It can be categorized into discrete and continuous. Here, we consider the

discrete cosine transform in which any signal (source of data) can be represented

by a finite number of waves, where each wave is represented by a single number

known as a Fourier coefficient [19]. It basically filters the inherent periodic contri-

butions from time-dependent signals and displays their amplitudes as a function

of frequency. A signal of length n can be decomposed into p waves that can be

recombined into the original signal. The key observation is that the Euclidean

distance between two signals in the original domain (time domain) is preserved

in the transformed domain (frequency domain) as stated by Parsevals law [147].

This idea can be extended to transform a set of objects in n-dimensional space

into a lower p-dimensional space. Let f(x) be a continuous object of a given data.

Let N samples be denoted f(0), f(1), . . . , f(k), . . . , f(N−1). The Discrete Cosine

Transform (DCT) of an object x is a sequence Fn, for n = 0, . . . , (N − 1), defined

by

Fn =

(
2

N

) 1
2
N−1∑
k=0

Λ(k) cos

[
πn

2N
(2k + 1)

]
f(k),

where

Λ(k) =

 1√
2

for k = 0,

1 otherwise.

The highest coefficients corresponding to a predefined value are selected to

represent the original objects. The higher the number of coefficients kept in the
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released data, the higher the utility.

Mukherjee et al. [121] propose a Fourier-related transformation to perturb the

data, which preserves Euclidian distance while also providing privacy preservation.

Their technique is based on producing a set of coefficients which are going to be

transmitted to a third party, instead of the original data. The coefficients provide

both dimensionality reduction and data hiding. Privacy is preserved because some

of the coefficients are suppressed with a heuristic algorithm and their order is

permuted, making it difficult to reconstruct the original data without additional

information about the number of attributes in the original data and the indexes

of coefficients. With additional information some privacy breaches may occur

[61]. The performance of the algorithm was shown to be good against random

perturbation and projection approaches. However, the performance is critically

affected by the number of coefficients selected and algorithms for setting this

parameter can have an impact on the efficiency of the overall approach.

2.6.5 Attacks to Dimensionality Reduction

Although the preservation of privacy in dimensionality reduction seems better than

other data anonymisation and randomization methods, there are still some major

challenges including measuring the level of uncertainty in the perturbed data and

ensuring the resilience of the perturbed data against data disclosure. For most

data randomization techniques, if more is known about the original data, then

the probability of breaching the privacy model is high as these techniques are

usually dependent on a transformation basis to map the data. This implies that

the perturbed data, in most cases, contain much of the statistical properties which

can then be exploited by privacy attacks to estimate the transformation matrix and

thus recover the original data. Therefore, the success of theses attacks basically

depends on how much information is still embedded in the data and how this

information is available to the attacker.

The notion of uncertainty can be characterised by the probability of disclosing

any data value in the perturbed data. In other words, it can be described by the

level in which the private information, that has been hidden, can still be predicted.

When thinking about uncertainty in the context of perturbation-based approaches,

there is no general procedure for quantifying the uncertainty in the perturbed data.

However, to guarantee the effectiveness of any privacy model, it is important to

decrease the accuracy of the inference relating to the original data that can be

obtained from the perturbed data. This can be achieved by downgrading the
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information embedded in the perturbed data and thus limiting the disclosure of the

private information. As we will see in Chapter 3, the uncertainty inherited in the

perturbed data generated by non-metric MDS is explained through the way used to

place points in the lower dimensional space, which entirely depends on preserving

the order of dissimilarities instead of the actual dissimilarities. The larger the

number of locations that preserve the order, the more uncertainty about the exact

location of the points. Similarly, in FR, the coefficients are publicly released

instead of the original data and their order is random permuted [121]. Hence,

these models seem robust against distance-based attacks described in [108, 165].

In general, the quantification of uncertainty in dimensionality reduction models

can be evaluated by assuming that prior knowledge about the original data is

available to the attacker. The prior knowledge can be used within the inference

process to effectively estimate the original data. For example, one can consider

a scenario when the attacker knows some original data points, their images in

the perturbed data and their distances from a point under attack. That is, the

disclosure may occur by measuring the distance from the attacked point to the

other known points and minimising the sum of squared errors using some heuristic

methods [124].

Another possible attack scenario can be described when a sample of the original

data or the distribution from where the original data are drawn is available to the

attacker. In this case, the attacker can estimate the original data by examining

the relationship between the principle eigenvectors of the known sample and the

principle eigenvectors of the perturbed data. Intuitively, a large sample size will

give the attacker a better recovery because large sample sizes tend to minimize

the probability of errors, and thereby maximize the accuracy of estimating the

original data. The attacker would attempt to find a transformation that composes

a set of the eigenvectors obtained from both the known sample and the perturbed

data and then project the data onto these eigenvectors such that the principle

directions of the perturbed data are aligned as much as possible with principle

directions of the known sample. The robustness of the attack basically depends

on the estimation of the covariance matrix [108]. The above two attacks will be

discussed in more details in Chapter 4.
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2.7 ε-Distortion Mapping

Projecting data into a lower dimensional space usually results in some distortion

of the distance relationships. It is very rare to find a mapping between two spaces

of interest in which distances are exactly preserved. Obviously, we often allow

the mapping to alter the distances in some fashion but hopefully with restricted

damages as much as possible.

The metric space is a set of points with a global function that measures the

degree of closeness or distance of pairs of points in this set [117]. Mathematically,

the metric space is defined as follows:

Definition 2.3 (Metric space). A pair (X, d), where X is a non-empty set and d

is a predefined function such that d : X ×X → R, is a metric space if and only if,

for each xi, xj, xk ∈ X, the function d satisfies:

1. d(xi, xj) ≥ 0,

2. d(xi, xj) = 0 if and only if xi = xj,

3. d(xi, xj) = d(xj, xi), and

4. d(xi, xk) ≤ d(xi, xj) + d(xj, xk).

Let X = {x1, x2, . . . , xm} be a metric space, where X ∈ Rn, and T : X → Y be

any transformation from the space X to a new metric space Y = {y1, y2, . . . , ym},
where Y ∈ Rp and (p < n). For any two points xi and xj, if δ(xi, xj) = δ(yi, yj),

then T is a rigid motion transformation and the space Y is isometric space, i.e.

completely distance-preserving. While if δ(xi, xj) 6= δ(yi, yj), then T is a non-rigid

motion transformation and the space Y is ε-isometric space, where ε is a small

distortion caused by T .

Definition 2.4 (Mapping distortion). Given two spaces (X, d) and (Y, d), a trans-

formation T : X → Y is said to have a “distortion”, ε, if and only if ||xi − xj|| −
||yi − yj|| = ε.

Definition 2.5 (ε-isometric space). Let (X, d) and (Y, d) be two spaces and T :

X → Y be a transformation from X to Y . A space (Y, d) is called “ε-isometric”

if and only if 0 < ||xi − xj|| − ||yi − yj|| ≤ ε.

To ensure the quality of the mapped space, Y , in terms of distance preservation,

the distortion ε should be minimised as much as possible, i.e. T should minimise

the sum of squared differences of the distances



Chapter 2. Privacy-Preserving in Distance-Based Data Mining 44

∑
i,j

(||xi − xj|| − ||yi − yj||)2. (2.21)

The lower bound of this differences describes the perfect mapping we hope

to obtain. However, in practice, there exists some pairs of points with a large

distance distortion, and therefore, the average distortion is often more significant

in terms of evaluating the quality of the mapping for particular data analysis tasks.

Intuitively, the average distortion is

avg. dist. =
1

M

∑
i,j

||yi − yj||
||xi − xj||

, (2.22)

where M = m(m− 1)/2 is the number of all possible distances that can be com-

puted, i.e. dissimilarities. Various measures are commonly used to quantify infor-

mation that is lost as a result of the transformation (see, e.g. [40]).

2.8 The Need for Non-metric MDS Perturbation

As discussed in Section 2.5, the additive perturbation distorts each entry in the

data matrix with a random noise generated from uniform or Gaussian distribution.

Multiplicative perturbation uses the technique of matrix multiplication in order

to generate new data that have similar properties to the original data as far as

possible. Hybrid perturbation is just a combination of the above two perturba-

tion methods. All these methods generate the perturbed data using a so-called

transformation basis which often has a predictable structure [89]. When some in-

formation about the original data or the transformation itself is known a priori,

the transformation basis might be estimated quite accurately. It can then be used

to recover the original data.

Due to the large amount of distortion that can be caused by additive pertur-

bation, the data utility of the perturbed data in data mining applications is very

low [110]. In addition, it has been shown that the added noise can be filtered

out and then the privacy can be compromised [88]. These limitations of additive

perturbation are also true for hybrid perturbation since the latter method shares

similar characteristics with the former. Multiplicative perturbation, on the other

hand, provides a more feasible solution, in that it better preserves data utility

[28]. However, the level to which data that have been perturbed by this method

is robust against privacy attacks is still open question.
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We believe that non-metric MDS could be a good candidate for preserving

the important properties that are critical to distance-based data mining. As we

will see in Chapter 3, there are two features distinguishing non-metric MDS from

other perturbation methods. First, non-metric MDS can produce data with well-

preserved distance [18] and higher discriminative power [42]. Most classification

and clustering algorithms attempt to discover patterns by optimising a predefined

distance function. As the distances remain approximately unchanged in the per-

turbed data, we would expect to obtain data mining results quite similar to those

from the original data. Second, if no information about the original data is known,

then it becomes difficult, if not impossible, to disclose the original data. In other

words, the attacker cannot estimate the original data solely from the perturbed

data, that are generated by non-metric MDS, without any additional knowledge

about the original data and thus high privacy is achieved.

Although non-metric MDS can provide high data utility for distance-based data

mining, it causes sufficient data distortion to lead to high privacy protection. Using

non-metric MDS to perturb the original data can lead to significant increases

in the uncertainty about the original data values because the transformation is

independent of any transformation basis and the rank order of distances is used

instead of the distance themselves. The distances are not strictly preserved but

rather approximated and the points are placed within uncertain areas. Moreover,

when the dimensionality of the data is reduced, the variance is inflated along the

few first dimensions and insignificant dimensions may be added to the data so

that interesting structures in the data may remain unrevealing. The correlation

structure is also changed significantly as the new features are uncorrelated and

inconsistent with the correlation coefficients of the original dimensions. As a result,

many potential attacks, such as those utilising the distance or those analysing the

principal components, may fail to estimate the original data.

2.9 Summary

In this Chapter, we have offered an overview of the important issues that are

related to our research with a particular focus on distance-based data mining

and data perturbation approaches. Firstly, we have introduced the concept of

distance-based data mining including distance metrics, distance-based tasks, point

neighbourhood, decision boundaries for distance measures and transformation-

invariant data mining. Then, we have discussed the properties of data perturbation
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approaches proposed in the literature and evaluated the privacy provided by each

of them. Finally, we have spelled out the need for using non-metric MDS as a

perturbation tool for PPDM. In the next chapter, we will describe our proposed

method and show its data utility and its resistance to some potential privacy

attacks.



Chapter 3

Non-Metric Multi-Dimensional

Scaling Data Perturbation

The concept of “data perturbation” refers to transforming the data, and therefore

hiding any private details whilst preserving the underlying probabilistic proper-

ties, so that the inherent patterns can accurately be extracted. The probability of

estimating the original data is one of several threats that might affect perturba-

tion techniques. In addition, the perturbation itself may significantly change the

underlying properties of the data, affecting the analysis results. What is required

is a subtle transformation that guarantees maintaining, as much as possible, the

statistical properties and effectiveness (the utility) whilst preserving the privacy.

This chapter demonstrates how non-metric MDS can be profitably used as a per-

turbation tool and how the perturbed data can be effectively used in the analysis

without compromising privacy or utility. We study the distinctive features of the

proposed method and show its superiority in achieving these two goals of PPDM.

The chapter is organised as follows. In Section 3.2, we review preliminaries of

MDS and describe some of its basic mathematical properties. Section 3.3 presents

the main characteristics of non-metric MDS data perturbation and gives an illus-

trative numeric example. In Section 3.4, we discuss the geometry of non-metric

MDS and the uncertainty associated with its solution. Section 3.5 comments on

the proximity in non-metric MDS solution. Finally, Section 3.6 summarises the

whole chapter.

47
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3.1 Introduction

MDS has its origins in psychometrics where it was proposed to help understand

people’s judgements of the similarity of members of a set of objects. Torgerson

[163] proposed the first MDS method and discussed its effectiveness in representing

psychological data. The same idea was extended by Young [180] using quantitative

models that describe qualitative data. MDS has now become more and more

popular as a technique for a wide variety of fields, e.g. marketing, physics, political

science and biology [143].

The main purpose of MDS, in general, is to project the data into a lower di-

mensional space in order to achieve two main objectives. The first is to eliminate

irrelevant features and reduce noise that may affect the analysis. The second is to

easily visualise data using only two or three dimensions so a better interpretation

for “hidden” structures in data can be gained. The basic idea of MDS technique

is as follows [100]: given a matrix of similarities or dissimilarities between data

objects, it finds a configuration of data points in a lower dimensional space which

fit these proximities best. The outcome of MDS analysis is often a spatial config-

uration, in which each object is represented as a point. The points in the spatial

representation are arranged in such a way that their distances correspond to the

proximities of the objects; similar object are represented by points that are close

to each other, whereas dissimilar objects by points that are far apart.

MDS represents a set of objects from data that approximate the distances be-

tween pairs of the objects. Therefore, the proximities should reflect the similarity

(where a large number refers to great similarity) or the dissimilarities (where a

large number refers to great dissimilarity). In general, MDS is classified into two

categories [18]: metric and non-metric. The key difference between these two types

is the way used to perform the approximation. The approximation is often ruled by

a mapping function, which relates the proximities in the high-dimensional space to

distances in the low-dimensional space. The term “transformation” is also a syn-

onymous of the mapping function. The metric method uses a direct approximation

while non-metric MDS uses a non-linear transformation from the proximities. For

instance, the distances in the metric MDS solution can be related to the proximi-

ties using either ratio, interval or logarithmic function. Whereas, the non-metric

MDS assumes that the rank order of the proximities is meaningful and represents

only the ordinal properties of the data, so it is sometimes called ordinal MDS.

In this chapter, we propose a novel application of non-metric MDS as a data
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Table 3.1: Distances between 10 UK citites.

City* 1 2 3 4 5 6 7 8 9 10

1 0 53 100 157 141 164 154 168 248 331
2 53 0 139 148 145 205 202 213 294 375
3 100 136 0 245 215 158 102 143 202 292
4 157 148 245 0 47 200 248 228 305 361
5 141 145 215 47 0 153 206 182 258 315
6 164 205 158 200 153 0 79 34 106 174
7 154 202 102 248 206 79 0 50 101 191
8 168 213 143 228 182 34 50 0 82 163
9 248 294 202 305 258 106 101 82 0 91
10 331 375 292 361 315 174 191 163 91 0

* 1 London, 2 Brighton, 3 Norwich, 4 Exeter, 5 Cardiff, 6
Manchester, 7 Hull, 8 Leeds, 9 Newcastle, 10 Edinburgh.

perturbation technique suitable for distance-based data mining applications. Par-

ticularly, we explore the possibility of using non-metric MDS to construct a new

representation of the data that preserves distance-related properties as much as

possible. That is, the perturbed data would maintain utility for the distance-based

algorithms and thus very similar data mining results can be obtained as those ob-

tained with the original data. Meanwhile, the privacy cannot be compromised

because the transformation introduces sufficient uncertainty to hide the original

data and minimise the disclosure.

3.2 MDS Preliminaries

Before describing non-metric MDS, we give a brief overview on the general concept

of MDS. The input data used for MDS analysis is typically a set of dissimilarities,

similarities, confusion probabilities, correlation coefficients or other diverse mea-

sures of proximity [18]. The proximity of pairs of data objects can be represented

by a matrix. One can find a lower dimensional representation using the proximity

matrix derived from variables measured on objects as input entity. For exam-

ple, applying MDS analysis on as symmetric input matrix containing geographical

distances between a set of cities can result in a two-dimensional graphical repre-

sentation reflecting the real positions of the cities on the map. Figure 3.1 shows

a simple example of MDS representation derived from a set of distances, in miles,

between a number of cities in the UK (Table 3.1), where each city is shown as a

point. The points are arranged in such a away that their corresponding distances
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Figure 3.1: 2-dimensional representation obtained from MDS analysis on a
set of distances between some cities in the UK.

reflect the real distances quite accurately. Each city is spatially aligned in the two

dimensional space exactly as it appears geographically (e.g. Norwich appears in

the east region, and Exeter appears in the south west region).

For convenience, we assume through out this thesis that the distances are dis-

similarities, which are calculated using Euclidean distance (2.9). Notice that the

Euclidean distance is a metric since it satisfies the axioms of positivity, symmetry

and triangle inequality [64]. Mathematically, MDS can be described as follows:

given a set of m objects

x1, x2, . . . , xm ∈ Rn

with dissimilarities,

δij, 1 ≤ i ≤ j ≤ m,

MDS aims to map these objects to a configuration or a set of points

y1, y2, . . . , ym ∈ Rp, p < n

where each point represents one of the objects and the distance, dij, between two

points, yi and yj are such that

dij ≈ f(δij), (3.1)

where f is a function chosen in some optimal way (also known as the representation
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function) that relates the dissimilarities in the original space to distances in the

new configuration and “≈” means equal with some small discrepancy.

In metric MDS, f is a specific continuous function that can be constructed in

several ways [18]. However, in non-metric MDS, f is a non-decreasing monotonic

function that maintains a monotone relationship between the dissimilarities and

the distances in the configuration. Monotonicity is a very important property,

which will be discussed further in Section 3.3, as it is central to the non-metric

MDS approach.

In MDS, a perfect transformation is usually not possible. Rather, what is

obtained is an approximation as a set of points whose distances approximate δij

as closely as possible. The requirement “as closely as possible” is quantified by

what is called a badness-of-fit measure or loss function, e2 =
∑m

i,j (f(δij) − dij)2,

over all point configurations y1, y2, . . . , ym. Thus, with the lowest possible value of

e2, the best MDS is achieved.

Let ∆(2) = [δ2
ij] be the matrix of squared dissimilarities, where δ2

ij = (xi −
xj)(xi − xj)

T , and I be the m × m identity matrix. Define A = [−1
2
δ2
ij] and

B = HAH, where H is the centring matrix, H = I − n−11m1Tm, with 1n a vector

of ones. The matrix B is called inner product or Gram matrix, which can also be

represented by B = HXXTH. The minimum error solution is obtained from the

spectral decomposition of the Gram matrix. That is, to find the MDS configuration

from B, we can decompose B into

B = V ΛV T , (3.2)

where Λ is the diagonal matrix of the eigenvalues of B and V is the matrix of

corresponding eigenvectors. Since B is positive semi-definite and of rank p, it has

p non-negative eigenvalues and m− p zero eigenvalues. Hence, we can rewrite the

above equation (3.2) as

B = (VpΛ
1/2)(VpΛ

1/2)T , (3.3)

where Vp is an m×p matrix containing the eigenvectors corresponding to non-zero

eigenvalues of B and Λ is an p × p diagonal matrix containing the eigenvalues.

The MDS solution is then given by
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Y = VpΛ
1/2, (3.4)

where Y is an m× p coordinate matrix containing the points configuration in Rp.

This solution is known as classical MDS which is identical to PCA because the

Gram matrix of classical MDS has the same rank and eigenvalues up to a constant

factor as the covariance matrix of PCA [141]. Furthermore, both classical MDS and

PCA can lead to equivalent results and give precisely the same low-dimensional

representation [86]. To evaluate the goodness of the obtained configuration in

representing the input data, one can compute the proportion of variation explained

by p dimensions [40], i.e. ∑p
i=1 λi∑

(positive eigenvalues)
(3.5)

If the dissimilarities are treated directly as Euclidean distances, then it is pos-

sible to find a configuration of points in some lower space, that approximates the

distances in the original space, by decomposing the inner products of the input

data as described above. However, this would violate the privacy of the data as

the first few eigenvectors always maintain most of the data variances [120]. In

other words, such transformation embeds some information into the generated

configuration, which might be used to recover the original data. In this case, the

attacker can turn around the transformation to get the original data back, i.e. the

original data can be estimated as X̂ = V T
p Y [80], and if the mean of the original

data is known to the attacker, s/he may obtain more accurate reconstruction by

adding on the mean, i.e. X̂ = V T
p Y +µX . Note that if all the eigenvectors, V , are

included in the calculation, then the original data are exactly recovered [152].

Moreover, when the attacker knows a sample of the original data or the distri-

bution from where the original data have arisen, s/he may map the transformed

data with the original data through the computation of the eigen basis that spans

the known sample and the transformed data using the technique of PCA [108].

In other words, it would be possible to find a transformation basis that aligns the

principle components of the transformed data with the principle components of

the original data. This will be discuss in more details in Chapter 4. This mo-

tivates us to study and investigate non-metric MDS which seems to be able to

produce uncertain solution in terms of privacy preservation. In non-metric MDS,

the transformation is not based on eigenanalysis and thus no assumptions are made
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regarding the underlying structure of the data, whether “Gaussian” or otherwise.

Moreover, the features extracted by non-metric MDS in the lower-dimensional

space have no order of importance in terms of variance explanation but rather

define an arbitrary Cartesian coordinate system. Non-metric MDS uses the rank

order of distances not their actual values and derives the solution using an un-

known function. It causes data distortion which may hinder the attacker from

estimating the original data. However, non-metric MDS is able to retain most of

the properties used in distance-based data analysis so that accurate results can be

obtained from the perturbed data.

From a data utility point of view, classical MDS may destroy the local distri-

bution of the neighbourhood around data points. It often retains large distances

between data points and leads to the lost of the important underling structures

of the data [136]. Therefore, it may lead to poor results when distance-based

algorithms run on the perturbed data.

3.3 Non-Metric MDS Data Perturbation

In the context of PPDM, non-metric MDS can be used to disguise the original

data values and provide distorted data values (synthetic data) that preserve as

much as possible data properties for data mining task. That is, data privacy and

data utility are both preserved. Several methods have been recently proposed

for non-linear transformation, similar in spirit to non-metric MDS or even better.

Generally, these methods rely on the nearest neighbours graph theory where each

data point is connected to its k nearest neighbours as defined by a distance metric

and the weight of an edge in the graph is equal to the distance between its two

endpoints. Then, the nearest neighbours graph is used to construct a distance

matrix, which is then normalised and decomposed using the classical MDS to

extract the top eigenvectors and obtain the low-dimensional data. The isometric

feature mapping (ISOMAP) [161], the local linear embedding (LLE) [137] and

local MDS (LMDS) [29] are a few examples. Although these methods are able

to produce lower dimensional data that faithfully represents the original data,

they typically retain some geometric information which would be used to disclose

the privacy. Hence, we choose to use non-metric MDS as a perturbation tool in

order to increase the uncertainty about data in the lower dimensional space and

to effectively hide any information that would be embedded in the perturbed data

and used by the attacker to breach the privacy.
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Non-metric MDS attempts to find a configuration of points in some lower space

whose pairwise Euclidean distances have approximately the same rank order as

the corresponding dissimilarities in the higher space. This would make it harder

(if not impossible) to disclose the real values of the original data variables. The

final configuration resulting from this transformation is called perturbed data. Let

X be an m × n matrix representing the original data in the higher space, Rn, Y

be an m × p matrix represents the perturbed data in the lower space, Rp, and

∆ = [δij] be the dissimilarity matrix of X for i, j = {1, . . . ,m}. As described

earlier in Section 2.3.3, the Euclidean distance (L2 norm) is a measure that is used

most often to describe the dissimilarity between two data points, xi and xj

||xi − xj|| = δij =

√√√√ n∑
k=1

(xik − xjk)2, (3.6)

where n is the number of dimensions, and xik and xjk are the kth attributes of

objects xi and xj, respectively.

The perturbation model is define by some transformation T

Y = T (X), (3.7)

where T : Rn → Rp is a non-metric MDS transformation such that

1. T preserves the rank ordering of the distances between objects in X and Y ,

i.e.

||xi − xj|| < ||xk − xl|| ⇐⇒ ||T (xi)− T (xj)|| < ||T (xk)− T (xl)||, (3.8)

and

2. T minimises the sum of squared differences of the distances, i.e. it minimises

∑
i,j

(||xi − xj|| − ||T (xi)− T (xj)||)2. (3.9)

For presentation convenience, we use different notations to distinguish between

the distances in the original space, X, and the perturbed space, Y . The distances

between points in Y are ||T (xi)−T (xj)|| = dij. The above first condition is satisfied

through a monotonic function, f , that maintains a monotone relationship between

the dissimilarities, δij, and the distances, dij, in the lower space, Rp. The estimates
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of point locations in the lower dimensional space should yield predicted distances,

dij, between the points that “closely approximate” the observed dissimilarities,

δij, i.e. dij ≈ f(δij). To quantify the discrepancy (the stress) and to find the best

solution, the second condition should be applied.

The monotone relationship is obtained by a non-linear approach (monotonic

regression) that fits a non-linear function, f : δij 7→ dij, and minimises the stress,

S. The simplest way to evaluate the faithfulness of the transformation and to

quantify the stress is given by the squared error of representation, i.e.

e2 = (d̂ij − dij)2, (3.10)

where d̂ij are numbers representing a monotone least-square regression of dij on

δij (also known as disparities). That is, the disparities are merely an admissible

transformation of dij, chosen in optimal way, to minimise S over the data configu-

ration matrix, Y . The summation of e2 over all pairs (i, j) yields information loss

or raw stress,

S∗ =
∑
i,j

(d̂ij − dij)2. (3.11)

To avoid the scale dependency, Kruscal [98] suggests a normalised version of

the raw stress, which is defined by

S =

√√√√∑i,j (d̂ij − dij)2∑
i,j d

2
ij

. (3.12)

Non-metric MDS is quite similar to non-parametric procedures that are based

on ranked data. The dissimilarities, δij, are ranked by ordering them from lowest

to highest and the disparities, d̂ij, should also follow the same monotonic ordering.

This constraint implies the so-called monotonicity requirement,

if δij < δkl then d̂ij ≤ d̂kl. (3.13)

Note that ranks can be deduced from distances but distances cannot be de-

duced from ranks and thus a higher privacy is preserved. The non-metric solution

will provide the attacker with no information about the real distances between

data objects since any magnitude information is swept away by the monotonic

transformation. Note also that the rank orderings can be easily calculated from

the perturbed data. However, the questions that would likely be asked are “can
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Figure 3.2: An example shows the effect of the non-metric MDS perturbation
on the geometry of “Nefertiti” face at different dimensions. The top left is the
original face. The following faces are the perturbed faces at n−5, n−10, n−20,

n− 30, n− 40, n− 50 and n− 60 dimensions, respectively.

the attacker learn anything from the ranks?”; and if s/he succeeded to learn some

information, “what is the probability that s/he infers or discloses the original

values?”. These questions will be answered in Chapter 4.

To see how much distortion the data Y have, consider “Nefertiti” image example

plotted in Figure 3.2. The image is represented by 3-dimensional mesh, which is

composed of an 3×n1 vertex matrix containing the position in 3-dimensional space,

and a face matrix of dimension 3× n2 containing the indexes of each triangulated

face. That is, the face matrix stores the topology (connectivity) of the mesh, while

the vertex matrix stores the geometry (position of the points). As we are interested

in the modification of the geometry only, we transformed the vertex matrix into

7 lower dimensions spaces (n1 − 5, n1 − 10, n1 − 20, n1 − 30, n1 − 40, n1 − 50

and n1 − 60,) and plotted the transformed faces. To easily observe the effect of

the perturbation, we use the classical MDS because the non-metric MDS heavily

flattens the shape even at high dimensions. The results provide insight into the

robustness of the perturbation in hiding the details of the face particularly at the
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Table 3.2: Iris dataset: data values of the first 10 rows in 4-dimensional space
(original data X) and 3-dimensional space (perturbed data Y ).

X =



5.10 3.50 1.40 0.20
4.90 3 1.40 0.20
4.70 3.20 1.30 0.20
4.60 3.10 1.50 0.20

5 3.60 1.40 0.20
5.40 3.90 1.70 0.40
4.60 3.40 1.40 0.30

5 3.40 1.50 0.20
4.40 2.90 1.40 0.20
4.90 3.10 1.50 0.10


Y =



-2.25 0.47 -0.12
-2.08 -0.67 -0.23
-2.36 -0.34 0.04
-2.30 -0.59 0.09
-2.38 0.64 0.01
-2.07 1.48 0.03
-2.44 0.05 0.33
-2.23 0.22 -0.09
-2.33 -1.19 0.14
-2.18 -0.47 -0.25


Table 3.3: Basic statistics of Iris dataset before and after the perturbation.

Data
X Y

Dim 1 Dim 2 Dim 3 Dim 4 Dim 1 Dim 2 Dim 3

Mean 5.84 3.08 3.76 1.20 -0.85 -0.09 0.06

Std. Dev 0.83 0.44 1.77 0.76 1.71 0.96 0.38

Min 4.30 2 1.0 0.10 -2.77 -2.65 -0.86

Max 7.90 4.40 6.90 2.50 3.30 2.68 1.02

very low dimensions. For instance, it is hard to recognise the original face from

the perturbed face at n−50 or lower dimensions. Furthermore, the very low value

of average stress (1.24 × 10−18), especially for the perturbed face at the top row,

indicates the high utility of data in terms of distance preservation.

Another simple example is presented in Table 3.2. Here, we transformed the

well-known Iris dataset, which is represented by a 4-dimensional data matrix, X,

and generated the perturbed data, Y , in 3-dimensional space. The Iris dataset

consists of 150 instances and 4 continuous attributes measured from three different

iris plant species. One class (Setosa) is linearly separable from the other two classes

(Versicolour and Virginica). The latter are not linearly separable from each other.

The data values of both data matrices X and Y substantially look different from

each other and comparable. The basic statistics for all attributes of the entire

dataset are shown in Table 3.3.

One distinguishing feature of Non-metric MDS is that it can produce uncorre-

lated features in the lower dimensional space [40]. The uncorrelated features may

provide further privacy, particularly against attacks that attempt, under certain

circumstances, to exploit the correlation between features in order to disclose the

original data [65, 80, 88, 120]. Figure 3.3 shows a visual representation of the
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Figure 3.3: Correlations among pairs of variables in: (a) the original data, X,
and (b) the perturbed data, Y . Histograms of the variables appear along the

matrix diagonal; scatter plots of variable pairs appear off-diagonal.

correlations among the pairs of variables in both data X and Y as well as the data

distribution of each variable. The new variables of non-metric MDS solution seem

uncorrelated and have different distributions from the original ones so that they

may better describe the variability of the data. It is difficult to draw any single

regression line that can predict the second dimension from the first, and vice versa.

However, the dispersion of groups remains unchanged, i.e. groups are reasonably

separable. This is an important property in distance-based learning. Table 3.4

shows the correlation coefficients of the variables. The correlation coefficients of

variables in the perturbed were very small and insignificant.

Table 3.4: Correlations between variables in (a) the original data, X, and (a)
the perturbed data, Y .

(a)

Dim 1 Dim 2 Dim 3 Dim 4
Dim 1 1.00
Dim 2 -0.12 1.00
Dim 3 0.87 -0.43 1.00
Dim 4 0.82 -0.37 0.96 1.00

(b)

Dim 1 Dim 2 Dim 3
Dim 1 1.00
Dim 2 0.00 1.00
Dim 3 0.00 -0.00 1.00

To gain insight into the superiority of non-metric MDS in preserving the pair-

wise distances, we plot the distribution of the dissimilarities at three lower dimen-

sions, i.e. p = 1, p = 2 and p = 3, and compare it with the original dissimilarities.

The results are shown in Figure 3.4. The distribution remains unchanged and
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Figure 3.4: Distribution of dissimilarities at the original data (top left), at
3-dimensions (top right), at 2-dimensions (bottom left) and at 1-dimension (bot-

tom right).

almost identical indicating that non-metric MDS can properly represent the dis-

similarities at high dimensional spaces, i.e. p = 3 and p = 2. For the data in

1-dimensional space, the distribution is slightly changed where small dissimilari-

ties are increased. The deviation in distance between X and Y at 3-dimensional

space is very low (0.21 × 10−16), indicating a good data utility for the task of

distance-based mining. This implies that non-metric MDS is able to preserve the

underlying distance-related properties quite accurately. If the distance is well pre-

served, one would expect that for any two objects xi and xj that appear in the

same cluster in X, their mappings yi and yj will also appear together in the same

cluster in Y . Moreover, non-metric MDS is capable of eliminating irrelevant, re-

dundant, and noisy features and thus it can facilitate the distance-based learning

process and produce more accurate results [159].

Non-metric starts from a dissimilarity matrix so that it can be used for data

that do not originally have a vector space representation. Since non-metric MDS
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operates on dissimilarities, the data type of the underlying variables is unimpor-

tant and thus one has not to worry about the type of the data attributes to be

either quantitative or qualitative. However, to make it possible to obtain an objec-

tive or scale-invariant result, some normalisation must be performed prior to the

computation of dissimilarities for both quantitative and qualitative variables. In

addition, non-metric MDS perturbs all attributes together under one single trans-

formation and thus instead of assessing the quality of privacy for each attribute

independently it would be easier to use a single unified metric.

3.3.1 Monotonicity Preservation

Given a set {δij : i < j} of the M elements of the upper triangle of the dissimi-

larity matrix, ∆, let M = m(m−1)/2 be the number of all possible dissimilarities,

δij, that can be calculated from the data matrix, X, sorted in ascending order to

obtain the ordered sequence:

δ1
ij ≤ δ2

ij ≤ . . . ≤ δMij . (3.14)

Ideally, we would like the distances, dij, in Y to be in ascending order too

d1
ij ≤ d2

ij ≤ . . . ≤ dMij . (3.15)

The problem is to find the estimated value, d̂ij, for each dij such that the stress,

S, is minimised subject to the monotone requirement that

d̂1
ij ≤ d̂2

ij ≤ . . . ≤ d̂Mij . (3.16)

To solve this monotonic regression problem, Kruskal [98] proposed a Pooled-

Adjacent-Violator (PAV) algorithm that starts with a set of M distances obtained

from an initial configuration and attempts to not violate the monotonicity require-

ment for any pair of adjacent values (dl−1
ij , dlij) and (dlij, d

l+1
ij ).

To illustrate the basic idea of PAV algorithm, consider the example in Table

3.5. Assume that we have ranked a set of dissimilarities, δij, between a set of

objects of data X (as in the second column). Assume also that we have then

obtained a set of distances, dij, (as in the third column) from the configuration,

Y . All dij can be represented in M blocks each containing a single distance,

b1, b2, . . . , bM . The block is a data structure used to store and manipulate one or
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Table 3.5: Derivation of disparities using PAV algorithm.

(i, j) rank(δij) dij d̂1
ij d̂2

ij d̂3
ij d̂4

ij

Final
d̂ij

(1,2) 1 4 3.5 3 2.5 2.5 2.5
—

(1,3) 2 3 3.5 3 2.5 2.5 2.5
— —

(1,4) 3 2 2 3 2.5 2.5 2.5
— — —

(2,3) 4 1 1 1 2.5 2.5 2.5
— — — — —

(2,4) 5 5 5 5 5 4 4
— — — —

(3,4) 6 3 3 3 3 4 4
— — — — —

more values of distance; it enables us to compute the arithmetical mean of each

block’s members and also compare each block with its preceding and succeeding

block. Note that distances, dij, can be treated as initial disparities, d̂ij. To

achieve the monotonicity requirement, each distance should preserve the right

order, i.e. diij ≤ di+1
ij . That is, for each block bi, its member values must be

greater or equal to its preceding block’s, bi−1, member values, and meanwhile, less

or equal to its succeeding block’s, bi+1, member values. Beginning with the first

block corresponding to the smallest dissimilarity, d12, we check and find it has not

satisfied the requirement. We should modify d12 to become smaller or equal to

d13. To do so, we merge the two blocks in one block and take the arithmetical

mean of its members (d12 + d13)/2 = (4 + 3)/2 = 3.5 = d̂1
12 = d̂1

13. This yields the

distances in the fourth column of Table 3.5. However, the first trial solution (i.e.

d̂1
ij) satisfies the monotonicity requirement only for its first two elements (i.e. first

block) and we must check other elements or blocks. Because d̂1
14 = 2 is smaller

than the preceding values, we create a new block by calculating the average of the

first three distances (3.5 + 3.5 + 2/3 = 3). This yields the distances in the fifth

column of Table 3.5. Again, we hope to satisfy the monotonicity requirement in

all remaining distances in this trial d̂2
ij. However, this sequence still violates the

monotonicity since the values of the new block, that has just formed in the previous

trial, is greater than the succeeding block (d̂2
23 < 3). Therefore, we merge the two

blocks in one block and average its members. The sixth column of Table 3.5 shows

the new disparities of the third trial in three different blocks. We repeat the same
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procedures for all other distances until no block violates the monotonicity. The

last column of Table 3.5 shows the sequence of the final disparities, d̂ij, obtained

by monotone regression for the first iteration. At this point, we can evaluate the

stress, S, to determine if it is the best achieved so far or not. That is, if no

improvement is possible, then accept Y as a final configuration. Otherwise, the

points of Y must be moved along the direction of the gradient. This gives new

distances, dij, which can be used to compute new disparities, d̂ij, for the second

iteration, and so on. The steps of PAV algorithm are shown in algorithm 3.1.

Algorithm 3.1 PAV Algorithm

Input: D: a set of M distances, d1, d2, . . . , dM .
Output: D̂: a set of M ordered disparities, d̂1 ≤ d̂2 ≤ . . . ≤ d̂M .
{Assign each distance, di, to a single block, bi}
for i = 1 to M − 1 do
{Check if any pair of adjacent values (di, di+1) violates the monotonicity re-
quirement}
if di > di+1 then

Pool all members of block bi and bi+1; and replace all of them by their
average
Merge bi and bi+1 into one block
{Go backwards and check if di, di−1 obey the monotonicity requirement}
if di < di−1 then

Pool all members of block bi and bi−1; and replace all of them by their
average
Merge bi and bi−1 into one block

end if
end if

end for

3.3.2 Distance Preservation

After we predicted the disparities, d̂ij, that preserve the same rank order of the

dissimilarities, δij, by using the PAV algorithm, a new configuration, Y , is sought

such that the disparities of distances, dij, obtained from Y and the estimated

distances, d̂ij, are minimised. We use the stress, S, to measure such disparity.

The steepest descent method [98] is used to find the nearest local minimum

of the function S where the gradient of this function can be calculated at each

iteration. Let y0 = S(x0) be the initial point. Move downhill gradually along

the curve corresponding to the function S in the direction of the local downhill

gradient, −∇S(x0), which is usually calculated by taking the partial derivatives

of S.
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The non-metric MDS solution is usually found by choosing an initial configu-

ration in Rp, Y 0, and moving its points around, in iterative steps, to approximate

the best model relation, dij ≈ f(δij). In other words, the coordinates of each point

in Rp are adjusted in the direction that maximally reduces the stress. That is,

the start point would indeed affect the processing time required to find the best

solution. Decomposing the matrix ∆(2) into its eigenvalues and their associated

eigenvectors, which is equivalent to the classical metric MDS, is one possible way

to start with a quite good initial configuration. Typically, the pairwise distances

are quite faithfully retained at this configuration [40]. We assume that ∆(2) is

positive semi-definite and of rank p. Hence, it has p non-negative eigenvalues and

n−p zero eigenvalues. However, if ∆(2) has more than (n−p) negative eigenvalues,

then Y k can be padded with zeros to achieve p-dimensions.

Note that the classical metric MDS solution would lead, in some cases, to accept

the initial configuration as the best configuration obtained, i.e. Y 0 = Y , such that

the stress is at an optimal local minimum. This, indeed, compromises the privacy

because the dissimilarity matrix can be accurately derived from the perturbed

data using matrix algebra, as described above in Section 3.2. If the dissimilarity

matrix is estimated, then it can be used to disclose the original data [165]. In order

to avoid such a problem, we can use a random initial configuration to start with

and iteratively seek for the best fit where the stress is minimised. Alternatively,

we can replicate the running of non-metric MDS multiple times, each starts at a

different randomly chosen initial configuration. Then, the configuration with the

lowest value of stress is selected.

Let k be the iteration number and Y k be the configuration at iteration k. We

want to find the best data configuration such that the stress, S, is at a local mini-

mum. Let us now measure S by calculating both the distances, dij, obtained from

Y k and the corresponding disparities, d̂ij, which are generated using the steps de-

scribed earlier in Section 3.3.1. To construct the next configuration, Y k+1, subject

to minimising S, we should compute the gradient. The partial derivatives of S

at each coordinate of configuration Y k form the gradient, which indeed expresses

the direction of steepest descent. Let yki and ykj be two points in configuration

Y k and we want to find a new position for point yk+1
i in the configuration Y k+1

relative to point yk+1
j in the direction where S is minimised. The gradient at the

configuration Y k is given by
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gkia = − ∂S

∂ykia
= S

[(
dij − d̂ij∑M

i,j (dij − d̂ij)2
− dij∑M

i,j d
2
ij

)(
(ykia − ykja)

dij

)]
, (3.17)

where a is the coordinate number, a = {1, 2, . . . , p}. The new position at coordi-

nate a in the configuration Y k+1 is defined by

yk+1
ia = ykia + αk gkia, (3.18)

where αk is a downhill step-size and gkia is the corresponding entry in the negative

gradient matrix, Gk, of stress S at configuration Y k. The overall improvement

relative to all remaining points in Y k+1 is

yk+1
ia = ykia + αk

m−1∑
j=1
j 6=i

gkja, for all a = {1, 2, . . . , p}. (3.19)

That is, the new point yk+1
i is improved relative to the point yk+1

j and moving Y k

along the direction of the negative gradient will tend to make Sk+1 to be smaller

than Sk. In other words, the stress function is expected to decrease towards a

local minimum. However, if the stress goes up at this iteration, then the process

is terminated and the configuration Y k is chosen to be the final configuration.

Figure 3.5 shows an example of how non-metric MDS could generate data that

statistically useful for distance-based analysis. In this example, we generated three

datasets each of which has 3 dimensions and has different distribution (Swiss roll,

Gaussian and 3-clusters). Then, we transformed them into 2-dimensional space

using non-metric MDS. The perturbed data exhibit a perfect preservation of both

the pairwise distances and the underlying data structure. The average stress for

all datasets was 1.94× 10−16.

3.3.3 How Many Dimensions to Retain?

An important issue in non-metric MDS mapping is the choice of the number of

dimensions in the lower-dimensional space. Typically, when the data are mapped

into a high number of dimensions, the mapping error is very small but that may

lead to an increasing in computation complexity. On the other hand, when the

data are mapped into too few dimensions, they might not reveal the underlying

data structure. The most obvious criterion for choosing the number of dimensions,
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Figure 3.5: Three different datasets with different geometrical shapes. The
top row are the original data at 3-dimensional space. The bottom row are the

perturbed data at 2-dimensional space using non-metric MDS.

p, is to select a configuration, among a set of configurations at different p, that

gives the smallest value of stress, S. One possible way to find the appropriate

number of p is to plot S as a function of the dimensionality and then to look

for an elbow in the plot. The stress reflects how well the dissimilarities, δij, of

the original data, X, or their transformation, d̂ij, are fitted by the corresponding

distances, dij, in the perturbed data, Y . Conveniently, it seems to be a suitable

measure of loss of utility of Y over X for distance-based analysis. The stress is

invariant under uniform stretching and shrinking of the configuration [98]. As the

stress is a residual sum of squares, it is positive, and the smaller the better. It

can be expressed as a percentage, with 0% stress being equivalent to a perfect

configuration, i.e. one that presents a perfect monotone relationship between

dissimilarities and distances.

Kruskal [97] suggests a rule of thumb to decide if the stress value is sufficiently

small or not. The rule is given in Table 3.6. As we will see in Chapter 5, we

experimentally observe that as p increases, S decreases. The data at the higher

dimensionality often maintain the best fit of the original data and introduce higher

utility for distance-based analysis.
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Table 3.6: Kruskal’s rule to decide on the quality of the lower-dimensional
space.

Stress (S) Mapping Quality

S > 20% Poor
5% < S ≤ 10% Fair
2.5% < S ≤ 5% Good
0 < S ≤ 2.5% Excellent

S = 0 Perfect

Table 3.7: Stress values at one reduced dimension using Minkowski distance
with different exponents.

Dataset
Minkowski exponents (r)

r = 1 r = 2 r = 3 r = 4 r = 5

Wine 0.0492 0.0068 0.1154 0.2017 0.3245
BCW 0.0428 0.0076 0.0826 0.1022 0.2663
HRDigits 0.0080 0.0000 0.0144 0.0276 0.0374
ImgSeg 0.0116 0.0000 0.0407 0.0523 0.0623

As a related topic of choosing the right dimension that minimises the stress,

one my also think in the used distance metric. As the quality of the perturbed

data for distance-based mining is basically based on the size of distance lost as

a result of the transformation, the relationship between a pair of objects should

accurately be reflected by a suitable distance function. This may facilitate the

task of data mining algorithm and enable better patterns discovery. To assess the

utility in terms of distance metrics, we calculate the Minkowski distance between

data objects in four datasets, taken from the UCI machine learning repository [58],

using different exponent, r, varied from 1 to 5. Then, for each dataset, we trans-

formed the data into one reduced dimension, i.e. n− 1. Table 3.7 shows the stress

values with different exponents. The results confirms that the Euclidean distance

represents the best metric to use to calculate the dissimilarities. However, it has

been shown in [43] that certain Minkowski distance matrices are exchangeable. In

other words, the solution found by non-metric MDS using Euclidean distance can

be exchanged by the solution using Manhattan distance or Max distance with-

out changing the stress. Although we use, throughout this thesis, the Euclidean

distance as a dissimilarity metric, further instigation is required to evaluate the

influence of proximity on the overall performance and decide whether any small

differences in the stress values are significant. This is left for future work.
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3.3.4 Non-Metric MDS Algorithm

The non-metric MDS algorithm is composed of three main phases as follows:

1. Initial phase: Calculate the dissimilarities, δij, of any pair of objects in the

original data. Then, construct an initial configuration, Y 0, in the required

lower dimensional space, say p, either randomly or using the classical MDS.

2. Non-metric phase: Use the PAV algorithm to derive any estimated dis-

tance, dij, from the current configuration, Y t, such that the monotonicity is

completely satisfied.

3. Metric phase: Move the current configuration, Y t, towards a better loca-

tion using the step function, defined in (3.19), to obtain a new configuration,

Y t+1, such that the stress, S, is minimised to a very small value.

That is, the algorithm starts from the initial phase. Then, it iteratively opti-

mises the non-metric phase. Finally, it evaluates the best fit in the metric phase

until the rank order of all dissimilarities is satisfied. More precisely, the non-metric

MDS algorithm requires the following steps:

1. Choose the dimension, p, and determine an initial configuration, Y .

2. Calculate the resulting distances, dij, between each pair of points in Y .

3. Estimate the new set of disparities, d̂ij, by using a monotone regression that

relates dij to δij.

4. Evaluate the best-fit of dij and d̂ij and calculate the stress, S.

5. Improve Y a little by moving it around in the direction that minimises S

using the steepest descent.

6. Repeat Steps 2 to 5 until no improvement is possible.

Non-metric MDS uses a monotonic regression to map the dissimilarity and thus

it is very computational expensive. In this work, we did not make any particular

effort to reduce the complexity as the major concern is to generate perturbed

data that are useful for distance-based data mining whilst the privacy is well

protected. However, alternative approach to overcome the computational burden is

to use monotone splines [133] which provide flexibly shaped but smooth monotonic

transformations [181].
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3.3.5 Numerical Example

In this example, we demonstrate the steps of perturbing the original data and

generating the non-metric MDS solution. We took the top 5 records from Iris

dataset as a representation of the original data, X, and transformed them, using

non-metric MDS, to generate the perturbed data, Y . The data X consist of 4

dimensions, i.e. X ∈ R4, and will be mapped into a lower 3-dimensional space,

i.e. Y ∈ R3. The data values of matrix X are

X =



5.10 3.50 1.40 0.20

4.90 3 1.40 0.20

4.70 3.20 1.30 0.20

4.60 3.10 1.50 0.20

5 3.60 1.40 0.20


.

To obtain the same scale for a fair comparison between attributes, we nor-

malised X using a zero-mean normalisation method, i.e. x′ = (x− µ)/σ, for each

column separately. The new normalised data X ′ are

X ′ =



1.16 0.85 0 0

0.19 −1.08 0 0

−0.77 −0.31 −1.41 0

−1.25 −0.70 1.41 0

0.68 1.24 0 0


.

Then we calculate the dissimilarities between all objects. For instance, from the

matrix X ′, the coordinates of points 1 and 2 (row 1 and row 2) are

x′11 = 1.16, x′12 = 0.85, x′13 = 0, x′14 = 0.

x′21 = 0.19, x′22 = −1.08, x′23 = 0, x′24 = 0.

To measure the dissimilarity between these two objects, we used (3.6). This

yields

δ12 =
√

(1.16− 0.19)2 + (0.85− (−1.08))2 + (0− 0)2 + (0− 0)2

= 2.16.

Similarly we obtain δ13, δ14, . . . , δ45. The dissimilarity matrix, ∆, is
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Figure 3.6: (a) The initial configuration in 3-dimensional space. (b) Shepard
plot shows how the distances approximate the disparities (the scatter of blue
circles around the red line), and how the disparities reflect the rank order of the

dissimilarities (the red line is non-linear but increasing).

∆ =



0 2.16 2.66 3.19 0.62

2.16 0 1.87 2.05 2.37

2.66 1.87 0 2.89 2.55

3.19 2.05 2.89 0 3.08

0.62 2.37 2.55 3.08 0


.

Since the data samples are very small and to avoid getting trapped in a local

minimum of the function S too soon, we start from a random initial configuration.

The initial configuration data matrix, Y 0, is

Y 0 =



−1.08 0.28 0.89

−0.65 −1.38 0.36

0.75 0.10 −0.21

0.52 1.42 0.45

0.45 −0.42 −1.49


,

and it is plotted in Figure 3.6(a).

To show the degree to which the distances, dij, between points in Y 0 agree with

the dissimilarities, δij, we plot the distances against the dissimilarities as shown

in Figure 3.6(b). It is clear from the figure that the regression line is not fitted

well which means that the disparities, d̂ij, are still not in same rank order as the
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Table 3.8: Predicted disparities, d̂ij , using PAV algorithm.

(i, j) dij d̂1
ij d̂2

ij d̂3
ij

(1,2) 3.13 3.13 3.13 2.88
— — —

(1,3) 3.54 3.48 2.80 2.88
—

(1,4) 3.41 3.48 2.80 2.88
— —

(1,5) 1.43 1.43 2.80 2.88
— — — —

dissimilarities and more iterations should be taken until a better solution is found.

Assume that a configuration Y at iteration t has been generated such that:

Y t =



−2 0.11 −0.50

0.54 −1 0.95

1.30 −1.08 0

0.62 1.86 0.81

−0.86 0.16 −1.36


.

To compute the coordinates for the first point, y1, in the new configuration, Y t+1,

we should calculate the gradient such that the stress, S, is minimised. From Y t,

we calculate the distances between point y1 and other points y2, y3, y4 and y5. The

distances are

d12 = 3.13, d13 = 3.54, d14 = 3.41 and d15 = 1.43.

Using PAV algorithm as described in Section 3.3.1, the predicted disparities are

d̂12 = 2.88, d̂13 = 2.88, d̂14 = 2.88 and d̂15 = 2.88.

Table 3.8 shows the procedures that have been taken to find d̂ij. Let
∑10

i<j (d̂ij −
dij)

2 = 0.03 be the sum of the squared difference between all the distances and

the disparities and
∑10

i<j d
2
ij = 75.73 be the sum of all the distances.

Applying (3.19) yields (for α = 0.2 and S = 0.01 from the previous iteration,

t− 1)
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yt+1
11 = −2 + 0.2× 0.01

[
4∑
j=1
j 6=1

(
d1j − d̂1j∑M

1<j (d̂ij − dij)2
− d1j∑M

1<j d
2
1j

)(
(−2− yj1)

d1j

)]

= −2 + 0.002

[(
3.13− 2.88

0.03
− 3.13

75.73

)(
(−2− 0.54)

3.13

)
+(

3.54− 2.88

0.03
− 3.54

75.73

)(
(−2− 1.30)

3.54

)
+(

3.41− 2.88

0.03
− 3.41

75.73

)(
(−2− 0.62)

3.41

)
+(

1.43− 2.88

0.03
− 1.43

75.73

)(
(−2− (−0.86))

1.43

)]

= −2 + 0.002

[
− 6.73 + (−20.41) + (−13.57) + 38.68

]
= −2− 0.01

= −2.01.

Similarly, we obtain yt+1
12 = 0.21 and yt+1

13 = −0.59. That is, the coordinates of

point yt+1
1 are (-2.01,0.21,-0.59). The same procedures will be performed for all

other points (yt+1
2 , yt+1

3 , yt+1
4 and yt+1

5 ). The configuration, Y t+1, is as follows:

Y k+1 =



−2.01 0.21 −0.59

0.55 −1.02 0.95

1.29 −1.11 0.10

0.63 1.87 0.83

−0.87 0.16 −1.36


.

Finally, after a number of iterations until a local minimum is reached, the data

values of the final solution are

Y =



1.36 0.39 −0.26

−0.60 −0.21 −0.90

−0.34 −1.56 0.38

−1.72 0.98 0.35

1.30 0.39 0.39


,
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Figure 3.7: The stress, S, at different iterations.
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Figure 3.8: (a) The final configuration in 3-dimensional space. (b) Shepard
plot shows a perfect fit where the disparities are exactly coincided with the

distances.

and the stress, S, equals 8.12 × 10−7. Figure 3.7 shows the function of S at

each iteration. The final solution, Y , is graphically shown in Figure 3.8(a). The

Shepard plot of both the distances, dij, and the predicted distances, d̂ij, at the final

iteration is depicted in Figure 3.8(b). All points in the plot lie on the regression

line indicating that the dissimilarities, δij, are perfectly related to the distances,

dij, and hence, the underlying structure of the original data, X, remains preserved.

Once the final configuration Y is generated, we can use it to carry out the

distance-based analysis. The data Y are totally different from data X and the
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columns of both X and Y are irrelevant, have different pdfs and with different

ranges. However, data Y are analytically as useful as data X, because the pairwise

distances are still largely preserved.

3.4 Geometry of Non-Metric MDS

To guarantee the successfulness of the non-metric MDS technique in preventing

the disclosure, the information embedded in the new space after transformation

should be downgraded as much as possible. Non-metric MDS can effectively em-

bed a set of objects into a Euclidean space that preserves the rank order of the

pairwise distances between all objects as closely as possible. However, it manages

to contain uncertainty about the original data and hinder the attacker from ex-

actly determine the locations of points in the higher dimensional space. A high

degree of uncertainty in the data can lead to the best privacy-preserving solution.

In non-metric MDS, the perturbed data, Y , is subject to high uncertainty since

the monotone regression geometrically implies that Y are moved iteratively in the

direction that minimises the stress, S, and therefore, the points are placed within

an uncertain area under the restriction of monotonicity. To illustrate the idea of

placing points in non-metric MDS solution, consider the following example. Let

x1, x2, . . . , xM denote the set of unknown disparities, d̂ij, and a1, a2, . . . , aM denote

the set of known distances in the space Y . Assume that all d̂ij are monotonically

ordered as

0 ≤ x1 ≤ x2 ≤ . . . ≤ xM .

and the monotone regression problem is to minimise the raw stress, S∗, which is

defined by

S∗ =
M∑
i=1

(xi − ai)2.

Consider the case of only the first two inequalities 0 ≤ x1 ≤ x2. The shaded

area above the curve in Figure 3.9(a) shows the area in which these two inequalities

are held. Let us pick up any point in the shaded area (e.g. a1 = 1 and a2 = 2).

That is, choosing values x1 = 1 and x2 = 2 gives S∗ without violating the order

restriction. If ai is outside the shaded area, then xi must be somewhere on the

border of the shaded area and close to ai as much as possible. Similarly, if we

consider one more inequality, i.e. 0 ≤ x1 ≤ x2 ≤ x3, the graphical representation
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(a) 0 ≤ x1 ≤ x2 (b) 0 ≤ x1 ≤ x2 ≤ x3

Figure 3.9: Points arrangement for which the inequalities order is not violated.

will be now in 3-dimensions as shown in Figure 3.9(b). The area in which the

three inequalities hold is represented by a cone. The monotone regression would

project a1, a2 and a3 onto this cone and choose x1, x2 and x3 that are very close

to a1, a2 and a3.

From the above example, we conclude that the monotone regression finds a vec-

tor of d̂ij that is in the same order of δij and as close as possible to the vector of

dij. Geographically, the non-metric MDS solution relaxes the points’ arrangement

in the lower space so that it increases the uncertainty of the exact points’ loca-

tions. Note that the large number of ordinal distances the more restricted areas to

place points in the lower dimensional space. For instance, placing a point without

violating three distance inequalities would give a less restricted area than placing

it when there are ten inequalities. As we will see later in the distance-based attack

in Chapter 4, the attacker will utilise only the sequence of distances between the

attacked point and the other n + 1 known points in order to attack any point in

the lower dimensional space. However, if the data objects are mapped using the

rank order of their corresponding distances not their magnitudes, then the task

would be complicate and thus the risk of the disclosure is minimised.
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3.5 On the Proximity for Non-Metric MDS

As described earlier in Section 3.2, metric MDS attempts to find a low-dimensional

configuration of points that best represents objects such that the distance between

any two points matches their dissimilarities as closely as possible. On the other

hand, non-metric MDS considers only the rank ordering of the dissimilarities as

meaningful. The magnitude of the dissimilarities, δij, are replaced by a higher

abstraction level describing the relationship between data objects, i.e. δij < δkl.

For instance, if δij = 2 and δkl = 3, an ordinal model reads this only as δij < δkl

and constructs the distances, dij and dkl, in the lower dimensional space so that

dij < dkl. Notice that any ordering of m(m−1)/2 distances between m data points

can be realised in a Euclidean space of m− 1 dimensions [149].

When using non-metric MDS, it becomes irrelevant which proximity measure is

used, because any proximity measure, in general, yields equivalent rank ordering

and can be embedded into low-dimensional space [1, 12]. Furthermore, arbitrary

distance functions can accurately be mapped to an Euclidean distance domain

which would also simplify the computation of distances [175]. To illustrated the

idea behind this, let X1 and X2 be two variables in data X and assume that they

are both standardised so that their means are zero and their sum of squares is

equal to 1. The Euclidean distance between X1 and X2 is given by

d(Xi, Xj) =

(
m∑
l=1

(xil − xjl)2

)1/2

=

(
m∑
l=1

x2
il +

m∑
l=1

x2
jl − 2

m∑
l=1

xilxjl

)1/2

.

(3.20)

Since Xi and Xj are standardised, the sums
m∑
l=1

x2
il and

m∑
l=1

x2
jl are both equal to

1 and thus

d(Xi, Xj) =

(
2− 2

m∑
l=1

xilxjl

)1/2

. (3.21)

This leaves us with the non-constant term,
m∑
l=1

xilxjl, which is exactly equivalent

to the correlation coefficient, i.e.
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corr(Xi, Xj) =
m∑
l=1

xilxjl. (3.22)

On the basis of the above result, we can express the Euclidean distance measure

relative to any another proximity measure while the ordinal characteristics remain

unchanged. Similarly, one can show that other distance measures that are typically

highly correlated with the Euclidean distance (e.g. Manhattan and Max distances)

are also monotonically closely related to the correlation coefficient. The non-metric

MDS can use the inter-correlation matrix, which is then converted to a matrix in

which the correlation coefficients are replaced with the rank order values, i.e. the

highest correlation value receives a rank order of 1, the next highest receives a

rank order of 2 and so on. It then attempts to arrange these sequences so that

the more closely related objects are mapped closer together than the less closely

related objects.

As the optimal fit of data in the low-dimensional space is often obtained when

the stress is minimal, much care should be taken when deriving proximities among

data objects. In general, if the average distance is fairly well preserved in the

perturbed data, then any distance-based data mining algorithm can accurately

identify patterns within the data and often gives quite similar results as on the

original data. However, when the analysis requires a strict judgement on the

similarity between objects (e.g. as in the case of psychological data analysis [163]),

it would be appropriate to define a measure that is invariant to the transformation

and induce the same rank order when comparing objects.

3.6 Summary

In this chapter, we present our data perturbation technique using non-metric MDS

and show how it is possible to generate data that preserve much properties for

distance-based data mining while the original data values are sufficiently hidden.

The non-metric MDS tries to find a configuration of points in a lower dimensional

space such that the points optimally represent the objects in the original data.

Firstly, it begins by placing an initial configuration of m points in a space with

p specified dimensions where p < n. This placement may be performed either at

random or by the application of classic MDS, which is equivalent to PCA when the

dissimilarities are calculated using Euclidean distance. Secondly, a set of numbers

known as disparities, d̂ij are defined that satisfy a monotonic relation with the
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input dissimilarities, δij, and accurately fit the distances, dij, in the configuration.

Finally, it iterates toward an optimal stationary configuration where the stress, S,

is sufficiently small.

Since the final solution is non-linearly derived by an unknown function, f ,

and the pairwise distances are well preserved, the perturbed data, Y , can now

be released to external data analyser without compromising privacy or utility.

The data Y are entirely independent from the original data, X, as we only use the

ordered dissimilarities to generate the final solution. Moreover, the data Y provide

different statistics except the distance-related statistics which are preserved within

a very small tolerance that will not affect the accuracy of the data mining model.

Theoretically, it would be difficult if not impossible to recover or estimate the

original data values from the perturbed data as the perturbation caused by non-

metric MDS increases the uncertainty of the data. However, the question, at this

point, is “what is the probability of breaching the privacy of our perturbation

model?”. Chapter 4 will discuss this issue with further details.



Chapter 4

Evaluation of Privacy and

Information Loss

For any privacy model that is based on data perturbation, there are two major

challenges: measuring the level of uncertainty in the perturbed data and ensuring

the resilience of the perturbed data against data disclosure. In this chapter, we

investigate the issue of the privacy and utility of the perturbed data that are

generated by non-metric MDS and compare it with some other dimensionality

reduction techniques. Particularly, we focus on the vulnerabilities of distance-

preserving approaches by studying how well an adversary attacker can recover the

original data from the perturbed data when prior knowledge about the original

data is available to attackers.

The rest of this chapter is organised as follows. Section 4.1 introduces the con-

cept of privacy breach and reviews the main types of privacy attacks. Section 4.2

discusses measures used to quantify information loss caused by the transforma-

tion. Section 4.3 describes the geometry of placing points in the perturbed space

and defines the uncertainty produced by non-metric MDS. Section 4.4 presents

our distance-based attack and shows how well the perturbation techniques work

against this type of attack. The performance of the attack is tested through a

set of experiments. In Section 4.5, we discuss PCA-based attack and investigate

its effectiveness in breaching the privacy. The experimental results are also intro-

duced in this section. Finally, our concluding remarks are summarised in Section

4.6.

78
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4.1 Introduction

Transforming data into a lower dimension has strengths and weaknesses. It is

beneficial in terms of eliminating irrelevant features and reducing noise that may

affect the analysis. However, the basic problem inherent in data transformation

is that it usually results in some distortion of the data in the lower dimensional

space. It is very rare to find a mapping between two spaces of interest in which

distances are exactly preserved, and hence we often have to allow the mapping to

alter the distances in some fashion but hopefully with restricted distortion.

The success of any distance-based data mining depends significantly on finding

a metric that reflects reasonably well the important relationships between the ob-

jects. As described in Section 2.3.2, the metric is usually defined by the distance

measured from one object to another in the space holding these objects. There-

fore, to minimise data distortion, we need a transformation that can preserve the

distance between all points and allow useful patterns to be easily discovered from

the perturbed data. It is critically important to measure both privacy and utility

using certain criteria. Otherwise, maximising utility may lead to privacy violations

as these two factors are often mutually contradictory.

Evaluation of privacy is a challenging task since it depends on many factors

including what is already known (prior knowledge) to the attacker and the nature

of the technique used to perturbed the data. In general, the privacy breach can

be described in terms of how well the original data values can be estimated or

reconstructed from the perturbed data. It is inversely proportional to the level

of protection offered by the perturbation technique. In PPDM, most methods

depend on data randomisation in order to sanitise the original data values using

additive or multiplicative noise. However, a key weakness of data randomisation

methods is that the perturbed data, in most cases, contain much of the statistical

proprieties which can then be exploited by privacy attacks. Therefore, the success

of theses attacks mainly depends on how information is still embedded in the data

and how this information is available to the attacker. In general, the privacy

attacks can be summarised into four categories:

1. Distribution Estimation: This attack attempts to estimate the distribu-

tion of the original data directly from the perturbed data using näıve Bayes

inference techniques [5, 7]. If the distributions of the added noise are known,

the distribution of the original data can be estimated with a high degree of

accuracy, especially when a large amount of data is available to the attacker.
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The estimated distribution can then be used to carry out data mining. Note

that it is often not possible to reconstruct the exact distribution or the orig-

inal data values as greater perturbation implies an increase in the variance

of the estimator and vice versa [5].

2. Noise-Filtering: One important property of data with strongly correlated

attributes is that the variance is large in some vectors and small in others.

The added noise used in the data randomisation methods may not affect this

since the random variables are independent and identically distributed, and it

will also not affect the covariance between different pairs of attributes. This

attack attempts to derive the covariance matrix for the original data directly

from the covariance matrix for the perturbed data using PCA technique

[80, 88].

3. Known Sample: When a sample of the original data is available to the

attacker, it would be possible to estimate the original data by examining the

relationship between the principle eigenvectors of the known sample and the

principle eigenvectors of the perturbed data [108, 165]. Intuitively, a large

sample size will give the attacker a better recovery because large sample

sizes tend to minimise the probability of errors, and thereby maximise the

accuracy of estimating the original data.

4. Distance Disclosure: If data perturbation is performed using a rigid mo-

tion transformation (e.g. rotation), the distances between objects in the

perturbed data are exactly preserved. Let n be the number of dimensions,

this attack assumes that the attacker knows at least n + 1 data points in

the original data and their mappings in the perturbed data. That is, the

attacker can use a Multilateration technique [124] to recover the original data

points with high confidence [165].

Unlike other techniques that are based on data randomisation, in which the

transformation matrix is orthogonal (rotation) or a projection into a lower di-

mensional space, our method generates a new data configuration where pairwise

distances approximate a non-linear monotonic transformation of the original dis-

similarities. Generally, the perturbed data can be seen as a synthetic data gener-

ated in an independent way since we use only ordered distances that are calculated

from the original data, rather than the original data values themselves. Hence,

the first two above attacks are inapplicable to our method because the non-metric
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MDS solution is independent from any information that can be used as a trans-

formation basis except the provided order of distances. The perturbed data are

also not a sample from the same distribution of the original data, but rather new

data values non-linearly generated based on an unknown monotone function. For

the last two above attacks (known sample and distance disclosure), we will show

later through this chapter how these attack would fail to disclose the original data

values because non-metric MDS can produce data under high uncertainty, particu-

larly in locating data points in the lower dimensional space, and effectively distort

the covariance matrix of the original data. Since we are only interested in preserv-

ing the distances rather than the distribution of data attributes, we believe that

non-metric MDS will not decrease data utility and thereby not affect the analysis.

Notice that our main privacy concern is not to estimate the distribution of the

original data but rather to examine the vulnerability of the perturbed data to

some potential privacy attacks which attempt to recover the original data values.

4.2 Information Loss Measure

As described in Chapter 3, non-metric MDS firstly attempts to compute a ma-

trix of pairwise distances δij between a set of points x1, x2, . . . , xm ∈ Rn, and

then uses distance scaling to find a lower dimensional configuration of points

y1, y2, . . . , yn ∈ Rp (for a fixed p and p < n), whose interpoint distances reflect

the high-dimensional distances, δij, as well as possible. This is usually performed

by choosing an initial configuration in the new space, Rp, and moving its points

around, in iterative steps, to approximate the best model relation, i.e. dij ≈ f(δij).

In other words, the coordinates of each point, in Rp, are adjusted in the direction

that maximally reduces the stress.

Based on the way that non-metric MDS uses to derive the solution, it can be

viewed as a problem of statistical fitting—the dissimilarities are given and it is

necessary to find the configuration whose distance fits them best. There are a

variety of ways to formulate the approximation but all share only one objective,

which is how well the interpoint distances, dij, approximate the original data

dissimilarities, δij. For example, Sammon [140] suggests a metric approach to

minimise the loss function. A particular configuration of points, Y , with interpoint

distances, dij, representing the dissimilarities, δij, has a loss function



Chapter 4. Evaluation of Privacy and Information Loss 82

SSAM =
∑
i,j

δ−1
ij (δij − dij)2. (4.1)

The relative error, in its simplest form, is a residual sum of squares, and it is

defined by

e2 =
∑
i,j

(δij − dij)2. (4.2)

Although non-metric MDS does not use the actual values of the dissimilarities

but rather their rank order, δij < δkl, the process of minimising the stress (3.12) is

entirely metric. The best mapping is evaluated at each iteration using both the ob-

tained disparities (the distances from the current configuration) and the distances

computed from the previous configuration. To evaluate the size of distortion in

distances caused by any data transformation, we can compute the deviation of the

pairwise distances in the original and perturbed spaces and normalized that by

the sum of squared dissimilarities. That is, the stress can then be defined by

S =

√∑
i,j (δij − dij)2∑

i,j δ
2
ij

. (4.3)

As discussed in Section 2.3, distance-based tasks generally utilise distance in

order to partition the data or find certain groups within it. This is often achieved

by optimising a predefined criterion function. In other words, we calculate how far

each data object in terms of its Euclidean distance from either the closest centroid

object (as in clustering) or the closest set of neighbour objects (as in k-NN classi-

fication) and then compute the total sum of the squared errors. When the trans-

formation successfully preserves the underlying distance relationships between all

data objects, the objects will approximately remain on relative distances from each

other and thus the search space will be kept unchanged. This implies that the Eu-

clidean distance function can adequately capture the pattern relationships among

objects and the convergence of the objective function in the low-dimensional space

will be quite similar to its convergence in the high-dimensional space.

The example in Figure 4.1(a) illustrates the effect of information loss on the

accuracy of distance-based algorithms. Let x be an object centred at a circle with

radius r and points c1, c2 and c3 be the centroids of three clusters, C1, C2 and C3,

respectively. Since the distance dxc1 is the shortest, the object x will be assigned to
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Figure 4.1: (a) A representation of data in the original space, X. (b)-(d) A
representation of data in the (n − 1), (n − 2) and (n − 3) lower dimensional
spaces, Y1, Y2 and Y3, respectively. The red lines represent the distortion in
distances, as result of the non-metric MDS transformation, which is quantified

by the stress.

the cluster C1. Intuitively, this gives the best minimisation of the objective func-

tion in the context of a clustering algorithm such as k-means. When the data are

transformed into the (n − 1)-dimensional space (Figure 4.1(b)), the stress is still

very low representing the best mapping of the data. However, the stress increases

at the other lower dimensions, i.e. n− 2 and n− 3 (Figure 4.1(c)-4.1(d)). Conse-

quently, minimising the distortion in distances between objects in the perturbed

data as much as possible will definitely provide high data utility for distance-based

analysis. The stress (4.3) allows us to compute such distortion and quantifies the

average distance change as a result of the transformation. Therefore, the stress

can be employ as utility measure for evaluating the quality of the perturbed data

for distance-based data mining.

Young [179] argues that non-metric MDS is able to recover the underlying

metric information of a data structure even when the data contain errors. Thus,

distance-based algorithms can operate very well on the perturbed data and easily

extract the patterns. We experimentally found that the stress always decreases

whenever the number of dimensions increases. Hence, we argue that projecting

the original data into just one reduced dimensional space, i.e. n−1, gives the best

data utility for distance-based analysis. One possible way to evaluate the stress is

to plot Shepard diagram (dissimilarities on the x-axis against the corresponding

MDS distances on the y-axis) which gives an overall impression on the badness-

of-fit. If the stress is low, points tightly lie on the regression line; otherwise, they

do not. Figure 4.2 shows Shepard plot of dissimilarities between objects in X and
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Figure 4.2: Shepard plot of dissimilarities, δij , against distances, dij , for so-
lutions obtained by non-metric MDS at different dimensions, n.

the obtained distances in Y . For data at a high dimension, i.e. n − 1, there is a

narrow scatter around the line, which indicates a good fit of the distances to the

dissimilarities. On the other hand, as the dimension decreases the line thickens,

indicating a lack of fit.

The low value of stress is highly informative in deciding on the quality of the

representation of data in the lower dimensional space, but would be sometimes

misleading particularly when the search arrives at a local optimum, where no

small change in any coordinates will make the stress decreases. Therefore, one

should experiment with a set of parameters including the number of objects, m,

the number of dimensions, n, until satisfactory convergence is reached. This issue

was investigated by many authors using different methods, see, e.g. [153–155].
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4.3 Uncertainty of Non-Metric MDS Solution

In this section, we are concerned with the uncertainty present in the perturbed data

as a result of non-metric MDS transformation. The notion of uncertainty can be

characterised by the probability of disclosing any data value in the perturbed data.

In other words, it can be described by the level in which the private information,

that has been hidden, can still be predicted. When thinking about uncertainty

in the context of perturbation-based approaches, there is no general procedure

for quantifying the uncertainty in the perturbed data. However, to guarantee the

effectiveness of the privacy model, it is important to decrease the accuracy of the

inference relating to the original data that can be obtained from the perturbed

data. This can be achieved by downgrading the information embedded in the

perturbed data and thus limiting the disclosure of the private information.

The data in the lower dimensional space are sanitised; have no relationship with

the original data and the features are irrelevant and meaningless compared with

the original ones. However, a privacy breach can still occur if the attacker is able

to estimate or reconstruct the original data values. The uncertainty inherited in

the perturbed data is explained through the way that non-metric MDS uses to

place points in the lower dimensional space, which entirely depends on preserving

the order of dissimilarities as we have seen in Section 3.4. Assume that a, b and c

be three known data points; their pairwise distances are dab, dbc and dac. Assume

also that the two points a and c have been placed and we would like to place point

b. Without loss of generality, all possible positions for placing a point b, without

violating the monotonicity constraints: dab ≤ dbc ≤ dac and dab ≤ dac ≤ dbc, are

bounded by the shaded areas (see Figure 4.3). The proofs are given in Appendix A.

In fact, the estimation of the area, in each case, represents the attacker’s certainty

about the location of the point b. This example shows how the attacker’s degree

of certainty would change when the order of distances changes. The larger the

number of locations that preserve the order, the more uncertainty about the exact

location of the points.

To quantify the uncertainty in our perturbation technique, we consider a sce-

nario when the attacker has prior knowledge about some original data points and

their distances from a point under attack. That is, the disclosure would occur by

measuring the distance from the attacked point to the other known points and

minimising the sum of squared errors using a heuristic method as we will see in

Section 4.3.
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a c

(a) dab ≤ dbc ≤ dac

a c

(b) dab ≤ dac ≤ dbc

Figure 4.3: Representation of all possible positions (shaded area) to place the
point b, without violating the constraint specified for each case.

The uncertainty produced by non-metric MDS can be illustrated through out

the following example. Let x be an unknown point with distances dxr1 , dxr2 and

dxr3 from three other known points, r1, r2 and r3, respectively. Assume that dxr1 ,

dxr2 and dxr3 are known and their rank order confirms the following:

dxr1 < dxr2 < dxr3 .

A representation of these distances on a line is shown in Figure 4.4(a). To

preserve the ordering (monotonicity), the point x should be placed somewhere

within the shaded area. Assume that each reference or known point, here in this

example, represents a single value, say salary, which can range from 10 to 70K.

Assume also that r1 = 20K, r2 = 50K and r3 = 70K. If this information together

with the order of the distances from each point, r, to the point x are available to

an attacker, s/he can guess that x is more likely to fall in the interval [10K, 34K],

but that still represents about 50% uncertainty since the whole range of possible

values is 10K, 70K.

Since the non-metric MDS solution relaxes strict inequalities and allows equal-

ities between distances, the above distance ordering can be rewritten as dxr1 ≤
dxr2 ≤ dxr3 , introducing further uncertainty. Let us now generalise the problem

to 2-dimensional space, R2, where the above order of distances can be represented

by circles. Similarly, the placement of the point x is restricted to be in the shaded

area as in Figure 4.4(b).

In non-metric MDS, the placement of any given point is governed by the rank

order of distances rather than the real distances which is not sufficient to determine
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1r 2r 3ra b

(a) dxr1 < dxr2 < dxr3

1r 2r 3r

(b) dxr1 ≤ dxr2 ≤ dxr3

Figure 4.4: A representation of placing point x on (a) a line and (b) a circle
without violating the ordering constraint.

a metric configuration [56, 148]. The shaded area in both of the above representa-

tions can be used to quantify the privacy of the perturbed data. In other words,

the probability that any attacked point locates within this area is a measure of

how well the original data are hidden. Let P be the probability that the point x

locates in area E where E ∈ Rd is a subset of the domain of all possible outcomes.

For the first example (1-dimensional case), let X be a random variable uniformly

distributed over the range [0, L] where L represents the length of the line. The

probability P (E) that x locates somewhere in E is

P (E) =

∫
E

f(x)dx, (4.4)

where

f(x) =

 1
L

if a ≤ x ≤ b,

0 otherwise.
(4.5)

Since the point can be placed everywhere with equal likelihood (uniform dis-

tribution), the probability it locates in a particular location is proportional to the
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Figure 4.5: A representation of uncertainty about placing point x in n-
dimensional space.

area of the location. For instance, let r be a reference point in 2-dimensional space

with radius R representing all unconstrained placement points. The probability

that x places at distance a from r is

P (X ≤ a) =
area of circle of radius a

area of circle of radiusR
=
πa2

πR2
=

(
a

R

)2

, (4.6)

for 0 ≤ a ≤ R. The probability density function is given by f(x) = 2x
R2 . This also

suggests that the probability of finding a given point x is inversely proportional

to the area where the rank order is satisfied.

Similarly, we can generalise the above observation for an n-dimensional hy-

persphere corresponding to a set of points x1, x2, . . . , xn in Euclidean space such

that S = {~x | Σn
i=1xi ≤ R2}, where R is the radius of the hypersphere, S. For

simplicity, consider the example of inscribing S in an n-dimensional hypercube,

C (see Figure 4.5(a)). Assume that a given rank order of distances is bounded

in the region outside the hypersphere, S, but inside the hypercube, C. That is,

the probability of breaching the privacy by picking the correct point, x, will then

depend on the volume of C relative to the volume of S. Without loss of generality,

let E = [−a, a]n be the domain such that a point x is randomly picked, i.e. the

lower and the upper limit of C. The probability of x being in this region is the

volume of S divided by the volume of C, i.e.
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P (E) =
V ol(S)

V ol(C) =

πn/2a2

Γ( 1+n
2

)

(2a)n
=

πn/2

2n−1Γ(1+n
2

)
, (4.7)

where is Γ(.) is Euler’s Gamma function [132] which can be defined by

Γ(z) = 2

∫ ∞
0

e−t
2

t2z−1dt. (4.8)

Note that limn→∞ P (E) = 0 which implies that as the dimension, n, of the

space increases, the volume of the hypersphere is much smaller than that of the

hypercube because most of the volume of the hypercube is in its corners [145].

In other words, as n increases, the distance from the origin to a vertex of the

hypercube increases as
√
n/2; and for large n, the vertices of the hypercube lie

far outside the hypersphere and thus the volume of the shaded corners becomes

larger. To illustrate this mathematically, let u,v ∈ Rn such that u = (a, a, . . . , a)

and v = (a, 0, . . . , 0), and θ is the angle between u and v, it is easy to show that

||u||2
||v||2 =

na2

a2
= n→∞, (4.9)

and

cos θ =
uTv√
||u||2||v||2

=
a2

√
ua2a2

=
1√
u
→∞. (4.10)

This means that u is orthogonal to v as n increases and infinitely larger. Similar

calculations can be applied to show that all the volume in the hypersphere is near

the edge when two spherical balls are inscribed to each other (one inside the other)

such that the outside shell is of a thickness ε (see Figure 4.5(b)). The volume of

ε can be computed by

V ol(ε) =

[
1− V ol(S1)

V ol(S2)

]
V ol(S2)

=

[
1− Rn

1 (1− ε/R1)n

Rn
1

]
= (1− ε

R1

)n.

(4.11)

Plotting V ol(ε) as a function of n gives an insight that V ol(ε) rapidly ap-

proaches 1 as n becomes large, i.e. limn→∞ V ol(ε) = 1, which is equivalent to the
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statement that the ratio of volumes of the inner hypersphere to the outer hyper-

sphere significantly decreases as we go from the lower dimensions to the higher

dimensions.

The above examples show how the problem would be complicated for the at-

tacker to exactly determine the location of a given point x as most points are near

boundaries (n− 1 manifold) and all the probability mass outside the hypersphere

and on the tail when the data has a normal distribution [150]. In higher dimen-

sional spaces, an object is no longer a single point in space but is represented by

a probability density function (pdf) that specifies the probability density of each

possible location over an uncertainty region [4, 17]. Hence, the estimation of den-

sity will indeed be more difficult and thus the probability of breaching the privacy

will decrease.

4.4 Distance-Based Attack

One possible solution to protect the original data values from disclosure is to

perturb the data and hide all private details using a rigid motion transformation

(also known as orthogonal transformation) [24, 110]. Another suggested solution

is to make only the dissimilarity between objects available to the data analyser

without divulging the data values themselves [128]. However, when the distance

is exactly preserved and the attacker has prior knowledge about some objects,

these solutions would not be secure enough because the attacker can estimate the

location of any attacked point by measuring the distances from this point and the

known points.

Let X and Y be two spaces and T be a transformation such that T : X → Y .

When the transformation, T , is orthogonal, the distances between points in the

new space, Y , are exactly preserved, i.e. ||xi − xj|| = ||T (xi)− T (xj)||. Although

this propriety is good when the analysis utilises the distance, it would be dangerous

in terms of data disclosure since the location of any point, x ∈ Rn can be resolved

by knowing the distances from this point and n + 1 other points. The Euclidean

distance is often used to measure the dissimilarity of two objects so that in this

context both terms (distance and dissimilarity) can be used interchangeably.

The basic idea of the distance-based attack is to estimate the location of a point

in the original data, X, using the perturbed data, Y , and some other information

leaned from the original space. Given n + 1 knows points in X, their mappings

in Y and the distances from these points to an attacked point, x, in X, the
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attacker may be able to estimate x quite accurately. To disclose x, s/he will first

attempt to estimate its location in Y using the available information and then used

the estimated point, x̂, to resolve x. That is, if the mapping error, ε, is known

and both points are in the same dimensional space, then it would be possible to

add/subtract ε to/from the coordinates of x̂ to recover x, i.e. x = x̂± ε. However,

in practice, this is not the case since the dimensionality of X and Y is often

different. Therefore, the privacy would rather be measure as the error between

x and its estimate x̂ relative to the known points in Y . Ideally, the closer the

estimated point is to the attacked point, the more effective the attack.

In this section, we discuss the vulnerability of privacy-preserving model when

either the dissimilarities or the orthogonally transformed data are made publicly

available to the data analyser. We also developed a method using a non-linear

least-squares technique in order to estimate the location of an unknown point.

The success of attacking any unknown point mainly depends on the attacker’s

prior knowledge about the data, i.e. the distances between the attacked point

and some other reference points. Otherwise, this attack would be useless. If the

data owner releases the data such that the distances between objects are exactly

preserved and the attacker has prior knowledge about some points (at least n+ 1

points), the attacked objects will definitely be disclosed up to very low error.

The weakness of distance-preserving methods that preserve exact distances mo-

tivated us to perturbed the original data in such a way that the placement of

data points is generated under high uncertainty. In our privacy-preserving model,

we use the rank order of the distances (dissimilarities) not their magnitude and

place the points in their locations if they do not violate the rank order constraint

(monotonicity). This distinguishing feature indeed relaxes the process of placing

the points and gives more flexibility to arrange the points within uncertain areas

so that the final solution is indeterminate with respect to the exact locations of

points.

4.4.1 Metric Dimension Subspace

The concept of metric dimension [71] is widely used in graph theory to describe

the minimum number of vertices in a subset V of a graph G such that all other

vertices are uniquely determined by their distances to the vertices in V . Let

V = {v1, v2, . . . , vn} be a set of vertices in a connected graph G. For any vertex

u in G, there is a metric representation, d(u, V ), with respect to V such that

d(u, V ) = {d(u, v1), d(u, v2), . . . , d(u, vn)} is a vector of n distances. The set V
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is called a resolving set [23, 93] for G if and only if, for any vertex w, d(w, V ) =

d(u, V ), which implies that w = u for all pairs w and u of vertices in G. The metric

dimension, denoted by dim(G), is the minimum cardinality of the resolving set V

for G.

The above results of metric dimension in graph theory can be generalised for

any metric space in Rn. That is, the metric dimension of any given metric space

is the smallest number of points such that every point of the space is uniquely

determined by their distances to the chosen points. Let dij = ||xi − xj|| be the

Euclidean distance between points xi ad xj in data X, where X ∈ Rn. Given a

set of n + 1 known points (also known as references), we can find the location

of any point x ∈ X, by measuring the distance from x to each point in the set

of known points. The subspace of n + 1 points is called a metric dimension. To

mathematically define the metric space, we should first define the notion of a

resolving set as follows:

Definition 4.1 (Resolving Set). Let (X, d) be a metric space. A finite subset

{x1, x2, . . . , xn} ⊆ X is a resolving set for X if and only if for every point y ∈ X,

the list of distances

d(y, x1), d(y, x2), . . . , d(y, xn)

is unique.

The metric dimension can then be defined as follows:

Definition 4.2 (Metric Dimension). Let V be a resolving set for X, the metric

dimension, dim(X), is the smallest size of V .

Any n-dimensional data can be understood as a set of points in n-dimensional

Euclidean space. Therefore, all Euclidean distance-related concepts we defined

earlier in Chapter 2 can be applied and measured on (X, d). Additionally, since

the estimation of the location for any given point, x, depends on minimising the

relative error, it would be appropriate here to defined so called resolving function

[47].

Definition 4.3 (Resolving Function). A function f : X → [0, 1] is a resolving

function of the metric space (X, d) if and only if
∑

[z∈X, d(x,z)6=d(y,z)] f(z) ≥ 1 for

any distinct points x, y ∈ X.

The fractional resolving dimension of (X, d) is F = min
∑

x∈X g(x) where g

is a minimal resolving function of X and the minimum is taken over resolving

functions f such that any function f ′ with f ′ ≤ f and f ′ 6= f is not resolving.
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Figure 4.6: Trilateration example in 2-dimensional space.

Since the perturbed space, Y , generated by the non-metric MDS is an ε-

isometric space by definition (2.5), estimating the locations of points will always be

erroneous. That is, to provide a maximum privacy guarantee, we use non-metric

MDS perturbation in order to inject some distance distortion to the perturbed

space so that any distance-based attack will fail to accurately find unknown points.

Trilateration [20] is an iterative method applied to solve non-linear equations

in order to minimise the uncertainty of estimating the exact location in a metric

dimension. It is widely used in satellite navigation [114], robot localisation [162]

and network topology [142]. It is sometime called Multilateration when more than

three reference points are used to position the object. Here in this section, we use

the term “Multilateration”. The basic idea behind Multilateration is to determine

absolute or relative locations of points by measuring the distances between these

points and other known points, using the geometry of circles for 2-dimensional

space, R2, or the geometry of spheres for higher dimensions, Rn, where n > 2.

Multilateration differs from Triangulation in that it does not use triangle geometry

in determining the location of any given point. In Triangulation, the location of

the point is determined by measuring angles to it from known points at either end

of a fixed baseline, rather than measuring distances to the point directly so that

the point can then be located as the third point of a triangle with one known side

and two known angles.

Figure 4.6 shows an example of Trilateration, which utilises three references,

r1, r2 and r3, to calculate the position of unknown point, x, in R2. Intuitively, the
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point x should be located at the intersection of the three circles centred at each

reference.

4.4.2 Distance-Based Attack Algorithm

Assume that the attacker knows n+1 points in the original data and their distances

to an attacked point, x. To attack x in the perturbed data, Y , the attacker can

use the available distances to estimate the location of the point x by choosing any

random point in Y to be x and iteratively improving the distance measurements

from x to the n+1 known points until they become the same as the real distances.

That is, the problem of estimating the location of a given point can be seen as

optimisation problem and we hope to minimise the sum of squared error using

either linear or non-linear least-squares method [124]. In this section, we use the

non-linear least-squares method to find the minimiser of the optimisation function

as well as measure the relative error of locating the unknown point.

4.4.2.1 Non-linear Least-squares Method

Suppose X ∈ Rn is an m×n data matrix, and we want to find the location of an un-

known point, x, given a set of n+1 known reference points, R = {r1, r2, . . . , rn+1}.
Let dxri be the true Euclidean distance from point x and each reference point ri,

dxri = ||x− ri|| =

√√√√ n∑
k=1

(xk − rik)2, (4.12)

where xk and rik are the kth dimension of x and ri, respectively.

The location of points x is determined by minimising the sum of squares on

distances,

G(x) =
n+1∑
i=1

gi(x)2, (4.13)

where

gi(x) =
√

(x1 − xi1)2 + (x2 − xi2)2 + . . .+ (xn − xin)2 − dxri (4.14)

is a non-linear function of n variables representing the coordinates of point x.

That is, we choose estimates x̂1, x̂2, . . . , x̂n that minimise G(x). The quantity√
(x1 − xi1)2 + (x2 − xi2)2 + . . .+ (xn − xin)2 is the measured Euclidean distance
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from point x and each reference point ri. To solve this problem and find the

minimum of the sum of squares, we use Gauss-Newton method which starts with

a guess for x and iteratively moves toward a better solution along the gradient of

G(x) until convergence.

If g(x) is differentiable, then the refinement of point x at iteration k can be

achieved by the following linear approximation:

g(x) ≈ g(xk) +∇g(xk)T (x− xk), (4.15)

where

∇G(xk) =



∂g1(x)
∂x1

∂g1(x)
∂x2

. . . ∂g1(x)
∂xn

∂g2(x)
∂x1

∂g2(x)
∂x2

. . . ∂g2(x)
∂xn

...
... . . .

...

∂gn+1(x)
∂x1

∂gn+1(x)
∂x2

. . . ∂gn+1(x)
∂xn


, (4.16)

is the gradient (Jacobian) matrix that composes all first derivatives of x. Let

Ak =



∇g1(xk)

∇g2(xk)

...

∇gn+1(xk)


and bk =



∇g1(xk)Txk − g1(xk)

∇g2(xk)Txk − g2(xk)

...

∇gn+1(xk)Txk − gn+1(xk)


.

To find xk+1 from xk, we should minimise the sum of the squares of the linearised

residuals, i.e.

n+1∑
i=1

(
gi(x

k) +∇gi(xk)T (x− xk)
)2

, (4.17)

which is equivalent to solving the system Akx − bk = 0 which is defined by

(Ak)TAkx = (Ak)T bk and always consistent even when Akx = bk is not consis-

tent [118]. If Ak is non-singular, then there is a unique solution for x, which
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represents the new position for the point x. The new position is given by

xk+1 = ((Ak)TAk)−1(Ak)T b. (4.18)

WhenG(xk) = 0, then the point xk+1 is a global minimum and we stop searching

the solution space. Otherwise, we move one step ahead.

The point xk+1 represents a further movement relative to the previous position,

xk, and towards better location such that the error is minimised. Intuitively, the

quality of the new position, xk+1, depends on how far away the point xk+1 is from

the real position of the point x at any iteration k. This is equivalent to minimising

(4.13). Another possible way to measure the relative distance error is to minimise

the normalised sum of squares, i.e.

n+1∑
i=1

(
||xk − ri|| − dxri
||xk − ri||

)2

, (4.19)

where ||xk−ri|| is the measured Euclidean distance from point x and each reference

point ri at the kth iteration.

Finally, the accuracy of the estimation for any attacked point can be assessed by

computing the residual value between the estimated, x̂, and the real, x, locations,

i.e. ||x− x̂||.

4.4.2.2 Point Location Estimation using a Set of Distances

In this section, we simulate a location attack of any given unknown point using

a simple search algorithm that can estimate the location of the unknown point

while minimising the sum of least-squares as described in the previous section.

The main steps are as follows: start with an initial guess and move around in the

direction where the relative error is minimised. The process is then repeated until

convergence as described in Algorithm 4.2. The algorithm requires O((n+ 1)2m)

assuming that m > n+ 1 where m is the number of points and n is the number of

dimensions.

The algorithm operates on the perturbed data, Y , and starts by estimating

the location of the unknown point with the maximum number of known points.

Notice that the large the number of known references, the better accuracy and the

faster convergence could be achieved. Once the position of the unknown point is

estimated, it is then compared with its exact location in the perturbed data and

then the relative error is computed.
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Algorithm 4.2 Distance-Based Attack Algorithm

Input: A set of n+1 known points, r1, r2, . . . , rn+1, an initial guess, x0, a tolerance,
t > 0, and a maximum number of iterations, maxItr.

Output: An estimation, x̂, of the unknown point, x.
1: repeat
2: Calculate n+ 1 distances, dxr1 , dxr2 , . . . , dxrn+1 , from the current xk to each

reference point, r.
3: Evaluate gi(x

k) and ∇gi(xk) for i = 1, 2, . . . , n+ 1.
4: Move xk a bit towards better location along the gradient,

xk+1 = ((Ak)TAk)−1(Ak)T b.
5: Calculate the error, err.
6: until the error becomes less than the tolerance, err < t, or maximum number

of iterations is exceeded, k > maxItr.

Figure 4.7: 95% confidence ellipse to show the effect of outliers on point
location estimation. The outliers are distinguished by red circles. The open

circle is the data mean.

Although, in most cases, the accuracy of estimating a given unknown point

can be very high, the non-linear least-squares method is sensitive to outliers [50].

Reference points measured with abnormally smaller or larger distances from the

unknown point can be considered as outliers. That is, when the estimated points

largely diverges from the data mean value, the variance of the estimator becomes

higher reducing the accuracy of the algorithm. Figure 4.7 illustrates the effect of

outliers on location estimation. The convex shape of variance ellipse with 95%

confidence interval changes whenever the number of outliers increase. Another

drawback of such method is that the performance often depends on the choice of
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the initial estimates as a bad choice would lead to too slow convergence or to an

estimation with high bias.

4.4.2.3 Numerical Example

To illustrate the process of locating an unknown point x, consider the following

example in 2-dimensional space. Assume that we want to estimate the location

of a point, x, where x = (1, 1), using some other known points. Without loss of

generality, we assume that the real location, i.e. (1, 1), of the point x is unknown

to the attacker and the only available information are the three reference points

and their distances to the point x. Let r1 = (1, 3), r2 = (2,−3) and r3 = (−2, 3)

be three known reference points. Assume that the distances from the unknown

point, x, and these point are dxr1 = 2, dxr2 = 4.12 and dxr3 = 3.61. Assume also

that the tolerance is set to 0.01. Let us now define three functions in two variables

x1 and x2

g1(x1, x2) =
√

(1− x1)2 + (3− x2)2 − dxr1
=

√
(1− x1)2 + (3− x2)2 − 2 = 0,

g2(x1, x2) =
√

(2− x1)2 + (−3− x2)2 − dxr2
=

√
(2− x1)2 + (−3− x2)2 − 4.12 = 0,

g3(x1, x2) =
√

(−2− x1)2 + (3− x2)2 − dxr3
=

√
(−2− x1)2 + (3− x2)2 − 3.61 = 0,

where x1 and x2 are the coordinates of point x and we hope to minimise the sum

of squares, i.e.

3∑
i=1

gi(x1, x2)2.

Let (0, 0) be an initial start point and iteratively evaluate ∇gi(x1, x2). The

solution converges in 12 iterations at point (0.9977, 0.9913) with an error equal

to 0.009. Figure 4.8 depicts the results. Similarly, If we started with a random

initial point, we could find an estimation of point x at (1.0069, 0.9959) after 14

iterations; and with an error equal to 0.008. The results are shown in Figure 4.9.

4.4.3 Disclosure Risk Measure

The disclosure risk can be defined as the ability that the attacker has to easily

identify the exact location of a given unknown point or a sets of unknown points.



Chapter 4. Evaluation of Privacy and Information Loss 99

−4 −3 −2 −1 0 1 2 3 4
−6

−4

−2

0

2

4

6

x

y

 

 
Known points locations
True target location
Estimated target location

Start point x0

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

iteration k

||x
−

x̂
||

(a) (b)

Figure 4.8: (a) An estimated location for point x starting from point (0, 0).
(b) A function of the relative error at each iteration, k.
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Figure 4.9: (a) An estimated location for point x starting from random point.
(b) A function of the relative error at each iteration, k.

To guarantee the privacy of disclosing point locations, sufficient noise can be added

to the pairwise distances so one cannot derive reasonably useful information from

the released data. However, the size of noise added to the data should not min-

imise the utility for data mining task. Our perturbation technique has a unique

property since it can produce data points that are uncertainly distributed in the

lower dimensional space as we have seen earlier in Section 4.2. That is, the at-

tacker would fail to discover the exact position of the unknown point; and even if

the attacker would succeed in estimating the point, it would have different data

coordinates. In general, the success rate of distance-based attacks depends on how

well the estimate represents the target. In other words, distance-based attacks are

only useful if they are able to learn some characteristics of the original data using
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the perturbed.

To show how our privacy-preserving model would be resistant to distance-based

attacks, let us go back to the previous 2-dimensional example. We perturbed all

the three known points, r1, r2, r3, and the unknown point, x. For easy visualisation,

we kept the dimensions of the perturbed data the same as the original dimensions,

i.e. 2-dimensions. Table 4.1 shows both the original and perturbed data values.

The distances difference (stress) between points in the original and the perturbed

space was 8.34 × 10−8. Assume that the attacker knows the points r1, r2 and r3

in the perturbed data and their distances to the unknown point x as well. The

attacker can accurately estimate the location of point x up to a very small error.

The estimated point was at (0.44, 0.0007) which is quite near to the point x in the

perturbed data and the error was just 0.00036. If the attacker knows the mapping

error, it would be possible to estimate the position of the point in the original data,

particularly if both the original and perturbed data lie in the same dimensional

space. Figure 4.10 shows the data points in the original and perturbed spaces.

Note that the distances between points have shrunk because we normalised the

original data before the perturbation. The Euclidean distance, ||x− x̂||, from the

point x in the original data, X, to the estimated point x̂ in the perturbed data,

Y , can be also used as a measure to quantify the privacy of our model. That is,

the large the distance, the better the privacy is preserved.

Table 4.1: Original and perturbed data values.

Original data Perturbed data
x1 x2 x1 x2

r1 1 3 1.45 0.003
r2 2 -3 -0.94 -1.40
r3 -2 1 -0.95 1.40
x 1 1 0.44 0.00034

Recall that any individual data object is said to be disclosed if it is on a very

close distance from its estimate. Another quantitative method to measure how

close the estimated point is from the target point, would be to compute the ratio

of the differences between x and its estimate x̂ to the average distance from x to

the n+ 1 known points r1, r2, . . . , rn+1, i.e.

ρ∗ =
||x− x̂||

1
n+1

∑n+1
j=1 ||x− rj||

. (4.20)

The overall privacy is then given by
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Figure 4.10: Data points in the original space, X, and the perturbed space,
Y . The dashed line are the Euclidean distances.

ρ =
1

N

N∑
i=1

||xi − x̂i||
1

n+1

∑n+1
j=1 ||xi − rj||

, (4.21)

where N is the number of the remaining unknown points.

This measure provides precise upper bounds on the privacy guarantee of the

original data, X, in terms of the norms of the Euclidean distances between data

objects. The lower value of ρ gives the data owner the worst case privacy assurance

since the inference of any attacked point would occur if its estimate is located on

very close distance. Hence, the larger the value of ρ, the greater the privacy.

4.4.4 Experiments

In this section, we empirically evaluate the effectiveness of distance-based attack

in disclosing the original data values on both synthetic and real datasets. The

attack was implemented using Matlab 7.0. For the synthetic data, we generated

m random objects in n dimensional space where m = 1000 and n = 100. That

is, we should solve a system with 100 variables and ensure that the placement

of unknown points can be accurately calculated. We randomly chose n + 1 to

be known points and tried to find an unknown point chosen randomly from the

remaining (m−(n+1)) data points. For simplicity, we set up the maximum number

of iterations to 100 and carried out this process 100 times. To see the impact of

data perturbation on the accuracy of estimating the location of an unknown point
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Figure 4.11: (a) Average error (red line) of distance-based attack in locating
unknown point x in the perturbed data, Y along with the lower and upper
bounds (blue lines). (b) Average error of estimating the location of an unknown

point, x, at different dimensions in Y .

in the perturbed data, we transformed the data into 9 different lower dimensional

spaces using non-metric MDS. Then, we conduct a distance-based attack on each

perturbed dataset. Figure 4.11(a) shows the results averaged over 100 runs on

the perturbed data at the 90-dimensions space. The average change in distances

(stress) between the original and perturbed data caused by the perturbation was

0.0088, which is relatively low. Note that the size of change in distance can be

understood as noise that would effect the performance of distance-based attack, i.e.

a high level of noise will have large effect in downgrading the accuracy of estimating

the location of unknown points. Figure 4.11(b) shows the relative errors of the

attack at different dimensions. The results suggest that using non-metric MDS

successfully increases the uncertainty of locating points in the perturbed space.

They also suggest that transforming the data into a lower dimensionality than

the original data but preserving as many dimensions as possible, produces more

privacy preservation as the estimation error substantially increases, e.g. n = 70,

n = 80 and n = 90. This is because of geometric distortion of positional relations

in the higher dimensional space due to the monotonicity restriction applied in the

perturbation as described in Section 4.2.

We also evaluated the effectiveness of the attack on 15 real numeric datasets

taken from the UCI machine learning repository [58]. The description of the

datasets are shown Table 4.2. To assess the privacy of the data, we systematically

reduced the dimensions of the data using five different techniques (RP [110, 129],
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Table 4.2: Benchmark datasets used in our experiments.

Dataset # Records # Attributes

Breast Cancer Wisconsin (BCW) 699 9
Credit Approval 690 14
Pima Diabetes 768 8
Hepatitis 155 19
Iris 150 4
Wine 178 13
Handwritten Digits 3823 64
Ecoli 336 7
Image Segementation 2100 19
Multiple Features 2000 216
Page Blocks 5473 10
Spambase 4601 57
Synthetic Control Chart (SCC) 600 60
Yeast 1484 8
Satlog 2000 36

PCA [11], SVD [178], non-metric MDS (NMDS) and DCT [121]) and attempted

to estimate the locations of the unknown points. To show how much information

is lost as a result of the transformation, we computed the stress (4.3) at each

dimension. Figure 4.12 shows a comparison of the average privacy at different

dimensions, calculated over 20 trials, plotted versus the stress. Interestingly, all

methods exhibit a resistance to the attack. However, NMDS gives much higher

privacy than other methods, particularly at the high dimensions. Although NMDS

outperforms all other methods, the performance of NMDS and DCT was quite

similar in most cases. Similarly, the performance of attack on the data generated

by both PCA and SVD was also quite similar at all dimensions. It can also

be seen that RP performs worse than any other methods. This is probably due

to the orthogonal linear transformation applied on the data which preserves the

inner product and thus the Euclidean distances among the data objects are still

maintained. On the other hand, the stress is low at the higher dimensions and

high at the low dimensions. This confirms that transforming data into the high

dimensions always gives the best fit of data for distance-based analysis. The value

of stress for NMDS is very low for all datasets compared with other methods,

which indicates that the pairwise distance between points in the perturbed data,

Y , is well preserved.

Our experimental results show that including a large number of features in the

perturbed data is sufficient to maintain high data utility and privacy against the
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distance-based attack. This implies a win-win situation as the trade-off between

privacy and utility is not obvious. In some applications when determining the

location of the points is a privacy concern (e.g. mobile devices location tracking

[112]), the data owner may wish to project the data into higher dimensions in

which the precision of distance-based attack can sufficiently be reduced.

In another set of experiments, we incrementally varied the number of the known

points to see its effect on the accuracy of locating unknown points. We transformed

four datasets into six different dimensions and at each dimension we used different

numbers of known points. The average privacy calculated over 20 replications is

shown in Figure 4.13. The results indicate that the estimation error decreases as

the number of known points increases. This implies that when a sufficient number

of known points is available to the attacker, the accuracy of the estimation is

improved. The results also confirm that the error of determining the location of

an unknown point increases when the number of dimensions increases. Again,

we conclude that transforming the data into the few lower dimensions from the

original dimensionality gives reasonable utility and privacy.

Distance-based attack naively assumes that none of the measured distances are

outliers. Therefore, it would produce highly accurate estimation. However, if some

of the reference points are located at a long distance away from the attacked point,

the estimation would result in greater error. To test the attack in the presence

of outliers, we use the same synthetic data generated in the above experiment;

and for comparison, we experiment four different sizes of outliers—1%, 5%, 10%

and 15%. In this experiment, we define an outlier as any data object that is

above or below three standard deviations. Each set of the outliers is included

within the n+ 1 known points which are then used to disclose the location of the

attacked point. The experiment has been repeated 20 times and the results are

then averaged. Figure 4.14 shows the estimation error for each case at different

iterations, k. The distances between points become heavily dominated by noise as

the outliers increases. That can be clearly observed during the first few iterations.

The quality of the location estimation depends on the relative noise contained

in the data. As the noise added to the data increases, the estimation accuracy

decreases. In general, the effect of noise caused by outliers will mainly affect

location estimates, particularly when the data are small. Consequently, if the

attacker has some knowledge about the outliers, she would eliminate them from

the data or discard points with the largest studentised residuals so that the largest

advantages of the attack could be reached.
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Finally, we conducted an experiment to demonstrate how our perturbation

method would be resistant to the attack when the attacker has prior knowledge

about both the dimensionality of the original data and the type of transformation,

which is distance-preserving. We perturbed the original data, X, into different

dimensional spaces. The stress was 0.3849, 0.2654, 0.1688, 0.1218, 0.0918, 0.0702,

0.0536, 0.0401, 0.0285, 0.013 for dimensions 5, 10, 20, 30, 40, 50, 60, 70, 80 and

90, respectively. To find a good approximation of X, we develop a simple but

effective method to reverse back the transformation and up-scale the perturbed

data, Y , to its original dimensional space. To apply the attack, the attacker can

pad the perturbed data Y with a set of features in order to achieve the full n

dimensions. We generated three sets of features: a set of zero-valued features, a

set of random features and a set of random features that have average distance

equal to the average dissimilarity. We then measure how far the estimated data,

X̂, are from the original data, X. Let Y = [Y1, Y2, . . . , Yp] be an m × p matrix

representing the perturbed data and V = [V1, V2, . . . , Vn−p] be a set of the new

features. To produce an estimation, X̂, of data X, we expand the size of the

dimensions of data matrix Y by combing the features of V and generate an m×n
matrix X̂, i.e. X̂ = [Y1, Y2, . . . , Yp, V1, V2, . . . , Vn−p]. Note that the new added zero-

valued features count nothing to the objects’ pairwise distance so the distances

are kept unchanged and some good fitting of data X can then be achieved. This

is a quite similar to the classical metric MDS solution which often converges to a

local optimum in one step as described earlier in Chapter 3. The random features,

on the other hand, will indeed introduce more distortion to the pairwise distance,

but the features that preserve the average distance my provide to some extent a

good approximation of the original features.

The inference may then occur if the attacker finds any data object in data

X that is very close to its estimate, i.e. ||x − x̂|| is minimised. The overall

average privacy of the perturbed data are depicted in Figure 4.15. For zero-valued

features, as the number of dimension increases, the privacy increases. In contrast,

for the random features, as the number of added random features increases, the

distance deviation increases because the size of noise is increased as well, causing

more distortion. The features with average distance demonstrate low privacy

preservation as the error is slightly decreased. Here, we can say that there is a

trade-off between the number of added features and the effectiveness of the attack.
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Figure 4.12: Average privacy (ρ) against distance-based attack versus stress
(S) at different dimensions using different perturbation techniques. The bold

line is stress and the dashed line is average privacy.
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Figure 4.13: Average privacy (ρ) against distance-based attack at different
dimensions using different numbers of the known points.
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4.5 PCA-Based Attack

PCA basically reduces the dimensions of the data according to the number of

principal components that retain a sufficient amount of variation. Computation-

ally, this can be achieved by multiplying the data matrix with an orthogonal

matrix containing the eigenvectors of the covariance matrix, arranged in columns

in descending order of the corresponding eigenvalues. The number of eigenvectors

determines the number of dimensions that the data should have in the new space.

In the context of PPDM, PCA can be used as a tool to reconstruct the behaviour

of the original data if certain information (known sample) or knowledge about the

data is available to the attacker. The prior knowledge can be obtained through

direct or indirect access to the data. For instance, when private information of a

company can be disclosed by an in-house employee, that is a kind of direct access.

Whilst the indirect access involves the scenario when the underling distribution

of any unreleased data is learned from, for example, national statistical agencies

[165].

In this section, we generalise the PCA-based attack proposed in [108, 165] in

order to recover the original data from the perturbed data that are transformed

by arbitrary distance-preserving transformation, i.e. non-rigid motion transforma-

tion, ||xi − xj|| = ||T (xi) − T (xj)|| + eij where T is non-metric MDS and eij is a

small distortion error. The PCA-based attack mainly depends on the distribution

from which the original data are drawn. The basic idea behind the attack is to

map the perturbed data with the reference data (the original data) through the

computation of the eigen basis that span the known sample and the perturbed

data. Assume that the attacker has a collection of independent data samples,

S, from the same distribution from which the original data were drawn, X . To

recover the original data, the attacker will attempt to find a transformation that

composes a set of the eigenvectors obtained from both S and the perturbed data,

Y . Then s/he can project the data onto these eigenvectors such that the principle

directions of Y are aligned as much as possible with the principle directions of S.

4.5.1 Basics of PCA

In Section 2.6.2, we have briefly introduced the idea behind PCA. In this section,

we describe the concept of PCA in more detail to make it easier to follow the

attack. PCA is mainly used for two objectives. The first is reducing the number

of data variables while retaining the variability in the data as much as possible.
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The second is discovering hidden patterns in the data since much of the noise

can be eliminated by choosing few variables [160]. When analysing a dataset

comprising of large number of variables, it is likely that subsets of variables are

highly correlated with each other. If two or more variables are strongly correlated,

it can be concluded that these variables are quite redundant and thus have the

same effect in defining the outcome of interest. For instance, suppose we have

measured the length and the width of a set of given shapes and assume that these

two variables seem to be positively correlated. Thus, we can replace them with a

single new variable, let say the area of the shape, that still captures most of the

information about the shape determined by its length and width.

PCA seeks a subspace that best preserves the variance of the data. The starting

point for PCA is the sample covariance or correlation matrix. Mathematically, it

finds a linear combinations of the variables that are mutually uncorrelated and

ordered in variance [86]. Let X be an m×n data matrix and ΣX be the covariance

matrix for X. The covariance of two variables Xi and Xj measures how strongly

the variables vary together. If i = j, then the covariance is just the variance of

the variable. If X is normalised, i.e. each variable in the data has zero-mean and

unit-variance, the covariance matrix is the dot product of X, ΣX = XTX. For

any data object x of n random variables in matrix X, the linear combinations can

be defined by

zk = ak1x1 + ak2x2 + . . .+ aknxn =
n∑
j=1

akjxj, (4.22)

where zk is the kth principle component (PC) and ak is an eigenvector of ΣX

corresponding to its kth largest eigenvalue λk. If ak is chosen to have unit length,

i.e. aTk ak = 1, then var(zk) = λk where var(zk) denotes the variance of zk. The

sum of the variance of PCs is equal to the sum of variance of X’s variables.

The goal of PCA is then to find an orthonormal basis (transformation) that

satisfies the following properties:

1. Each pair of new variables has zero covariance (for distinct variables).

2. The variables are ordered with respect to how much variance each variable

captures.

3. The first variable (PC1) captures as much variance as possible and the next

variable (PC2) captures as much of the remaining variance, and so on.
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4. All PCs pass through the origin and they are all orthogonal to one another.

Let λ1, λ2, . . . , λn be the eigenvalues of ΣX . Since ΣX is semi-definite positive,

the eigenvalues are all non-negative and can be ordered such that λ1 ≥ λ2 ≥ . . . ≥
λn−1 ≥ λn. Let U = [u1,u2, . . . ,un] be the matrix of eigenvectors of ΣX . The

eigenvectors are ordered so that the kth eigenvector corresponds to the kth largest

eigenvalue. Let X ′ = XU be the set of transformed data such that

var(X ′) = var(XU)

= E[(XU)T (XU)]

= E[UXXTUT ]

= UE[XTX]UT

= UAUT ,

(4.23)

where A is an n× n diagonal matrix containing the eigenvalues of ΣX .

The orthonormal basis U that maximises UAUT are the first eigenvectors of

U . The eigenvector associated with the largest eigenvalue indicates the direction

in which the data have the most variance. The eigenvector associated with the

second largest eigenvalue indicates the direction in which the data have the largest

remaining variance and it is orthogonal to that of the first eigenvector. Since the

projections are uncorrelated, the percentage of variance accounted for by retaining

the first p PC’s is given by
Pp

i=1 λiPn
i=1 λi

× 100. If all the n eigenvectors are used as a

transformation basis, then X ′ will be an exact match of X.

In summary, PCA can be viewed as a rotation of the original coordinate axes to

a new set of axes defined by the eigenvectors of ΣX and aligned with the variability

in the data. Although PCA is a powerful tool to preserve most of the variance,

it assumes the normality of the data and thus it may fail if the data lies on a

“complicated” manifold [34].

4.5.2 PCA-Based Attack Algorithm

The main reason to use PCA to attack our privacy model is to find a transformation

basis that aligns the principle components of the perturbed data with the principle

components of the original data. Assume that each data object, xi, in the original

data, X, is as an independent sample drawn from a random vector X with a
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covariance matrix ΣX . The matrix ΣX is semi-definite positive and has non-

negative eigenvalues on diagonals. Assume also that the attacker has a set, S,

of k independent samples which are also drawn from X . Let {u1,u2, . . . ,un}
be a set of orthogonal eigenvectors with associated eigenvalues {λ1, λ2, . . . , λn}
of the symmetric matrix ΣX . The eigenspace can be defined by U = {ΣXui =

λiui : uTi uj = 0,ui,uj ∈ Rn}. Each eigenvector, ui, represents a line that can

be used as a basis to project the data onto it such that the resulting values would

have some amount of variance, λi. That is, for each ui, there are two possible

orientations, {ui,−ui}, such that the data are projected onto the subspace spanned

by one of these directions of ui. In other words, the eigenvectors can, for example,

be multiplied by -1 because if ΣXui = λiui, then ΣX (−1)ui = (−1)ΣXui =

λi(−1)ui = (−1)λiui, i.e. reflections of eigenvectors are admissible [118]. The

principal components are the new attributes generated from the projection onto

one or more of these eigenvectors.

Since both X and S independently arise from X , The covariance matrix, ΣS,

has the same eigenvectors as ΣX . It is easy to show that if ΣX and ΣS have

the same eigenvectors, their projections XUX and SUS are also the same [157].

To attack the perturbed data, Y , the attacker will assume that the distance is

completely preserved, i.e. ||xi − xj|| = ||T (xi) − T (xj)|| + eij where eij = 0, and

for the purpose of comparison, s/he will up-scale Y using zero-valued features

to produce X̂ as estimation of X as described in Section 4.3. The attacker will

then try to match the principle components obtained from S with the principle

components from X̂. However, the projection of data along any eigenvector of the

covariance matrix would lead to different alignment of principle directions as there

are N = 2n possible principle alignments and thus we may end up with different

solutions [118].

To guarantee the best fit of the principle components for S and X̂, we use two-

sample hypothesis test to measure the equality of two distributions—the one from

the projections of S on US to the one from the projection of X̂ on UX̂ . Suppose

that {x1, x2, . . . , xn} and {y1, y2, . . . , yn} are two independent random samples of

random variables in Rn, with respective distributions F1 and F2 and we would like

to test the hypothesis that F1 is equal to a particular distribution F2, i.e. decide

between the following hypotheses:

H0 : F1 = F2 versus H1 : F1 6= F2.
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If we fail to reject the null hypothesis (i.e. p-value > 0.05), then we conclude

that two samples come from the same distribution. Let F1(x) and F2(x) be the

cumulative distribution function of SU i
S and X̂U i

X̂
, respectively. To quantify the

distance between the two distribution functions, we use Kolmogorov-Smirnov test

[115] which is defined by

D = min
x
|F1(x) = F2(x)|. (4.24)

This test will be carried out for all the N possible principle directions and

the one that achieves the highest p-value will then be chosen. The steps of

the attack are described in Algorithm 4.3. The algorithm has O(n2m + n3 +

N(m logm)) computation complexity where finding all possible mirror images re-

quires O(N(m logm)) and computing the covariance matrices and the principle

components require O(n2m+ n3).

Algorithm 4.3 PCA-Based Attack Algorithm

Input: S set of k known independent samples drawn from a random variable, X ,
data X̂, as an estimation of the original data, X.

Output: Recovered data, X ′.
1: Up-scale the perturbed data, Y , to obtain an estimation, X̂, from X.
2: Compute the covariance matrices ΣX̂ from X̂ and ΣS from S.
3: Calculate the eigenvalues and their corresponding eigenvectors, UX̂ and US.
4: Search for all 2n possible mirror images of the eigenvectors and construct
{U1

X̂
, U2

X̂
, . . . , UN

X̂
} and {U1

S, U
2
S, . . . , U

N
S }.

5: repeat
6: Test the null hypothesis, H0 : F (SU i

S) = F (X̂U i
X̂

).
7: Choose the next principle direction alignment, i+ 1.
8: until All N eigenvectors U i

X̂
and U i

S are examined.

9: Pick U i with highest p-value.
10: Compute X ′ = X̂U i as the recover of X.

Our attack is to some extent similar to the attack proposed in [108]. However,

instead of exhaustively searching for a diagonal matrix A that introduces the best

matching between the eigenvectors for ΣS and ΣY , we directly search amongst

all directions to find the best orthogonal basis that keeps both distributions of

SU i
S and X̂U i

X̂
close to each other. Furthermore, they assume that the original

data objects are columns rather than rows as we assume; and to recover the

original data, they compute USAU
T
Y Y . Another simple measure to find the best

eigenvectors’ mirrors is described in [165].
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4.5.3 Distortion Quantification of Eigenstructure

Since the PCA-based attack is mainly based on the decomposition of the covari-

ance matrix, its robustness will then depend on the estimation of the covariance

matrix [108]. Non-metric MDS transformation perturbs covariance matrix esti-

mates significantly. In particular, the variance is inflated along the few first k

dimensions; insignificant dimensions may be added to the data and interesting

structures in the data may remain unrevealing [90]. The correlation structure

is also changed significantly as the new features, produced by non-metric MDS,

are uncorrelated and inconsistent with the correlation coefficients of the original

dimensions. That is, if the covariance matrix of the original data is unreliably

estimated, the performance of the attack will be significantly deteriorated.

As non-metric MDS perturbation changes the scale, represented by λ, and the

orientation, represented by U , the quality of analysing and matching the covariance

matrices for the known sample and the perturbed would be downgraded, i.e. λ+e

and U + E where e ∈ E is a small error such that 0 < e < 1. The impact of

non-metric MDS perturbation can be characterised in terms of the eigenspace of

the covariance matrix as follows:

1. The ratio of the largest and smallest eigenvalue of ΣY , λ1/λn, increases as

the largest eigenvalue, λ1, becomes very large or the smallest eigenvalue, λn,

becomes equal to zero. Note that the rank(ΣX̂) = rank(ΣX) − 1 because

the zero-valued features that are added to Y in order to estimate X count

nothing to the total variance in ΣY .

2. The eigenvectors order may be changed and consequently the subspace

spanned by the k first or the k last columns of UY is also changed. This

would introduce different PCs orientations and thus worse performance of

PCA-based attack in recovering the original data.

3. The matrix ΣX̂ is semi-definite negative as it has n − p eigenvectors equal

to zero, i.e. ΣX̂ui ≤ 0. This implies that ΣX̂ has a null space, N(ΣX̂ − λI),

and its is spanned by the eigenvectors associated with the eigenvalues that

are equal to zero.

The influence of non-metric MDS perturbation on both the eigenvalues’ scale

and the eigenvectors’ orientation of the covariance matrix for the known sample

with respect to the covariance matrix of the perturbed data can be quantified using

the matching distance metric [156]. These metrics provide precise upper bounds on
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the change in eigenvalues, the angle between eigenvectors, or invariance subspaces

of the original data, X, and that of its perturbation, Y . Let Σ be the covariance

matrix for the known sample, S, with eigenvectors in matrix U and Σ̃ be the

covariance matrix for the perturbed data, Y , with eigenvectors in matrix Ũ , the

change in scale is measured by

md(Σ, Σ̃) = min
π
{max

i
|λ̃πi − λi|}, (4.25)

and the change in orientation is measured by

md(U, Ũ) = min
π
{max

i
| cos−1 ũTπiui|}, (4.26)

where π = {π1, π2, . . . , πn} is taken over all permutations of {1, 2, . . . , n} and

cos−1(αi) are the canonical angles between the eigenvectors and αi are the singular

values of ŨTU .

The measure (4.25) tells how the eigenvalues spread has changed. If the size

of perturbation is small, then the matching distance will be small and matching

pairs of eigenvalues are clearly found. Whereas the measure (4.26) describes the

change in the basis vectors of the subspace in terms of the eigenvalues of ŨTU .

The subspace U and the perturbed subspace Ũ are close to each other if the largest

canonical angle is small.

4.5.4 Experiments

In this section, we discuss how non-metric MDS perturbation would be resistant

to PCA-based attack and how much the attacker would learn from the perturbed

data particularly when some independent samples, from which the original data

are drawn, are available to the attacker. We implemented the attack using Mat-

lab 7.0 and conducted all experiments on Intel Core i7 2.80GHz (8 CPUs) with

8GB memory and running Windows 7 Enterprise 64-bit. As a simple illustration

example of the effectiveness of PCA-based attack, we generate 1000 random inde-

pendent samples in 2-dimensional space, R2, and with a N(µ,Σ)-distribution such

that µ = (0, 0) and

Σ =

(
2 0.25

0.25 4

)
.
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Figure 4.16: (a) Plot of data values of the original data and the perturbed
data. (b) The effectiveness of PCA-based attack in recovering the original data.

The random data are then perturbed using non-metric MDS and projected to

the same dimensional space, i.e. p = n. Both the original data and the perturbed

data are plotted in Figure 4.16(a). As it is clear from the plot, both data look

entirely different and with different pdfs. To gain maximum advantage of the

attack, we simulated the attack using all the original data samples as to be known

to the attacker. Figure 4.16(b) shows the recovered data and compared them with

the original ones. The PCA-based attack fails to perfectly recover the original

data. The recovered data are arbitrary scattered around the middle and appeared

to be inconsistent with the original data values.

In the second set of experiments, we tested the performance of the attack on

synthetic data. We generated 20 random datasets each of which consists of 1000

independent samples and 11 attributes. We perturbed the data into 10 lower

dimensions using five different transforms (RP, PCA, SVD, NMDS and DCT). We

assumed that the attacker has 30% known samples of data. Then, we attacked

the perturbed data and calculated the average distance differences between the

data objects in the original and recovered space. The distance error was defined

as the difference in the Euclidean distance between data objects in the original

and recovered data. As the transformation is assumed to be distance-preserving,

an estimation of the original data was produced by up-scaling the perturbed data

to a higher dimension using zero-valued features as we have done in Section 4.4.4.

To avoid zero diagonals in covariance matrix of the estimated data, we added

small noise (0.0001) to all zero diagonals. The results are depicted in Figure

4.17(a). As can be seen, the data at high dimensions show low privacy while
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Figure 4.17: (a) Average distance error between the original and recovered
data at different dimensions. (b) The average distance error when using different

sizes of the known sample.

the data at low dimensions exhibit more resistance to the attack as the average

distance errors were high for all methods. This observation ensures that the data

at high dimensions typically represent the best fit of the original data where the

perturbation has a small effect on the structure of the covariance matrix. Both

NMDS and SVD approaches perform better and exhibit more resistance to the

attack than other methods. As expected, the SVD approach shows more privacy

due to the modification of some data entries below a predefined threshold. Indeed,

this is quite similar to the additive perturbation when a random noise is added to

the data. In contrast, the data transformed using PCA preserve a lower privacy

as the PCA subspace spanned by the principal directions of the perturbed data

maintains most proprieties of the PCA subspace of the known samples. The

performance of RP and DCT is quite similar at all dimensions.

To examine the effect of the size of known samples on the PCA-based attack,

we used 10 subsets of samples with different sizes (10%, 20%, . . . , 100%) from the

perturbed data at 5-dimensions. Note that the known samples do not need to

be subsets from the original data but they can also be any data that are drawn

from the same underlying distribution where the original data are drawn. For each

subset, we conducted the attack and reported the average distance error between

the recovered data and the original data. Figure 4.17(b) shows the results of this

experiment. Again, a clear win for both NMDS and SVD, particularly at high

dimensions. The known sample size seems to have a positive effect on the attack’s
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success rate as the size increases the average distance error decreases.

We assess the performance of the attack on 15 real datasets taken from UCI

machine learning repository [58]. The description of all datasets is given earlier

in Table 4.2. As we exhaustively search for all PCs mirroring that guarantees

the best principle direction alignments (this requires to construct 2n matrices),

the computational cost of the attack goes up rapidly with the increase of the

number of dimensions. However, for data with modest number of dimensions,

the attack seems computationally efficient. To lighten this burden, we randomly

chose 10 dimensions for all datasets with more than 10 dimensions and attempted

to recover the original data. The average distance error between the original and

recovered data at different dimensions are plotted in Figure 4.18. All methods show

a similar performance on all datasets, but both NMDS and SVD maintain more

privacy than other methods where the recovered data are still on large distances

from the original ones. The worse performance was reported for PCA where the

error was lower than other methods at all dimensions. The results were rather

comparable for Iris, Ecoli and Handwritten Digits whereas for all other datasets

they were nearly close to each other. For some datasets (Breast Cancer Wisconsin,

Image Segementation and Handwritten Digits), the SVD outperforms the NMDS

and shows better privacy at all dimensions. The performance of the attack at

higher dimensions, i.e. p > 10, was approximately stable for all methods due to

the random choice of dimensions to represent the data. However, for the data at

lower dimensions, p <= 10, the error substantially increases whenever the number

of dimensions decreases.

We also measured data utility for all datasets in terms of information loss or

stress. The main objective of this is to get insight into which level the quality of

data utility can be lost in return for gaining a higher privacy for the perturbed data

produced by different transforms. As described earlier in Section 4.2, the stress

quantifies the average distortion in the pairwise distance. Figure 4.19 shows the

stress for all datasets at systematically reduced dimensions. Clearly, the NMDS

method substantially outperformed other methods in preserving distance at all

dimensions. From the results, plotted in Figures 4.18 and 4.19, it can be observed

that as p increases, all methods compromise privacy for better data utility, and

vice versa. This implies that increasing data utility by including large number of

dimensions may negatively affect the privacy of the perturbed data as the distance

error tends to be low compared with the error at lower dimensions. In this case,

the attacker may easily find a better recover of the original data. The growth
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Figure 4.18: Average distance error between the original data, X, and the
recovered data, X ′ at different dimensions using different perturbation methods.
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Figure 4.19: Stress at different dimensions using different perturbation meth-
ods.



Chapter 4. Evaluation of Privacy and Information Loss 120

of dimension can be understood as injecting more data utility for the attack.

The consistency of sample eigenvectors with respect to the perturbed eigenvectors

would be achieved when the added dimensions have a little distortion in the ex-

isting structure of the covariance matrix. When the corresponding eigenvectors

derived from the covariance matrices for the known sample and the perturbed data

tend to be as far away from each other, it becomes difficult for the PCA-based

attack to match them correctly and thus high privacy can be achieved. To sum

up, the results show that NMDS is able to guarantee reasonable protection against

PCA-based attack and generate data with low information loss. The results also

suggest that the dimension in which the data are transformed into can certainly

reflect a trade-off between privacy and utility.

To quantify the influence of non-metric MDS perturbation on both the eigenval-

ues scale and the eigenvectors’ orientation of the covariance matrix of the known

sample with respect to the covariance matrix of the perturbed data, we used the

data produced by the five transforms at one reduced dimension, i.e. n − 1. For

each dataset, we compare the change in both the eigenvalues and the eigenvec-

tors where the size of known sample was varied from 10% to 100%. The changes

between the original and perturbed matrices were quantified using the two met-

rics, defined in (4.25) and (4.26)—the proportional change in the eigenvalues ratio

(shape) and the change in the direction of the eigenvectors (orientation).

Tables 4.3 and 4.4 show the average matching distance between the eigenvalues

and eigenvectors, respectively. The higher the value of the matching distance

the higher the privacy. The results indicate that both NMDS and SVD are both

dominant as the difference is higher than for the other methods. All other methods

(RP, PCA and DCT) perform quite similarly but the DCT performs slightly better

for most datasets. Again, the good performance of the SVD is more likely due to

the noise added to some entries in the lower dimensional data. This experiment

clearly shows that by using NMDS to perturb the original data we can discard a

large proportion of information embedded in the covariance matrix so that more

resistance against attacks that exploit the principal subspace can be provided.

Intuitively, as PCA attempts to minimise the least squares cost function, i.e. the

distance error of points to the PCs, it would be affected by the size of perturbation.

This means that if the data are projected on the subspace defined by any set

of the PCs that are obtained from the perturbed data, they may have different

PCs orientations, which cannot perfectly be aligned with the original PCs. We

conclude from these results that the more distortion the perturbation causes in
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Table 4.3: Average change in eigenvalues’ scale using different sizes of the
known sample. The best result for each dataset is shown in bold.

Dataset RP PCA SVD NMDS DCT

Wine 0.3304 0.3162 0.4151 0.3156 0.3443
BCW 0.2565 0.2674 0.2674 0.2683 0.2658
Iris 0.4769 0.2246 0.8904 0.8249 0.7586
Handwritten Digits 0.3511 0.3265 0.5082 0.5203 0.3586
Ecoli 0.8074 0.7695 0.8874 0.8937 0.8819
Image Segmentation 0.3045 0.2932 0.5122 0.4832 0.3475
Multiple Features 0.5545 0.6212 0.6431 0.6643 0.6535
Page Blocks 0.4337 0.7658 0.8523 0.7991 0.7877
Spambase 0.7303 0.7483 0.8015 0.8089 0.7241
Pima Diabetes 0.3900 0.4616 0.4315 0.4796 0.4686
Yeast 0.6204 0.5840 0.5278 0.6809 0.6428
Satlog 0.2734 0.2021 0.3271 0.4027 0.3349
SCC 0.4760 0.3572 0.7787 0.6573 0.5559
Credit Approval 0.7438 0.7362 0.8437 0.8539 0.7424
Hepatitis 0.6685 0.6470 0.7906 0.7299 0.6597

Table 4.4: Average change in eigenvectors’ orientation using different sizes of
the known sample. The best result for each dataset is shown in bold.

Dataset RP PCA SVD NMDS DCT

Wine 0.4719 0.7923 0.8482 0.7923 0.5717
BCW 0.7130 0.7036 0.8337 0.8428 0.7353
Iris 0.1269 0.4064 0.5143 0.4164 0.1836
Handwritten Digits 0.1248 0.1043 0.2351 0.3106 0.1394
Ecoli 0.4704 0.4125 0.4895 0.9106 0.4650
Image Segmentation 0.1520 0.1264 0.2938 0.2429 0.1607
Multiple Features 0.1034 0.0928 0.3856 0.4058 0.1487
Page Blocks 0.5801 0.3305 0.9873 0.9305 0.3330
Spambase 0.7060 0.8342 0.7907 0.9362 0.4867
Pima Diabetes 0.3917 0.7695 0.7441 0.7884 0.1820
Yeast 0.5438 0.6319 0.6679 0.9319 0.6530
Satlog 0.1764 0.1507 0.6636 0.9503 0.2134
SCC 0.1892 0.1618 0.3097 0.2618 0.2415
Credit Approval 0.2756 0.4148 0.3179 0.4861 0.3787
Hepatitis 0.8121 0.7825 0.8404 0.8084 0.7385

the covariance matrix the more difficult to match the principle components of the

perturbed data with their images in the original data.

To show the effect of the perturbation on the structure of the covariance matrix

for the original data, we perturbed 100 independent samples which are drawn from

a N(µ,Σ)-distribution with centre µ = (0, 0) and covariance matrix
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Figure 4.20: Sample covariance matrix with 95% tolerance ellipses for the
original data, X. The 10%,20% and 30% ellipses represent the change in the
covariance matrix when 10%,20% and 30% samples, respectively, from the origi-
nal data are replaced by their perturbed samples from the perturbed data using

different transforms (a)-(f).

Σ =

(
0.69 1.25

1.25 3.25

)
.

We then perturbed the data using six different transforms. The estimated

tolerance ellipses based on the sample covariance matrix are visualised in Figure

4.20 for the original data as well as for modified data with different proportions of

independent perturbed samples. We replaced 10%,20% and 30% samples from the

original data by perturbed samples draw from the perturbed data, respectively.

The tolerance ellipses are constructed to cover exactly 95% of the data and they

are distinguished by different line styles. The centres of the ellipses are located at

the mean of the data. For NMDS, adding 10% perturbed samples slightly rotates

the tolerance ellipse based on the sample covariance matrix. The shape has also

been changed. The effects of 20% perturbed samples were in the same direction

and quite similar but a bit stronger. In the last case, 30% perturbed samples have a

large influence on the sample covariance matrix as the tolerance ellipse has started

to turn towards the perturbed samples. Furthermore, the sample mean has also
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changed but still within the convex hull of the original data. For data rotation,

all three ellipses seem quite similar and almost coincide with each other retaining

the shape and the orientation of the covariance matrix. This is due to the fact

that data rotation exactly preserves distance as well as the geometric shape, i.e.

it changes the directions of vectors, but leaves their magnitude unchanged. The

RP and PCA show quite similar performance, their impact was relatively low. For

both SVD and DCT, the variation of the perturbation influence was small where

all ellipses closely follow the same shape of the original ellipse. Interestingly, the

sample mean approximately remains unchanged along all the replacements.

We observe that depending on the size of perturbation, the covariance ellipse

strongly changes its orientation (the correlation between variables is affected) and

its shape (variation). Generally speaking, the perturbed samples would be seen as

outliers that tend to rotate the PCs axes towards them and change the correlation

structure of the data. Therefore, it would be more difficult for a PCA-based

attack to successfully align the principle components for the known samples with

the principle components for the perturbed data.

What we can conclude from the above results is that non-metric MDS heavily

distorts the structure of covariance matrix and thus high privacy protection is

achieved. However, as we will see in Chapter 5, non-metric MDS maintains much

distance-related properties as the accuracy when data mining algorithm operates

on the perturbed data is similar (if not better) to the accuracy obtained from the

original data. Furthermore, when we apply the PCA-based attack on the per-

turbed data which are represented in non-isometric space, the eigenvalues derived

from the sample data are not the same as those derived from the perturbed data.

Hence, we cannot derive any transformation basis that can be used to reverse the

non-metric MDS transformation back and thus disclose the original data. In other

words, PCA-based attack would not work any more.

4.6 Summary

In this chapter, we have discussed the concept of data utility in the context of

distance-based data mining and defined a measure that can express the amount

of information lost as a result of transforming data into lower dimensions. We

also analysed two types of inference attacks that would threat our perturbation

technique and jointly evaluated them with data utility.
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In the first attack (distance-based attack), we considered a scenario in which the

data owner releases the data such that the distances between objects are exactly

preserved and the attacker has prior knowledge about some data points and their

distances to an attacked point. The disclosure would occur with high probability

when the attacker attempts to find a best fit mapping between these points and

their images in the perturbed data using some heuristic methods. Here, we noticed

that the data in high dimensions can preserve better privacy and utility. When the

data are transformed into a few lower dimensions from the original dimensionality,

they often preserve the pairwise distance, demonstrating good utility for distance-

based analysis. However, as non-metric MDS utilises the rank order of the distance

not their magnitude, the points are located within uncertain areas which may

hinder the distance-based attack from determining the exact location of the points.

In the second attack (PCA-based attack), we assumed that the attacker either

has a subset of the original data samples or knows the distribution from where the

original data was drawn. Then the attacker can exploit the characteristics of the

covariance matrices of both the perturbed data and the known sample to estimate

the original data values. Roughly speaking, when the transformation basis does

not change the shape of distributions, i.e. the eigenspace derived from the sample

data is close to that derived from the transformed data, the transformation basis

can be easily identified and hence the original data can be recovered. For this kind

of attack, the preservation of privacy and utility is merely a trade-off.

The experiments show that the perturbed data, produced by non-metric MDS,

demonstrate good resilience to the two above attacks compared with some other

well-known transforms. We conclude that non-metric MDS is a good competi-

tive perturbation technique as it can effectively hide information and limit the

disclosure sufficiently.



Chapter 5

Evaluation of Distance-Based

Clustering and Classification

Data clustering and classification are two of the challenging distance-based mining

tasks exploited in the KDD process. Clustering analysis is the task of segmenting

a database, containing a set of objects, into subsets or groups called clusters. The

notion of clusters can be described in many ways including groups, where instances

in the same group more closely match each other than instances in different groups,

dense areas of the data space or particular statistical distributions. Classification

is a low level data mining task that assigns a set of objects in a given dataset

to target categories or classes. The main goal of classification is to accurately

predict the target class for each case in the data. For example, in retail industry,

a classification model could be used to identify customer loyalty as high loyalty,

satisfied, or low loyalty. In general, the most popular practice of clustering and

classification requires a measure of “distance” or “closeness”.

The structure of this chapter is as follows. Section 5.1 briefly introduces

distance-based clustering and classification in PPDM. Section 5.2 precisely de-

fines the data mining task of clustering and evaluates the utility and privacy of

the perturbed data for clustering analysis. Section 5.3 introduces the concept of

distance-based classification and discusses the utility and privacy of the perturbed

data in the context of data classification. Each section has a set of experiments and

results that evaluates the effectiveness of non-metric MDS and compares it with

some other well-known methods. Finally, Section 5.4 presents a brief summary of

the whole chapter.

125
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5.1 Introduction

Clustering aims to find suitable partitions in huge amounts of data without any

supervision, guidance or prior knowledge. It attempts to maximise the similarity

of objects belonging to the same cluster and minimise the similarity of objects in

different clusters. As described in Section 2.3.4, many different clustering methods

have been proposed in order to solve this problem from different perspectives,

i.e. partition-based clustering, density-based clustering, hierarchical clustering

and grid-based methods. In general, most of these methods utilises a distance

function to define the relationship between data objects. That is, the cluster is

defined and formed when it satisfies a certain distance criterion.

On the other hand, classification algorithms typically find relationships between

the values of the predictors and the values of the target during the training phase.

The classification task begins with a set of data objects in which the class as-

signments are known a priori and attempts to build a model, which can then be

applied to unseen data cases in which the class assignments are unknown. For

example, a classification model that predicts risk of infection of a disease could be

developed based on observed data for many patients over a period of time. The

medical history might involve a set of variables including blood pressure, family

history, location, age, and so on. Infection risk would be the target, the other

variables would be the predictors, and the data for each patient would constitute

a case. This is a simplest type of classification problem where the target attribute

has only two possible values, e.g. high risk or low risk. Multi-class targets have

more than two values, e.g. low, medium, high, or unknown. Note that most

distance-based classification algorithms, e.g. k-NN and SVM, are known as lazy

learners [160]. These algorithms often predict the class of the new objects directly

from the training instances without having to maintain a model derived from the

data.

As long as the analysis utilises the distance generating a configuration of points

at any lower dimension in which the pairwise distances are well preserved would

be sufficient to maintain high data utility. Note that there is no perfect mapping

preserving all of the data properties at the same time, rather each mapping is a

compromise best suited for a particular analysis purpose. The projection of data

into a lower space often results in some data distortion; and as we are interested in

discovering groups within the data, this distortion should be minimised to guaran-

tee the quality of the analysis. The lower the distortion, the lower the information
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loss and the higher the utility of the perturbed data. However, to ensure the

preservation of privacy, the increases of utility should not lead to disclosing the

original data. We want to minimise the disclosure risk as much as possible so that

better privacy of the perturbed data can be achieved.

In this chapter, we investigate the usability of distance-based clustering and

classification algorithms on the perturbed data that are generated using non-metric

MDS and compare it with some other dimensionality reduction techniques used

for PPDM, including RP, PCA, SVD and DCT. We hypothesise that non-metric

MDS is a good competitive tool for PPDM. The quality of the perturbed data

has been evaluated from the perspectives of model accuracy and disclosure risk.

More specifically, we evaluate the utility of the perturbed data in clustering and

classification analysis using a variety of distance-based algorithms and measure

how good the results obtained from the perturbed data are compared with the

results obtained from the original data. In addition, we consider the same set of

attacks proposed in Chapter 4 in order to examine the privacy associated with per-

turbed data using different dimensionality reduction techniques and evaluate the

trade-off between privacy and accuracy of distance-based algorithms. We compare

these techniques on a number of benchmark datasets and test the performance at

different number of dimensions to show how this would affect the analysis.

5.2 Application to Clustering Tasks

5.2.1 The Task of Distance-Based Clustering

In this section, we precisely define the task of clustering and explore a number of

distance-based clustering algorithms. This may help us to assess the suitability and

usefulness of the perturbed data generated by non-metric MDS for distance-based

analysis. Clustering is the process of recognising natural groupings or clusters

in data based on some similarity measures [82]. The similarity between any pair

of objects can be evaluated using any of the distance metrics defined in Section

2.3.1. In general, the problem of clustering is described as follows: given m objects,

allocate each object to one of k clusters and minimise the sum of squared Euclidean

distances between each object and the centroid or representative object of the

cluster.

Partitional clustering attempts to optimise a certain criterion function in order

to find a number of partitions in the data. For instance, the most commonly
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used algorithm (k-means) aims to minimise the distance of each object from the

centre of the cluster containing that object. The objective function, i.e. the sum

of squared error (SSE) is described by

SSE =
k∑
i=1

∑
x∈Ci

||ci − x||2, (5.1)

where ci is the centroid (mean) of the ith cluster, Ci, while ||ci−x|| is the Euclidean

distance between an object x and ci. The centroid ci is defined by

ci =
1

mi

∑
x∈Ci

x, (5.2)

where mi is the number of objects in Ci. That is, the best centroid for minimising

the SSE of a cluster is the mean of objects in the cluster [160]. Let ck be the kth

centroid, the differentiation of Equation (5.1) can minimises the SSE, i.e.

∂

∂ck
SSE =

∂

∂ck

k∑
i=1

∑
x∈Ci

||ci − x||2

=
k∑
i=1

∑
x∈Ci

∂

∂ck
||ci − x||2

=
∑
x∈Ck

2 ||ck − xk|| = 0

∑
x∈Ck

2 ||ck − xk|| = 0⇒ ck =
1

mk

∑
x∈Ck

xk. (5.3)

Hierarchical clustering is another method to analyse grouping in the data over

a variety of scales of distance by creating a tree-like graph. The data objects

are connected to each other to form clusters based on their distance. Apart from

the normal choice of distance functions, one also needs to decide on the linkage

criterion. Popular choices are known as single linkage (the minimum distance

between two objects in different clusters), complete linkage (the maximum distance

between two objects in different clusters) or average linkage (the average distance

of all pair of objects from different clusters). Techniques for hierarchical clustering

generally fall into two types—agglomerative and divisive. In this chapter, we

consider an agglomerative technique [74] where the tree is a multi-level hierarchy

and clusters at one level are merged into clusters at the next higher level. If the
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proximities are distances, then the shortest edge between two nodes in different

subset of nodes is one way to define cluster closeness and decide if any two clusters

should be combined or not. The cluster proximity G(Ci, Cj) of cluster Ci and

cluster Cj can be defined by

G(Ci, Cj) = min{||x− y||} for all x ∈ Ci and y ∈ Cj. (5.4)

Density-based clustering locates regions of high density of objects in the data

that are separated from one another regions of low density. DBSCAN [55] is an

example of a simple and effective density-based clustering algorithm that estimates

the density of a given point by counting its kth nearest neighbour points within

a specified radius, r. The neighbourhood of a given point, c, can be defined as a

closed region, A, in the space such that a point, x, is in the region A if and only

if ||x− c|| ≤ r where c is located at the centre of the circle of radius r.

5.2.2 Cluster Validity Evaluation

To evaluate the effectiveness of our proposed perturbation method, we compared

the quality of the generated clusters on both the original data, X, and the per-

turbed data, Y . Intuitively, when the clustering results from Y are the same, or

very nearly the same, as those obtained from X, we can say that Y are analytically

as useful for clustering analysis as X.

Given two datasets, X and Y , with n objects. Assume that we have a parti-

tion C = {C1, C2, . . . , Ck}, from X, and C ′ = {C ′1, C ′2, . . . , C ′k}, from Y , where

∪ki=1Ci = X, ∪ki=1C
′
i = Y and Ci ∩ Cj = ∅, C ′i ∩ C ′j = ∅ for all 1 ≤ i 6= j ≤ k,

where k is the number of clusters. Many various clustering validation were used to

evaluate the performance of clustering algorithms [70], all of which have different

properties and it remains unknown in practice which the most suitable measure

to use. Due to the desirable theoretical properties that make it a true metric,

we use variation of information (V I) [116] as a relative clustering validation tool.

The V I is based on information theory and measures the amount of information

that is gained or lost in changing from one clustering to another. A low value of

V I infers that the two clusterings, C and C ′ are quite similar, while a high value

infers the opposite. To compare the results and show how C and C ′ are related,

we first construct a contingency table (Table 5.1) that tabulates the results of C

against the results of C ′.

Then we calculate V I using
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Table 5.1: A contingency table: Clustering C × C ′

C ′1 C ′2 . . . . . . C ′k
∑

C1 n11 n12 . . . . . . n1k n1.

C2 n21 n22 . . . . . . n2k n2.

...
...

... . . . . . . ...
...

Ck nk1 nk2 . . . . . . nkk nk.∑
n.1 n.2 . . . . . . n.k n

V I = H(C) +H(C ′)− 2MI(C,C ′), (5.5)

where H(C) and H(C ′) are the entropy of clusterings C and C ′, respectively,

and MI(C,C ′) is the mutual information between C and C ′. The entropy of a

clustering Ci with a probability function p(Ci) is defined by

H(Ci) = −
k∑
i=1

p(Ci) log2 p(Ci). (5.6)

The mutual information, MI(C,C ′), gives how much the knowledge of C ′ can

reduce the uncertainty of C [39]. In other words, the mutual information measures

the dependency between C and C ′. It is always non-negative and is equal to zero,

if and only if C and C ′ are independent, i.e. C ∩C ′ = ∅. The mutual information,

MI(C,C ′) of clustering C and C ′ is defined as

MI(C,C ′) = H(C)−H(C|C ′) =
k∑

C,C′

p(C,C ′) log2

p(C,C ′)

p(C)p(C ′)
, (5.7)

where p(C,C ′) is the joint probability function of C and C ′.

By using the contingency table, the equation (5.5) can be rewritten as follows:

V I = −
k∑
i=1

ni.
n

log2

ni.
n
−

k∑
j=1

n.j
n

log2

n.j
n
− 2

k∑
i=1

k∑
j=1

nij
n

log2

(nij/n)

(ni.

n
)(
n.j

n
)
, (5.8)

where n is the total number of records, k is the number of clusters, ni./n and n.j/n

are the marginal probabilities of clustering Ci and clustering C ′j, respectively, and

nij/n is the joint probability that a record belongs to both Ci and C ′j. Note that
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the V I metric is bounded by 2 log k.

5.2.3 Experiments and Results

In this section, we present three sets of experiments on evaluating the effectiveness

of the proposed method (NMDS) and compare it with the four other perturba-

tion techniques (RP, PCA, SVD and DCT). The first set of experiments (Section

5.2.3.2) evaluates the quality of the obtained clusterings from the original and per-

turbed data and measures the similarity between the two clusterings. The second

set of experiments (Section 5.2.3.3) tests and analyses whether the clusters are sig-

nificantly different before/after the perturbation and whether there are significant

differences in the performance of all the five techniques. The third set of experi-

ments (Section 5.2.3.4) studies the relationship between the privacy and accuracy

of the perturbed data at different dimensions and compares the performance across

all techniques.

5.2.3.1 Datasets and Experimental Setup

The work in this chapter is motivated by real world problems where obtaining ac-

curate clustering results depends on how much utility is preserved in the perturbed

data. We attempt to examine this feature in the perturbed data using three dif-

ferent clustering methods, i.e. partition-based clustering, hierarchical clustering

and density-based clustering. Meanwhile, we evaluate the trade-off between the

privacy and utility for the perturbed data at different number of dimensions. In

our experiments, we considered the same 15 datasets used in Section 4.4.4. A brief

description of all datasets is represented in Table 5.2 after including the number of

real classes for each dataset. A detailed description of each dataset can be found

in [58].

All datasets are ideal for clustering and classification analysis when the task is

to assign each object to its proper cluster or class. Each dataset is represented

as an m × n matrix where each row corresponds to an object and each column

represents a variable. We cleansed the data to eliminate the effect of missing values

on the distance measure as follows: if the number of records that have one or more

missing values is 2% or less of the total size of the data, we removed these records

from the dataset. Otherwise, we replaced the entries of missing values with zeros.

Although this simple method may be problematic in terms of data quality [160],
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Table 5.2: A description of datasets used in our experiments.

Dataset m n Classes

Iris 150 4 3
Wine 178 13 3
Breast Cancer Wisconsin (BCW) 699 9 2
Handwritten Digits 3823 64 10
Ecoli 336 7 8
Image Segementation 2100 19 7
Multiple Features 2000 216 10
Page Blocks 5473 10 5
Spambase 4601 57 2
Pima-indian-diabets 768 8 2
Yeast 1484 8 10
Satlog 2000 36 6
Hepatitis 155 19 2
Synthetic Control Chart (SCC) 600 60 6
Credit Approval 690 14 2

our concern at this stage is rather to mitigate the effect of missing values and

facilitate the task of the distance-based algorithms

In our experiments, we used MATLAB implementations to perturb and cluster

the data. The perturbation processes were carried out as follows: we normalized

the original data, X, so all variables had zero mean and σ = 1. This helped

in preventing one variable dominating the others in terms of Euclidean distance.

Then, the dissimilarities, δij, between the records in X were calculated using

(3.6). Then, we transformed the dissimilarities and generated the perturbed data,

Y , in p-dimensional space as illustrated previously. We then used the generated

data, Y , to carry out the clustering analysis and compare it with results obtained

from X. The initial configuration was determined by choosing the p non-negative

eigenvalues of the dissimilarities matrix ∆. However, to avoid accepting this initial

configuration as a final solution of non-metric MDS, we used a random initial

configuration for all data that have the best stress at its initial configuration.

This has been discussed in Section 3.3.2. To show how much information is lost as

a result of the transformation, we computed the deviation of the pairwise distances

in the original and perturbed spaces which has been quantified by using the stress

(4.3).

To obtain as fair as possible comparison, the dimensionality of the data, p, was

systematically reduced to the same lower dimensions for all perturbation tech-

niques. That is, for NMDS, the number of dimensions was manually adjusted to
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produce data in p-dimensional space. For RP, we used a random projection matrix

of p columns. For PCA and SVD, we chose the first p components. For DCT, we

chose the p dimensions corresponding to the highest p frequencies of high energy

coefficients.

The experimental parameters for clustering were set up as follows. For each

dataset, the number of clusters k was set as the number of classes. To guarantee

stable clustering results, we determined the mean of the true classes as initial

centroids for the k-means algorithm both for the original and perturbed data.

In k-means, the initial seeds (centroids) are chosen randomly and thus the final

clustering can vary with each run due to this initial selection. Our deterministic

allocation of initial cluster centroids allows us to measure how the clusters obtained

from both data (X and Y ) compare without having to account for the randomness

of the k-means algorithm. DBSCAN is very sensitive to both the radius, r, of

the neighbourhood and the minimum number of points in the neighbourhood,

k. Points in a cluster Ci often have k nearest neighbours at roughly the same

distances, whereas noise points have k nearest neighbours at farther distances.

For this set of experiments, we have set k = 4. We compute the distances of

k nearest neighbours for all data points and sort them in ascending order. The

distances are then plotted to see at which point there is a sharp change. That is,

the value of distance at this point would be quite suitable for the radius, r.

To assess whether or not the clusters obtained from the perturbed data are

significantly different from the clusters obtained from the original data, we used

paired t-test [46] on the V I scores that are derived from 30 independent samples

of comparing the clusterings on the original and perturbed data. Additionally, we

also used paired t-test to examine whether or not NMDS is achieved a statistically

significant improvement over the other perturbation methods.

5.2.3.2 Comparison of Clusterings

This section presents experimental evaluation of the proposed technique in terms of

clustering accuracy and compares it with some existing methods, which are stated

earlier. Our hypothesis is that the clusters obtained from the perturbed data, Y ,

should be similar to those obtained from the original data, X. The purpose of this

comparison is not to determine which is the best clustering algorithm, but rather

to assess the performance of the algorithms on the perturbed data generated using

different perturbation methods.
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We compared the accuracies of k-means, hierarchical clustering and DBSCAN

on the original and perturbed data using the variation of information (V I) measure

(5.5). We assessed the amount of utility that would be required in order to obtain

good clustering results at given dimensionality. We decreased the number of di-

mensions to see how this would affect data utility and to find an acceptable value

of p by repeating the analysis using different values of p. Our initial observations

were that when the data in the higher n-dimensional space are transformed into

a lower p-dimensional space, p > n/2, the generated clustering results obtained

from Y are almost the same as those obtained from X, with 0 ≤ V I < (2 log k)/2.

For instance, for the Wine dataset, we obtained a very low value of variation of

information (V I < 0.08) using k-means, for all Y with p = 5, . . . , 12, but the value

of V I increased for k < 5. A similar behaviour can be observed when hierarchical

clustering and DBSCAN are used, but with p = 7 as a cut-off point. This obser-

vation confirms that the best trade-off between information loss and accuracy can

be easily determined at the point when the value of the stress starts to increase

sharply, i.e. at the elbow of the S curve.

Figure 5.1, 5.2 and 5.3 show a comparison of the clustering variation between

X and Y using k-means, hierarchical clustering and DBSCAN, respectively, at

different p dimensions. We note that the clustering results on Y that are produced

using PCA and NMDS are very similar. However, for most datasets, NMDS

preserves much of data utility even at very low dimensions. RP and SVD lead to

poor clustering results because the values of VI were high compared with PCA

and NMDS. The results of DCT remain on average higher than those of all other

methods, indicating low data utility. For some datasets, RP has a high variation

of V I when changing from one dimensional space to another which is more likely

due the randomness of choosing the projection matrix. On the other hand, the

performance of DCT was relatively stable at all dimensions for the three clustering

techniques. This implies that no advantage is gained using DCT, and the size of

distortion caused by this method does not depend on the number of selected

dimensions.

The results shown in the above figures demonstrate the good performance of

NMDS in comparison to other dimensionality reduction methods. The obtained

clusters from Y using NMDS were almost identical to those from X as the values of

V I were low for most dataset and for the three clustering techniques, particularly

at high dimensions. The clustering results for PCA, using both k-means and

hierarchical clustering, were similar to NMDS, displaying low V I. However, for
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Figure 5.1: The variation of information (V I) of RP, PCA, SVD, NMDS and
DCT using k-means.
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Figure 5.2: The variation of information (V I) of RP, PCA, SVD, NMDS and
DCT using hierarchical clustering.
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Figure 5.3: The variation of information (V I) of RP, PCA, SVD, NMDS and
DCT using DBSCAN.
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RP, SVD and DCT, the clustering results for those techniques showed higher values

of V I, indicating lower data utility. The results of V I for hierarchical clustering

were very low compared with k-means and DBSCAN, but that may be because

hierarchical clustering generates only a low number of clusters and thus it assigns

many objects to a single group. This leads to low variation of clusterings on X

and Y . For DBSCAN, NMDS outperforms other methods exhibiting high data

utility for clustering.

Moreover, the results suggest that transforming the original data into the few

lower dimensions from the original dimensionality is sufficient to maintain most of

the distance-related properties. This can be concluded from the low values of V I

at high dimensions. This is not surprising, since if the distance is well preserved

in the lower dimensional space, it would rather be easier for any distance-based

algorithm to discover the real clusters underlying the data. When the utility is

most important for the data owner, the best strategy is to retain as much as

features in the perturbed data.

5.2.3.3 Statistical Significance Testing

In this section, we evaluate the difference in the performance of the clustering

on the original and perturbed data using different transforms (RP, PCA, SVD,

NMDS and DCT). We hypothesis that clusters produced on the original data are

not significantly different to those on the perturbed data. For a fair comparison,

we transformed the original data into a fixed number of dimensions, i.e. one

reduced dimension, which often gives a good representation of the original data.

To test the performance when changing the clustering from the original data to

the perturbed data, we calculated the average differences of clustering membership

for objects before and after the perturbation, i.e. the average difference of the

validation measure (V I). We conducted 30 trials of k-means on both the original

and perturbed data and measure the correlation of the obtained clusters with

respect to the true classes using V I. We then estimated the variance of the mean

difference of V I using paired t-test [46] at 95% confidence level.

Tables 5.3 show the observed p-values of all methods. The values less than %5

are sufficient evidence to reject the null hypothesis, which is: no difference exists

between the means of V I scores before and after the perturbation. The results

reveal that both PCA and NMDS show better performance over others methods

for most datasets and indicate the consistency of the clustering when changing
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Table 5.3: The observed p-value of paired t-test using k-means. The p-values
less than 5% (bold faced) indicate that the results are statistically different at

the 95% confidence level.

Dataset RP PCA SVD NMDS DCT

Wine 0.0505 0.3279 0.0411 0.6536 0.0009
BCW 0.0739 0.4749 0.0055 0.9043 0.0007
Iris 0.0525 0.0420 0.0319 0.0572 0.0003
Handwritten Digits 0.0448 0.1443 0.0087 0.2809 0.0000
Ecoli 0.0579 0.3390 0.0236 0.3676 0.0006
Image Segmentation 0.0426 0.1647 0.0031 0.2506 0.0000
Multiple Features 0.0287 0.6279 0.0173 0.6294 0.0000
Page Blocks 0.0578 0.1215 0.0051 0.7059 0.0002
Spambase 0.0118 0.2827 0.0416 0.5677 0.0007
Pima Diabetes 0.0161 0.0431 0.0045 0.0736 0.0005
Yeast 0.0250 0.0182 0.0074 0.0586 0.0002
Satlog 0.0598 0.4477 0.0066 0.8339 0.0021
SCC 0.0305 0.0473 0.0044 0.2908 0.0003
Credit Approval 0.0553 0.5391 0.0057 0.6694 0.0075
Hepatitis 0.0615 0.0282 0.0068 0.0103 0.0008

from the original data to the perturbed data. We notice that most p-values ob-

served from comparing the two clusterings for PCA and NMDS are larger than

5% significance level, suggesting similar performance of k-means before and after

the perturbation. However, PCA showed significantly different results (p-values

< 0.05) for some datasets (e.g. Iris, Pima Diabets, Yeast and Hepatitis). The

clustering over the perturbed data produced by SVD and DCT leads to statis-

tically different performance (p-values < 0.05) most of the times. The influence

of perturbation using RP was relatively lower than SVD and DCT, but the per-

formance remains significantly worse than PCA and NMDS. We believe that the

poor performance of RP, SVD and DCT is likely due to the high distortion caused

by these methods during the transformation.

We also test whether or not NMDS statistically outperforms other perturbation

methods in terms of the accuracy of clustering on both the original and perturbed

data. In this case, the null hypothesis is that no difference exists between the

clustering using NMDS and the clustering using the other perturbation methods.

Again, we conducted 30 trials of k-means and calculated the difference of V I scores

at 95% confidence level. Tables 5.4 show the p-values of comparing the mean differ-

ence of V I for NMDS with those of the other methods. The lower p-values indicate

that the performance improvements of NMDS over other methods is statistically

significant. It appears that the p-values are less than 5% significance level, but
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Table 5.4: A statistical comparison of the performance of NMDS and other
methods using paired t-test. The bold faced p-values indicate no advantage

gained from using NMDS compared to the other perturbation methods.

Dataset RP PCA SVD DCT

Wine 0.0000 0.0225 0.0000 0.0000
BCW 0.0157 0.0208 0.0023 0.0000
Iris 0.0000 0.0210 0.0417 0.0417
Handwritten Digits 0.0006 0.2008 0.0000 0.0000
Ecoli 0.0051 0.0669 0.0101 0.0000
Image Segmentation 0.0032 0.3008 0.0150 0.0000
Multiple Features 0.0000 0.0017 0.0000 0.0000
Page Blocks 0.0028 0.0109 0.0000 0.0000
Spambase 0.0000 0.0005 0.0000 0.0000
Pima Diabetes 0.0012 0.0024 0.0000 0.0000
Yeast 0.0011 0.0002 0.0012 0.0014
Satlog 0.0000 0.0608 0.0000 0.0000
SCC 0.0072 0.0167 0.0065 0.0032
Credit Approval 0.0001 0.0236 0.0000 0.0000
Hepatitis 0.0000 0.0013 0.0000 0.0000

with a few exceptions when comparing with PCA. In most cases, however, the

p-values approximate zero, on average, which may strongly support the rejection

of the null hypothesis. This also implies that NMDS is significantly better than

other methods as it is able to preserve more data utility for k-means clustering.

For the data produced by PCA, the p-values were slightly higher compared to the

other transforms, suggesting that the performance of NMDS and PCA is quite

similar or there is no significant difference in their performance. The clustering

results on the perturbed data produced by DCT and NMDS seem highly different

from each other as DCT achieves the lowest overall p-values. This also seems to

be true when comparing with SVD.

Finally, we evaluated the stability of V I at different number of clusters, k, with

respect to the different perturbation methods. More specifically, we examined the

effect of the perturbation on the performance of k-means clustering algorithm us-

ing different number of clusters in order to see whether NMDS differs significantly

across the other methods or not. For this purpose, we generated multiple synthetic

datasets each of which has k intrinsic cluster patterns and is represented by 1000

tuples and 3 dimensions. To produce the perturbed data, all datasets were trans-

formed into 2-dimensional space using different transforms. Then, we conducted

100 trials of k-means on both the original and perturbed data and calculated the

V I. For each synthetic data, we compared the V I between the set of clusters
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Table 5.5: Observed p-values of paired t-test of V I for NMDS against the
other methods using different number of clusters, k.

Method
Number of Clusters (k)

3 4 5 6 7 8 9 10

RP 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PCA 0.0164 0.0059 0.0066 0.0052 0.0000 0.0000 0.0186 0.0000
SVD 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DCT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

obtained by NMDS and other methods. Finally, the paired t-test was applied on

the pairs of V I obtained from NMDS and the other methods. The results are pre-

sented in Table 5.5. The results demonstrate that the difference in the V I values

was significant in most tests (p-value < 1 × 10−6) where the p-values below 0.05

indicate that the methods differ significantly in discovering clustering patterns.

The values of p-values for PCA at some k are relativity high, indicating that the

performance of both NMDS and PCA is quite similar. However, all the results

are still statistically significant at 95% confidence. In summary, NMDS shows a

significant improvement over other methods and appears to provide higher and

better data utility.

5.2.3.4 Utility versus Privacy

It is common, in practice, that data owners may desire to control the privacy and

utility trade-off before perturbing the original data. In this section, we discuss this

issue with respect to the degree of compression (number of dimensions in which

the original data are projected into) and offer guidelines that may help the data

owners during the perturbation.

Intuitively, the utility of the perturbed data is high if any distance-based clus-

tering run on them yields results similar to those from the original data. Since

minimising the distance distortion in the data can significantly maximise the utility

of the data for distance-based clustering, we can use a utility function (stress (4.3))

that penalises such distortions. Thus, our utility metric is appropriately chosen to

measure the average distance distortion between the original and the perturbed

data. The privacy, on the other hand, is maximized when the perturbed data is

completely independent of the original. Our privacy metrics presented in Chapter

4 measure the difficulty of inferring the original data values.

It was shown in Figures 5.1, 5.2 and 5.3 that retaining as many dimensions as

possible in the perturbed often gives the best fit of the original data as the values
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Figure 5.4: Average privacy (ρ) achieved against distance-based attack for
varying p using different perturbation methods.
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of V I were low for most datasets compared with the data at lower dimensions,

with the one exception of DCT. The results demonstrate that the accuracy of the

clustering on the perturbed data would be improved as the number of dimensions

increases. However, the variation of clustering becomes more comparable when

suppressing a large number of dimensions.

To jointly assess the utility, which is explained by the accuracy on the perturbed

data, with the privacy, we considered the attacks proposed in Chapter 4. Figure

5.4 shows the average privacy of the distance-based attack achieved at different

dimensions. By comparing Figures 5.1-5.4, it is easy to see that preserving data

utility when the number of dimensions is high could result in good privacy. In

other words, the data at the higher dimensions always preserve both high pro-

tection against the attack and utility for the clustering algorithms. Interestingly,

NMDS outperformed all other methods, achieving better privacy and low cluster-

ing variation particularly at the high dimensions, i.e. the scores of ρ and V I were

on average larger/smaller than those corresponding to other methods, respectively.

This is expected as the larger the number of dimensions included, the more data

utility and the more uncertainty held in the perturbed data. We conclude that

perturbing the data using high dimensionality does not reduce the accuracy of the

distance-based clustering.

Similarly, Figure 5.5 shows the similarity between the original data and the

recovered data using the PCA-based attack. In contrast to the previous attack,

all datasets at high dimensionality display low privacy for all methods because

the attacker would be able to minimise the bias of aligning the eigenvectors of the

know sample and the perturbed data. In contrast, the lower dimensions preserve

more privacy because of the distortion incurred in producing the perturbed data.

Although retaining more features accomplishes more power for discovering clusters,

it may increase the risks of disclosure under this particular attack scenario.

From 5.1, 5.2, 5.3 and 5.5, we can observe that NMDS generally succeeds in

preserving better utility compared to other methods. At the same time, NMDS

preserves acceptable privacy against the PCA-based attack. In addition, the data

at low dimensions have low disclosure risk but that would be on the account

of utility for clustering. The number of dimensions, p, is the critical parameter

of choice in the trade-off between utility and privacy. The choice of p dictates

the extent to which the original data can acceptably be distorted. For instance,

plausible value of V I (0.52) and privacy (3.06) can be achieved using 4 dimensions

for NMDS on the Breast Cancer dataset when DBSCAN is used. As it can be
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seen in Figure 5.3, the curve of V I for NMDS goes up for dimensions lower than

4 while relatively remains stable at the higher dimensions.

In summary, the results confirm that NMDS can produce data that of acceptable

quality for distance-based clustering whilst maintain adequate privacy. NMDS can

be seen to outperform other dimensionality reduction techniques by producing very

similar results from the original and perturbed data. NMDS also showed that a

small increase in the number of dimensions, p, can lead to better privacy for

distance-based attack and worse privacy for PCA-based attack. This implies that

the trade-off between privacy and utility may be dependent on the type of attack.

Choosing the right values of p for balancing privacy and utility may require some

risk assessment of the type of attacks expected.
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Figure 5.5: Average privacy achieved against PCA-based attack for varying p
using different perturbation methods.
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5.3 Application to Classification Tasks

5.3.1 k-Nearest Neighbours (k-NN)

k-NN [37] is one of the traditional techniques that are used to extract classification

patterns within data. The major task of k-NN is to classify each unlabelled exam-

ple by the majority label of its k-nearest neighbours in the training set. As we have

seen in chapter 2, the notion of nearness or equivalently closeness is determined

by learning an appropriate distance metric between different examples. When the

value of k is relatively large, the algorithm may include some objects that are not

so similar to the target object. Whereas, a smaller k may exclude some potential

candidate objects. This indeed will lead to low classification accuracy. Therefore,

many approaches have been suggested to reduce the impact of k using different

techniques. For example, a distance-weighted constraint was proposed in [53]. The

general steps of the k-NN classification are summarised as follows:

1. Define a suitable distance metric.

2. Find the k nearest neighbours using the defined distance metric.

3. Find the class of the k-nearest neighbours and vote on the majority class.

4. Assign that class to the example to be classified.

The nearest neighbour rule can mathematically be described as follows. Given

a set of training objects X = {x1, x2, . . . , xm} and a predefined set of classes

C = {c1, c2, . . . , cs}. Let k be the number of nearest neighbours and Uk be the set

of k closest training examples to a test example x′, the k-NN classification rule of

the test object x′ is defined by

g(x′, c′j) = argmax
j

∑
(xi,cj)∈Uk

I(j = cj), (5.9)

where

I(.) =

1 if the argument (.) is true,

0 otherwise.

The object xi is said to be the kth nearest neighbour of x′ when ||xi − x′|| is

the kth smallest among ||x1 − x′||, ||x2 − x′||, . . . , ||xn − x′||. The above rule (5.9)

simply implies the majority voting on the class of the test example, x′.
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5.3.2 Support Vector Machine (SVM)

The foundations of SVM have been developed by Vapnik [169], and are gaining

popularity in machine learning due to its attractive features and its promising re-

sults [22, 51, 84]. The basic idea is to find a hyperplane that separates the data into

two classes with as great a margin as possible. The optimal hyperplane (decision

boundary) is the one that separates these two classes and that maximises the dis-

tance between the two closest points from either class (known as support vectors).

Assume that the classes of data are separable. Consider a binary classification

problem consisting of m pairs of training examples (x1, y1), (x2, y2), . . . , (xm, ym),

where xi ∈ Rn and yi ∈ {−1, 1}; the hyperplane is defined by

w · x + b = 0, (5.10)

where w is the weight vector and b is the bias. The symbol “.” denotes the dot

product in the feature space. Both parameters w and b must be chosen in such a

way that the following two conditions are met:

w · xi + b ≥ 1 when yi = 1, and

w · xi + b ≤ −1 when yi = −1.
(5.11)

The classification rule of an unseen test object x′ is defined by

g(x′) = sign(w · x′ + b). (5.12)

Maximising the distance from a point x to the hyperplane in (5.10) determines

the optimal hyperplane which creates the maximal margin between the negative

and positive training examples (Figure 5.6(a)). The distance from a hyperplane

H(w, b) to a given data point xi is simply

d(H(w, b),xi) =
w · xi + b

||w|| ≥ 1

||w|| . (5.13)

That is, SVM finds the hyperplane that maximises the margin by minimising

the squared norm of the hyperplane
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Figure 5.6: Linear SVM classifier. The decision boundary is the solid line,
while dotted lines bound the maximal margin of width 2/||w||. For non-
separable case (b), the points labelled ξi on the wrong side of their margin
1/||w|| are the slack variables which count ξ/||w||. The margin is maximised

subject to Σ ξi ≤ constant.

min
w

1

2
||w||2

subject to yi(w · xi + b) ≥ 1, i = 1, 2, . . . ,m.
(5.14)

The minimisation can be considered as a convex quadratic programming prob-

lem, which can then be solved using the Lagrange multiplier technique [39]. The

Lagrangian primal function is calculated by

Lp =
1

2
||w||2 −

l∑
i=1

λi (yi(w · x + b)− 1) , (5.15)

which should be minimised with respect to w and b. Setting the respective deriva-

tives to zero, we obtain

∂Lp

∂w
= 0 =⇒ w =

l∑
i=1

λiyix,

∂Lp

∂b
= 0 =⇒

l∑
i=1

λiyi.

(5.16)
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The problem can be simplified into a function of multipliers only, i.e., dual

Lagrangian, by substituting the above derivatives into Equation (5.15),

Lp =
l∑

i=1

λi −
1

2
λiλjyiyjxi · xj. (5.17)

For non-separable data (Figure 5.6(b)), SVM can also deal with overlapping

classes by maximising the margin, allowing any misclassified data points to be

penalised using a method known as the soft margin approach [172]. The misclassi-

fication bias can be defined by the so-called slack variables, ξ = ξ1, ξ2, . . . , ξs. Let

ξi ≥ 0; the constraints of the optimisation can be rewritten as

w · xi + b ≥ 1− ξi when yi = 1, and

w · xi + b ≤ −1 + ξi when yi = −1,
(5.18)

and the learning task in SVM can be formalised as follows:

min
w

1

2
||w||2 + C

l∑
i=1

ξi

subject to

yi(w · xi + b) ≥ 1− ξi, i = 1, 2, . . . ,m,

ξi ≥ 0, Σ ξi ≤ C

(5.19)

where the constant C is a regularisation parameter used to create a balance be-

tween a maximum margin and a small number of misclassified data points.

The SVM described so far finds linear boundaries in the input space. However,

in many real problems, data may have non-linear decision boundaries, which would

make finding a hyperplane that can successfully separate two overlapping classes a

difficult task. One solution to this problem is to use the so-called kernel trick. The

trick here is to transform the data X in d-dimensional input space into a higher

D-dimensional feature space F (also known as Hilbert space), Φ : Rd → RD where

D � d. This would make the overlapping classes separable in the new space F .

The transformation is performed via a kernel function K that satisfies Mercer’s

condition [170] so that better class separation can be achieved [38]. The function

K can be defined by

K(u,v) = Φ(u) · Φ(v), (5.20)
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where Φ : X → F and “.” denotes the dot product in the feature space F . By

defining a proper K, we simply replace all occurrences of xi in the SVM model

with Φ(xi). That is, the feature space F is never explicitly dealt with, but rather

we evaluate the dot product, Φ(xi) . Φ(xj), directly using function K in the input

space [144]. Intuitively, computing only the dot product using K, in the feature

space, is substantially cheaper than using the transformed attributes. For example,

the radial basis function kernel unfolds into an infinite-dimension Hilbert space.

5.3.3 Utility Measures for Classification

To guarantee the best performance of the distance-based classifiers, we need a

transformation that provides a faithful mapping (with minimum preservation er-

ror) for a given dataset in which the distances between neighbouring points are

approximately unchanged and the underlying structure is revealed. That is, ob-

jects that are close to each other are close to each other after the transformation.

Measuring the average distance difference between objects in the input and

output spaces may indicate the size of information loss as a results of the trans-

formation. As discussed in Chapter 4, this difference can be quantified using the

stress (4.3). Broadly speaking, minimising the stress may lead to better utility of

the perturbed data for distance-based analysis. However, to assess the “goodness”

of the perturbed data for classification analysis, we may also measure the change

of the underlying data structure. For this purpose, we define two further utility

measures. The first measure, Neighbourhood Preservation (NP), aims at quantify-

ing the impact of the perturbation on the structure of the neighbourhood points.

To provide higher data utility, for each data point in the perturbed data the k

neighbourhood points should be the same as the k neighbourhood points in the

original data. The second measure, Class Compactness (CC), aims at quantifying

the impact of the perturbation on the class distribution. Here, we would like to

ensure that for each data point with class ci, the number of the k neighbourhood

points with the same class should be the same before and after the perturbation.

A higher score for both measures represents higher data quality. Measures that

correspond to those properties are described in the following subsections.
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X

(a) Original data

X

(b) Perturbed data

Figure 5.7: The impact of the transformation on classifying example x where
the distances of 3-nearest neighbours have been changed. In the original data
(a), the example is classified as “negative” whereas in the perturbed data (b) it

is classified as “positive”.

5.3.3.1 Neighbourhood Preservation

Preserving the topological structure of data in the lower dimensional space may

demonstrate the usefulness of the data for analysis or visualisation. The neighbour-

hood is preserved if the distribution of the k-nearest neighbours, in the original

space, X, is unchanged or well approximated in the perturbed space, Y [171].

That is, points in X are mapped to points in Y , such that nearby points and

faraway points are still nearby and faraway, respectively.

When the pairwise distances are distorted as a result of the transformation,

the accuracy of the classifier is likely to decrease. To illustrate this, consider the

example in Figure 5.7. Assume that k = 3. Unlabelled test object x, located

at the centre of the circle, will be classified based on the majority class label of

its k-neighbours training objects, which belong to either a “+” or “−” class. In

the original data (Figure 5.7(a)), the point is classified as a “−” example because

the majority class of its neighbours is negative. However, in the perturbed data

(Figure 5.7(b)), the point will be classified as “+” for the same reason. Thus,

the quantification of the neighbourhood preservation in the new space can be an

indicator of utility for distance-based classification analysis. Let m be the number

of data objects and k be the number of neighbours, the quality of neighbourhood

preservation [62] can be measured by
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NP =
1

k

m∑
i=1

|Uk(xi) ∩ Uk(yi)|
m

, (5.21)

where Uk(xi) and Uk(yi) are sets of the k-nearest neighbours of point xi, in the

original data, X, and point yi, in the perturbed data, Y , respectively.

This measure indeed quantifies, for each point, the size of the intersection of the

set of k neighbours in the original space, X, and in the perturbed space, Y . Hence,

it should be maximised. If the maximum value of this measure is one, the resulting

new space is clearly useful for analysis, as the distances of the neighbourhoods are

well preserved.

5.3.3.2 Class Compactness

Since the distance metric plays an important role in distance-based learning,

changing distance measurements between objects due to the transformation will

influence the behaviour of the classifier and thereby will decrease the accuracy. If

members of the same class are close to each other in the original data space, they

should also be close to each other in the perturbed data space, i.e. the cluster

they belong to should be compact and separable from other clusters. This prop-

erty indicates that the distance between any two points in different groups should

be larger than the distance between any two points within the group.

Given a set of objects X = {x1, x2, . . . , xm} and a predefined set of classes

C = {c1, c2, . . . , cs}, class compactness [62] for any class cj ∈ C is defined by

CCj =
1

k

∑
xi∈cj

|Uk(xi, cj)|
m(cj)

, (5.22)

where Uk(xi, j) is a set of the k-nearest neighbours of point xi having class label

cj, and m(cj) is the number of points in class cj. The overall class compactness is

CC =
1

s

s∑
j=1

CCj. (5.23)

The class compactness measure evaluates how well the different groups within

the original data are redistributed in the perturbed space. In other words, it

assesses the local homogeneity of the objects within each group. A low value of

this measure indicates high variance of group membership. In contrast, a better

preservation of the underlying class structure can be achieved when the value is

close to one.



Chapter 5. Evaluation of Distance-Based Clustering and Classification 153

5.3.4 Experimental Results

In this section, we show some empirical results that illustrate the impact of pertur-

bation using different transforms on the accuracy of distance-based classification.

To examine the quality of classification, we compare the quality of accuracy ob-

tained from the original data, X, and the perturbed data, Y at different reduced

dimensions (Section 5.3.4.2). If the misclassification error of the classifier that is

trained on Y is equal to that error from the classifier on X, then the transforma-

tion, T , causes low distortion and thereby a good data utility is preserved. This

implies that the classifier on Y is invariant to T .

In Section 5.3.4.3, we assess the utility in terms of preserving the underlying

structure of the perturbed data using NP and CC measures which are described

in Section 5.3.3. We also evaluate the trade-off between privacy and utility in

the perturbed data (Section 5.3.4.4). Finally, we test the performance difference

between the used perturbation techniques to find out whether or not the proposed

technique (NMDS) performs significantly better than other techniques (Section

5.3.4.5).

5.3.4.1 Experimental Setup

We conducted our classification experiments on the same 15 datasets used earlier

in Section 5.2. The classifiers used are MATLAB implementations of k-NN, lin-

ear SVM and non-linear SVM with three popular kernels (Polynomial, Gaussian

Radial Basis Function (RBF) and Multilayer Perceptron). The original data are

projected into several lower dimensional spaces in order to produce the perturbed

data using five different transforms (RP, PCA, SVD, NMDS and DCT). Then,

we used the perturbed data, Y , in p-dimensional space, to carry out the classi-

fication and to compare it with the results obtained from the original data, X.

We computed the classification accuracy on the original data as a baseline for

comparison.

To estimate the accuracy of the k-NN classifier on both X and Y , we used

10-fold cross-validation over 30 runs, the results are then averaged. The value of

k was set to 4 and the number of dimensions, p, was varied in a consistent manner

based on the total number of attributes. We used 70% of the data for training

and tested the classifier on the 30% remaining data. To avoid the randomisation

caused by RP when producing the random matrix, we chose to use an average of

20 runs and choose the one with the lowest stress.
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For SVM classification, we also we used 10-fold cross-validation and the average

classification accuracy is calculated over 30 trials. For simplicity, we used datasets

with a binary class, i.e. positive and negative groups. The error rates of the testing

set were evaluated for both data X and Y .

The regularisation parameter, C, was set to 1 in all experiments. We consider

this adequate as in this set of experiments our main concern is to compare the

SVM models obtained with the original and perturbed data and not to get the

optimal SVM model, therefore we do not experiment with the parameters of SVM.

However, C is an important parameter in SVMs which needs to be set correctly. In

general, higher values of C may lead to more accurate results, while lower values

correspond to a more flexible hyperplane where the misclassification error is less

important [76]. That is, varying the value of C may result in different performance.

The parameters of the kernels were set as follows: The degree of Polynomial

function set to 3, the radius of RBF set to 1 and the Sigmoid kernel function of

the Multilayer Perceptron set with a slope equals 1 and intercept equals -1.

In order to compare the performance of the classification algorithms over all

datasets, we used Friedman test [46]. In this test, each transform is ranked for

each dataset separately, according to the achieved accuracy, in ascending order,

from the best performing transform (getting the rank of 1) to the worse performing

transform (getting the rank of N , where N is the number of the compared trans-

forms). If two or more transforms have the same accuracy, then their ranks are

averaged. Then we calculated the mean rank for each transform on all datasets.

This may indicate the relative performance over all the datasets while the ranking

themselves may provide a fair comparison of the transforms.

The Friedman test typically checks whether the measured average ranks are

significantly different from the mean rank. The null hypotheses (H0) is all trans-

forms are equal in their performance, i.e. there is no difference in mean ranks for

repeated measures.

To further illustrate the significant difference in the average ranks of the five

transforms, we used the critical difference (CD) diagram [46] with a significance

level of α = 5%. This diagram provides a graphical representation of the overall

performance where statistically similar transforms are linked together by cliques

and each single clique is represented by a solid bar.
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5.3.4.2 Comparing Accuracy of Classifiers

The mean classification accuracy of k-NN classifier is shown in Figure 5.8. Gener-

ally, for all datasets, it is clear that as p increases, the classification error decreases.

With decreasing p, it is expected that pairwise distances in the perturbed data

will get distorted and it will be more difficult to classify objects correctly. The

accuracies of k-NN classifier on the perturbed data produced by NMDS and PCA

are approximately the same as on the original data (even better in some cases)

particularly at high dimensions. Additionally, the performance of k-NN classifier

on the perturbed data produced by NMDS is the highest compared with other

transforms. The worse performance is reported for DCT where the accuracy is

the lowest. PCA gives a performance quite similar to NMDS in most cases. The

results show a significant decrease in accuracy for p < 2 for the datasets with a

few number of dimensions, and for p < 10 for the datasets with a large number of

dimensions.

Figure 5.9 shows the classification accuracy of linear SVM on the perturbed

data produced by NMDS at different dimensions against those of RP, PCA, SVD

and DCT. The algorithm performs well on the data produced by RP, PCA, SVD

and NMDS as the accuracy is close to the accuracy on the original data, X,

particularly when retaining a large number of dimensions. The worse performing

was on the data produced by DCT with an average accuracy of 0.07% lower than

other methods. However, linear SVM on DCT data shows a stable performance at

all dimensions. In general, the accuracies for RP, PCA, SVD and NMDS remain

apparently unchanged too much at the very lower dimensions. This implies that

SVM is able to separate non-separable classes even at low dimensions for the data

produced by these methods. One exception is shown for Pima Diabetes dataset

where the change of accuracy at lower dimensions is noticeable.

The majority of the transforms used, with the exception of DCT, achieve an

accuracy in the regions of 93-98% for BCW, 75-86% for Credit Approval, 72-77%

for Pima Diabetes, 83-86% for Hepatitis and 88-92% for Spambase. However, the

linear SVM performs slightly better on the data produced by NMDS, particularly

at high dimensions. The results also indicate using DCT results in deteriorated

performance as the accuracy compared with the other transforms is markedly

lower. However, we observe a slight improvements in accuracy on the SVD data

which is quite close the performance on the PCA and NMDS data.

Figure 5.10 shows the average classification accuracy of non-linear Linear SVM

using three different kernels at several reduced dimensions. Here, we observe that
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Figure 5.8: A classification accuracy of k-NN on the original data, X, and the
perturbed data, Y , produced by RP, PCA, SVD, NMDS and DCT at different

dimensions, p.
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Figure 5.9: Classification accuracy of linear SVM at different dimensions, p,
using the original data, X, and the perturbed data, Y , produced by RP, PCA,

SVD, NMDS and DCT.

there is an increase in the accuracy whenever the number of dimensions decreases.

This implies that suppressing many dimensions may preserve the quality of non-

linear SVM classification.

The results suggest that the performance of the kernel functions are affected by

the number of dimensions. Reducing the dimensions of data can help the kernel

functions to find better mapping in the feature space and thus better class separa-

tion can be achieved. For instance, when reducing the number of dimensions, p, up

to 50% or less from the total number of dimensions for BCW, Pima Diabetes, Hep-

atitis and Spambase datasets, the accuracies of the classifier substantially increase
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Figure 5.10: Average classification accuracy of non-linear SVM using three
different kernels: Polynomial, RBF and Multilayer Perceptron.

to higher levels and are better than the accuracy on the original data.

The results also show that DCT has achieved accuracy considerably lower than

other methods. The drop in accuracy of DCT, especially for BCW and Credit Ap-

proval datasets, demonstrates that transforming using DCT causes much distance

distortion, which may increase the difference in the dot product in the original

and feature spaces.

We observed that the accuracy of non-linear SVM is sensitive to the choice of

kernel. Generally, the RBF kernel is the most accurate classifier compared with

the Polynomial and Multilayer Perceptron kernels, and has the highest average
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accuracy. The worse performance is reported for the Multilayer Perceptron ker-

nel, particularly at high dimensions. However, we observed that the Multilayer

Perceptron kernel performs better with the decreases of the number of dimensions.

Our experimental results reveal that the proposed technique, i.e. NMDS, is

able to offer competitive classification results on the perturbed data with respect

to the other dimensionality reduction methods (RP, PCA, SVD and DCT). The

important observation is that retaining as many dimensions as possible can signif-

icantly reduce the generalisation error (error on the test data) when using k-NN

and linear SVM. However, this is not true for non-linear SVM as we notice a

decrease in the error when few dimensions are used.

5.3.4.3 Data Utility Measures

To examine whether or not the perturbed data are useful for classification analysis,

we measure the quality of the underlying structure using the measures defined in

Section 5.3.3. In the first set of experiments, we evaluate the impact of number

of dimensions on the neighbourhood preservation and class compactness. We

generate three synthetic groups of 1000 random samples in 100-dimensional space

and normalised the data so all variables have zero mean and standard deviation

equal to one. The data are then transformed into different dimensions, p, using

the five perturbation techniques. For each subset of the data, we measure the

change in neighbourhood structure and class compactness when k = 4. This is

illustrated in Figure 5.11.

The results presented in Figure 5.11(a) show that as the number of dimensions

increases the change in the neighbourhood structure decreases, i.e. NP increases,

for all methods except for DCT which gives a constant performance at all dimen-

sions. NMDS appears to preserve the neighbourhood of data points slightly better

than the other methods. The PCA performs quite similarly to NMDS. The differ-

ence in the neighbourhood preservation from the highest dimension (p = 100) to

the lowest dimension (p = 10) is 0.70 for RP, PCA and NMDS while SVD shows

relatively low variation where the difference is approximately 0.15.

The results presented in Figure 5.11(b) suggest that the perturbations caused

by RP, PCA, SVD and NMDS have not seriously destroyed the structure of the

classes’ distributions as all these methods successfully preserve the class compact-

ness, although the change seems slightly higher for RP and SVD at p = 10. DCT

exhibits noticeably worse performance compared with the other methods. For in-

stance, the class compactness in the perturbed data produced by DCT at p = 100
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Figure 5.11: (a) Neighbourhood preservation and (b) class compactness at
different dimensions in the perturbed data, Y , using different perturbation tech-

niques.

is 0.58 while the average class compactness for the other methods at the same

dimensions is 0.95. Again, both PCA and NMDS perform quite similarly at all

dimensions.

We can conclude that retaining as many dimensions as possible in the perturbed

space results in significantly less information loss with respect to neighbourhood

preservation. However, this my not hold for class compactness as eliminating

many dimensions does not have an effect on preserving the classes’ distributions,

particularly when k = 4. Overall, the perturbed data, produced by RP, PCA and

NMDS, at the high dimensions often preserve the underlying properties and thus

provide high data utility for distance-based classification.

To examine the effect of the number of neighbours, k, we calculate the neigh-

bourhood preservation and the class compactness of the data at 99-dimensional

space, which represents the best fit of the original dimensional space. The values

of k were varied from 3 to 10. The results of neighbourhood preservation are

shown in Tables 5.6 and the results of class compactness are shown in Table 5.7.

The results suggest that whenever the value of k increases, the neighbourhood

preservation and class compactness become relatively smaller. This can clearly

be noticed from the results for SVD and DCT. The other methods including RP,

PCA and NMDS show better performance even when using large number of k.

For the real dataset, we also evaluate the utility of the perturbed data using

different number of neighbours, k, to examine if there exists a variation in neigh-

bourhood structure and class compactness as a result of mapping data points from
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Table 5.6: Neighbourhood preservation in the perturbed data, Y , using dif-
ferent number of k neighbours.

Number of Neighbours (k)
3 4 5 6 7 8 9 10

RP 0.99 0.99 0.98 0.98 0.96 0.95 0.94 0.93
PCA 0.99 0.99 0.98 0.98 0.97 0.96 0.96 0.95
SVD 0.46 0.44 0.41 0.40 0.39 0.39 0.38 0.38
NMDS 0.99 0.99 0.99 0.98 0.97 0.97 0.96 0.95
DCT 0.34 0.25 0.20 0.17 0.15 0.13 0.12 0.11

Table 5.7: A comparison of class compactness in the original data, X, and
the perturbed data, Y , at different number of k.

Number of Neighbours (k)
3 4 5 6 7 8 9 10

X 0.99 0.97 0.97 0.96 0.95 0.95 0.94 0.93
RP 0.98 0.96 0.96 0.96 0.95 0.94 0.94 0.93
PCA 0.99 0.96 0.96 0.96 0.95 0.95 0.94 0.94
SVD 0.93 0.93 0.92 0.91 0.91 0.90 0.89 0.88
NMDS 0.99 0.96 0.96 0.95 0.96 0.95 0.95 0.94
DCT 0.57 0.57 0.49 0.47 0.46 0.45 0.44 0.43

the original space to the perturbed space. In this set of experiments, we trans-

formed all datasets into one reduced dimension, i.e. n − 1, and calculated the

average change in the neighbourhood preservation and class compactness where

the value of k is varied from 3 to 10.

The objective of transforming the data to that dimension, i.e. n − 1, is to

capture, as much as possible, high utility for all methods in terms of preserving

the distance so that a fair comparison can be accomplished.

The results of the experiments on the quality of neighbourhood preservation are

presented in Table 5.8. From the results, it is observed that PCA and NMDS are

the best performing transforms in most cases. The performance of DCT is broadly

lower than the other methods, indicating high distortion in the underlying struc-

ture of the perturbed data. The DCT method fails to preserve the neighbourhood

structure and achieves an average NP score of 0.30 for all datasets. RP exhibits

better neighbourhood preservation than the SVD method, which causes more dis-

tortion. The results for the BCW and Yeast datasets show low neighbourhood

preservation compared with the other datasets. This may be because some of the

data points tend to be outliers instead of forming dense clusters.
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Table 5.8: Average neighbourhood preservation for data points in the per-
turbed data, Y , when consider variations of k from 3 to 10 using five pertur-
bation techniques (RP, PCA, SVD, NMDS and DCT). The best result for each

dataset is shown in bold.

Dataset
Neighbourhood Preservation (NP)
RP PCA SVD NMDS DCT

Wine 0.85 0.97 0.64 0.98 0.31
BCW 0.83 0.73 0.70 0.73 0.23
Iris 0.68 0.93 0.59 0.93 0.31
Handwritten Digits 0.97 1.00 0.64 1.00 0.29
Ecoli 0.89 0.93 0.71 0.93 0.31
Image Segmentation 0.98 1.00 0.83 1.00 0.29
Multiple Features 0.99 1.00 0.63 1.00 0.29
Page Blocks 0.90 0.99 0.73 0.99 0.29
Spambase 0.98 1.00 0.72 1.00 0.28
Pima Diabetes 0.80 0.85 0.57 0.84 0.30
Yeast 0.72 0.70 0.53 0.70 0.29
Satlog 0.94 0.98 0.60 0.99 0.30
SCC 0.94 0.98 0.61 0.99 0.30
Credit Approval 0.93 0.95 0.71 0.94 0.30
Hepatitis 0.91 0.95 0.64 0.95 0.33

Next, we examine the average class compactness in both the original and per-

turbed data for all datasets using different methods. The results are reported in

Table 5.9. The second column (titled “X”) represents the class compactness in the

original data, X, which is used as a baseline for comparison. All methods perform

quite similar, the class compactness does not change much before and after the

transformation. One exception to this is the DCT which demonstrates overall low

class compactness. The methods including PCA and NMDS, and to some extent

RP, achieve the highest values of CC, equal to those from the original data, for

most datasets. As discussed in Section 5.3.3, the class compactness measures the

overall change in class distribution and a high value would mean minimising the

intra-class distance while maximising the inter-class separation. Therefore, the

higher the class compactness, the easier distance-based algorithm can construct a

decision function separates well one class from the others. As we have seen ear-

lier, most methods are still able to preserve high class compactness (as good as

in the original space) even at low dimensions. However, choosing the appropriate

dimension to transform the data basically depends not only on the utility the data

have but also on the resistance to the disclosure risk. This issue will be discussed

further in the following section.
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Table 5.9: Average class compactness in the original data, X and the per-
turbed data, Y , when consider variations of k from 3 to 10 using different

transformations. The best result for each dataset is shown in bold.

Dataset
Class Compactness (CC)

X RP PCA SVD NMDS DCT

Wine 0.96 0.96 0.96 0.93 0.96 0.55
BCW 0.96 0.96 0.96 0.95 0.96 0.66
Iris 0.95 0.83 0.95 0.94 0.95 0.52
Handwritten Digits 0.97 0.97 0.97 0.95 0.97 0.36
Ecoli 0.69 0.68 0.69 0.66 0.69 0.39
Image Segmentation 0.95 0.95 0.95 0.94 0.95 0.41
Multiple Features 0.96 0.96 0.96 0.94 0.96 0.37
Page Blocks 0.82 0.82 0.82 0.80 0.82 0.43
Spambase 0.91 0.91 0.91 0.89 0.91 0.64
Pima Diabetes 0.75 0.75 0.75 0.73 0.75 0.65
Yeast 0.62 0.61 0.61 0.60 0.62 0.36
Satlog 0.89 0.88 0.88 0.87 0.89 0.44
SCC 0.97 0.96 0.97 0.95 0.97 0.43
Credit Approval 0.85 0.83 0.85 0.85 0.85 0.64
Hepatitis 0.79 0.78 0.79 0.75 0.79 0.65

One distinctive feature of our method is that it is able to produce data in

which the pairwise distances within one group are relatively small and between two

groups are relatively large, i.e. better class separation. Therefore, most distance-

based classifiers can operate well on the perturbed data and yield equally good

results as on the original data. To evaluate this, we transform Wine dataset into 2-

dimensional space using the five perturbation methods and plot the data. To show

the class compactness in the original data, we choose the first two PCs obtained

from the classical MDS solution and plot them instead of the real variables. Note

that this solution may be identical to the PCA solution as described in Section 3.2

but it would be easier to visualise the classes in the original space. A comparison

of class compactness in the Wine dataset before and after the perturbation is

shown in Figure 5.12. Generally, both PCA and NMDS demonstrate better class

separation, but the classes, in NMDS, to some extent appear tight and form dense

clusters. In RP and DCT, the classes are overlapping with each other and thus

the decision boundaries are lost. In SVD, the distortion is slightly lower than in

RP and DCT and the classes are relatively separable. From an utility point of

view, we conclude that the solutions derived by PCA and NMDS are more likely to

preserve the geometrical shape of groups within the data and maximise the margin

between different groups, facilitating the task of distance-based classification. In
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(a) Original data
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(b) RP
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(c) PCA
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(d) SVD
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(e) NMDS
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(f) DCT

Figure 5.12: A comparison of class compactness between data objects in (a)
the original data, X, and the perturbed data, Y , generated by different methods
(b) - (f). The classes in PCA and NMDS solutions are reasonably well separated

relative to the classes in the others perturbation methods.

contrast, the other methods destroy the classes’ distributions which means that

the classes have intra-class dispersions or are poorly separated from each other.

As the similarity between two objects, in linear SVM, is essentially measured by

dot products between their vectors, the utility of the perturbed data can effectively

be increased by minimising the error of computing the dot product in the original

and perturbed spaces. To examine the effect of the perturbation on the dot prod-

uct at different number of dimensions, we computed the Root Mean Squared Error

(RMSE) of the estimated dot products with respect to the dimensionality of the

reduced subspace. For this purpose, we generated 10 synthetic datasets each of

which has 1000 random data vectors and each vector is represented by 100 dimen-

sions. We normalised the data so that each dimension has a unity length. Then,

for each dataset, we compared the dot products before and after the perturbation.

Table 5.10 shows the average RMSE for all transforms at different dimensions, p.

The results suggest that as p increases, the error decreases. This implies that the

data at high dimensions give the best distance mapping, and hence, perturbing

the data into these dimensions yields much data utility for linear SVM.
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5.3.4.4 Privacy and Utility Assessment

As mentioned earlier, the data at high dimensions often exhibit the best utility

for k-NN and linear SVM classification as the accuracy on the perturbed data

tends to be quite similar to the accuracy on the original data (Figures 5.8 and

5.9). Moreover, the disclosure risk of distance-based attack and PCA-based at-

tack increases/decreases monotonically with p, respectively (Figures 5.4 and 5.5).

The assessment of the trade-off between privacy and utility can be understood as

finding an optimal value of p such that the perturbed data achieve the desired

accuracy, that is, very close to the original accuracy, while preserving a certain

level of privacy against the distance-based and PCA-based attacks (Sections 4.4

and 4.5).

As we have seen in Section 5.3.4.3, the change in points’ neighbourhood can be

limited by retaining as many dimensions as possible for solutions produced by RP,

PCA, SVD and NMDS. This results in high utility especially for k-NN and linear

SVM classification. Moreover, these perturbation methods (RP, PCA, SVD and

NMDS) can preserve the underlying class distributions even at low dimensions.

However, this may not necessary reflect high utility particularly for k-NN because

there is a noticeable drop in accuracy at very low dimensions (Figure 5.8).

When generating the perturbed data such that the number of dimensions is

large, small distance distortion typically occurs and thus high utility is maintained

and high privacy against distance-based attack is preserved. In other words, the

parameter p can be increased to a value that provides effective utility and dis-

closure limitation guarantees. For instance, by setting p = 8 for the perturbed

BCW dataset using NMDS, we obtained 90% privacy guarantee (Figure 5.4) and

accuracy of 96% for both k-NN and linear SVD (Figures 5.8 and 5.9), while we

obtained only 50% privacy guarantee at p = 2 and accuracies of 94% and 95% for

k-NN and linear SVD, respectively.

Similarly, transforming data to very low dimensions may provide better privacy

against PCA-based attack as it becomes hard to find a faithful estimate of the

original data. This implies that higher p does not necessarily signify higher privacy

in the perturbed data although that the utility is often high. In this case, it is

important to find a trade-off between privacy and utility where it is clear that

maintaining as much as number of p is directly proportional to the utility and

inversely proportional to the privacy. For example, the average distance error

between the original and estimated data at p = 2 for the BCW dataset perturbed

using NMDS is approximately 3.2 while the average error at p = 8 is 2.6 (Figure
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5.5). On the other hand, the utility of data at p = 8 was high as the accuracy of

k-NN and linear SVD was 96% (Figures 5.8 and 5.9).

From the above results, we observed that the dimensions in which the original

data are projected into is essential to deliver high utility for classification tasks.

Generally speaking, if the goal is to achieve good data mining results, it would be

better to maintain high number of dimensions in the perturbed data as this may

lead to better utility for both k-NN and linear SVM classification. However, if the

goal is to achieve higher data protection, then it may be dependent on the type

of attack considered. High dimensionality data would be preferable in the case

of distance-based attack, while low dimensionality data would be recommended

to minimise the risk of PCA-based attack. For non-linear SVM, we have seen

that the data at low dimensions my provide better utility. Therefore, in this case,

depending on the type of attack, the perturbation should be performed such that

the number of dimensions is increased consistently until a satisfactory privacy and

utility trade-off is reached.

5.3.4.5 Statistical Testing

The aim of this section is to assess how a given transform of interest performs

compared with the other competitive approaches. Notice that our focus is not on

comparing different classifiers but rather comparing the performance of a single

classifier on a set of datasets produced by different perturbation techniques. The

tests presented here can help us to decide whether or not the observed difference

in the performance of the classifier on different data is statistically significant.

Table 5.11 shows the average classification accuracies and Friedman ranks ob-

tained from k-NN classifier over the perturbed data at different dimensions along

with the average and overall ranks. The results confirm that NMDS has the highest

average rank of the five perturbation technique tested, which means that NMDS

is significantly better, compared with the other competitive techniques, for this

particular experimental setup. In contrast, DCT performs very poorly as the rank

is always the highest for all datasets.

Figure 5.13 shows the critical difference diagram for ranked accuracies. The

results reveal four groups of the transforms. The first group (top clique) includes

NMDS and PCA, suggesting the similarity of their performance. However, NMDS

gives a significantly higher accuracy for most datasets and thus the average rank

is smaller than PCA. The second group combines PCA and SVD, indicating no

significant difference between them although the difference between their ranks is
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Table 5.11: Average classification accuracy (%) and (rank) of k-NN using five
perturbation techniques (RP, PCA, SVD, NMDS and DCT).

Dataset RP PCA SVD NMDS DCT

Wine 89.77 (4) 93.39 (2) 90.28 (3) 94.07 (1) 82.76 (5)
BCW 93.45 (4) 95.59 (2) 94.84 (3) 95.77 (1) 92.39 (5)
Iris 89.33 (4) 92.31 (2) 91.80 (3) 92.64 (1) 82.03 (5)
Handwritten Digits 85.07 (4) 90.62 (2) 87.94 (3) 93.32 (1) 79.28 (5)
Ecoli 60.39 (4) 61.56 (2) 60.55 (3) 63.89 (1) 52.98 (5)
Image Segmentation 88.42 (4) 90.86 (2) 89.25 (3) 91.23 (1) 84.58 (5)
Multiple Features 85.13 (4) 91.89 (1) 89.88 (3) 91.27 (2) 82.52 (5)
Page Blocks 90.03 (3) 92.11 (2) 89.41 (4) 92.85 (1) 84.75 (5)
Spambase 84.87 (4) 90.44 (1.5) 89.20 (3) 90.44 (1.5) 79.67 (5)
Pima Diabetes 70.34 (1.5) 69.89 (3) 69.48 (4) 70.34 (1.5) 66.79 (5)
Yeast 48.00 (3) 49.08 (1) 45.15 (4) 48.39 (2) 42.46 (5)
Satlog 85.21 (3) 87.18 (2) 85.19 (4) 87.23 (1) 82.15 (5)
SCC 82.67 (4) 94.81 (1) 88.49 (3) 94.43 (2) 78.15 (5)
Credit Approval 78.82 (4) 80.88 (2) 79.55 (3) 81.79 (1) 77.30 (5)
Hepatitis 80.40 (4) 84.00 (1) 80.91 (3) 83.89 (2) 72.83 (5)
Average rank 3.6333 1.7667 3.2667 1.3333 5.0000
Overall rank 4 2 3 1 5

CD

5 4 3 2 1

1.3333 NMDS
1.7667 PCA
3.2667 SVD

3.6333RP

5DCT

Figure 5.13: Critical difference diagram of the average ranks for k-NN classi-
fier over the perturbed data using five perturbation techniques (CD = 1.58).

relatively high (1.5). The third group combines RP and SVD with average ranks

of 3.63 and 3.27, respectively. The difference between the two transforms is small

(0.37) and not statistically significant. The fourth group (bottom clique) has RP
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Table 5.12: Average classification accuracy (%) and (rank) of linear SVM
using five perturbation techniques (RP, PCA, SVD, NMDS and DCT).

Dataset RP PCA SVD NMDS DCT

BCW 95.29 (3) 95.60 (2) 95.13 (4) 95.63 (1) 80.68 (5)
Pima Diabetes 74.53 (4) 75.41 (2) 74.88 (3) 75.69 (1) 70.46 (5)
Credit Approval 83.41 (4) 85.09 (2) 85.16 (1) 84.90 (3) 69.96 (5)
Hepatitis 84.31 (4) 85.72 (2) 85.13 (3) 85.77 (1) 82.09 (5)
spam55 89.31 (4) 90.72 (2) 89.13 (4) 91.51 (1) 80.09 (5)
spam50 89.03 (3) 90.24 (2) 89.02 (4) 90.82 (1) 80.05 (5)
spam45 89.14 (3) 90.00 (2) 88.73 (4) 90.26 (1) 79.62 (5)
spam40 89.00 (3) 89.36 (1.5) 88.48 (4) 89.36 (1.5) 79.28 (5)
spam35 89.02 (3) 89.25 (2) 88.42 (4) 89.38 (1) 79.03 (5)
spam30 88.75 (3) 89.12 (2) 88.16 (4) 89.27 (1) 78.93 (5)
spam25 88.12 (3) 89.30 (2) 88.04 (4) 89.41 (1) 79.11 (5)
spam20 87.86 (4) 89.38 (2) 87.95 (3) 89.51 (1) 80.16 (5)
spam15 88.07 (4) 89.13 (1.5) 88.12 (3) 89.13 (1.5) 80.09 (5)
spam10 88.16 (4) 89.22 (1) 88.33 (2.5) 88.33 (2.5) 80.11 (5)
spam5 88.27 (3) 88.27 (3) 88.83 (1) 88.27 (3) 79.82 (5)
spam2 88.10 (2) 88.05 (3.5) 88.54 (1) 88.05 (3.5) 79.14 (5)
Average rank 3.3125 2.0313 3.0938 1.5625 5.0000
Overall rank 4 2 3 1 5

and DCT with 1.37 performance difference which is significantly higher than the

difference between RP and SVD. However, DCT achieves the highest average rank

(5) and thus it is the worst performing transform.

Since we examine the performance of SVM using few datasets, the Friedman test

may give misleading results. Therefore, to overcome this problem, we increased the

number of datasets by using 12 independent subsets of Spambase dataset where

each subset represents the data at a specified dimensionality different from the

other subsets dimensionality. That is, the test is performed on 16 datasets (instead

of 5 datasets) and repeated 30 times using different perturbation techniques. The

reason behind increasing the number of the benchmark datasets is to have reliable

and valid statistical testing. In [83], it has been shown that when the number of

dataset used for comparing N transforms is large (more than 15 datasets), their

average ranks typically follow a χ2 distribution with N − 1 degree of freedom.

Table 5.12 shows the average classification accuracy of linear SVM and the ranks

associated with each perturbation technique. NMDS is the best technique, with

an average rank of 1.56, and the best performer in 10 out of 16 datasets. DCT is

still the worst technique and has the worst average rank of 5. PCA has a quite

similar performance to NMDS, with a difference of only 0.47.
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Figure 5.14: Critical difference diagram of the average ranks for linear SVM
over the perturbed data, derived from the results in Table 5.12 (CD = 1.53).

To gain more insight into SVM classifier performance over the different per-

turbed data, we plot the critical difference diagram in Figure 5.14 for the results

presented in Table 5.12. Here, all transforms are categorised into three groups

according to their performance. The first group consists of transforms with the

lowest average ranks, i.e. NMDS and PCA. The second group consists of RP, SVD

and PCA, with average rank of 2.81. The third group consists of DCT only, with

the highest average rank (5). In general, the results indicate that both NMDS and

PCA are significantly better than the other transforms. However, PCA shows a

performance close to both RP and SVD and, therefore, it has been linked with

them in a single clique.

We also compare the accuracy on the original data to the accuracy on the

perturbed data at one reduced dimension. Table 5.13 shows the accuracy and

Friedman ranks of k-NN classifier. NMDS performs closely to the original data

and thus comes in the second place, with average rank of 2.07. RP and PCA show

relatively similar performance where the difference is 0.53. DCT performs poorly

and dominates the highest rank (6). The critical difference diagram is shown in

Figure 5.15. The results suggest quite similar performance of NMDS and PCA to

the original data, X. RP also shows a similar performance to NMDS and PCA.

The lack of significant difference can also be observed for RP, PCA and SVD as
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Table 5.13: Classification accuracy (%) and (rank) of k-NN at one reduced
dimension.

Dataset X RP PCA SVD NMDS DCT

Wine 96.29 (1) 95.30 (3) 95.22 (4) 92.40 (5) 96.14 (2) 89.73 (6)
BCW 96.11 (3) 96.06 (4) 96.48 (1) 95.21 (5) 96.30 (2) 95.06 (6)
Iris 95.11 (1) 93.95 (4) 94.72 (3) 93.59 (5) 94.89 (2) 83.02 (6)
HDigits 97.55 (1.5) 97.40 (4) 97.53 (3) 95.38 (5) 97.55 (1.5) 93.65(6)
Ecoli 66.34 (1) 64.99 (5) 65.36 (4) 65.99 (2) 65.42 (3) 56.67(6)
ImageSeg 94.01 (1.5) 93.85 (4) 93.91 (3) 93.33 (5) 94.01 (1.5) 91.33(6)
MFeatures 96.37 (2.5) 96.04 (4) 96.66 (1) 93.73 (5) 96.37 (2.5) 90.73(6)
PageBlocks 95.42 (1) 92.42 (4) 94.04 (3) 91.42 (5) 94.84 (2) 91.33(6)
Spambase 91.36 (1.5) 91.36 (1.5) 91.23 (5) 91.31 (4) 91.34 (3) 85.12(6)
Pima 73.89 (1) 72.67 (3) 72.15 (4) 72.00 (5) 73.29 (2) 70.55(6)
Yeast 55.21 (1) 54.18 (3) 53.45 (4) 51.50 (5) 54.69 (2) 50.77(6)
Satlog 88.44 (1) 88.21 (4) 88.23 (2.5) 86.64 (5) 88.23 (2.5) 84.64(6)
SCC 97.93 (1) 97.44 (5) 97.70 (3) 97.67 (4) 97.88 (2) 91.44(6)
Credit 83.96 (1) 83.42 (3) 83.25 (4) 82.57 (5) 83.71 (2) 80.40(6)
Hepatitis 84.87 (4) 84.99 (3) 85.02 (2) 82.62 (5) 85.28 (1) 75.24(6)
Ave. rank 1.53 3.63 3.10 4.67 2.07 6.00
Overall 1 4 3 5 2 6

CD
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Figure 5.15: Critical difference diagram of the average ranks for k-NN classi-
fier at one reduced dimension, n− 1, (CD = 1.98).

they are represented in a single clique. The worst performance is reported to SVD

and DCT with average ranks of 4.67 and 6, respectively.

Overall, the results reveal the good performance of NMDS in relation to the



Chapter 5. Evaluation of Distance-Based Clustering and Classification 172

other dimensionality reduction approaches in terms of retaining high data utility

for distance-based classification. The results also suggest some similarities between

NMDS and PCA, but NMDS is still the best performing technique as the accuracy,

in most cases, is the highest compared to the other approaches.

5.4 Summary

In this chapter, we benchmark our perturbation method against four alternative

perturbation techniques. We experiment with a variety of clustering and classifica-

tion algorithms and show that our method performs better than other dimension-

ality reduction techniques in terms of utility retained in the data. The patterns

inherited in the original data can easily be discovered in the perturbed data with

similar accuracies or even better in some cases.

The choice of which approach to use to perturb the data is crucial, but essen-

tially the perturbation method should not compromise either privacy or utility.

Although PCA provides very good data utility, it is vulnerable to some distance-

based privacy attacks since the location of the original data points can be estimated

when some prior knowledge is available to the attacker [108, 165]. RP, SVD and

DCT approaches cause more distortion to the data, and therefore, better privacy

would be achieved. However, the large size of distortion negatively affects the

utility of the data, and thus they seem inefficient, especially if the analysis utilises

the distance between data objects.

The main findings of this chapter are summarised as follows:

• For clustering, NMDS and PCA were the best and outperformed other tech-

niques. NMDS maintains better privacy against distance-based and PCA-

based attacks.

• Both NMDS and PCA demonstrate good neighbourhood preservation, good

class compactness and better class separation. The perturbed data gener-

ated using these methods are still good enough to provide for reasonable

discrimination between classes for SVM, and in some cases the data in the

lower dimensional spaces provide improved classification performance.

• The worse performance was reported for SVD and DCT due to the high

distortion they often cause to the original data.
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• Using RP causes some distance distortion, specially at the low dimensions,

but, interestingly, the accuracy is highly competitive at the higher dimen-

sions.

• A trade-off between privacy and accuracy need to be determined so that the

data owner can choose an appropriate lower dimension and transform the

data to that dimension.



Chapter 6

Conclusions and Future Work

This thesis explored the geometric properties of non-metric MDS and its appli-

cation to data perturbation. The positive performance of non-metric MDS is a

consequence of the solid mathematical foundations it relies on, which ensure the

good preservation of distance and the versatility of concealing original data values.

The results of this study are promising and could contribute to an increased aware-

ness of privacy. The results could help data owners who decide to outsource their

data for data mining or share the analysis with other external parties. This chap-

ter summarises the work undertaken during this study and discusses the value and

limitations of our method for PPDM. It also recommends a number of areas that

could be investigated in the future to improve the performance of the proposed

method.

6.1 Conclusions

In this thesis, we considered the issue of protecting private information in

databases that are intended for outsourcing or sharing with other parties for the

purpose of distance-based analysis. Therefore, we have proposed a novel method

that is based on non-metric MDS for PPDM and implemented and tested it using

the capabilities of MATLAB.

The thesis can be summarised as follows. First, we surveyed the literature

to obtain useful insights and make a coherent categorisation of the most related

perturbation methods. Second, we introduced and discussed the main character-

istics of non-metric MDS and studied its capabilities in terms of data utility and

privacy. Third, we assessed both information loss and disclosure risks associated

with the proposed method under specific conditions and assumptions. Fourth, we

174
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evaluated and tested the application of our method to data mining tasks, including

clustering and classification.

The term “privacy” in this work has different connotations than those for data

anonymisation [102, 113, 158], where reducing the risk of identifying individuals

is more important, and from differential privacy [54], which aims to ensure that

the presence or absence of any individual data has a statistically negligible effect

on the query results obtained by a predefined randomised function. Here, the

privacy concerns can distinctly be defined as whether or not the attacker is able

to estimate or reconstruct the original data values. This can also be extended to

include the ability to reverse-engineer the process of the transformation.

We have demonstrated that the non-metric MDS is a flexible perturbation

method that can be adapted to meet other information requirements and vari-

ous selection criteria. For instance, the pairwise distances can be calculated using

different distance metrics and the quality of the mapping can be assessed using

various measures. We have looked at the geometric properties underlying the

perturbed data and have shown their resistance to privacy threats. The overall

performance of the technique was evaluated and compared with some existing

techniques, and the results were very promising in confirming the suitability and

effectiveness of the proposed technique.

We have also shown the following in relation to non-metric MDS for data per-

turbation:

• Non-metric MDS often results in good correlation between the Euclidean

distance in the lower dimensional space and the dissimilarity in the higher

dimensional space. This means that the points in the perturbed data opti-

mally represent the objects in the original data, (i.e. the pairwise distances

are well preserved).

• The final solution is non-linearly derived by an unknown function (monotone

regression).

• The perturbed data are entirely independent from the original data, as we

only use the ordered dissimilarities to generate the final solution.

• The perturbed space, Y , generated by the non-metric MDS transformation,

T , is an ε-isometric space. This implies that the pairwise distances are

mapped with some small distortion, ε, which would effectively increase the

resistance to distance-based attacks.
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• The perturbed data provide different statistics except the distance-related

statistics, which are preserved within a very small tolerance that will not

affect the accuracy of data mining model.

• It would be difficult (if not impossible) to recover or estimate the original

data values from the perturbed data due to the heavy distortion caused by

non-metric MDS.

We empirically examined the usefulness of the perturbed data for distance-based

data mining. We discovered that mapping the data into high dimensions, but

lower than the original dimensionality, results in the best trade-off performance.

The level of information loss, which is represented by the stress, confirms that

non-metric MDS perturbation successfully preserves data utility for data mining

tasks. The non-metric MDS provides a non-linear and smooth mapping of high-

dimensional input data into a low-dimensional space. The main characteristic of

the transformation provided by non-metric MDS is the preservation of the essential

topology of the original data. It has the ability to preserve the internal structure

in the input space by mapping nearby and far away points in the input space into

nearby and far away points, respectively, in the output space [90]. This feature

makes the perturbed data useful for distance-based data mining.

We also presented a theoretical study on evaluating privacy breaches when prior

knowledge is obtainable to the attacker. We proposed two privacy attacks and

quantitatively assessed the disclosure risk in the perturbed data. The first attack

is based on the non-linear least-squares technique, which attempts to minimise

the error of estimating the location of an unidentified point in the perturbed

data using some other known reference points. The second attack studies the

characteristics of the eigenvector space, which is generated by PCA and derived

from the known sample and the perturbed data, and attempts to find a closer

match to the eigenvector space of the original space so that the perturbed data

can be rotated along the best selected eigenvectors and the original data can be

recovered. The experimental results demonstrated the robustness and resistance

of non-metric MDS to these attacks because the perturbed data are subject to

high uncertainty and provide the attacker with less information about the original

data.

From a privacy-preserving perspective, non-metric MDS has distinguishing fea-

tures in comparison to existing perturbation techniques because it evades the as-

sumption made by these techniques that dissimilarities and distances are related
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by some fixed formula. The solution generated by non-metric MDS introduces

further uncertainty because the dissimilarities are mapped into distances using a

non-metric function, (i.e. one that preserves the rank orders instead of the dis-

tances themselves). Since the actual distances between data objects are unknown,

it would be difficult for adversary attacks to breach privacy. Furthermore, non-

metric MDS does not use the variability of the data as a critical element in forming

the distances in the generated configuration; therefore, it avoids some of the strong

distributional assumptions that are necessary in variability-dependent techniques.

Although our study may have some limitations, we believe that our findings

are promising for better understanding of the issue of privacy in data mining ap-

plications. In general, non-metric MDS data perturbation has unique benefits for

PPDM. The patterns present in the original data can easily be discovered from

the perturbed data with similar or even better accuracy in some cases. Many

popular distance-based data mining algorithms are invariant to the perturbation.

For example, the classifiers, including nearest neighbour, linear SVM, and non-

linear SVM with kernel methods, trained on the perturbed data have almost the

same accuracy as those applied to the original data. This conclusion is also valid

for most popular distance-based clustering algorithms, including k-means, hier-

archical clustering, and density-based clustering. As described throughout this

thesis, retaining a large number of dimensions when perturbing the data obtains

the highest utility and may make the task of distance-based analysis easier. It is

also possible to apply data mining algorithms without having to modify them to

work with perturbed data.

In this thesis, we introduce the first use of a non-linear transformation, which is

represented by non-metric MDS, as a competitive method for data perturbation in

PPDM. Previous applications of non-metric MDS focused on visualisation [21, 30]

and pattern analysis [52]. To the best of our knowledge, this is the first study

to examine the suitability of non-metric MDS for PPDM. Non-metric MDS ad-

dresses problems that have been identified with previously proposed perturbation

methods, and when the results have been compared to those methods, non-metric

MDS has been found to be robust and competitive.

6.2 Limitations and Future Work

Some limitations of our work are worth mentioning, together with further work

necessary to extend the research, taking into account current limitations. These



Chapter 6. Conclusions and Future Work 178

include:

• Scalability of Non-metric MDS Algorithm

Due to the high computational complexity of the native non-metric MDS

algorithm, we use datasets with a relatively small number of data objects.

Obviously, we will need to work on making it scalable to large databases

in order for it to be used as more general perturbation tool for PPDM.

Scalability of the algorithm is left for future research.

• Uncertainty Quantification

Privacy quantification is an open research issue. In this work, we evaluate

privacy on the basis of the distance between the original and estimated data

using heuristic methods. However, other measures may be required and may

produce different understanding. For instance, it would be clever to use an

ad-hoc measure that indicates the uncertainty associated with the perturbed

data during the transformation process.

• Privacy Attacks

Another challenge in PPDM is modelling background knowledge that an

adversary obtains independently from other available data sources to conduct

privacy attacks. Clearly, it is difficult to provide a protection against attacks

with an arbitrarily large amount of knowledge because one may not be able

to predict which values of the original data may be inferred by the attacker

a priori. In our work, we consider two different attacks (Sections 4.4 and

4.5) based on an assumption that the attacker has some knowledge about

the original data. Then, we attempted to employ this information in our

simulated attacks in order to disclose the original data values. Nevertheless,

other attacks may be possible depending on different assumptions so we have

not comprehensively assessed every possible scenario. It may also be possible

to consider the problem of quantifying how much information is embedded

in the perturbed data and how the adversary could use this information to

attack the original data.

• Seeking The Best Mapping that Minimises Distortion

An essential task of distance-based data mining is that the object is assigned

to the right group according to a predefined distance function. Consequently,
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preserving the distance-related properties of the underlying data in the low-

dimensional space provides high data utility and more accurate results would

be expected. This implies that whenever the stress is very small, the utility

is higher. As discussed in Section 4.2, the stress can be beneficially used to

reflect the goodness of the perturbed data for the analysis. However, it is

difficult to define a criterion that exactly determines a value of the stress in

which the derived solution represents the best representation of the original

data [18]. Thus, more systematic insight into how the stress depends on

the number of objects, dimensions, and errors in the dissimilarities would be

worth further investigation.

• The Choice of Distance Metric

Distance-based algorithms intend to group or classify a set of objects into

homogeneous non-overlapping subsets or groups according to some concept

of similarity, which is often expressed as some sort of distance between a pair

of objects. Therefore, the distance function should accurately reflect such

relationships in order to facilitate the task of the data mining algorithm.

In our work, this is also a limiting factor since our method only considers

the Euclidean distance (L2 norm) as a dissimilarity measure, which means

that it can only take into account the second-order statistics of the data. As

we have seen in Section 3.3.3, the distortion caused by non-metric MDS in

pairwise Euclidean distances is limited compared to other norms. However,

the effect of using other distance functions may be worth considering as

future work.

• Scenarios for PPDM

In our work, we have investigated two scenarios for PPDM: data outsourc-

ing and external access (Section 1.2). We believe that additional work on

distributed data analysis could be studied in conjunction with a variety of

distance-based data mining frameworks.

• Non-distance based data mining

Our privacy method attempts to generate data that preserve distance-related

properties. However, data mining algorithms vary according to the under-

lying properties they require during the learning process. For example, a

decision tree induction algorithm [160] recursively selects the best attribute
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to split the data and expands the leaf nodes of the tree until a stopping crite-

rion is met. The choice of the best split is often determined by an information

gain ratio, which is based on the entropy metric. We have not investigated

how our perturbed data would work in the context of non-distance based

approaches. This could be attempted in further research.

• Other Potential Privacy Threats

Privacy concerns differ from one application to another and from one data

owner to another. However, it is essential, in both cases, that the privacy

should be defined clearly before publishing the data or sharing with external

parties. Many methods have been developed, each of which makes specific

assumptions to address the issue of privacy. For example, distribution es-

timation assumes that the perturbation is additive and the attacker knows

the distribution of the added noise, which is independent and identically

distributed. The attacker attempts to estimate the original distribution by

exploiting the properties of the random noise. Then, s/he can use the es-

timated distribution to train a decision-tree classifier and accurate results

may be obtained. Although this kind of attack may help, to some extent,

to estimate the original distribution, it is impossible to reconstruct the ex-

act distribution [5, 7]. If preventing the distribution estimation is a privacy

requirement of data owners, it would be better to consider this when design-

ing a privacy-preserving model. However, since our emphasis is initially on

providing much useful data for distance-based analysis, we defer the inves-

tigation of this problem to future work.



Appendix A

Triangle Geometry for

Non-Metric MDS

To illustrate how the points are placed in a configuration Y t where t is the itera-

tion’s number, assume that a, b, c are three data points in the data Y ; their inter-

point distances are dab, dbc and dac conforming to the rank-order dab ≤ dbc ≤ dac.

That is, these points form a triangle, as illustrated in Figure A.1(a). Assume that

the points a and c have been placed and that the distance between them is dac.

Without loss of generality, all possible positions for placing a point b, without

violating the constraint dab ≤ dbc ≤ dac, are bounded by the shaded area.

Similarly, consider another distances order: dab ≤ dac ≤ dbc. In this case, the

uncertainty about placing b will increase to include a wider area, as shown in

Figure A.1(b). The shaded area represents the uncertainty in placing the points,

which can prevent the attacker from exactly determining the position of any point.

In other words, point placement is governed by the rank-order of distances rather

than their real magnitudes.

To prove that the uncertainty of placing a given point is bounded by a closed

area in the mapping space, we have to introduce some elementary of triangle

geometry.

181
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(a) dab ≤ dbc ≤
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(b) dbc ≤ dab ≤ dac

Figure A.1: Representation of all possible positions (shaded area) to place
the point b, without violating the constraint: (a) dab ≤ dbc ≤ dac and (b)

dab ≤ dac ≤ dbc.

Theorem A.1. Let ∆abc be a triangle with angles θa, θb and θc, and let dab be the

distance between a and b, dbc be the distance between b and c, dac be the distance

between a and c.

c θc
dbc

b
θb

dab

a

θadac

e

Then we have the following:

1. dab > dbc if and only if θc > θa,

2. dab = dbc if and only if θc = θa, and

3. dab + dbc > dac.

Proof. Without loss of generality, consider the triangle ∆abe which is clearly an

isosceles triangle with two congruent sides, dab ∼= dbe provided. It is obvious that if

two sides in a triangle are congruent, then the angles opposite are also congruent,

i.e., if dab ∼= dbc, then θc ∼= θa. It also follows that if θe > θa, then dab > dbe. This

is also true for the scalene triangle ∆abc. Hence, the first two statements are true.
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For the third statement, let dbe be a perpendicular line passing through b. The

segment dae is the shortest distance from point a to dbe and implies dab > dae.

Similarly, the segment dce is the shortest distance from point c to dbe and thus

implies dbc > dce. Let dab + dbc > dae + dce. We have dae + dce = dac. Thus,

dab + dbc > dac.

Theorem A.2. Let ∆abc be a right triangle, and let dab, dac and dbc be the lengths

of the sides.

e

dbe

c θc
dbc

b

dab

a

θa

dce

dae
dac

Then d2
ac = d2

ab + d2
bc (the Pythagorean relationship).

Proof. Let dbe be a line passing through b to point e. The point e divides the length

of dac into two segments, dae and dce. The new triangle ∆abe is similar to triangle

∆abc, because they both have a right angle, provided dbe is a perpendicular to the

side dac, and share the angle θa. This implies that the angle θb in ∆abe is equal

to the angle θc in ∆abc. Similarly, the triangle ∆bce is similar to triangle ∆abc by

the same reasoning.

From the triangles ∆abc and ∆abe,

dae + dce
dab

=
dab
dae

dac
dab

=
dab
dae

.

Therefore, d2
ab = dacdae.

From the triangles ∆abc and ∆bce,

dae + dce
dbc

=
dbc
dce

dac
dbc

=
dbc
dce

.

Therefore, d2
bc = dacdce.

Adding d2
ab and d2

bc gives
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d2
ab + d2

bc = dacdae + dacdce

= dac(dae + dce)

= dacdac.

Hence, d2
ab + d2

bc = d2
ac.

Definition A.3. Let ∆abc be a right triangle with an angle θb = 90◦, the acute

angles, θa and θc, are such that θc = cos−1
(
dbc

dac

)
and θa = cos−1

(
dab

dac

)
.

Given three ordered distances dab ≤ dbc ≤ dac, as in the previous example.

Assume that points a and c have been placed in their positions, and we want

to place a given point b, without violating the order condition. Figure A.2 shows

some three possible positions where point b is quite likely to be placed. Intuitively,

choosing any point bi in the shaded area satisfies the above condition. Now, let us

prove that point b will be somewhere within the shaded area.

Firstly, we check dac ≥ dbc. The distance dac is radius r, i.e., r = dac, and it

easy to see that

r = dac = db′c.

Now, we can see that db′c ≥ dbc. Thus,

r = dac > dbc.

Secondly, we check dbc ≥ dab. Consider the triangle in Figure A.2 whose vertices

are a, b′′ and c. It is clear that two sides are equal in length, dab′′ = db′′c, so that

by Theorem A.1,

θ1 = θ2,

and also,

θ2 + θ3 > θ1.

Hence,

dbc ≥ dab.

Similarly, we can show that changing the order would largely affect the place-

ment of a given point b, and thereby, increase the uncertainty of the location

where point b can be placed. Assume that we have distances with different order
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Figure A.2: Uncertainty boundary to place a point b under the constraint
dab ≤ dbc ≤ dac.

dab ≤ dac ≤ dbc. Again, assume that points a and c have been placed and the

distance between them is the radius r of the circle whose centre is point a (in-

terchangeably point c) as shown in Figure A.3. Let A be the area where point b

can be place under the above condition, and B be the segment of the circle whose

centre is c. The area B can be calculated by the formula

B =
1

2
r2

(
θ

180
π − sin θ

)
,

so we need to find the angle θ. Since θ1 = θ2, the angle θ is

θ = θ1 + θ2 = 2θ1.

By theorem A.2

θ = 2 cos−1

( 1
2
r

r

)
= 2 cos−1

(
1

2

)
= 120◦.

So we have
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Figure A.3: Uncertainty boundary to place a point b under the constraint
dab ≤ dac ≤ dbc.

B =
1

2
r2

(
120

180
π − sin(60)

)
=

1

2
r2

(
2

3
π −
√

3

2

)
.

Now, we compute the area A. It is easy to see that

A = {Area of the circle whose centre is a} −B −B′

= {Area of the circle whose centre is a} − 2B as B = B′.

The area of the circle is given by the formula π r2, so that

A = π r2 − 2

(
1

2
r2

(
2

3
π −
√

3

2

))

= π r2 − 2

3
r2 π +

√
3

2
r2

=

(
1

3
π +

√
3

2

)
r2.

In non-metric MDS, the interpoint distances between points are approximated

in non-metric manner using the rank-order of the dissimilarities, which are not

sufficient to determine a metric configuration [148]. The points in the perturbed

data lie arbitrary within uncertain areas. The boundary of placement area can be
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small or large based on the corresponding order as shown earlier. Thus, the at-

tacker learns nothing from the perturbed data since they have no certain measures

that can be used to determine the exact positions of the points.
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