Mathematical modelling of

the floral transition
— with a Bayesian flourish —

NiIicK PULLEN
September, 2014

A thesis submitted to the University of East Anglia for the degree of
Doctor of Philosophy

John Innes Centre







ABSTRACT

Flowering plants are abundant on Earth. In the model dicot plant
species, Arabidopsis thaliana, multiple endogenous and exogenous
signals converge to initiate a change from vegetative to reproductive
growth in optimal environmental conditions. Much genetic and ex-
perimental research has gone into elucidating the biological mecha-
nisms controlling the floral transition. However there has been little
mathematical modelling of this process.

The aim of this thesis was to gain an understanding of the essen-
tial features and dynamic properties underlying this developmental
phase change from a systems and computational biology perspec-
tive. Combining mathematical modelling with experimental results
a core regulatory network was defined with multiple feedback loops.
Simplified models inevitably miss finer details of the biological sys-
tem yet they provide a route to understanding the overall system be-
haviour. This reductionist path allowed a tractable genetic regulatory
network to be investigated without large numbers of parameters.

Not overfitting to data and parameter inference are two current
challenges in systems biology. Treating all unknowns as a probability
within the setting of Bayes’ theorem as a statistical framework allows
for a solution to both of these issues. This thesis investigates the use
of a contemporary Bayesian inference algorithm, nested sampling,
for inference problems typically found in systems biology where the
data are few and noisy. Nested sampling simultaneously calculates
the key term for model comparison and also produces parameter
inferences allowing uncertainty in models and predictions to be ro-
bustly quantified.

Network models are developed that can accurately reproduce ex-
perimental leaf number data, show important properties of the flo-
ral transition such as the ability to filter environmental noise and
provide a clue on spatial patterning of an Arabidopsis shoot apex.
Incorporating network knowledge into a plant breeding program is
an exciting goal for future developments addressing global food se-

curity.
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INTRODUCTION & BACKGROUND

1.1 Outline of the thesis

This thesis opens by providing a very short summary of the molec-
ular biology the non-biologist reader may need to know to under-
stand future sections of this thesis and also introduces the model
plant that informs our study of the floral transition. More detail
on the genes known to be involved in this process, as well as up-
stream, from the first perceived signals, and downstream, to floral
organ specification, are provided which gives a sense of the scale of
the network. After the literature reporting experimental biological
studies is covered, published mathematical models of flowering time
in model species and crop species are reviewed. Thereafter the intro-
duction will cover the basics of Bayesian inference, and why this sta-
tistical framework is used as opposed to optimisation and maximum
likelihood approaches. This will be needed for the following chap-
ter on nested sampling which is quite a new technique for a proper
Bayesian treatment of an inference problem. It allows one to calcu-
late the key quantity for model comparison and perform parameter
inference for mathematical models. We are amongst the first to apply
nested sampling to the field of systems biology. Following initial test-
ing and tuning of the algorithm its output will be measured against
that of the current workhorse of Bayesian inference. System dynam-
ics will be recovered and models of biological oscillators compared.
Our own model for the floral transition is developed in the next chap-
ter. A reductionist approach will be taken to help us understand key
features of the network by boiling the multi-gene network from the
literature review down to a few key hubs. A simple linear model of
these hubs will be compared with an ordinary differential equation
(ODE)-based model. This ODE model has at its core well-studied
network motifs for enabling a system to reduce noise levels and con-
fer irreversibility. Using nested sampling all the developed models
are compared in a robust fashion and how accurately they predict

experimental data is studied. That chapter is concluded with a de-
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INTRODUCTION & BACKGROUND

tailed discussion of the strengths and limitations of the model. Lastly
the thesis ends with an overall discussion of the work presented, the
themes considered and gives an outlook on possible future develop-

ments.

1.2 Basic biology and Arabidopsis thaliana

Plants are eukaryotes which means their cells have a nucleus'. De-
oxyribonucleic acid (DNA) is found in the nucleus and is comprised
of four bases: adenine (A), cytosine (C), guanine (G) and thymine
(T) and a sugar-phosphate backbone [1]. Hydrogen bonds between
the complementary base pairs A:T and C:G give DNA its famous
double helix structure. The process of transcription takes place in
the nucleus. Double stranded DNA is opened by enzymes and pre-
messenger ribonucleic acid (pre-mRNA) is transcribed. This con-
tains exons and introns, regions that do or do not code for a protein
respectively. The introns are spliced out and exons joined together
so that mature mRNA contains only coding regions. Nuclear export
follows from the cell’s nucleus to the cytoplasm which is the location
of the process of translation. This means the mRNA is translated
from its coding sequence and a protein is formed, facilitated by ri-
bosomes. Certain proteins called transcription factors can bind to
the promoter sequence of a gene to activate or inhibit the transcrip-
tion of that specific gene. Further control processes such as post-
transcriptional modifications or micro-RNAs also affect the level of
a gene’s expression. Gene regulation is a highly complex and intri-
cate process only briefly touched on here. Understanding the inter-
actions between genes, and the proteins they code for, is a major aim
for scientists across the world. Fortunately for the systems biologist
tackling problems in plant biology there is a model organism which
over two decades of detailed genetic studies have revealed many com-
ponents of its genetic regulatory networks (GRNs).

Arabidopsis thaliana (L.) Heynh.? is a model plant species in the
Brassica family that was the first plant to have its sequenced genome
published [2]. A common weed, its relatively small diploid genome,
short life cycle and small physical size provide a good testbed for un-
derstanding many biological processes. Post-germination, the life

cycle of an Arabidopsis plant can be simply described as a vegeta-
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Figure 1.1: The phenotype of short-day grown Arabidopsis. Top) Rosette and early flower bolt. Lower left)

The main stem of a bolting Arabidopsis. Cauline leaves are visible. Lower right) A branching Arabidopsis.

Siliques are visible on the main stem.



Figure 1.2: An Arabidopsis
inflorescence. Note siliques
forming from the oldest
flower and young buds still
developing. This is because
wildtype Arabidopsis are
indeterminate—they will
keep producing new growth

from the shoot apex.
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tive phase, where leaves are formed in a rosette on the ground, fol-
lowed by a transition to reproductive development where flowers are
formed. Morphologically around the time of this transition the plant
bolts. This means it develops vertical stems attached to which are
cauline leaves, and when the transition is complete the apical primor-
dia that would otherwise have become leaves become flowers. After
pollination and fertilisation the seed will set in pods (siliques) before,
as an annual, the plant will die. The floral transition (as it'’s known) is
therefore important for correct timing of flower and seed production
to enable the parent plant’s progeny to germinate and develop. Un-
derstanding the floral transition is an active area of research globally.
Excellent genetic studies have revealed many genes involved in this
crucial developmental phase but there have been few attempts to give
a mathematical understanding to the transition — the focus of this

thesis. Next we give an overview of the experimental literature for
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multiple pathways that converge to effect flowering time, and genes

that affect the floral transition and the development of floral organs.

1.3 The genetics of flowering time

The floral transition in Arabidopsis has been a well-studied devel-
opmental progression over the past 25 years. Many key genes and
signalling pathways have been elucidated from experimental stud-
ies. Microarrays, which allow for the analysis of thousands of genes
genome-wide, have revealed that hundreds of transcripts are specifi-
cally affected in their expression in the apex upon floral induction [3,
4].

There are thought to be at least six pathways [5, 6] (see Figure 1.3)
that stimulate flowering in Arabidopsis: ageing, photoperiod, ver-
nalisation, ambient temperature, autonomous and gibberellin (GA).
Some of the most important elements in these pathways have been
revealed to be genes that are integrators for multiple pathway sig-
nals. These floral pathway integrators activate floral meristem iden-
tity genes to facilitate meristem changes that lead to the activation of
organ identity genes which control flower development.

Vernalisation is the process whereby prolonged exposure to win-
ter cold increases the competence of a number of species to flower
in the spring. This has resulted in a number of agricultural crops
like wheat and beans being bred to establish in the autumn before
the next summer’s harvest, in contrast to lines that can be planted
in the spring and harvested just a few months later. Vernalisation
is also an important pathway in certain accessions of Arabidopsis.
Repression of the MADS-box transcription factor FLOWERING LO-
CUS C (FLC) has been established as the main target of the vernalisa-
tion pathway in Arabidopsis [7] but there are also FLC-independent
mechanisms of vernalisation [8]. In particular, the related genes
AGAMOUS-LIKE 19 (AGL19) [9] and AGL24 [10] promote flower-
ing which contrasts with FLC which acts as a major repressor of flo-
ral initiation in some accessions. FLC represses some of the pho-
toperiod pathway genes such as FLOWERING LOCUS T (FT), SUP-
PRESSOR OF OVEREXPRESSION OF CONSTANSI (SOC1) and FD
before vernalisation by direct binding [11]. Profound investigations

into complex molecular biology and epigenetic silencing after plants

15
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Figure 1.3: The flowering time network of Arabidopsis. Multiple environmental and endogenous signals,
some travelling over a long distance, converge at the apex. At the shoot apical meristem a complex net-

work integrates these signals to robustly initiate flowering time. Figure taken from Srikanth & Schmid [6].
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return to the warm have revealed how FLC is stably repressed after
enough cold exposure at the cell level [12]. Li et al. [13] showed that
another repressor, SHORT VEGETATIVE PHASE (SVP), interacts
with FLC to delay flowering by associating to the FT' and SOCI pro-
moter regions. SVP is in addition regulated by the ambient temper-
ature, autonomous and gibberellin pathways [13, 14] and is but one
example of the degree of overlap between the autonomous and tem-
perature pathways.

Autonomous pathway proteins such as FCA, FPA, FVE and LU-
MINIDEPENDENS, promote flowering independently of photope-
riod but the late flowering mutants respond to vernalisation if FLC
is present [8]. This suggests they act upstream of FLC and promote
flowering by inhibiting FLC expression [8]. Like many genes, FCA
and FVE have a dual role in flowering time control. They are redun-
dant in the autonomous pathway but act together in a temperature-
dependent pathway [15]. SOCI expression is also affected by the
autonomous pathway [16, 17].

In the era of global warming the effect of temperature on flower-
ing is important to understand for breeding heat resilience into crops.
The ambient temperature pathway [15, 18] is thus of growing interest.
The surrounding temperature in a plant’s environment can induce
flowering at warmer temperatures under otherwise non-inductive
short-day light conditions [18]. A small shift from 23 °C to 27 °C
was enough to reduce the time to flower in many accessions and mu-
tant lines [18]. Kumar et al. [19] showed that increasing tempera-
ture causes PHYTOCHROME INTERACTING FACTOR4 (PIF4), a
transcription factor, to activate FT and is necessary for floral induc-
tion in short-day photoperiods with temperatures of 27 °C. Over-
expression of PIF4 causes premature flowering at 22 °C but when
grown at 12 °C this early flowering is strongly suppressed [19].

Two recent similar papers deal with another road to ambient tem-
perature response in parallel to the route of PIF4. These articles [20,
21] focus on the control of temperature-dependent flowering by SVP
and FLOWERING LOCUS M (FLM) and deliver a number of inter-
esting results. As mentioned above SVP is a floral repressor that in-
teracts with FLC. FLM, related to FLC, also interacts with SVP to

control flowering, yet in two opposing ways. This is because of the

17
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process of alternative splicing whereby certain exons or introns that
make up the gene are either included or excluded from the mature
mRNA before being translated into a protein. This method can there-
fore give extra levels of molecular control. The two main forms of
FLM in Col-0 wildtype are labelled FLM-$ and FLM-§. At 16 °C
FLM-f3 is dominant and at 27 °C FLM-¢ is prevalent [20]. The FLM-
B isoforms form a complex with SVP to repress flowering whereas
the SVP-FLM-8 complex promotes flowering [20, 21]. Hence the
temperature-dependent splicing of these FLM variants has an antag-
onistic effect at different temperatures. The repressor complex can
bind to the promoters of various floral genes, for example SOCI or
FT, to affect their transcription [20, 21]. Furthermore at higher tem-
peratures the stability of SVP protein is decreased [21] and svp mu-
tants flowered earlier than wildtype at temperatures from 5 °C to
27°C [21].

SVP is also involved in the gibberellin pathway. Gibberellin is
a phytohormone® and is required for short-day flowering in Ara-
bidopsis [22]. The strong GA-deficient mutant gal-3 never flowered
at 21 °C or 25 °C in 8 hour short-day photoperiods [22]. Exoge-
nous application of GA rescues the flowering phenotype and speeds
up wildtype flowering in short-days [22]. A number of enzymes
are involved in gibberellic acid biosynthesis. One of these enzymes,
GA20-OXIDASE 2, is rate-limiting and, because it’s reduced in its
gene expression levels by SVP, lower levels of gibberellic acid en-
sue [23]. Floral integrators are also implicated as having a function
in the GA pathway. SOCI is regulated by gibberellins [16, 24] as, for
example, in the gal-3 mutant grown in short-days it was shown that
with GA treatment SOCI expression significantly increased after six
weeks [24]. Blazquez et al. demonstrated that LEAFY (LFY) levels
were far lower in gal-3 mutants compared to wildtype and overex-
pression of LFY can partially overcome the failure of these mutants
to flower in short-days [25]. More detailed experiments using tissue
specific promoters have shown that in long-days GA can increase FT
transcipt levels in the phloem, and this was likely to be independent
of FLC [26]. A recent report found that while gibberellin promotes
the transition from vegetative to inflorescence development it sur-

prisingly inhibits flower formation [27]. GA mutants, such as gal-3,
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grown in long-days developed more rosette leaves but fewer cauline
leaves and exhibited reduced branching [27]. On the other hand af-
ter applying a GA treatment the plants formed fewer rosette leaves
and more cauline leaves [27]. Thus LFY expression is increased by
gibberelin levels, which promote the floral transition, but LFY then
indirectly aids catabolism of GA triggering the onset of flower devel-
opment [27].

Other hormones are known to influence floral development. LFY
is directly induced by auxin-activated MONOPTEROS in incipient
primordia [28]. In short-days a supply of cytokinin was sufficient
to induce flowering that required SOCI for this functionality as socl
mutants did not flower after hormone treatment [29]. The spatial lo-
cation of SOCI expression and the cross-talk between cytokinin and
auxin in the shoot apical meristem (SAM), in particular at the stem
cell niche [30], has led some to wonder on the connection between
stem cell maintenance, cytokinins and floral integrators at the time
of floral induction [31].

When there are no inductive floral signals a plant must still at-
tempt to produce seeds before dying. As a fallback mechanism the
ageing pathway ensures that Arabidopsis will flower eventually. The
main players so far elucidated in this respect are micro-RNAs (short
non-coding sequences around 21 nucleotides in length that silence
mRNA) and SQUAMOSA PROMOTER BINDING PROTEIN LIKE
(SPL) transcriptions factors. Early flowering in miR-172 overexpress-
ing lines is caused by reduced levels of APETALA2 (AP2)-like floral
repressors such as TARGET OF EAT1 (TOEI) and TOE2 [32]. Anim-
portant finding was that miR-172, a floral promoter, increases over
time [32] whereas miR-156, a floral repressor, decreases as the plant
ages [33-35]. SPL3 is directly targeted by miR-156 [33] and SPL3 ex-
pression increases more than 10-fold in a week after a shift to long-
days [4]. SPL4 and SPL5 are also regulated by miR-156 [33] and this
somewhat redundant clade is required for upregulation of meristem
identity genes such as LFY, FRUITFULL (FUL) and API [36]. Sim-
ilarly SPL9 binds SOCI, an important integrator of the floral path-
ways, as well as AGL42, both MADS box family members [35]. SPL9
also directly activates miR-172, and probably does this by overlap-

19
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ping with SPLI0, thus regulating vegetative phase change in Ara-
bidopsis [34].

Taken together these results show the plant has an insurance pol-
icy for flowering in non-inductive conditions. Interactions between
miR-156, which promotes juvenile development, and miR-172, which
is more highly expressed in the adult growth phase, regulate develop-
mental growth and abundance of SPL genes. Binding of these tran-
scription factors to regulatory regions of genes involved in the repro-
ductive phase transition can thus eventually stimulate inflorescence
development before the plant is too old.

CONSTANS (CO) is at the helm of the light-dependent pathway
in Arabidopsis [37]. It is regulated by circadian clock genes [37], is
expressed in the SAM during floral induction [38] amongst many
others tissues during the plant’s life [39] and acts in the phloem [39].
The main target of CO is FT [17, 40, 41], one of the most important
regulators of flowering in higher plants [42]. For a number of species
Arabidopsis FT homologues are a core element of the photoperiod
pathway [43, 44]. FT mRNA is transcribed in leaves when CO pro-
tein is stabilised in long-day light conditions (for example 16 hours
light, 8 hours dark), it being unstable in dark [45]. Through this
mechanism flowering is only activated when the days get longer to
ensure pollination in the correct season. Short inductions of FT are
sufficient to cause floral commitment if the plant is old enough [46].
The FT protein is translated in the leaves and moves through the
phloem to the SAM in Arabidosis [47-49], and rice [44], and thus
is a major component of the “florigen” signal that intrigued early
naturalists [42]. This mobile protein provides the timing of flow-
ering and spatial specificity is conferred by the transcription factor
FD, with which it functions at the apex [50, 51]. This is evident be-
cause fd-2 can partially suppress the early flowering phenotypes of
FT overexpressing plants [50, 51]. The FT-FD complex activates var-
ious floral meristem genes such as FUL and API [50-52]. In rice,
the interaction of homologues of FT and FD, Hd3a and OsFD1 re-
spectively, is mediated by a 14-3-3 protein [53] but this has not yet
been determined in Arabidopsis. TWIN SISTER OF FT (TSF) acts
redundantly with FT [54]. The double mutant flowers later than ei-

ther single mutant, but in short-day conditions the tsf-1 mutant is
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severely delayed compared to its effect in long-days [54]. D’Aloia
and colleagues show that TSF is required for a flowering response
to cytokinin in Arabidopsis but FT is not [29]. FT is able to activate
LFY expression through the transcription factor SOCI [55, 56]. Thus
SOCI1 expression is in part controlled by the photoperiod pathway of
floral induction [16] as well as integrating gibberellin and vernalisa-
tion signals [24] as described above. AGL24 and SOCI directly bind
to each other and cause mutual upregulation during the floral tran-
sition, yet they are affected in different ways by upstream elements
and affect different downstream genes, for example SOC1 bound the
LFY genomic sequence but AGL24 does not [57]. This could be be-
cause AGL24 works to maintain inflorescence identity as opposed to
a floral fate, hence it is targeted by AP1 and LFY for repression [58].

The transcription factor LFY [59, 60] plays a key role in the in-
tegration of flowering signals in parallel with FT to activate floral
meristem identity genes [40]. As one of the master integrators it
functions in multiple pathways as the LFY promoter is also a tar-
get of GA-dependent signalling [25]. LFY confers floral meristem
identity [59] and has a separate role in activating subsequent organ
identity genes [61]. AP1 and LFY are direct mutual transcriptional
activators [62-64] acting in a positive feedback loop. AP1 has the
function of regulating floral primordia growth genes such as FUL
and CAULIFLOWER (CAL) [65] whilst preventing reversion in the
floral meristem by inhibiting a number of genes including AGL24,
SVP, SOCI and FD [64, 66]. Furthermore AP1 orchestrates organ
specification genes for correct sepal and petal development by bind-
ing to MADS-box proteins like SEPALLATA3 (SEP3) [64, 67]. Other
homeotic genes are initially controlled by LFY. For instance LFY ac-
tivates AG through direct binding [68].

Organ patterning and cell fate determination in the SAM con-
cerns distinct spatial gene expression patterns that were originally
published in the now famous ABC model [69, 70]. In this model cer-
tain classes of proteins interact in specific spatial domains to give rise
to a distinct floral organ identity. In the outer whorl, where sepals
are made, only A class genes are expressed. The next whorl, which
gives rise to petals, has A and B class proteins active. Inside are the

male reproductive organs, the stamens, and these require the func-

21
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[ Aclass | Cclass |

[ E class ]
Sep Pet Sta Car

(a) The ABC model of flower development. A class

but not B or C class genes are required for sepal

(Sep) development. A and B are required for petals
(Pet); B and C for stamens (Sta); and only C for (b) A dissected Arabidopsis flower. From inside out
carpels (Car). Genes in the A and C classes inhibit  are the carpel, some stamens, two petals and two
each other. The four E class SEPALLATA genes are  sepals. A few petals and sepals were removed for

required for correct development of all organs. clarity of presentation during dissection.

Figure 1.4: Arabidopsis floral organ development.

tion of B and C class genes. Finally the inner whorl is where the
carpels, the female reproductive organs, are located. These rely on
the presence of the C class proteins. Importantly genes acting in the
A (e.g. AP2) and C (e.g. AG) domains are mutually inhibiting [71,
72]. The ABC model was extended by the discovery that SEP1-3
are needed for the B and C class genes to function correctly — all
organs are sepal-like [73] otherwise — and SEP4 is required for the
correct formation of all organs as leaf-like organs result in quadruple
mutants [74]. Figure 1.4a gives the basic conceptual idea.

From the interactions described a general picture emerges of LFY
and AP1 at the core of a highly complex network specifying floral
fate that operate by repressing inflorescence identity genes and ac-
tivating downstream patterning genes. This process is most com-
monly started through the integrators of many signalling pathways—
FT and SOCI. Nevertheless floral repressors play important roles.
One major example is TERMINAL FLOWERI (TFL1) [75] which is
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a member of the same gene-family as FT and TSF, along with three
other homologues [41]. It is thus interesting that it features as a
strong floral repressor because a single nucleotide base change can
give the opposite function — conversion of TFLI’s inhibitory func-
tion to floral-promoting FT function and vice versa [76]. The shoot
apical meristem converts to a terminal flower in #fl1 mutants [75] and
hence TFLI maintains the indeterminacy of Arabidopsis. Its expres-
sion is noticeably increased after entering the floral transition [77]
with very low levels during the vegetative growth phase. TFL1 does
not enter incipient floral primordia due to repression from LFY and
AP1 with whom it has a mutually antagonistic relationship [78-80].
A thorough investigation by Conti & Bradley shows TFL1 protein
moves outside of its mRNA expression domain in the centre of the
mature apex [81]. TFL1 movement in the inflorescence meristem is
coordinated by LFY but not AP1 or CAL [81].

In summary the genetics of flowering time are complex and highly
interwoven (Figure 1.3). Activators and inhibitors of flowering con-
verge from many pathways to a few pivotal integrators who influ-
ence the development of floral primordia which leads to meristem
shape changes and organ development. As a dynamic and growing
system, mechanical forces will also play a part. To this end Hamant
and colleagues [82] proposed that two parallel and (at least partially)
independent processes control plant morphogenesis, one depending
on microtubules and the other depending on auxin patterning at the
shoot apex [83-85]. Thus the web of connections between genet-
ics, hormones, environmental and endogenous factors all combine

to govern the correct timing of floral development.

1.4 Mathematical modelling of flowering time in
crops and Arabidopsis

High-throughput technologies such as microarrays, deep sequenc-
ing, transcriptomics and proteomics have revolutionised plant biol-
ogy. Progress in these areas has been rapid and has transformed
the way biologists tackle new problems, providing a wealth of easily
accessible and searchable information such as annotated genomes,
phlyogenetic relationships, function and structure predictions, ex-

pression and co-expression patterns, metabolic profiles and more.
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Sequence-based bioinformatics has become a key part of plant biol-
ogy and one that is likely to gain importance with the ever-increasing
ease and speed of genome sequencing. Mechanistic modelling has
played second fiddle to the wave of genetic and bioinformatics dis-
coveries that have been prevalent in the field of plant biology in the
past two decades and our understanding is lagging behind the data
accumulation rate. More recently, however, there has been recog-
nition that systems approaches, including computational modelling,
will have a key role to play in elucidating many aspects of plant de-
velopment and the interactions between a plant and its local envi-
ronment [86, 87]. In Arabidopsis, some areas are already well ad-
vanced such as circadian clock modelling (reviewed by Bujdoso &
Davis [88]). Flowering time control is another area that has benefited
from modelling. With the development and availability of comput-
ers and software packages, early simple theoretical models have been
generally superseded by much more complicated systems of many
variables, which are solved numerically.

Whilst modelling of floral development in Arabidopsis was just
evolving a decade ago, the modelling of flowering time in crops was
in full bloom. However the types of modelling used in crop and
model species are different [86] and it is interesting to compare these
approaches. Crop modelling [89] has been goal oriented in terms
of making useful predictions for agriculture [87], whereas model
species approaches have targeted a more gene based understanding
of the system. Crop modelling has very much been based on empir-
ical studies, using data such as observed time to flowering or fruit
production, to restrain predictions that were built using regression
models. With regression statistics and analysis of variance (ANOVA)
it is possible to account for factors like CO, emissions, location and
light intensity that can vary hugely and are of importance to plant
breeders and growers alike. Correct timing of crop production is
essential for many producers, and the efficacy of these models is tes-
tament to their strength.

Many crop models use quantitative trait loci (QTL) analysis for
traits of interest, for example yield or days to flower. This operates
at a level above genes by linking phenotypic and genotypic data. Ge-

netic markers on a chromosome are tested for association with a trait
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that is scored for (quantified), often through field work. This com-
monly relies upon parent plants being genetically different which
allows for identification of recombination effects in the offspring.
Then a relatively simple statistical model for the phenotype can be
created using the sum of various genetic effects. Markers that seg-
regate with a trait of interest are likely to be near a QTL. Key ques-
tions that are attempted to be answered by QTL mapping include:
how many QTL are there controlling a trait of interest? where in the
genome are they located? and, what is the relative weighting each of
them has on the trait?

There are many climate change models for CO,, water availability,
and temperature for the years ahead. These are key factors for plant
development and the challenge is to incorporate these predictions
into plant breeding tools [90]. A number of examples of modelling
in crops and Arabidopsis are now discussed and chapter 4 provides a
reflection on how a multiscale approach could lead to the combining
of the phenotype-based work in crops with molecular level research.
This may be a crucial step in ensuring future plant breeding can suc-
cessfully incorporate knowledge of climate change at the same time
as supporting a growing global population.

An early approach to modelling flowering time was developed by
Thornley over 40 years ago [91]. This symmetric model was based
on biochemical interactions between two enzymes that catalyse a
substrate into two morphogens, the relative concentration of which
leads to a switch between either vegetative or flowering steady stable
states. With an elegant derivation of the equations this work empha-
sises minimal modelling and the benefits of a reductionist approach
to gain an understanding of a system. Although the application of
this work is to flowering plants because of the simplicity of the equa-
tions it could be used to describe any system with different devel-
opmental pathways. The states of the system are interpreted quali-
tatively and there is discussion of how perturbations to the system
could affect the final outcome. Like many models it is parameter
dependent, because the two stable states become one with a change
in parameter value. With only one stable state a perturbation of a
variable would return the system state to the dividing line between

the two states, which is difficult to interpret. Thornley though does
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discuss how perhaps in the developing system the parameters could
be a function of time, thus at a certain stage the plant may develop a
competency to flower corresponding to the system with an unstable
steady state and two stable ones. At this point a perturbation from
the dividing unstable state, such as a flowering signal, would be suffi-
cient for the plant to switch to a reproductive phase of development.
If a vegetative signal was perceived then the plant would enter the
vegetative state and hence there would need to be a far larger flower-
ing signal for the plant to switch growth states.

This very early non-species-specific theoretical work is an excel-
lent example of why, although unrealistically simple, it can be good
to use mathematical modelling to assist in understanding system
structure and provide tractable insights that can lead to the devel-

opment of more data-based models.

1.4.1  Crop species

White et al. [92] include two major flowering regulators of bread
wheat in their approach that used genetic information from 29 spring
and winter wheat strains. Data from multiple locations worldwide
were split into either a calibration or evaluation set for the gene-
based model parameters. A linear regression approach was used to
estimate the genetic effects of the Vrn-1 loci on vernalisation require-
ments and the Ppd-D1I locus on photoperiod sensitivity. The use of
a specific simulation environment is common to these types of mod-
els and this work uses CSM-Cropsim-CERES-Wheat [93] which can
simulate the development of many stages of wheat growth and also
incorporate strain-specific factors. The conventionally estimated pa-
rameters in the simulations predicted almost all of the variation in
time to flowering for the calibration data, with a modest reduction
for the evaluation set, as expected. Results from using gene-based co-
efficients reduced the accuracy only slightly indicating the possibil-
ity that using genetic information in wheat modelling together with
the more conventional phenotypic data has potential. The quantity
and quality of data is a constraining factor at present especially in
terms of understanding the loci effects. Uncertainty is also present
in the environmental data, for example the accuracy of the reported

weather conditions, which can have large effects.
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A similar approach was used in soybean by Messina and oth-
ers [94]. A simulation model, CROPGRO-Soybean [95] was used
with linear functions to predict cultivar-specific parameters which
inform estimates of flowering time, as well as post-flowering devel-
opmental stages and yield. The model was evaluated using field trial
data from other locations, and was shown to predict maturity date
particularly well for most varieties. Interestingly the results are stated
to be comparable to those from common bean, which is encouraging
for the development of gene-based modelling across species.

Yin et al. [96] develop a model for spring barley using recipro-
cal photoperiod transfer experiments to estimate genotype-specific
parameters which are evaluated in independent field trials. Addi-
tionally a sensitivity analysis was performed on their four parame-
ters, and the authors show they are all important for predicting inter-
genotype differences in flowering time. They also find that the im-
portance of their four parameters can be ranked, with the minimum
number of days to flowering at optimal temperature and photoperi-
odic conditions being relatively the most important, with the pho-
toperiod sensitivity next. This regression based model gave a reason-
ably good prediction of variation in time to flowering across both
genotypes and environments. The original model [96] is then fur-
ther developed by adding a QTL-base to a new model [97]. The ac-
curacy of this model is reduced by 9% (to 72%) of the overall varia-
tion, caused by genotypes and environments, with changing the pa-
rameters to QTL effects from the genotype-specific parameters used
previously.

Waurr and coworkers [98] consider the effects of climate change
on winter cauliflower production using simulations of four different
scenarios for future global greenhouse gas emissions. All forecasts
predicted a rise in temperature. In the model this increase in tem-
perature led to shorter juvenile and curd growth phases, but longer
curd induction in most cases. Importantly location effect was found
to dominate the time to maturity, raising questions for both breeders
and growers.

A recent model by Uptmoor and colleagues [99], based on a pre-
vious crop model [100], uses genotype-specific parameters and QTL

effects as the inputs to a model for predicting flowering time in Bras-

27



4 See subsection 3.2.4.

28

INTRODUCTION & BACKGROUND

sica oleracea. In this model the predictability of flowering time us-
ing genotype-specific parameters was reduced by unfavourably high
temperatures. This suggests that noisy environmental conditions,
which can be filtered by using an integrated network approach®, are
not fully taken into account with this modelling framework. Using
QTL effects as the parameters instead further reduced the ability
of the model to capture inter-genotype variability under both low
and high temperatures. Incorporating QTL effects into models does
at present seem to produce unsatisfactory results but the exact rea-
sons are not yet clear. This could be because of undetected minor
QTL [97] or poor estimation of their effects [101]. Sampling more
plants, and at a finer resolution, should result in data that can give a
more precise idea of the effects of QTL. Nevertheless the results us-
ing genotype-specific model parameters can give good predictions
of flowering time but the use of more complex models should, for an
extra computational cost, give consistently better predictions.

These data-driven approaches can be very successful and high-
light the need to reduce the inherent complexity of the system in
order to use the power of data to guide predictions. In Arabidopsis
research there has been a wide range of methods used to elucidate
the underlying biology through simplifying assumptions. The goal
is often to gain an understanding of genetic control elements and in-
fer molecular mechanisms. The availability of greater quantities of
genetic data in Arabidopsis allows for a more detailed description of

processes connected with flowering as discussed below.

1.4.2 Arabidopsis

Welch et al. [102] employed a neural network approach to quantify-
ing flowering time in Arabidopsis for a number of genotypes. Neural
networks are composed of interlinked nodes, each with a number of
inputs, and an output to a subsequent node. This network structure
is decided by the modeller. The links between nodes have an asso-
ciated weight which adjusts the value between the output and input
nodes. The weights are established through a training procedure us-
ing experimental data, typically using a least squares residual. Welch
et al. look at the inflorescence transition in Arabidopsis and how it

is specifically controlled by the autonomous and photoperiod path-
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ways. Their network can reproduce the floral transition of many mu-
tant genotypes at both 16 °C and at 24 °C. At the lower temperature
the rate of Arabidopsis development is much reduced. Intriguingly
they find the order of inflorescence transition between two loss-of-
function genotypes switches between the two temperatures. Many
crop simulation models would not be able to show this result, which
demonstrates how using network-based methods could hopefully do
more than just predict flowering time.

Prusinkiewicz et al. [103] describe the building of a model to try
and understand the development and evolution of inflorescence ar-
chitectures. The main types of inflorescence architectures observed
in nature are panicles, racemes and cymes. This paper relies on the
suggestion that these are only a few of the theoretically possible struc-
tures that, because of an iterative pattern of development, are avail-
able to nature. This iterative pattern is elegantly visualised using L-
Systems. The authors introduce the idea of a meristematic contin-
uum that gives rise to shoots at one end, and flowers at the other. In
a generalising leap, the authors state this continuum can be charac-
terised by an abstract variable, veg, which declines with age. High
levels of this correspond to shoot meristems and low levels to flo-
ral meristems. It is shown that if veg decline is uniform across all
meristems a panicle is the result. This is as far as this model will
go, so the authors provide further extensions to make the model ac-
count for the other main inflorescence architectures. LFY and TFLI
are introduced into their model because mutants in these genes have
different phenotypic effects in Arabidopsis. Modelled architectures
of mutant and transgenic LFY and TFLI phenotypes are shown and
said to agree with experimental data although photographs of real
plants are not included but can be found elsewhere [78, 79]. The
authors also discuss the potential evolutionary origins of floral phe-
notypes. It is interesting that, because not all meristems flower at
the same time, racemes and cymes may have evolved to have higher
fitness than panicles in a variable growth season. Hence panicles
are shown to be relatively more frequent in the tropics. An expla-
nation is also offered that could explain the existence of only these
particular architectures. By using layers of 2D fitness landscapes to

build a 3D fitness space, the authors capture relationships between
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architectures and season duration/plant longevity to show that the
angiosperms are only likely to have evolved along high fitness paths
that connect racemes, panicles and cymes. The level of abstraction
in this work requires further validation to elucidate the biology be-
hind the veg factor” yet it is an interesting attempt at explaining the
evolution and development of diverse inflorescence architectures.

The intuitively simple ABC model (Figure 1.4a) has stimulated
great interest from modellers who naturally wish to provide a more
quantitative understanding of the molecular interactions. Two par-
ticular studies require detailed comment.

First is a discrete model with logical rules described by Espinosa-
Soto and coworkers [104]. After an exhaustive literature search for
genetic interactions the authors are able to define a genetic regula-
tory network of 15 genes involved in cell fate determination. Some
connections are hypothesised to ensure the correct expression pat-
terns are recovered. Experiments testing these interactions could
therefore provide validation or otherwise of the network structure.
Eight genes are Boolean (on or off) in their expression level, but the
remaining seven can have an off level, an intermediate level or a full
level of activity. The logical rules are therefore based on observed
experimental results and in total the network has 2% x 37 = 139968
possible initial conditions. From all these initial conditions the net-
work has only 10 steady states which nicely correspond to the or-
gan types in the apex and the inflorescence meristem where TFLI is
high but no activity of floral marker genes such as LFY or API. The
basins of attraction for the reproductive organs are shown to be far
larger than the perianth organs suggesting their fates are less unsta-
ble, possibly because they are more important (thus under natural
selection), evolutionarily older (gymnosperms have no perianth or-
gans), or both. The final cell types are dependent on the network
architecture not the logical rules for each gene as shown by small
random changes to the rules. Espinosa-Soto et al. also simulate mu-
tations in the selected genes which recover mutant phenotypes. For
example the steady states in the B class AP3 knockout mutant corre-
sponded to only inflorescences, sepals or carpels and are in absence
of petals and stamens as known experimentally [70, 105]. The ap-

proach can also be applied to petunia. The advantages of the logical
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framework adopted by this paper are that there are no parameters
to infer and to a first approximation it likely reflects very well the
underlying genetic behaviour.

Second, an ODE model of interacting MADS-box transcription
factors controlling floral organ identity was developed by van Mourik
and colleagues [106]. The model is based on the demonstration that
MADS proteins can form dimers or higher order complexes [107],
and this is therefore explicitly included in their model. Redundant
genes are assumed to have similar interactions or expression pat-
terns and each system variable is thus representing more than one
gene of each class. Triggers are incorporated to drive the system into
one of four steady states: sepals, petals, stamens or carpels. In to-
tal there are 37 parameters which are optimised by a gradient-based
search method. The authors change microarray data from the litera-
ture in to a format substituting for whorl-specific protein concentra-
tions which can then be optimised against to determine the model
parameters. The fit to the experimental data is reasonable but impor-
tantly the model is validated by comparing MADS protein mutants
to known phenotypes from the literature. This validation method
showed four out of five mutants to be correctly predicted and for the
remaining mutant, ectopic AP3 expression, to be half right. Finally
the authors remove certain dimers from the network to predict organ
mutations. As one example, the removal of the SEP dimer predicts
“no development of floral organs”, and Ditta et al. [74] have found
that the quadruple sepl sep2 sep3 sep4 mutant formed leaf-like or-
gans in place of flowers. Thus this model has captured some of the
kinetics of MADS-domain protein dimerisation leading to floral or-
gan specification in Arabidopsis which had never been done before.
Additionally as a time-dependent system it gives more dynamic in-
formation about the variables than the discrete approach taken else-
where [104]. Furthermore, in a boon to minimal modellers every-
where, a recent follow-up study suggested that the original network
could be reduced in its complexity whilst still accounting for the sys-
tem behaviour under mutant conditions [108].

In combination these two works have taken different approaches

to provide a quantitative understanding of the qualitative ABC model.

Both routes are valid and with sensible assumptions and simplifica-
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tions can predict phenotypes unknown to the models. The ability to
also suggest interactions and phenotypes that are untested in the lit-
erature gives weight to the involvement of mathematical modelling
studies in biology. A discrete approach loses dynamic resolution
but has no need for computationally expensive parameter searches.
Therefore deriving a network architecture and testing it for coher-
ence before applying a higher level of dynamic modelling may avoid

wasted time and effort on an incorrect model [104].

1.4.3 Summary

Complex traits are rarely transferable between species, yet genes are
frequently highly similar (homologous) and likely to carry out the
same functions, motivating gene models. It is often general genetic
motifs that are most conserved between species. Thus the knowledge
of the workings of one motif in a species is likely applicable to an-
other species. Our increasing understanding of gene networks cou-
pled with QTL analysis allows drilling down to individual genes or
even single nucleotide polymorphisms (SNPs). Hence transferable
gene-level models that cross scales and integrate up to the environ-
ment level are within grasp.

In order to make this approach tractable, many factors are ex-
cluded from such GRN based models that are relevant to those with
a more agricultural interest. Modelling such large genetic regulatory
networks is a complex task as even if all components are known—to
perform kinetic measurements for quantities such as binding con-
stants is rarely experimentally feasible. The limited knowledge of
component concentrations and kinetic interactions results in a math-
ematically highly underdetermined problem. This means that the
available data is not sufficient to uniquely determine the parameters
in the model.

Although as we have seen in the literature different approaches
exist for simplifying the parameterisation of the model, e.g. Boolean
networks or neural networks, these do not allow so much for a dy-
namic analysis of a mechanistic model with kinetic parameters hav-
ing a biological meaning. Thus the focus on differential equation-
based systems allows the dynamic system of interacting components

to be tracked and can provide a more detailed understanding of the
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processes involved. Unfortunately this avenue can require many pa-
rameters that have to be constrained by available experimental data
to some degree. In the next section we cover methods for parame-
ter estimation and discuss how using Bayesian inference allows us to

quantify the uncertainty in our model’s parameters.

1.5 Parameter estimation

The scarcity of large quantities of high quality and detailed mechanis-
tic data is a common problem faced by computational biologists seek-
ing to model an experimental system. In all but the simplest cases a
challenge to the mathematical modeller is the choice of a useful pa-
rameterisation of the problem and, often in discussion with experi-
mentalists, devising ways of obtaining reasonable estimates for the
parameters of the system. Depending on the method, these parame-
ters may be inherent to a machine learning approach, so-called black
box parameters, and of little interest to the biologist or for mechanis-
tic models they may actually correspond to biological entities such
as concentrations, dissociation constants or degradation rates that
may be used for validation purposes and the design of further exper-
iments. In this thesis the focus is on dynamic mechanistic modelling
for which the parameters themselves are of interest and not merely
a means to an end. Many mechanistic modelling studies in biology
have employed ODEs as the mathematical framework of choice [106,
109-111]. The reasons for this include the natural way that many bi-
ological problems can be posed as the study of the behaviour of a
dynamic system of interacting components over time and the well-
established numerical routines for solving such systems [112]. For
instance, converting a genetic regulatory network into a mathemati-
cal formalism can be achieved using established enzyme kinetics and
following standard conventions [109]. This approach gives rise to a
mechanistic model with (in principle) measurable, kinetic parame-
ters. Unfortunately, however, these parameters are often unknown
experimentally, or determined under in vitro conditions for analo-
gous systems, and so have to be estimated from available data. This
is a major hurdle that has received a lot of attention from systems
biologists [113-115].
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A common approach is to use optimisation algorithms to find the
best fit to the data [115-117]. Local optimisation is very well estab-
lished and numerous high-performance computing software tools
are available, often based around variants of Newton’s method. Nev-
ertheless the non-linearity of biological systems can lead to multi-
modal fitness landscapes [118] that require global optimisation tech-
niques [113, 114, 119] to avoid getting trapped in local minima.

Global optimisation however remains a challenge. Despite a num-
ber of very powerful, modern techniques such as: simulated anneal-
ing [120], particle swarm [121], Kalman filters [122, 123], Bayesian
approaches [124, 125], genetic algorithms [126] and, aptly-named
for plant research, invasive weed optimisation [127], finding a global
optimum can rarely be guaranteed in practice and in finite time. Fur-
thermore, it has been noted that the global minimum may not result
in biologically realistic parameters [128].

These methods can be motivated by invoking maximum likeli-
hood arguments. A known problem with maximum likelihood and,
in general, optimisation approaches is that without further precau-
tions they can lead to the overfitting of a model to the data, i.e. the
parameters are far more sharply defined than is justified from the
information content of the data [129]. These are well-documented
problems with established solutions such as Bayesian methodology
and information theory-based corrective terms to the maximum like-
lihood value such as the Akaike information criterion (AIC) [130,
131]. A short review of these approaches applicable to systems bi-
ology is given by Kirk et al. [132]. Another issue is that the best-fit
set of parameters to a model may not be representative of parameter
space [133]. An optimisation algorithm may miss important solu-
tions or contributions from other parts of parameter space. Further-
more, it has been shown that in systems biology that not all param-
eters are uniquely identifiable [134]. There are issues of sloppiness
and correlations between parameters [134, 135]. Parameters have
also been found to behave differently between corresponding deter-
ministic and stochastic systems [136].

These issues affect reverse-engineering, which attempts to infer
networks, functions and other regulatory mechanisms causing a sys-

tem’s output. Thus when parameters are non-identifiable or show
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non-linear dependencies this can cause difficulties in understanding
the real system from a mathematical model of the system. For some
biological systems noisy and sparse data can bring further headaches
when attempting to recover system behaviour. Accurately captur-
ing experimental data in a model therefore suffers from structural
and practical difficulties — both the model structure (connections,
inputs and outputs) and lack of informative data could be limiting.
With an experimental-modelling cycle, both of these will, hopefully,
be at least partially addressed yet this may not be feasible due to is-
sues of cost and time. Thus providing a mathematical description
of a system that ensures parsimony and accuracy can be a challenge.
A comprehensive review of reverse-engineering from different per-
spectives has recently been written by Villaverde et al. for systems
biology [137].

The Bayesian framework [138, 139] is an attractive way of dealing
with the issues just raised in a way that reduces the risk of over-fitting.
As succinctly stated by Radford Neal [140],

“Bayesian inference is an approach to statistics in which all

forms of uncertainty are expressed in terms of probability”.

The history of Bayes™ theorem stretches back over 250 years to the
work of the Rev. Thomas Bayes [141]. Bayes’ theorem in its most
introductory form is commonly presented using two sets, A and B
(see Figure 1.5). The theorem follows from the definition of joint
probability P(A and B) = P(A|B)P(B) and describes the conditional
probability of being in set A given that an element belongs to set B,

as such
P(BJA)P(A)

1.1
where P(A|B) is the posterior probability, P(A) and P(B) are prior
probabilities and P(B|A) is the conditional probability of B given A.

P(A|B) =

Bayesian inference relates to degrees of belief and provides an effec-
tive way of combining information such that new data can easily be
incorporated. This leads to the message that “today’s posterior is to-
morrow’s prior” [142]. Importantly, the Bayesian approach is consis-
tent in its treatment of inference problems regardless of the details of
the questions being asked.

Bayesian inference naturally encompasses Occam’s razor [143,

144] and so inherently accounts for the trade-off between the good-
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Figure 1.5: Illustration of joint
probability. The probability
of the intersection of two
sets, A N B, is the probability
of A and B. The conditional
probability A given B is equal
to the probability of A and

B normalised by dividing by
P(B). As joint probability is
commutativei.e. P(ANB) =
P(B N A) Equation 1.1 follows

naturally.
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ness of fit of a model and its simplicity [145]. The Bayesian approach
doesn’t aim to produce a point estimate for quantities of interest but
captures the full uncertainty of the problem that is reflected in the
posterior probability distribution. In particular for non-unimodal
distributions point estimates can be misleading. Bayesian techniques
are gaining interest in numerous research areas and finding increased
application in computational biology [146, 147] due to the availabil-
ity of state-of-the-art developments [118, 124, 148-151]. Recent fur-
ther advances have shown that multi-dimensional biophysical prob-
lems can be tackled successfully within the Bayesian framework; for
example Markov chain Monte Carlo (MCMC) was employed for suit-
ably approximating a prior distribution for studying the insulin se-
cretion rate [152] and copula-based Monte Carlo sampling was used
for comparing models of human zirconium processing [153]. How-
ever, the computational demands for such approaches often make
them prohibitive for many problems. A main reason for this compu-
tational effort is in the calculation of high-dimensional integrals that
arise through the processes of marginalisation and normalisation in
Bayesian inference [133, 138]. Monte Carlo techniques are the es-
tablished way to compute such integrals, however they can require
many thousands of cycles to deliver adequate results and there are
known issues with MCMC sample decorrelation times [154]. Nested
sampling [155] (chapter 2) was put forward as a Bayesian variant
of this approach and was shown to perform well for simple test ex-
amples [156]. Recently this approach has been used with success
for: astronomical data analysis [157, 158], exploring configurational
phase space of chemical systems [159], parameter inference of a cir-
cadian clock model [160] and for one of the most challenging prob-
lems in biophysics, namely the exploration of protein folding land-
scapes [161].

Having introduced the benefits of the Bayesian framework and its
growing popularity amongst scientists some of the theory necessary

for understanding how it works is presented next.

1.5.1 Bayesian parameter inference

For parameter inference the task is to infer the probability over the

parameters, w, for the hypothesis or model, M, given some data D
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from an experiment and capturing also all relevant information I.
This can be done within the setting of Bayes’ Theorem which can
be rewritten as

P(D|w, M,I)-P(w|M,I)

(L.2)

where P(w|D, M, I) is the posterior probability, P(D|w, M, I) is the
likelihood, P(w| M, I) is the prior probability and P(D|M,I) is the
evidence. We make use of the following shortened notation [156]:
P(w) represents the posterior, £L(w) the likelihood, 7(w) the prior

and Z the evidence, hence Equation 1.2 becomes

Asthe evidence is not a function of the parameters it does not need to
be computed for parameter inference, which explains the success of
MCMC methods that explore a posterior distribution proportional
to the correctly normalised distribution. However calculating the

evidence in crucial for Bayesian model comparison.

1.5.2 A common likelihood function

Maximum entropy arguments lead to the assignment of a normal dis-
tribution for the errors in the data [139], and if the np data points are
independent the log-likelihood function resembles a least-squares
residual

< @ (di - y:)*

logl = —Zlog(ai\/ﬁ)—z—z (1.3)

i=1 - 20
where d; is the given data at point i, o; its corresponding standard
deviation and y; the value computed from the model at that point.
More complex error models can be used if information is available
or justified from the underlying experiment, however in this thesis
Equation 1.3 is the only form of likelihood function considered. If
the standard deviations o; are assumed to be constant throughout the
data set then the first term on the right hand side is itself constant and

can be ignored for the purposes of model comparison (see below).

1.5.3 Bayesian model comparison

Bayes’ theorem not only enables us to infer parameter distributions

but also provides a framework for model comparison. The posterior
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probability of a model M is

P(D|M, I) - P(M]I)
P(D|I)

Z-1(M)
P(D|I)

P(M|D,I) = orP(M) =

To compare models we take the posterior odds of two models, M,
and M;, by taking the ratio and cancelling the term P(D|I). Thus

P(M;D,I) _ P(D|M;,I) - P(M,|I) or P(M,) _ Z;-m(M;)
P(M;D,I)  P(D|IM;,I)-P(Mj|I) — P(M;)  Z;-n(M;)

If we have no prior preference for either model, i.e. 7(M;) = n(M;),
then these terms cancel out and the models are compared according
to their respective evidences, which is identical to the normalisation
constant in Equation 1.2. This ratio of evidences is called the Bayes
factor [138, 162],

_POM;,I) _ Z

B:

7T P(DIM; D)

Thus the evidence Z is the key quantity that can be computed by

marginalising the likelihood £(w) over parameter space,

Z:fﬁ(w)ﬂ(w)dw.

The evidence embodies the so-called Occam factor [133]. This
is a measure of the extent to which the prior parameter space col-
lapses to the posterior space after seeing the data. A model with
more parameters typically has a greater volume of prior parameter
space, and if the data are well described by only a small region of this
space it will be penalised for this extra complexity. So a less com-
plex model (fewer parameters) that fits well to the data for a larger
region of its parameter space would be preferred by the Bayes factor

calculation [133].

1.5.4 Jeffreys’ scale

A qualitative scale for the interpretation of Bayes factors was given
by Jeffreys [138] and adapted by Kass & Raftery [162]. The version
used in this thesis is shown in Table 1.1 for a Bayes factor Bj;. If
the log-Bayes factor is negative it can trivially be reversed to pro-
vide evidence against the competing hypothesis. The interpretations
are based on a natural logarithm scale and due to computational is-

sues with underflow for the magnitude of the numbers occurring
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in Bayesian inference the calculations are also on a logarithm scale.
Hence the use of a log-likelihood function. For this reason if the
first term on the right hand side of Equation 1.3 is constant taking
the log-Bayes factor is simply a subtraction of the same term from
both evidence values and so can be safely ignored, which is the case

in most examples within this thesis.

21n B;; Evidence against M;

0-2  Hardly worth mentioning

2-6 Has some substance
6-10 Strong
> 10 Very strong

Table 1.1: Jeffreys’ scale for interpreting Bayes factors. Jeffreys [138]
provided a grading of decisiveness of evidence to support or reject a
hypothesis, M. This scale was slightly adapted by Kass & Raftery [162]
in their classic paper. It should be noted that in contrast to null hypoth-
esis significance testing (reject/fail to reject the null) the Bayes factor
provides the ability to reject or accept either the null or alternative hy-

pothesis.
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NESTED SAMPLING IN SYSTEMS
BIOLOGY

2.1 Introduction

Nested sampling [155, 156] is a technique for Bayesian inference that
prioritises calculation of the evidence [133], the normalisation con-
stant of the posterior distribution. This is an important quantity for
Bayes factors, used in model comparison, but is challenging to cal-
culate in general because it involves evaluating a multi-dimensional
integral. Nested sampling focuses on calculating this integral and as
a by-product of the algorithm’s exploration of parameter space it can
optionally produce samples from the posterior distribution. Thus
it can also be used for parameter inference as is traditionally done
in Bayesian computation by Markov chain Monte Carlo (MCMC)
techniques. Importantly nested sampling has shown encouraging re-
sults and efficiency gains over other sampling techniques [157, 158,
163] particularly in the areas of astrophysics and cosmology. Fur-
thermore reviewing this literature revealed that a well developed and
cited implementation of the nested sampling algorithm, called Multi-
Nest [164], existed which had been applied to astronomical data sets.
Problems in physics can be of high dimension, non-linear and mul-
timodal which is also typical of a number of problems in modelling
biological processes. However systems biology, or biological mod-
els in general, had received little exposure to nested sampling when
this work was initialised [159] although subsequently further articles
have appeared which are relevant to the field [160, 161]. In this chap-
ter we evaluate how well Skilling’s nested sampling, and in particular
MultiNest, works for system biology problems and non-linear bio-
logical models by comparing evidence values to those approximated
using numerical integration and study the accuracy of parameter in-
ferences by comparing results to those of the current workhorse of
Bayesian inference, MCMC. It is demonstrated how nested sampling
can be used to reverse-engineer a system’s behaviour whilst account-

ing for the uncertainty in the results. Thereafter we present results
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that employ this approach with various oscillating biological mod-
els for sparse, noisy data that is typically available to a mathematical
modeller. Finally our results with nested sampling indicate that the
addition of data from extra variables of a system can deliver more in-
formation for model comparison than increasing the data from one

variable, thus providing a basis for experimental design.

2.1.1  Nested sampling is a Monte Carlo technique
constrained by the likelihood

Skilling [155, 156] showed that the evidence can be calculated by a
change of variables that transforms the multi-dimensional integral
Z = [ L(w)n(w) dw over parameter space into a one-dimensional
integral over likelihood space, Figure 2.1. Following Skilling [155,
156], denote the elements of prior mass as dX = 7(w)dw then X(1)
is the proportion of the prior with likelihood greater than A so that

X(A) = f 7(w)do. 2.1)
L(w)>A

The evidence can then be expressed as
1
z- f £(X)dX, (2.2)
0
where £(X(A)) = A. The basic algorithm proceeds as follows:

1. Sample the prior n times to generate an active set of objects

wy,...,w, and calculate each object’s likelihood.
2. Sort the objects based on likelihood.

3. Withdraw the point with lowest likelihood (£*) from the active

set, leaving n — 1 active samples.

4. Generate a new sample point from the prior subject to the like-
lihood constraint £L(w) > L*.

5. Add the new sample w, to the active set to return the set to

n objects.
6. Repeat steps 2-5 until termination.

So by focusing on the evidence rather than the posterior distribu-
tion, a, potentially, high-dimensional integral can be replaced by a

sorting problem of the likelihood [156], although high-dimensional
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Figure 2.1: Samples from parameter space are mapped to likelihood-prior space to calculate the evidence.
Numbers in the plots indicate the order in which a sample point was withdrawn from the active set of n =
10 objects, and are coloured by a grouping according to likelihood values. Top: Parameter space is shown
for a two parameter linear model example. Bottom: The corresponding points are shown indicating the
volume of the prior still remaining when that point was removed. At each rejection the remaining prior
mass is multiplied by a factor exp(—1/#n). The aim of nested sampling is to calculate the area under the
curve. The inset zooms in on the region just as the bulk of the evidence is to be accumulated. This occurs
at small values of the prior after finding the regions of highest likelihood. Points labelled ‘A’ are those left in

the final active set at termination.
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Figure 2.2: Nested sampling calculates the evidence as a sum of the likelihood weighted by the prior. The

first five panels show points grouped by likelihood value and a percentage of how much each group con-

tributes to the final evidence. The bulk of evidence is accumulated by the contribution from 17 sample

points (lower left) in this example. The final panel shows that fewer than half the total samples make up

99.9% of the integral, which is found in a small fraction of the prior.
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sampling around each point remains. With the generated samples,
the integral (2.2) can be approximated (see Figure 2.2) using basic

quadrature as

N
Zn ) WLy, (2.3)
k=1

where hy = Xi_1 — Xk, (Xo = 1) is the width between successive sam-
ple points and N is the total number of samples i.e. the number of
objects discarded from the active set plus those remaining in the ac-
tive set at termination. Alternatively a more accurate method such as
the trapezium rule could be used for the integration although the er-
ror introduced beyond this is of a higher order than that from other
aspects of the algorithm [155].

The target of nested sampling is to calculate the area under the
curve in likelihood-prior space as shown in the bottom of Figure 2.1.
For most examples, as this one, this area is all but zero until the high
likelihood regions are found. These parts of parameter space are of-
ten only found in very small domains of the prior range — notice in
the top plot of Figure 2.1 how small the blue and orange regions are
compared to the entire prior. As each point is removed from the ac-
tive set its associated likelihood is multiplied by a prior width. This
width is shrunk geometrically at each iteration because of the poten-
tially huge range of prior-to-posterior collapse. In our examples this
reduction is by 1 part in N on the log scale, corresponding therefore

to each width being exp(1/n) smaller than the previous [155, 156].

2.1.2  Posterior distribution and summary statistics

Each accepted sample point 0, is assigned a weight, h Ly, that cor-
responds to how much it contributed to the evidence. From these
weights it is possible to estimate individual marginal and joint prob-
ability distributions for all parameters to examine their uncertainty,
modality, correlations or other aspects. Code was written that pro-
duces a table of binned values for these estimated distributions from
the posterior output of nested sampling in a suitable way for plot-
ting. This code is freely available® and is made use of in figures in
this thesis.

Additionally estimating summary statistics of the posterior dis-
tribution is straightforward given the posterior output from nested

sampling [155, 156]. By using the weights assigned to each point, as
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above, the mean y and standard deviation o of a parameter 6 from

N samples are calculated as

/2

N b L N b L '

VQZZMQM Ge:(zuei—ﬂé) -
k=1 Z

When using a normal distribution with fixed standard deviation, o,
as a likelihood function, choosing a larger value of o leads to greater
evidence and larger variance of the inferred parameters in most cases.

MCMC methods produce samples from parameter space that are
equally weighted and hence can be used to gain an understanding
of the underlying posterior distribution. This is also possible with
nested sampling. Staircase sampling can be used to generate a num-
ber of equally-weighted posterior samples [156], which is necessarily
fewer than the number of nested sample points. This is implemented
by default in MultiNest [164] and we make use of this later on to ex-

plore the posterior dynamics of our biological systems.

2.1.3  MultiNest

MultiNest is a Fortran library implementing nested sampling devel-
oped by astrophysicists in Cambridge [158, 164]. The main challenge
of nested sampling is step 4 in the algorithm above — generating a
new sample from the prior that must have a higher likelihood than
the discarded sample. Building on pioneering work by Mukherjee et
al. [157] MultiNest uses ellipsoidal rejection sampling to efficiently
propose new samples. The trick is to enclose all live points in the
active set by a group of ellipsoids, which are allowed to overlap. The
new point is then sampled from within the volume of the enclosed
ellipsoids, save for a user-chosen multiplicative factor that affects the
efficiency, but also potentially a bias, in the algorithm. This (inverse)
factor is chosen by the user from (0, 1] with higher values reduc-
ing the time the algorithm takes but potentially missing some prior
volume with likelihoods greater than the current likelihood contour.
We chose the target efficiency to be 0.5 to err on the side of accurate
evidence values rather than maximum efficiency. Multimodal pos-
terior distributions can be sampled from eftectively, as points falling
into modes can be enclosed within their own ellipsoid. This allows
for the calculation of separate “local” log-evidences for each poste-

rior mode if required. We did not make use of this or other advanced
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features, like parallelisation, available in the MultiNest software in
this thesis. The MultiNest algorithm was shown to solve toy prob-
lems with multimodal or high curvature posteriors of the type that
occur in cosmological problems, and additionally for less challeng-
ing examples it was shown to be highly efficient and produce similar
estimates to MCMC [164]. Recent developments such as Importance
Nested Sampling which uses an alternative summation of the evi-
dence by including trial points that don't satisfy the likelihood con-
straint can calculate the evidence with even greater accuracy [165].
In summary, Multinest has been shown to be a fast and efficient li-
brary for nested sampling applications in cosmology and astroparti-
cle physics (for many references read Feroz et al. [165]) which shares
similar types of problems and posterior distributions with those in
systems biology. Thus we used MultiNest for all nested sampling re-
sults in this thesis after a testing phase to establish the best control

parameters.

2.2 Testing the accuracy of evidence calculation

An obviously important property of nested sampling to investigate
is the accuracy of the method for realistic biological problems. A
number of comparisons to analytic solutions are achieveable through
clever choice of prior and likelihood function. These toy examples
however do not reflect the use of nested sampling and Bayesian infer-
ence for complex problems. Typical scientific problems can demon-
strate high dimensionality, non-linearities or other difficulties for in-
ference methods. Difficulties in testing arise when the true solution
of a realistic problem is not known. In our case we test the accuracy
of nested sampling on biological data where the true evidence can be
approximated using numerical integration. We took expression data
of the flowering time genes TFL1 and FT, determined by quantitative
polymerase chain reaction (QPCR), Figure 2.3. Three different mod-
els between the antagonistic genes TFL1 and FT are investigated: a
linear model, a quadratic or a sigmoidal relationship. The number
of parameters in these models are two, three and four respectively.
The measurement errors are not known but modelled as a normal
distribution with ¢ = 0.5 (data in arbitrary units). By keeping the

dimensionality to four or below we can use brute-force integration
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Figure 2.3: Relative expres-
sion levels of two floral genes.
gPCR of the whole rosette in
Arabidopsis upon the floral
transition was performed by
Katja Jaeger and expression
of FT and TFL1 quantified.
This figure has been redrawn
from Figure 7 published by
Jaeger et al. [166].
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Model log Z

Linear -12.016
Quadratic -17.329
Sigmoidal  —8.987

Table 2.1: log Z values calcu-
lated by numerical integra-
tion. Brute-force numerical
integration over the prior
domain using a fine grid of
step-size 0.01 was used to ap-
proximate the log-evidence
for three relationship models
between FT and TFL1 using
the data in Figure 2.3.

NESTED SAMPLING IN SYSTEMS BIOLOGY

to make a good approximation to the true value of the log-evidence.
A small step-size of 0.01 was used across the uniform prior domains
to calculate the numerical approximations given in Table 2.1.

We tested the accuracy of nested sampling against two main con-
trol parameters of the algorithm: the number of objects in the active

set and the termination tolerance.

2.2.1 Termination criteria

There is no rigorous termination criterion to suggest when we have
accumulated the bulk of Z [156]. This is because there may be a
region of very high likelihood in a tiny volume of parameter space
which is very hard to discover yet if found could dominate the ev-
idence value. However whether such a region exists is impossible
to know either a priori or a posteriori for many practical problems.
Skilling [155] suggests three ways and importantly notes that when
to stop is a matter of user judgement. The easiest way is to stop the
sampling after a pre-defined number of steps. This method however
could either be inefficient due to sampling far more than is required,
or inaccurate due to not sampling enough. In the materials applica-
tions of Partay et al. [159] and Burkoff et al. [161] they set their con-
vergence criteria to reflect the nature of protein folding, based on the
bounded nature of the energy, whereas Aitken & Akman [160] com-
pare log-weight (log hy + log L) values 50 iterations apart. The ex-
ample code provided with the introduction of nested sampling [155]
uses a condition that continues sampling until the number of sam-
ples significantly exceeds (in fact doubles) the number of prior ob-
jects multiplied by the current value of the information, H. A simi-
larly plausible criterion also discussed by Skilling is implemented in
the MultiNest code [164]. Termination is decided by approximating
the remaining evidence that can be accumulated from the posterior.
This amount can be estimated as AZ; = L,.,X;, where L.« is the
maximum likelihood value of the active set and X; is the remaining
prior volume [164, 165].

We investigated how the use of different levels of tolerance affects
the accuracy of log-evidence values for the three models mentioned
above and a range of prior sizes, which is equivalent to the number

of objects in the active set. As can be seen in Figure 2.4 the different
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different prior sizes, the evidence (thick coloured line) and its associated numerical error (ribbon) was cal-
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O(n~?) 1156, 167], n being the total number of samples.
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tolerance values have little effect, particularly when compared to the
far greater effect of the prior size. Why is this? The reason that the
chosen tolerance values do not affect the accuracy of the evidence
value is that the bulk of evidence is already accumulated by the time
the algorithm nears termination. The usual dynamics of nested sam-
pling’s progression, as noted by Skilling [155], towards the posterior
is that the likelihood increases faster than the widths decrease until
the decreasing width starts to dominate the likelihood values. This
can be because the highest likelihood regions have been found and
the increase in likelihood is not so great anymore. It is at this tran-
sitioning stage that most of the evidence integral is accrued. Thus
when we come to judge when to stop the procedure we have already
calculated the bulk of the posterior and the higher precision of our
chosen tolerances did not affect the evidence values as shown in Fig-
ure 2.4. As Jeffreys’ scale (subsection 1.5.4) suggests a differentiation
between models, i.e. Bayes factor, based on half a point difference in
evidence on the log,, scale to be safe we chose a tolerance of 0.5 in
the (natural) log-evidence calculation. This value agrees with that

used in example problems from the literature [164].

2.2.2  Prior size

As we have seen, the larger the size of the active set the more confi-
dent nested sampling is in its evidence calculation. For the nested
sampling algorithm a greater sampling density from the prior distri-
bution will increase the chances of highly probable areas being ex-
plored. In the study of protein folding [161] a set of 20000 prior
objects was used to provide a wide selection of conformations. At
the other end of the scale it has been shown that maintaining a set of
25 active points can produce accurate parameter mean and standard
deviations that are relatively insensitive to the prior size [160]. The
greater the prior size the longer the method takes to reach its stop-
ping criterion. A robust way to measure efficiency across different
active set sizes is to compare the total number of likelihood function
evaluations. This negates any potential differences in computer ar-
chitecture or CPU load. Additionally evaluating the likelihood func-
tion is often, in compute time, the most costly part of many infer-

ence schemes, particularly when a set of differential equations need
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Figure 2.5: The effect of tolerance and prior size on the efficiency of nested sampling. For the four different
tolerance levels and three different models for gPCR data, the total number of likelihood evaluations were
compared to different prior sizes, for the same random seed. Increasing prior size increases the work done
approximately linearly so that an active set of 10000 points takes roughly 10 times more function calls than

1000 points. Increasing the tolerance value reduces the number of function calls required, as expected.
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Objects  Calls Ratio
10 668 66.8
100 3844 38.44
500 18568  37.136
1000 38078  38.078

5000 184899 36.9798
10000 368564 36.8564

Table 2.2: Approximate linear
increase in log-likelihood
function calls with increasing

number of prior samples.

Table 2.3: Comparison of cal-
culated log-evidence values.
The log-evidence calculated
by brute-force numerical inte-
gration over the prior domain
and the nested sampling (NS)
estimate using 1000 prior
samples and a tolerance of 0.5
for each of the three different

models for the qPCR data.

NESTED SAMPLING IN SYSTEMS BIOLOGY

to be solved or a simulation run for a given set of parameters. To
choose an efficient yet accurate number of prior objects for future
computations we compared six different prior sizes and the number
of function calls for the three models as shown in Figure 2.5. We see
an approximately linear increase in the number of evaluations with
increase in prior size, see for example the results for the quadratic
model with a tolerance of 0.01 in Table 2.2. As is expected increas-
ing the tolerance serves to decrease the number of function evalua-
tions required. We would like to choose a value of the prior size that
gives accurate evidence values, is efficient, yet effective, for our fu-
ture models which will be of higher dimension. Taking into account
both Figure 2.4 and Figure 2.5 it was decided that 1000 active points
would be a sensible trade-off to give accurate estimates for reason-

able computer effort.

Linear Quadratic Sigmoidal
log Z -12.016 -17.329 -8.987
NSlogZ -11.97+0.08 -17.11+0.11 -8.99+0.06

It is interesting to note that the number of likelihood calls in
nested sampling does not depend solely on dimension of the prob-
lem, here the number of model parameters. Skilling states that nested
sampling itself ignores dimensionality [155] which is instead a com-
plication for the sampler within the constrained likelihood to han-
dle. MultiNest was designed to work up to moderately high numbers
of parameters [164] and thus handles these test cases without issue.
The reason that the quadratic, three parameter model takes longer to
run is due to the information content. The information, which is a
measure of prior-to-posterior collapse, for the three models was ap-
proximated by brute-force numerical integration to be: Hy, = 6.96;
Hguaq = 11.85; Hyg = 3.57. After data acquisition, H is a natural
logarithmic measure of the amount of information in the posterior
relative to the prior [156]. The posterior, which therefore occupies
approximately a fraction e of the prior [156], will be located in a
smaller domain of the prior for higher values of H, and thus is harder
to find. This in turn leads to more samples being required to discover

the posterior, explore it and calculate the evidence.
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2.2.3 Posterior samples are chosen successively in higher
probability regions
With the constraint upon the likelihood, the method moves up the
likelihood gradient to regions of higher probability (even if these
regions become disconnected in parameter space). This is demon-
strated in Figure 2.6. As the algorithm moves through iterations
there is a narrowing of the regions of higher probability as the worse
samples are removed and better ones that satisfy the constraint on
the likelihood survive. Thus the algorithm discovers the posterior
distribution. With the points coloured by their log-likelihood value,
Figure 2.7, we can see clearly how the active set of objects migrates to
areas of highest likelihood. In this case all the objects left in the active
set after stopping the algorithm are located in one small cigar-shaped
region of parameter space. This is where the bulk of probability mass
is located for this linear model and qPCR data. This region includes
the maximum likelihood parameters shown by a yellow disc in the
bottom right panel of Figure 2.7. If the procedure was run for even
more samples, for example by reducing the tolerance level, the ob-
jects would continue to move up towards the peak of the posterior
probability distribution, and cluster closer together, but as we saw in
subsection 2.2.1 this will have very little effect on our final evidence.
The posterior parameter distribution allows for identification of
areas where parameters can be either stiff or sloppy. Figure 2.7 con-
veys how in one direction the posterior distribution is wide (sloppy)
whereas in the perpendicular direction it is well defined (stiff). This
example demonstrates the point made by Erguler & Stumpf [134] in
their Figure 1. Disperse parameter sets are commonly found in sys-
tems biology problems yet can lead to useful predictions [135, 168].
Notwithstanding the technical difficulty of visualising multiple di-
mensions a multimodal posterior distribution can reveal the regions
of parameter space that lead to high probability yet may be discon-

nected above a certain probability threshold.
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Figure 2.6: Nested sampling removes points that don’t meet the likelihood constraint. From an initial uni-
form prior parameter distribution (Prior), nested sampling selects points that are in regions of higher like-
lihood. The sample sets are shown after every 1000 sampling iterations and then with the final active set
(Posterior) after termination of the algorithm. In this case the sampling ends up in a single region of high
probability after sample points that don't satisfy the likelihood constraint are discarded. The underlying
model is the linear model for gPCR data and the samples are from the two parameters of the linear model,

the slope and intercept terms.
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Figure 2.7: The migration of objects to higher likelihood regions. As for Figure 2.6 but now with log-
likelihood values grouped into levels and coloured by these levels to show the migration to regions of high
probability. We zoom in on the active set of 1000 sample points — notice the continual change of axes in-
dicating a shrinking of the areas of highest probability. Over half the prior samples have a log-likelihood
worse than —10000 yet within 2000 sampling iterations all these samples have been replaced. In the fi-

nal sample set (Posterior) we indicate the location of the maximum likelihood sample point with a yellow
disc. The slope parameter has a narrower range of possible values compared with the intercept parameter,

which means it is a stiffer parameter. We also note the obvious correlation between the parameters.
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2.3 Results

2.3.1  Nested sampling for parameter inference in systems
biology

The current workhorse of Bayesian inference is MCMC which for
a huge variety of problems will converge to the posterior distribu-
tion given enough time. The resulting posterior is only required to
be proportional to the true posterior and thus calculation of the nor-
malising constant, the evidence, can be a complicated task [133, 155].
However MCMC, or a variation, is routinely used for parameter in-
ference as we get the full posterior distribution and thus are able
to quantify our uncertainty which we are unable to do with optimi-
sation techniques. As discussed nested sampling obtains posterior
samples as a by-product of its evidence calculation and, as explained
in subsection 2.1.2, from these samples we are able to perform pa-
rameter inference. Naturally it is necessary to compare the results
of nested sampling to the established technique for parameter infer-
ence, MCMC. Thus output from nested sampling was compared with
that of MCMC for Bayesian inference of two test problems.

In the first case, data were generated from the curve y = 3 tanh ( ’5‘)
from [-5,5] at intervals of 0.5 to give 21 data points. Noise from a
standard Gaussian, A/(0, 1), was added to the generated data. As ex-
pected from this low dimensional problem both nested sampling and
MCMC find similar solutions with identifiable parameters whose
means are good summaries of their distributions given the level of
noise, Figure 2.8 left.

In the second example, our data was the previously discussed
qPCR expression levels of the flowering time genes TFLI1 and FT
(Figure 2.3). As before three different models between the antagonis-
tic genes TFL1 and FT are investigated: a linear model, a quadratic
or a sigmoidal relationship. The measurement errors are not known
but again modelled as a normal distribution with o = 0.5 (data in ar-
bitrary units) which was found to be consistent with estimated noise
from the data. Also a simulated annealing algorithm [120, 169] was
used to optimise the parameters for a comparison with the means
of our posterior parameter distributions. The fits to the data using

the mean values for the three models are shown on the right in Fig-
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Figure 2.8: Nested sampling produces equivalent estimates to MCMC. (Left) Nested sampling (orange solid
line) and MCMC (skyblue dashed) produce a similar estimate of the parameter means given noisy data
(white diamonds) generated fromy = 3 tanh (’—2‘) (green line). The solution using an optimised point
estimate of the parameters from simulated annealing is shown as a black dotted line. (Right) Using three
different relationship models for flowering gene expression data, nested sampling, MCMC and simulated
annealing produce near identical curves for a linear model of the experimental data (purple diamonds)
and for a three parameter quadratic model, using the mean parameter values from the inference methods.
Curves are offset by one line width for clarity. For a four parameter sigmoidal model MCMC and nested
sampling infer comparable parameter means (given in Table 2.4). Note that some parameter sets from the

posterior distributions follow a similar trajectory to the point estimate from simulated annealing.
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Hyp. tangent Linear Quadratic Sigmoid
91 62 m Cc V4 /3 (04 k1 kz k3 k4
NS mean 5.05 0.26 0.12 0.20 0.01 0.02 0.37 1.37 2.06 5.53 0.45
MCMC mean 5.01 0.27 0.12 0.22 0.01 0.02 0.38 1.39 2.09 5.68 0.46
SA 436 0.24 0.12 0.22 0.01 0.02 0.38 1.21 5.00 557 0.44
NS SD 1.84 0.24 0.05 0.26 0.02 0.23 0.44 0.53 1.42 2.00 0.22

MCMC SD 1.80

0.32

0.05 0.27 0.02 0.23 0.43 0.55 1.42 198 0.23

Table 2.4: Comparison of parameter means and standard deviations. The mean and standard deviation

(SD) values of the parameters from nested sampling (NS), MCMC and the point estimates from simulated

annealing (SA). The data came from y = 3 tanh (’E‘) with additional noise and from Figure 2.3 to which we

fit three models: Linear y = mx+c; Quadratic y = yx*+ Bx+a; Sigmoid y = kg + (ky —k4) /(1 +exp(—ky (x—

ks)))-

ure 2.8. All methods find a very similar solution for the linear model,
and equally for the three parameter quadratic curve. For the four pa-
rameter sigmoid model y = ky + (k; — ka)/(1 + exp(—ka(x - k3)))
the results are also comparable. The optimisation procedure fits the
data well, with a steeper gradient than the inference methods, yet this
does not imply it is better despite appearances. Instead this suggests
that using the mean parameters are not representative of all posterior
parameter sets from MCMC and nested sampling. A number of sam-
ples from the posterior distribution are also able to follow a similarly
steep trajectory as the simulated annealing result but we decided to
only show one curve to avoid complicating the plot further. Further-
more the maximum likelihood values were similar between nested
sampling and simulated annealing for all three models. The means
and standard deviations of the parameters from nested sampling and
MCMC are in good agreement, Table 2.4. The log-evidences found
are in Table 2.3 which, on Jeffreys’ scale, prefers the four parameter
sigmoid model to explain this data set.

The remarkable similarity of the parameter moments summarised
in Table 2.4 gives us confidence that nested sampling will produce

parameter inferences that agree with MCMC.
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2.3.2  The repressilator

The repressilator [170] is a frequently used system to evaluate pa-
rameter estimation developments [122-124, 171]. The repressilator
is a synthetic network of transcriptional regulators comprising three
genes in a feedback loop that is capable of producing oscillations. It
is also the core structure of a recent circadian clock model [172]. The

governing equations used are as follows

dmi %

ddt g 0 (2.4)
Wi - _po

dr B (pi — m;)

where i = {lacl,tetR,cI} and j = {cI, lacl, tetR}. &, was set to 0
and n = 2 so that our prior contained both stable and unstable do-
mains [170]. Initial conditions and parameters were chosen that pro-
duce oscillations in the synthetic data, Table 2.5. To show the power
of nested sampling for this example we use synthetic data from just
one variable, p. (cI protein), collected at two-minute intervals for
50 minutes. The data has Gaussian noise added to it with a standard
deviation of 10% of the range. It is assumed we do not know, or can-
not measure, the initial conditions for the five other variables, and
attempt to infer these too. Uniform priors were used for all param-
eters with a ~ U(0,1000), 8 ~ U(0, 100) and the initial conditions
are drawn from U(0, 50). We choose a constant value of ¢ in our log-
likelihood function that is equivalent to the amount of noise added.
When standard deviations can be estimated from experimental data
these values should be used in the error model if the noise distribu-
tion is unknown, or alternatively we could infer the standard devia-
tion parameter. Either better quality (less noise) or greater quantity
of data are both able to increase the accuracy of estimates of the pa-
rameter posterior probability distributions, as one would intuitively
expect.

Using nested sampling we can produce an estimate of the means
and standard deviations of the inferred parameters as explained in
subsection 2.1.2. The actual values and inferred values are shown in
Table 2.5. The two parameters a and f are estimated accurately and
furthermore their standard deviations in Table 2.5 are much lower

relative to the prior size than for the initial conditions.
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Figure 2.9: The dynamics of the repressilator with parameters sampled from the uniform prior. 10 different
solutions of the system’s six variables are shown with « and 8 chosen randomly from a uniform prior. Com-
pared with Figure 2.10 the dynamics show a wide range of solutions. Solution with @ = 125and 8 = 2,

dashed black line; prior sampled dynamics, transparent coloured lines.
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Figure 2.10: The dynamics of the repressilator with parameters sampled from the inferred posterior. 100
equally-weighted posterior samples of the system’s six variables are shown. Compared with Figure 2.9 the
dynamics have been significantly constrained by the data (vermilion diamonds) so that all solutions are
close the true solution (dashed black line, parameters given in Table 2.5). The 26 noisy data points were
informative enough to allow discovery of a posterior distribution that produces accurate dynamics for all

variables. Estimated dynamics, transparent coloured lines.



62 NESTED SAMPLING IN SYSTEMS BIOLOGY

a B Plact  Pretr P Miger  MigR Mgl

True 125.00 2.00 5.00 0.00 15.00 0.00 0.00 0.00
Estimated mean 128.47 2.02 33.38 15.34 - 721 2.66 4321
Estimated SD 588 0.05 8.46 10.73 - 526 1.73 4.67

Table 2.5: Parameters and initial conditions of the repressilator model. The values of the parameters «, 8
and initial conditions of the six variables used to generate the simulated data prior to addition of Gaussian
noise, and the inferred means and standard deviations (SD) from the routine. p: protein, m: mRNA. The

initial amount of cl protein was assumed to be known.

If we consider the model output with 10 pairs of the parameters o
and f randomly drawn from the uniform prior there is a wide range
of dynamics, Figure 2.9, compared to the known solution (dashed
black lines). In contrast, after the data have arrived, we can use
the equally-weighted posterior samples to see how informative the
data were about the parameters. Figure 2.10 shows the dynamics
from 100 posterior parameter sets. The data (shown in the bottom
left panel) have constrained the parameter distribution significantly
such that all sets closely match the true parameters’ dynamics (dashed
black lines). As can be seen, despite not estimating the initial condi-
tions well, they are not that important for capturing the qualitative
dynamics of the entire system. This is because the repressilator sys-
tem has a limit cycle and is therefore insensitive to most initial condi-
tions. After the first peak the inferred oscillations match very closely
to the true solution for all variables even though the algorithm only
had a few, noisy data points available for one variable, cI protein.
Even the first peak is fairly well estimated by the posterior distribu-
tion. The log-evidence for this model and data is —34.27 + 0.14.

In this example, and like Figure 2.7, the data significantly reduced
the probable volume of parameter space from a wide prior distribu-
tion to a narrower posterior. In spite of the fact that the data were
few and noisy the simulations from the posterior distribution show
us that the data were still informative enough to reconstruct the sys-
tem’s dynamics accurately. A lack of accuracy in parameter estima-
tions but well captured systems dynamics is a phenomenon that has
been well studied in recent years [134, 135, 168]. In this case the

unknown initial conditions and a lack of parameter identifiability
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Figure 2.11: Estimated marginal distributions of the repressilator example with missing initial conditions.
Using the posterior samples produced as a by-product of nested sampling we can produce marginal dis-
tributions. In this example the mean and best-fit points are close to the peak of estimated probability den-

sity. Mean parameter value, black circle; best-fit likelihood parameter value, orange diamond.
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Figure 2.12: Estimated joint distributions of the repressilator example with missing initial conditions. Using

the output of nested sampling we can also produce estimates of the joint distributions of pairs of parame-

ters. The overall appearance of the posterior is roughly unimodal. Brighter colours indicate higher relative

probability. Mean parameter value, white circle; best-fit likelihood parameter value, white diamond.
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had little overall effect on the quality of the reproduced data. In Fig-
ure 2.11 and Figure 2.12 we show the estimated marginal and joint
distributions for all parameters from this example. This enables us
to see which parameters are more or less restricted and their cor-
relations. The marginals are generally unimodal and the mean pa-
rameter values and best-fitting parameter set are similar. The joint
distributions reveal that certain parameters are correlated, or some-
what disperse, but mostly they could be approximated by a Gaussian
distribution. This is why the means and best-fitting parameter set

are similar.

2.3.3 Nested sampling for model comparison

Initially in this section synthetic data is used to compare four coupled
ODE models:

« the Lotka-Volterra model of population dynamics [173, 174]

d—f = aF - BFR,
(2.5)
dR
— = —yR+6FR
dt yRT ’

o the repressilator system in Equation (2.4),

« the Goodwin model of protein-mRNA interactions [175, 176]

dt 1+E
d_E_M_‘B (2.6)
dr ’

« the trimolecular two-species Schnakenberg model [177, 178]

du )

pria ik el

dv (2.7)
a:/}—uzv.

The synthetic data was generated from one variable of the repres-
silator system with known parameters before Gaussian noise was
added. To ease comparison between different systems the data were
scaled so that the amplitude is maximally one. All models are mech-
anistically different, however as all models are capable of oscillatory
solutions, any of them could be used to describe the chosen data set

if no further information was available. Our task is to evaluate if,
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and how well, we can choose between competing models given little

data.
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Figure 2.13: Fit to noisy data of four different oscillatory models. Clockwise from top left: Lotka-Volterra,

repressilator, Goodwin and Schnakenberg models. Using the same noisy data (diamonds) 3000 equally-

weighted samples (purple) were drawn from the posterior distribution of each model (except the Goodwin

where we show a representative sample as all solutions were similar). The mean of the Lotka-Volterra sys-

tem’s posterior is not a good summary statistic for this distribution due to its non-unimodality (Figure 2.14

and Figure 2.15). The best-fit solution, dashed yellow line; solution using mean parameters, black dotted

line.
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Figure 2.13 shows 3000 samples from the posterior of all mod-
els (except Goodwin) along with the solution using mean parame-
ter values and the dynamics of the best-fitting sample point from
the four models. These summarising curves for the Goodwin model
have much higher frequency than the others, yet can still give a good
least-squares error. Note that the concentration falls below 0 for
this model with these parameters, which is clearly unbiological. The
other three models pick out the correct frequency in the data. The
solution with the mean parameter values of the Lotka-Volterra sys-
tem, Figure 2.13, is not a good summary statistic for this distribu-
tion though the best-fit likelihood line for this model in Figure 2.13
shows a good fit to the data. This indicates care should be taken when
summarising distributions. However merely relying on the best fit-
ting parameters is essentially a maximum likelihood approach, and
may miss important contributions from other parts of parameter
space. To visualise this, Figure 2.14 and Figure 2.15 show estimated
marginal and joint distributions (with means and best-fit solution
parameters indicated) for the Lotka-Volterra system which demon-
strates the non-Gaussian shape of its posterior. The log-evidence val-
ues attained for the four models are shown in Table 2.6 indicating a
very strong preference for the Lotka-Volterra model.

Given the nature of the sparse and noisy data it is not too sur-
prising that a simpler model with two variables and six parameters
is given preference over the model with six variables and eight pa-
rameters from which the data were actually generated. If the data
are of better quality i.e. no noise and of greater density, one can see
the repressilator model gaining more support in Figure 2.16 relative
to the Lotka-Volterra system, but until an unreasonable amount of
data is available (500 data points) the Lotka-Volterra model is pre-
terred due to the it being the more parsimonious explanation of the
data — visually both systems can fit the given data very well. Perhaps
counter-intuitively, the evidence decreases with the increasing quan-
tity of data. This is due to the log-likelihood function. As there are
now more data points, unless the fit is exceptionally good, the least-
squares residual increases due to summing up more errors. The evi-

dence comprises both the Occam factor and the best fit likelihood
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Model log Z

Lotka-Volterra —23.41 + 0.10
Repressilator —41.82 +0.13
Schnakenberg —44.84 +0.14

Goodwin -165.60 +0.12

Table 2.6: Log-evidence of the
four models for noisy data.
The log-evidence was com-
puted by nested sampling

for each model using the 25
noisy data points shown as di-
amonds in Figure 2.13. Using
Jeffreys' scale for interpreta-
tion the data provide very
strong evidence for the Lotka-
Volterra model (Equation 2.5)
and against the Goodwin
model (Equation 2.6) com-
pared with the other mod-
els. The repressilator (Equa-
tion 2.4) has positive evidence
for it over the Schnakenberg

model (Equation 2.7).
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Figure 2.14: Estimated marginal distributions of the Lotka-Volterra system. 25 noisy data points generated

from the repressilator system were used as the data for inference. Compared to Figure 2.11 parameters

far away from the highest probability still have some probability and are accounted for in the Bayesian

framework. Note the distribution for the first variable’s initial condition (Y1 I.C.), which was inferred as a

parameter, in asymmetrically bimodal. Mean parameter value, black circle; best-fit likelihood parameter

value, orange diamond.
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Figure 2.15: Estimated joint distributions of the Lotka-Volterra system. 25 noisy data points generated from
the repressilator system were used as the data for inference. Compared to Figure 2.12 the joint probabil-
ity landscapes are far less unimodal and provide an understanding of why the solution with these mean
parameters shown in Figure 2.13 does not follow the same dynamics as the posterior samples. Brighter
colours indicate higher relative probability. Mean parameter value, white circle; best-fit likelihood parame-

ter value, white diamond.
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Figure 2.16: Evidence changes
as a function of data quantity.
As the resolution of the time-
course improves the Goodwin
model (skyblue, diamonds)
and the Schnakenberg model
(green, circles) lose support
faster than the Lotka-Volterra
(orange, squares) and repressi-
lator (black, triangles) systems.
The known model, the repres-
silator, gains preference only
for a larger number of data
points (500 points with a time
gap of 0.1), even when using

noiseless data.

NESTED SAMPLING IN SYSTEMS BIOLOGY

(at least assuming the posterior is approximately Gaussian) [133].

Hence a worse likelihood score will similarly affect the evidence.

logZ
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During this test we normalised the amplitudes and assumed none
of the initial conditions were known, whereas in practice they can be
normally be measured or taken to be the first time point. With the
initial condition included for the repressilator variable measured, cI
protein (as in Figure 2.10), and with unnormalised amplitudes, the
log-evidence improved to —34.27+0.14 compared with —41.82+0.13
without knowledge of the initial point.

The tests so far have all used synthetic data so that the inferences
made can be compared to a reference with known parameters. Nev-
ertheless some experimental data is available and can provide a more

realistic situation in line with what typically faces a mathematical
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modeller. Taking fluorescence data from the original repressilator
paper [170] as a proxy for one of the variables in the system it was
investigated whether this was sufficient to support the known model.
The data were extracted from Figure 2C of the original work [170]
and a linear increase in fluorescence equal to (45/600) x t was re-
moved. As the data are in arbitrary units it was rescaled to be max-
imally one again and the algorithm was used on the four models as
before. Table 2.7 shows the results which now give positive to strong
evidence for the Schnakenberg model. The experimental data, solu-
tion with mean parameters and best-fit parameter’s solution are plot-
ted in Figure 2.17 which shows that although there is perhaps a fair
fit in terms of residuals, in terms of the period of the data the poste-
rior summary estimates are generally not at all close. If the frequency
domain is known a priori, the likelihood function could be adjusted
from a simple least-squares measure to take this into account. When
posterior samples were plotted it was hard to gain anything visually
thus for simplicity just the summary solutions are shown. Towards
the second half of the experimental time series the repressilator’s
mean parameters’ solution and best-fit solution do match the data
more closely but this wasn’t the case for all posterior samples.

If there was some uncertainty as to the model or its parameters,
designing experiments that can maximise the information in the data
is an approach that has been explored recently [179]. Experimentally
it can be hard to increase the resolution of a timecourse so focusing
on other genes or proteins of interest can be fruitful. With this in
mind, and considering the results shown in Figure 2.16, the effect of
gathering data from another variable of interest rather than trying
to increase the quantity of data available from one variable was in-
vestigated. As previously the repressilator system Equation 2.4 was
used to generate the timepoints, but now with two variables of 25
timepoints each and additional Gaussian noise. (The same random
seed was used so as not to introduce this potential bias in generating
the noise.) The four oscillatory models chosen before are used with
nested sampling for model comparison. The results are presented
in Table 2.8. There is now much stronger support, compared to just
having data from one variable, for the repressilator model—the log-

Bayes Factor has gone from 18 in favour of the Lotka-Volterra model
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Model log Z

Schnakenberg —101.66 +0.13
Repressilator —104.85 +0.11
Lotka-Volterra —124.19 + 0.15

Goodwin -166.70 £0.14

Table 2.7: Log-evidence of
the four models for experi-
mental repressilator data. The
log-evidence was computed
by nested sampling for each
model using the 60 experi-
mental data points given in
the repressilator article [170].
The linear increase in fluores-
cence with time was removed
and data rescaled to be maxi-
mally one. Using the interpre-
tation on Jeffreys’ scale the
use of experimental data now
provides positive to strong ev-
idence for the Schnakenberg
model against the repressila-
tor and very strong evidence

against the other two models.
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Figure 2.17: Mean and best-fit to the four models using experimental data. Experimental data points (blue
diamonds) from the original repressilator paper [170] were used to compare the four models, which from
top to bottom are the Schnakenberg, repressilator, Lotka-Volterra and Goodwin models. None of the mod-
els generally did well at identifying the correct period of the experimental oscillations. Solution using
mean parameter values, black dotted lines. Solution using best-fit likelihood parameter value, orange solid

lines.



RESULTS

over the other models to 72 in favour of the repressilator. This is
regarded as decisive evidence for the repressilator on Jeftreys’ scale.
For these example models the use of data from two variables gives
far more information than increasing the quantity of data from one
variable and enables us to prefer the known model. We are thus able
to suggest this interesting aspect should also be considered when de-
signing experimental research, and may be very useful for Bayesian
model comparison in helping to distinguish competing models of a

biological process.

2.4 Conclusion

Nested sampling is an effective way of calculating the evidence for a
model and producing samples from the posterior distribution of the
model’s parameters. Nested sampling can be viewed as a Bayesian
version of Monte Carlo for which initially the prior and then the like-
lihood are used to guide parameter space exploration. The 1D inte-
gral over the likelihood is solved by treating it as a sorting problem.
As with other Bayesian approaches and in contrast to optimisation-
based methods, samples are obtained from a full distribution of the
parameters of interest rather than merely a point estimate for the pa-
rameter (and possibly an estimate of the variance depending on the
method used). These posterior sample points can be used for further
analysis such as marginal or joint distributions.

It was shown how the procedure produces samples from the pos-
terior probability distribution of the parameters to compute the nor-
malisation constant of the posterior. It has been demonstrated that
nested sampling can produce good estimates for the parameters in
systems of ordinary differential equations under typical biological
scenarios of sparse, noisy data, where the data was only available
from one out of six variables. Nested sampling was also shown to pro-
duce comparable parameter estimates to the established workhorse
of Bayesian inference, namely MCMC, for a biological problem with
experimental gene expression data.

Using Bayes’ theorem for inference additionally helps reduce over-
fitting. In our examples the plasticity of the posterior of the Lotka-
Volterra model meant that the single variable data set available was

not sufficient to give preference to the repressilator model that the
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Model log Z

Repressilator —77.44 +0.14
Schnakenberg —149.17 £ 0.14
Lotka-Volterra -339.07 + 0.12

Goodwin  —468.03 £0.12

Table 2.8: Log-evidence of the
four models for noisy data
from two variables. The log-
evidence was computed by
nested sampling for each
model using 25 noisy data
points from two repressilator
variables. For these example
models, it was found that the
use of data from two variables
gives more valuable informa-
tion than an increase in the
quantity of data from one
variable. The data provide
decisively strong evidence for
the repressilator as judged on

Jeffreys' scale.
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data were generated from. However when data were introduced from
another variable this was able to constrict the parameter space fur-
ther to then convincingly give a Bayes factor in favour of the repressi-
lator. As the mechanisms of these two models are quite different, the
modeller may have background knowledge to prefer one system over
another and certainly Bayes factors or any other metric for model
comparison should not replace intelligent reasoning about the prob-
lem being studied.

Nevertheless a remaining problem is the reliability of model com-
parison in light of limited data for realistic problems where the ideal
model is unknown. This difficulty could be addressed by the con-
struction of other models, some which could, and some that could
not, possibly describe the system under study accurately. Perform-
ing Bayesian model comparison assuming equal belief in all models
in this case could reveal whether the target model really can provide
a justifiably better fit to the data than a number of other models. If
a simpler model was found that ranks higher then this would reveal
the limitation in the present data set, and that adding more parame-
ters is not justified yet until better data are available.

In our example using experimental repressilator data we could
use this as a first run to clearly identify that the models are oscillating
at the frequency of the data collection timepoints rather than the fre-
quency of the fluorescence. This then could be seen as a calibration
run that informs the next round of inference where we incorporate
this result into our background knowledge and update our likelihood
function and/or prior parameter distributions accordingly. A true
Bayesian would take their prior belief for each model into account
along with the evidence values for each before making a conclusion
based on the posterior odds. It may be found that the evidence for
one model is sufficient to overcome a strong prior belief on the model
space. The data available limits the accuracy of the inferences we can
make but provides the odds for hedging our bets — it does not mean
that the “wrong” model can't be preferred. Alternatively the predic-
tions from the competing models could be used as a way to distin-
guish between them in light of a validation data set or further data

acquisition.



CONCLUSION

If we have only a small number of models we wish to evaluate, the
approach of separating each model to provide an individual predic-
tion that can be used to guide experimental validation is tractable.
Bayes factors can be used to compare and select amongst models.
For prediction purposes, however, the full hypothesis space is of in-
terest to take into account parameter and model uncertainty. Model
averaging is thus an important concept that provides a canopy above
the layers of parameter and model inference [133, 180]. In terms of
the least biased prediction, multimodel inference is therefore the ap-
proach of choice [133, 146, 180, 181]. After the new data arrive, these
can be used to update the probability distributions over each model’s
parameter space and furthermore to then update the probabilities of
the models themselves by computing the posterior distribution over
model space.

Nested sampling has the advantage of calculating the evidence as
its main focus, thus readily providing us with the quantity required
for model comparison. For systems biologists this ability to achieve
both parameter inference and model comparison with the same al-
gorithm is clearly applicable to many current challenges in the field.

Proper statistical treatment of a biological modelling problem
can be achieved with Bayesian inference and nested sampling in par-
ticular. Thus a bright future beckons for systems biologists wishing

to quantify uncertainty, infer parameters and compare models.
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MODELLING THE FLORAL
TRANSITION

3.1 Introduction

The initiation of the floral transition is a key decision during plant
development. Diverse species have evolved to respond to environ-
mental cues to flower in the correct season. Despite these specific
differences key properties such as irreversibility and robustness to
fluctuating signals appear to be conserved in individual meristems
of monocarpic annuals. In Arabidopsis many genes have been dis-
covered and placed in regulatory networks without considering the
specific temporal or spatial effect this could have on the network
properties. This motivates a dynamic model of known regulators
to help us gain an understanding of how genetic interactions can
lead to morphological change over time. In this chapter we will use
mathematical modelling to understand the essential properties of the
transition. Our models will be placed on quantitative foundations
with the aim of capturing some of the underlying biology in a devel-
oping plant system. The models will be trained using leaf number
data from various genotypes perturbed for key genes that regulate
the vegetative to floral transition and predictions made for others.
The use of linear models will be explored and then a demonstration
of how small regulatory networks of core components are sufficient
to capture the dynamic behaviour of the floral transition. The math-
ematical assumptions and simplifications will be clearly stated and
the models described in detail. The value of pursuing an iterative ap-
proach combining modelling with experimental work to capture key
features of complex systems will be highlighted. Nested sampling, as
described in chapter 2, will be used to place the models in a Bayesian
context thus giving robust statistical treatment of the problems being
addressed. Nested sampling will be used for parameter inference and
for comparison of models of the floral transition developed in this
chapter. Using the Bayesian framework allows further information

to be used as it becomes available and possible avenues for taking
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this work forward are discussed along with a detailed critique of the

models developed.

3.2 Initial considerations

3.2.1 Hubs

In Arabidopsis many genetic studies have revealed major compo-
nents of gene regulatory networks. From these experiments it has
been found that the entire network of flowering time control is highly
complex with many interacting signals and pathways [42, 43]. This
complexity coupled with a lack of kinetic parameter data can lead to
models that are highly underconstrained by the available biological
data. Thus an appropriate way of tackling such a large system is to
consider a reductionist approach. The motivation for reducing the
complexity is that it is easier to work with a reduced number of vari-
ables and parameters but can still provide insights into the biology.
One way of reducing such a large system is to take advantage of some
genetic redundancy in the plant and approximate key genes for entire
hub activities. This is not an uncommon approach in the literature
when tackling redundancy (for example see van Mourik et al. [106]).
Therefore an initial simplification for this chapter is to group genes
with similar effects into distinct hubs or functional modules [109].
By doing this early in our analysis we will lose a direct mapping
onto individual genes yet, as we have phenotypic data available for
transgenic or mutant lines perturbed for the major genes control-
ling the hubs, we can still relate back to biological units. Simplifying
the known flowering regulatory network as a set of key hubs has the
advantage of making it potentially easier to identify the critical net-
work interactions that account for the major behaviours of the sys-
tem. As an example, mutations in both FD and its paralogue FDP
have been shown to cause later flowering phenotypes than either
individually and the double mutant significantly reduces the effect
of FT overexpression [166] (see also Table 3.1). These two closely
related genes can therefore be grouped together in to a single hub,
named after its major contributor, FD. Another example would be
the AP1 hub that would also include CAL, which is partially redun-

dant with AP1 [182]. Double mutants in these genes have curious
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cauliflower-like inflorescences [65, 183]. The FT hub would also in-
clude the activity of its close relative TSF [54]. As discussed in sec-
tion 1.3 LFY is a master integrator that functions in multiple path-
ways so it makes sense that this will provide a hub. Finally we include
a hub that can antagonise the floral transition and promote meristem
identity. This is named after TFL1 — a key floral repressor. In total
the whole flowering regulation network is simplified down into five
hubs labelled after their major constituents: FT, TFL1, FD, LFY and
API1. The AP1 hub is used as the output in the modelling work pre-
sented here as its upregulation is known to be an early indicator of

the floral transition in Arabidopsis [50, 184].

3.2.2 Data

The quantitative data used in this study were provided by Phil Wigge
and Katja Jaeger who grew 16 plant genotypes and measured their
rosette and cauline leaf numbers. These data are provided in Ta-
ble 3.1 including various mutant and overexpressing transgenic lines
under the control of the cauliflower mosaic virus 35S promoter (35S).
To validate the models and predictions in terms of leaf numbers this
data set was divided into a training set and a prediction set. Although
the data are not independent, because a number of combinations of
genes are present or absent in multiple genotypes, an appropriate
way to assign to these subsets was to predict the triple mutant leaf
numbers. This would also be a significant and challenging test of the
models’ predictive capacity because of the unknown combinatorial

effects of the gene interactions.

3.2.3 Linear modelling

Initially we consider a QTL-type approach for capturing the total
leaf number data in terms of a number of genes involved in the flo-
ral transition. In QTL studies a single-marker analysis is the sim-
plest conceptual method of detecting a QTL and can be conducted
with statistical tests such as ANOVA or a t-test depending on how
the population was crossed. Performing a linear regression is also a
simple and common way of analysing traits of interest. This method
was chosen for the present study because we don’t have a mapping

population and data set as would be considered in a traditional QTL

79



80

MODELLING THE FLORAL TRANSITION

Genotype No. of plants Number of Nu‘mber of Total leaves SD of total Data set
rosette leaves  cauline leaves
Wildtype (Col) 12 7.9 1.4 9.3 1.1 Training
35S:FT 10 4.4 1.0 5.4 0.7 Training
35S:.LFY 11 3.8 1.8 5.6 0.8 Training
35S:TFL1 12 27.5 15.7 43.2 1.9 Training
Ify-12 9 13.0 5.3 18.3 1.2 Training
ft-10 10 36.4 9.3 45.7 1.3 Training
tfl1-1 11 7.7 0.4 8.1 0.8 Training
fd-2 12 18.5 4.63 23.13 2.47 Training
fdp-1 10 11.2 2.0 13.2 1.3 Training
fd-2 fdp-1 10 329 6.3 39.2 1.1 Training
35S:TFL1 fd-2 12 23.8 8.2 32.0 2.1 Training
tfli-1 fd-2 12 14.4 4.6 19.0 12 Training
35S:FT fd-2 12 8.3 24 10.7 1.35 Training
tfli-1 fd-2 fdp-1 12 24.83 6.67 315 1.38  Prediction
358:TFLI fd-2 fdp-1 10 31.33 11.0 42.33 2.89  Prediction
35S FTfd-2fdp-1 12 25.8 5.6 31.4 134 Prediction

Table 3.1: Experimental leaf number data. For each genotype the table lists the mean of the experimental

data for rosette and cauline leaves, total leaf number (TLN) and the calculated standard deviation (SD) of

the TLN. The wildtype and all single and double mutant data comprised the model training set for parame-

ter inference. The triple mutant data are predicted using the inferred parameters from the training phase.

analysis. Thus a simple linear summation of relative estimated gene
expression levels was utilised. This linear model takes a combination
of the concentrations (where necessary denoted with square brack-
ets) of FT, TFL1, FD and LFY, plus an intercept term which would
represent the population mean in a QTL study. AP1 is not included
as we use this as a proxy for the leaf number data which is the out-
put of the model (discussed in more detail in subsection 3.3.1) and
AP mutant genotypes were not available. Thus the linear model can

simply be stated as
Total leaf numbers = k; + ky[FT] + k3[ TFL1] + k4[FD] + ks[LFY]

which is a five parameter linear regression problem with k; being
the constants to estimate. Genotypes were assigned weights for each

gene depending on the contribution of mutating or overexpressing
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the genes. The wildtype gene was assigned a value of 1; full knock-
outs were assigned 0; 35S overexpressors were assigned 10 to reflect
the massive ectopic expression; and the fd-2 and fdp-1 mutations had
levels of 0.25 and 0.8 respectively to approximately reflect their in
planta partial knockout effect. These values were chosen because the
fd-2 mutant clearly has a stronger effect on flowering time than fdp-
I (Table 3.1) but in combination are far more potent. Thus full FD
hub mutants (in the models in this thesis represented by the data
from fd-2 fdp-1) have a total weight of 0.05. It is not expected that
these choices are particularly important due to the number of free
parameters in the model that can adjust for any differences in these
values.

Nested sampling was used to estimate the parameters and evi-
dence of the linear model initially by using the known standard de-
viation in the total leaf numbers to place a different normal distribu-
tion on each data point. The log-evidence was worse than —11000
strongly indicating that the variation in the leaf number data could
not be captured by this model. Indeed, plotting the posterior mean
and standard deviations of the leaf numbers for each genotype against
the true leaf numbers reveals that many genotypes are poorly esti-
mated, as shown in Figure 3.1. If the model fitted perfectly the points
would all fall on to the dark line. The small estimated standard de-
viations suggest the mean parameter values are the ones which max-
imise the likelihood function with little room for variation in those
values. Note that, without further constraints, the 35S:FT genotype
is estimated to have negative leaf numbers which is obviously not
biologically possible.

To try to alleviate the issues with the constraints on the data an
extra parameter for the error term in the data set was added. Thus
now all data points share the same standard deviation term which
follows a Jeffreys-type prior (as the standard deviation is a scale pa-
rameter) [138], rather than their associated individual standard devi-
ations. This results in a log-evidence of —69.85+0.13. An equivalent
plot as before is shown in Figure 3.2. This plot was constructed by
taking the 1000 highest likelihood samples from the posterior set to
reduce the influence of the inferred variance parameter affecting the

likelihood. In other words by doing this it is expected that a good
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Figure 3.1: Fit of a linear
model with independent
errors in the data of each
genotype. The general trend
may be broadly correct yet
this model is not particularly
accurate. The tiny error bars
(representing one standard
deviation) of the estimated
leaf numbers indicate a lack
of flexibility in the parame-
ters that maximise the likeli-
hood function. One genotype,
35S:FT, was estimated to have
negative leaf numbers, but
this could be controlled for

with further constraints.

Figure 3.2: Fit of a linear
model with the error model
variance inferred as a param-
eter and individual standard
deviations not considered.
The estimates and predictions
are slightly better than in Fig-
ure 3.1. Our error bars are
much more in line with the
experimental error bars than
previously. The predicted
mean estimate of 35S5:TFL1
fd-2 fdp-1is almost exactly

correct.
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likelihood fit is more likely due to the parameters of interest them-
selves rather than the parameter controlling the variance in the error
model. The standard deviations of the resulting estimated leaf num-
bers are now on a similar level to the true data in a number of cases.
Our predicted triple mutants are improved overall with 35S:TFLI fd-
2 fdp-1 being remarkably close to the experimental result although
35S8:FT fd-2 fdp-1 is predicted to have 20 leaves fewer than in reality.

Running the linear model in this way is identical to calculating a
least-squares regression. These regression statistics were confirmed
using R’s [185] linear model function Im() which produced similar
estimates for the parameters. As a side note the computed Adjusted
R-squared value suggests we explain 29% of the variability in the data
with this linear model. The estimated against true total leaf numbers
for all models considered here are shown in Table 3.2.

Taken together these results suggest that for this small system and
for the given data a linear modelling approach is limited in its accu-
racy. Specifically it was shown that a linear model gives estimates
that are too inaccurate to capture the underlying biology without
further constraints. QTL-type linear modelling has a value due to
its simplicity especially for genome-wide data and where there are a
large number of lines available to be scored. For this data set and sim-
plified hub model however, this approach does not appear flexible
enough to be appropriate. Thus in the rest of this chapter a more de-
tailed mechanistic approach is constructed based on an ODE model
that can provide better leaf number predictions, trace the dynamics
of a developing system, capture key properties of the floral transition
and lead to interesting predictions that can be tested experimentally.
However, this flexibility requires far more parameters and a much

greater investment in computer time.

3.2.4 Simple networks

INTRODUCTION

For a number of species, homologues of the Arabidopsis master reg-
ulator FT are a core element of the photoperiod pathway [43, 44]. In
Arabidopsis diurnal CO activity gives rise, in long days, to stable CO
which upregulates FT [17, 45]. Long range signalling of FT promotes

flowering time [47-49], thus oscillating input signals are interpreted

33
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Genotype Mean total leaves SD of total leaves Data set

True Ind. o Inferredo R Im() True Ind.o Inferredo

Wildtype (Col) 93 135 19.7 19.8 1.1 0.07 2.5 Training
358:FT 54  -4.6 4.4 4.1 0.7 023 4.8 Training
35S:LFY 5.6 5.0 6.3 5.9 08 022 6.1 Training
35S8:TFL1I 432  39.6 35.6 35.7 1.9 046 4.6 Training
Ify-12 183 145 21.2 21.3 1.2 0.08 2.8 Training
ft-10 457 155 214 215 1.3 0.08 2.7 Training
tfli-1 8.1 10.6 17.9 180 08  0.09 2.7 Training
fd-2 23.13 315 25.1 251 247 0.07 2.7 Training
fdp-1 132 183 21.1 212 1.3 0.06 2.1 Training
fd-2 fdp-1 392 364 26.6 26.5 .1 0.09 34 Training
35S:TFLI fd-2 320 576 41.1 41.0 2.1 046 4.6 Training
tfli-1fd-2 19.0 28.6 234 233 1.2 0.08 2.9 Training
35S:FT fd-2 10.7  13.4 9.8 9.4 1.35 023 4.7 Training
tfli-1 fd-2 fdp-1 315 335 24.8 247 138 0.10 3.6 Prediction
35S:TFLI fd-2 fdp-1 42.33 62.4 42.5 425 289 046 5.1 Prediction
35S:FT fd-2 fdp-1 314 182 11.3 10.8 134 023 5.1 Prediction

Table 3.2: Experimental and linear model leaf numbers. For each genotype the table lists the mean true
experimental total leaf numbers and standard deviations (SD) together with those estimated (for the train-
ing set) or predicted using the linear models described in the text. R's Im() function does not produce an
uncertainty estimate. Ind., Independent i.e. the case where each genotype’s SD was used in the likelihood

function.
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at some level and, once in a floral primordium, the cells are commit-
ted to transition. This section presents a simple demonstration of
how two of the important properties of the floral transition, namely
noise-filtering and irreversibility, can be exhibited by simple three
node networks in feedforward loops. The nodes consist of the com-
plex FT with FD, and the floral transcription factors LFY and AP1.
Although labelled for the Arabidopsis genes, the qualitative effects
of the motifs apply equally well to other species.

A set of ODEs is used to describe the dynamic behaviour of the
system and numerically solved. Binary step functions are used for
the transcriptional activation of genes and AND, OR or AND/OR
gating, depending on the network. The equations all follow the stan-

dard form of

Z—); =v—0x, forx € {LFY,AP1},

where v is the transcription term and § the degradation rate. The FT
input signal to the system in this section was modelled as a digital
function, either 0 or 1. In these examples a signal of long duration
and a small blip are used which might represent, for example, a one-
off short exposure to sunlight. All initial conditions are set to 0 and

parameters fixed.

THE COHERENT FEEDFORWARD LooOP

The coherent feedforward loop is a network motif that is commonly
found in signalling networks [109, 186]. One node regulates another,
with both jointly regulating a third, Figure 3.3a. If the joint regula-
tion is with an AND logic gate this simple network has persistence de-
tection and thus is able to be used as a noise filter that removes blips
in a signal. As the correct timing of the floral transition is crucial to
reproductive success it is important that the system integrates infor-
mation over time, and is not incorrectly activated by noise [187].

In the equations below we write Opr 1 py(FT) (where 0 represents
a Heaviside step-function) to mean that when FT is greater than (or
equal to) the threshold at which it binds to the promoter site of LFY,
FT activates LFY transcription. Similarly Oy 4p; (FT) means API
is activated when FT is greater than or equal to the API promoter-
binding threshold. The threshold for the activation of LFY and API
is set at FT = 1. Orpy.ap1(LFY) means that when LFY reaches a

35
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FT

LFY

(a) This motif is very common in Escherichia  (b) Responses of LFY (green) and AP1 (yellow) to a short

coli, yeast and other organisms [186]. It has  and a long incoming FT signal (purple) are shown. The

been referred to as a sign-sensitive delay el-  short pulse in filtered out and the longer signal leads to

ement because it has a delayed on response (delayed) activation of AP1. Decay in response to a fall in FT

but immediate off response [109].

is immediate.

Figure 3.3: The coherent feedforward loop and its dynamics.

threshold, here 0.5, it binds the AP1 promoter and thus activates
AP] transcription. The activation constants, v, and degradation con-
stants, §, were set to 1 to scale the results to be maximally 1. The

equations for this system are therefore as follows

dLFY
T viryOrr.Lry(FT) — 01pyLFY,
dAP1
TR Orr.ap1 (FT)O1py.ap1 (LFY) — 84p1 AP1.

The dynamics of this network are shown in Figure 3.3b. This net-
work motif has been described previously and has been shown to
exhibit noise filtering properties for short bursts of the incoming sig-
nal that are below the delay time through the different routes in the
pathway [109, 186]. This is clearly seen in the figure where the short
pulse of signal is filtered out whereas the longer signal is transferred
through the network. By introducing an arbitrary threshold for flow-
ering, seen in the lower AP1 panel of Figure 3.3b, this network shows

a reversion to a non-flowering state after FT decay.
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FT

LFY

(a) This motif is often found in developmen- (b) Responses of LFY (green) and AP1 (yellow) to a short and
tal transcription networks [186]. The feed-  along incoming FT signal (purple) are shown. The short blip
back between the two targets of the first leads to a small rise in LFY and AP1 levels but not enough to
node can cause a memory effect as they be maintained. The long signal induces both targets enough
keep active even in the absence of a signal  so that when FT drops away the double-positive feedback

from the initial regulator [109]. loop maintains both LFY and AP1.

Figure 3.4: The regulated feedforward loop and its dynamics.

THE REGULATED FEEDFORWARD LooOP

A similar three node network, called regulated feedforward or double-
positive feedback [109], that uses an OR logic gating can exhibit ir-
reversibility. With the same nodes, an extra activating connection
between the two targets of the first complex will mean the targets
are mutually activating given enough initial impulse by the first (Fig-
ure 3.4a). If these conditions are met the network can provide mem-
ory of the input signal. This is important in developmental networks
because they operate on slower timescales than sensory networks.
For example commitment to flowering after exposure to long days
has been shown to take 1-7 days depending on plant age and seed
vernalization treatment [46] whereas a sensory response in the shoot
to salt stress in the root has been shown to take in the order of min-
utes, propagated in part by a rapid calcium wave [188].

The notation of the equations for this loop is identical to that for
the coherent feedforward loop. There is an additional connection in

this network as shown in Figure 3.4a. This is controlled by the term
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7 Espinosa-Soto et al. [104]
have used a similar idea. An
intermediate level of
expression is determined
from experimental data for a
number of nodes. This, as
here, allows for different

activation thresholds.

84p1.Lry(AP1) which means that when AP1 is greater than or equal
to the threshold at which it binds to the promoter site of LFY, AP1
activates LFY transcription. Both thresholds between LFY binding
API and vice versa were set at values of 0.45. This creates the double-
positive feedback loop [109]. Due to using OR logic gating, rather
than AND logic, the equations take the higher of whichever activator

is bound, leading to

dLFY
T vipy Max (Opr.Lry(FT), Oap1.Lry(AP1)) — 81pyLFY,
dAP1
T vap1 max (Opr.ap1 (FT), Orpy ap1 (LFY)) — 84p1 APL.

The dynamics of this motif are shown in Figure 3.4b. Once LFY
reaches a concentration level that can activate API, this interaction
is sufficient to maintain AP1 production even in the absence of the
incoming signal FT. If the FT signal is removed before LFY has accu-
mulated to a sufficient level then AP1 will degrade away before floral
commitment. The network therefore shows a memory effect and ir-
reversibility [109]. With the arbitrary threshold for flowering, seen
in the lower AP1 panel of Figure 3.4b, the double-positive feedback

shows maintenance of a flowering state even after FT decay.

A COMPROMISE FEEDFORWARD LooP

While the previous two simple network motifs capture separate char-
acteristics of the floral transition, in order to reproduce both noise
filtering and irreversibility within the same network the logic gating
rules require an extension. This can be achieved by introducing two
transcription rates, a low rate that can be activated by either FT or
LFY and a higher rate that requires the presence of both FT and LFY
(Figure 3.5a) 7. Hence we combine the key features of both previous
network motifs by using two different levels of activation depending
on the number of activators bound. The logic gating uses OR for
transcriptional activation at a reduced level but requires AND for
maximal activation. The higher levels, viry,; and vap; 1, are set to 1,

and the lower levels, v;ry» and v4p; », are set to 0.5. These ideas lead
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a) This network incorporates the two previ- (b) Responses of LFY (green) and AP1 (yellow) to a short
ous motifs by utilising different transcription and a long incoming FT signal (purple) are shown. The
rates. A low rate requires the presence of blip in FT causes a damped response by both genes. Past
only one signal employing an OR gate. A a threshold during the longer signal the AND gate will be
higher rate of transcription can be achieved switched on enabling a higher rate of transcription. As the
by both regulators being present so using  signal abates the transcription rate is reduced to the lower
an AND gate. We get some noise filtering level but this is still at or above an introduced threshold for

and a partial memory effect. flowering.

Figure 3.5: A compromise feedforward loop and its dynamics.

to the following equations:

if eFT.LFY (FT) =1 and
viry,1 — OrryLFY
dLFY Oap1ry (AP1) = 1

dt viry,, max (Opr.cry (FT) , Oap1.Lry (APL))
— 01 ryLFY

otherwise,

if GFT.API (FT) =1and
vap1,1 — 0ap1AP1
dAPI _ O1ev.ap (LFY) = 1

St vaprp max (Opr.apy (FT) , Orpy.ap (LFY))
- 04mAP1

This gives rise to compromised characteristics for the individual

otherwise.

properties but it is possible to capture some level of robustness to
noise and a partial memory effect. By introducing a flowering thresh-
old for AP1, depending on the threshold choice and parameters of
the model, we can achieve irreversibility. Thus there is sufficient

memory for the system to continue to flower as shown in Figure 3.5b.
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SUMMARY

A reduced network that represents the core structure underlying the
biology can be mapped to the simple feedforward loops discussed
above. As a major floral pathway integrator an active FT/FD com-
plex was placed at the start of the transcriptional feedforward loop,
upregulating another integrator, LFY, which both activate the floral
initiator AP1 [63]. API also mutually activates LFY in a positive
feedback loop [64, 79] thus creating the important memory element
which is responsible for irreversibility of a plant committed to flow-
ering. As this network still contains the coherent feedforward loop
motif it is also able to filter out some degree of noisy endogenous
or exogenous input signals, which can be relevant to a plant in its
natural environment.

In this section it was sought to show a simple regulatory network
that can capture two major properties of the floral transition. This
can be incorporated into a more complete model of the floral transi-
tion in Arabidopsis with our hubs and more realistic Hill-type func-
tions from Michaelis-Menten kinetics and including the activity of
the floral repressor TFLI in a repressing hub. This model can then
be used to predict leaf numbers and generate hypotheses whilst hav-
ing at its core a network that demonstrates key properties of the floral

transition.

3.3 Methods

3.3.1  Leaf numbers can be used to scale the network

As mentioned earlier API levels have been shown to be a marker
for floral commitment as API is detected in early floral primordia
around stages 1 and 2[184, 189]. Thus in our model, the AP1 hub
is chosen as the output of the floral induction pathways, and rising
levels of AP1 correlate with progress through the floral transition.
After germination the first true leaves of Arabidopsis are termed
rosette leaves which continue initiating during the vegetative growth
phase. We map the number of rosette leaves to the initial state and
low levels of our AP1 hub. Commencing the floral transition, lat-
eral organs formed on the side of the bolting main shoot are termed

cauline leaves. Once the transition is complete, flowers are made.
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Figure 3.6: The definition of developmental decisions via AP1 hub levels. An example AP1 hub curve is
shown in yellow. The developmental time taken to reach two thresholds, dashed lines, is mapped onto leaf
numbers. AP1 levels below the first threshold correspond to rosette leaves. At the start of the transition,
T,, cauline leaves are produced, and on completion of the transition, T,, flowers are made. This mapping
allows for experimental leaf number data to be used to define a cost function for inference of model pa-

rameters. The values we used for T; and T, were 0.2 and 0.3. a.u., arbitrary units.
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Therefore a reliable morphological indicator of time required for ini-
tiation and length of the floral transition in the Columbia accession
is the number of rosette and cauline leaves made on the main stem
prior to flowers and these totals are abundantly reported through-
out the literature. To directly relate the simulated AP1 hub output to
key events of the floral transition we defined two thresholds as pic-
tured in Figure 3.6. The two thresholds were chosen to be at AP1
= 0.2, for the transition from rosette to cauline leaves, and at AP1
= 0.3, for the change from cauline leaves to flower production. The
decision outcome takes on one of these three states: rosette leaves,
cauline leaves or flowers at these defined AP1 levels. These thresh-
old values are chosen arbitrarily as the parameters in the system are
scaled relatively and will adjust to these selected values. A benefit
of this approach is that it can be used to quantify information on
timing of both the initiation of flowering as well as the duration of
the transition. This strategy allows the developmental time to reach
these states to be scaled to the leaf number data provided earlier (Ta-
ble 3.1).

Having described the output of our model we now discuss the in-
put and construction of the equations that define it. As in the simple
motifs described earlier the floral pathway integrator FT comprises
a major hub for many flowering pathways. Our model simplifies the
effects of many biological and environmental processes leading to
flowering by assuming they all feed in to the FT hub. Therefore the
input function to the full network model is based on FT levels. We
chose a linear time-dependent increase in FT levels until the floral
transition is completed. The transition is completed in this model
when the AP1 hub threshold at 0.3 is reached and flowers are pro-
duced. This linear with time increase of FT hub levels represents
growth in leaf area proportional to time. Further justification for
this input signal is provided by the fact that the number of rosette
leaves has been shown to increase at a constant rate [190]. The equa-
tion for the synthesis of FT is therefore vpr(t) = ver 358 + #t, where
1 is the rate of FT production per unit leaf scaled to unit time (the
value chosen for this parameter was 0.01) and vgr 35 is the transcrip-
tion rate for overexpression under the control of the 35S promoter

— if present this was taken as 1, therefore 100 times greater than the
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base transcription rate in wildtype scenarios. Genetic networks were
represented by ODEs using Hill-type gene activation and repression,
assuming that protein binding is in equilibrium on the timescale of

translation.

3.3.2 Network to Equations

A gene network can be converted to a set of ODEs following stan-
dard practice [109]. The model includes transcriptional regulation,
protein-protein interactions, and protein degradation for the hub ac-
tivities in the model. We introduce the following nomenclature. The
concentrations of the hub activity proteins are denoted by x; = [FT],
x; = [TFL1], x3 = [FD], x4 = [LFY] and x5 = [AP1]. Kj; is the effec-
tive binding constant between hub activity proteins i and j, Ky the
effective binding constant between hub protein i and a promoter site
for gene k, K is the effective binding constant between the complex
of hub activity proteins i and j and a promoter site for gene k, with
hix and h;j the corresponding Hill coefficients. The equations gov-
erning the hub protein concentrations, x;, present at any given time,
t, are determined by the production rates, v;, and the degradation
rates, J;,
% =v; = 0ixi,

inwhichi=1,...,5, corresponding to FT, TFL1, FD, LFY and AP1.
The flowering time model can thus be described by differential equa-
tions, each describing the production and degradation rates for the
five hubs. The degradation rates, §;, were all set to a constant value,
0.1. This can be done without loss of generality as the binding con-
stants are allowed to change over a wide prior range to alter the ef-
fective transcription rates and adjust the effect of concentrations on
downstream events. In reality the degradation rates are likely to dif-
fer between protein species and if the information became available
these identified values can easily be substituted in to the model.

The model equations for the production rates are now discussed.
The transcription rates for the hubs are determined by the contribu-
tion from the 35S promoter, if present, v; 355, and a weighted sum of
the rate from nothing binding to a promoter site, v; o, a singly acti-

vated level, v; ., and a doubly activated transcription rate, v; ,.,

Vi = Visss t DioVio t Di+Vi+ t Pi++Vi++-
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The fractions, p;, can be thought of as probabilities of activation and
as such (including the probability of non-activation p; ) sum to one.
These probabilities are determined from Hill type equations for gene
activation and repression.

It is assumed that there is competitive binding between FT and
TFL1 for FD [191] however this immediately complicates the equa-
tions and hence a full derivation is now given. We assume protein-
protein binding to be in equilibrium on the timescale of protein syn-
thesis. The total concentration of FD in the system is given by the free
FD and bound FD thus [FDyg] = [FDgee] + [FTED] + [TELIFD].
The concentration of FT in the system is [ FTyota1 | = [FTfee |+[FTFD].
The aim is to calculate the amount of [FD] bound to [FT] and to
[TFL1]. In the following we do not put square brackets, indicating
concentration, or the subscripts, for clarity of presentation. Initially,
consider the concentration of FTFD and start with the assumption
that free FT and FD associate at rate k., and dissociate at rate k_. Then
following the law of mass-action the amount of FTFD changes over

time as
dFTFD

dt

=ky - FTee - FDgree — k_ - FTFD.

dFTFD
At steady state (

T O) and substituting in we are left with

k.FT (FD — FTFD - TFL1FD) = k_FTFD,

FTFD (k_ + k,FT) = k,FT (FD - TFL1FD),

FT (FD - TFL1ED)
ko +k,-FT

FTFD = k,

Bringing together the binding constants in to one term, k", we are

left with
FT (FD - TFL1FD)

FTFD = 3.1
KET + FT ’ 1)
and by similar arguments therefore also
TFL1 (FD - FTFD
TFLIED = ( ). (3.2)

kIFLT + TFL1

Substituting (3.2) into (3.1) as

FTFD =

FT p_ TFLL(FD - FTFD)
KET + FT KU+ TFLL )7
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leaves us with

(ki + TFL1) (kj" + FT) FTFD =
FT (FD (kj™ + TFL1) - TFL1 (FD - FTFD)),

and after some cancelling and rearrangement

(kg™' + TFL1) (kj" + FT) FTFD — FT - TFLL - FTFD =
kit - FT-FD.

Extracting the FTFD term we are seeking and dividing across gives

us
kYL FT - FD

(KIFU+ TFL1) (k5T + FT) - FT- TFL1

FTFD =

Expanding the denominator and cancelling the FT - TFL1 term sim-

plifies our final equation for the concentration of FT-bound FD to

KYFYFT-FD

FTFD = .
KETKTFLT 4 KETTELL + KJFDFT

Analogously the equation for the concentration of FD bound to TFL1

18
ki - TFL1-FD

TFLIFD = :
KETKIFEL + KETTFLL + KTFLUFT

Using the previous notation

Kys - x1 - x3

x13 = x1x3 = |[FTFD| = ,
s =% = | ] Kiz - Ky + Ki3 - % + Kpz - X1

Kiz-x-x3
13Ky + Kiz- x5 + Koz - x4

X23 = X2X3 = [TFLlFD] =

The transcription of TFLI hub genes consists of a single repres-
sion rate, v, ., if one transcription factor binds and a double repres-
sion rate, v, ,., with the bindings of LFY and AP1 modelled as re-

pressing Hill functions:

5:2
pae
h ’1'.‘;_’5:2 + x?S:Z ’
K
Pa2 = % )
in which Tfis the threshold value of AP1 at which the plant enters the

floral transition, 0.2. Thus the transcription of TFLI is v, = v; 355 +

Vot ((1 = ps2) pan + (1 — pa2) p52) + V2 ++P52P42-

95



96 MODELLING THE FLORAL TRANSITION

As FD is strongly upregulated during the transition [50] when
floral signals such as FT increase it is suspected it is under feedback
control. A simple explanation is that it is auto-active in this regard.
Thus the transcription of FD hub genes consists of a base transcrip-
tion rate, v, and an enhanced rate, v; ., when the binding of FD
leads to activation. The probability of FD being activated through
FDis

hl3:3
X13:3

where Kj3;; is the binding constant for the FTFD complex x;3 to the
promoter site of FD (x3) and h3.3 is the corresponding Hill coeffi-
cient. The modulator of the singly activated transcription rate of FD,
V3.4, is therefore p; . = pi3:3 and the amount of base rate transcrip-
tion is modulated by p3 o =1 - p3 ;.

The transcription of LFY genes consists of a base transcription
rate, v40, and a singly activated rate, v, ,, when the binding of FTFD
or AP1 leads to activation, and a doubly activated rate, v4 .. for when
both FTFD and AP1 are bound to the promoter sites of LFY. FTFD
and TFL1FD bind competitively to one promoter site of LFY with

probabilities
W s
234, 4134
Prsa = Kl213:4 X13
; - h1324 234 23:4 hl324 13:4 h23:4 )
K3t 'K213:4 + K213:4 "Xzt K}113:4 X3
-
131 | 41234
Posa = Kl113:4 X3

Ky Ko + Koy - X5 + K - 25

that activate and repress the transcription, respectively. Kjs.4 and
Ky3.4 are the binding constants for the protein complex x;; (FTFD)
and x,3 (TFL1FD) to the promoter site of the gene that codes for x,
(LFY) and hy3.4 and h,3.4 are the corresponding Hill coefficients. AP1
also activates LFY and this was modelled as binding to a separate

promoter site (not competing with FTFD or TFL1FD),

h5:4
X5

P5:4 = —h7
5:4 5:4
K5y + x5

where Ks.4 is the binding constant for the protein x5 (AP1) to the
promoter site of the gene that codes for x4 (LFY) and hs.4 is the cor-
responding Hill coefficient. Thus, for the proportion of doubly acti-

vated LFY hub genes over time we obtain p4 ., = p13.4ps.4, for singly
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activated py 1 = p13:4(1—psia) + (1= Pp13:4 — P23:4) P5:4 and for promoter
sites of zero occupancy ps o = (1 — p13:4 — p23a) (1 — psa).

Similarly the transcription of API genes consists of a base tran-
scription rate, vs o, and a singly activated rate, vs ,, when the binding
of FTFD or LFY leads to activation, and a doubly activated rate, vs ;.
for when both FDFT and LFY are bound to the promoter sites of AP1.
FTFD and TFL1FD bind competitively to one promoter site of API
with probabilities

e B,
23:5 L M13i5
Kg3:5 X13

p1315 = h h bl
1355 | rhass 23:5 | M35 1355 | o235
Klf3:5 K§3:5 + Kg3:5 X3t K;f3:5 X33

e s,
135 41235
Klfszs X3

Pazs = Kh13:5 _Khzszs + Khzszs . xi’;s:s + Kilf;sss . x;léazs ’

13:5 23:5 23:5

K35 and Kj3:5 are the binding constants for the protein complex x13
(FTFD) and x,3 (TFL1FD) to the promoter site of the gene that codes
for x5 (AP1) and hj3:5 and hy3.5 are the corresponding Hill coeffi-
cients.

LFY also activates AP1 hub genes and this was modelled as bind-
ing a separate promoter site (not competing with FTFD or TFL1FD),

xZ4:5
Pas = ——5=» (3.3)

in which Ky is the binding constant for the protein x4 (LFY) to the
promoter site of the gene that codes for x5 (AP1) and hy:s is the cor-
responding Hill coefficient. From this we obtain for the proportion
of doubly activated LFY genes over time ps ., = pi3:5pa:s, for singly
activated ps ;. = p13:5(1—pais) + (1 —p13:s—P23:s ) Pass» and for promoter
sites of zero occupancy ps o = (1 — p13:5 — pazis) (1 — pass).

The maximal synthesis rates are set to three values, depending
on whether nothing is bound, v; o, one type of activator is present,
Vi+, Or two types of activators are working in an AND logic activa-
tion mode, v; ;. Production and degradation rates for the AP1 hub
were chosen such that the maximal concentration is unity (AP1,,,,
= 1) in all genotypes considered. The complete set of equations are
summarised in Table 3.3. With no further constraints, concentra-
tions and binding constants are not independent so we chose to vary
only the binding constants and Hill coefficients in the parameter in-

ference. This gives a total of 19 parameters to infer.
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Hub Protein Concentrations

% =v; = 0iX;

Hub Protein-Protein Binding
X13 = K23X1X3/(K13K23 + Kizx, + K23x1)

%23 = Ki3x0x3 [ (K13K23 + Ki3%2 + Kyzxp)

Hub Gene Activation

. ) he.
Psa = T;ls,z/ ('ijl&z + xss.z)
Paz = Ktz [(Khiz + xlie2)
pi3a = X5 /(K53 + 437)
iz = Kogixy s (KU Koz + Koy + Kigixs)
Pasa = Kyt [ (K KAzt + Kogdly + Kigiahs)
p5:4 — x}515:4/(KJ;:52 + xéls:zt)
Piass = Kazaays [(KiSs Kgs + Kogsadlys + Kigsahs®)
Pazs = Kysahy [(KiSs Kazs + Kapaaiys + Kipsas®)
p4:5 - xZ4:5/(Kil:4és + xZ4:5)

Synthesis Rates

Vi =Vi3ss + PioVio + Di+Vi+ + Di++Vi++

P1o=Lp1+=0,p1 4+ =0

P20 =1 p2s = ps2(1 = paz) + paa(1 = Ps2)s paer = Psapaa, Tr=0.2

P30=1-p3+ P34+ =P133, P34+ =0

Pao = (1= p13a = P23a) (1 = psia)s pas = P13l = psa) + (1= P13 = P2sa)Pscas Paos = Pr3uaPsia

P50 = (1= p1sis = P23s) (1= pas), ps,+ = Pras(1 = pass) + (1= pizis = P23 )Pass Ps,ev = PrssPas

V10 =1t 71 =0.01,v30=v40=0.01,v20=v50=0,v; 1 =0.05v; 1, =0.1,v;35s =1 forie {1,...,5}

Initial Conditions

Vi3ss + Vio .
Tforze {1,...,5}
i

Table 3.3: Model equations. The concentrations of the hub activity proteins are denoted by x; = [FT],

x; = [TFL1],x3 = [FD], x4 = [LFY] and x5 = [AP1]. Kj; are effective binding constants between hub
activity proteins i and j, K the effective binding constants between hub activity protein i and a promoter
site for the hub activity gene k, K.« effective binding constants between complexes of hub activity pro-
teins i and j and a promoter site for gene k, and h; the effective Hill coefficients. p; is the fraction of hub
activity protein i bound to a promoter site of gene k, and Dij:k the fraction of the promoter of gene k with
the complex i and j. All degradation rates were set to §; = 0.1. Initial conditions were set at 0.1 for LFY and

FD, and 0 for the other hubs in wildtype gene scenarios.
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3.3.3  Priors for the parameters

Uninformative priors for the parameters were chosen as we have no
knowledge of their likely values in vitro let alone in planta. Hill coef-
ficients were chosen uniformly from U(1,4). These values for Hill co-
efficients were also chosen in a recent DREAM challenge entry [192]
and are reasonable in practice [193]. Binding coeffecients have been
shown to be scale parameters [194] and thus a Jeffreys-type prior was
placed on those parameters with lower and upper bounds of 0.0001

and 10 respectively.

3.3.4 Likelihood function

As discussed earlier setting thresholds of the AP1 hub allows the de-
velopmental time to reach these thresholds to be scaled to leaf num-
ber data. It is now discussed in more detail how the introduction of
fixed thresholds allows for the leaf numbers to be used constructively
to explore parameter space. For all genotypes the levels of the AP1
hub are the output of our network and are mapped to the respective
genotype’s rosette and cauline leaf number data. The error model
was chosen to be Gaussian given the data available, Table 3.1, but
as leaf numbers are integer count data a Poisson error model may be
more appropriate. The N=13 genotypes’ leaf numbers in the training
set are assumed to be independent with their own individual errors.

This gives a likelihood function of the form

o f e U] ]
k=10

2 2
V21 20y 20

where f(0), is the function of the parameters that computes the leaf

numbers. Ry and Cj are, respectively, the true rosette and cauline
leaf numbers for the genotype k and oy the experimental standard
deviation in the total leaf numbers for that genotype. A more ex-
plicit way of writing this for our situation of evaluating the model
when AP1 reaches 0.2 and 0.3, for rosette and cauline leaf numbers

respectively, is the following log-likelihood function

N
logl = - Nlog(\/ﬁ) - > log oy
k=1

8 (U Oia R+ (Oiliay =)

2
k=1 20%
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8 Taking the parameters from
the best-fit nested sample
gives a maximum likelihood
score of —24.072. The esti-
mated leaf numbers from this
set of parameters are also

given in Table 3.4.

MODELLING THE FLORAL TRANSITION

Having defined the data, model, prior and likelihood function we
now have everything in place for a proper Bayesian treatment of the
problem. Hence the model parameters were inferred by nested sam-
pling using the leaf number data from genotypes in the training set
(wildtype, single and double mutants). The resulting posterior distri-
bution of the parameters for the model was used to make predictions
for the triple mutants and explore the model’s dynamics, sensitivity

and robustness.

3.4 Results

3.4.1 Biological evidence contradicts statistical evidence

Given the data available nested sampling estimates the log evidence
for the derived model to be —56.17+0.17. The parameters from 2000
equally-weighted posterior samples are used to give the estimated
leaf numbers for all genotypes in Table 3.4 ® . The network output
is able to capture the true leaf numbers well for the training set and
predict the triple mutant leaf numbers. The largest predicted leaf
number deviation is for the triple mutant #fl-1 fd-2 fdp-1 where the
model predicts six more rosette leaves than recorded experimentally.
These inaccuracies do not surprise us. The triple mutants were delib-
erately chosen as a prediction set to test the network to its fullest. The
effect of adding extra mutations is clearly not simply additive. The
fact that our estimated leaf numbers are in the right ball park then
is encouraging because we believe we have captured some of the ge-
netic variability in our network structure. During the undertaking of
this research a paper was published [80] showing that FD is a target
gene of LFY, at least at the seedling stage. This could explain the ob-
servation that FD expression is strongly upregulated during the floral
transition [50]. Further experiments were suggested and analysis of
the FD promoter revealed it contains two LFY binding sites [166]. It
was also demonstrated that deletion of the LFY binding sites in the
FD promoter abolishes FD upregulation upon the floral transition
and ChIP showed that the binding was direct between LFY and the
ED promoter [166]. In light of this conclusive biological evidence we
removed our hypothesised auto-activation of the FD hub which ac-

counted for the upregulation of FD during the floral transition and
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replaced it with a term describing feedback from the LFY hub on to
FD. The equation for probability of FD being activated, now through

LFY, becomes

h4:3
Xy

43 =

Ry
where Ky is the binding constant for LFY protein, x4, to the pro-
moter site of the gene that codes for x; (FD) and hy; is the corre-

sponding Hill coefficient.

Genotype No. of rosette leaves No. of cauline leaves Data set
True Model True Model
Best-fit Mean + SD Best-fit Mean + SD
Wild type (Col) 7.9 8.8 87+04 1.4 1.8 1.8 £0.1 Training
358:FT 4.4 4.3 4.1+0.3 1.0 1.7 1.7+ 0.1 Training
35S:LFY 3.8 4.8 47+0.1 1.8 2.1 22+0.1 Training
35S:TFL1 27.5 27.1 26.8 +1.8 157 155 144+19 Training
Ify-12 13.0 13.4 13.6 £ 0.8 5.3 4.9 51+04 Training
ft-10 36.4 36.7 37.1+1.2 9.3 8.7 8.6 +£0.9 Training
tfll-1 7.7 8.1 83+04 0.4 1.7 1.8+ 0.1 Training
fd-2 18.5 15.6 16.1 £ 1.0 4.63 3.8 3.7+03 Training
fdp-1 11.2 9.6 9.5+04 2.0 1.8 2.0+0.1 Training
fd-2 fdp-1 329 321 313+1.0 63 76  73+07  Training
35S8:TFL1 fd-2 23.8 27.8 27.1+19 8.2 5.2 52+0.6 Training
tfl1-1 fd-2 14.4 14.2 151 +£0.8 4.6 3.7 36+0.3 Training
35S:FT fd-2 8.3 8.2 7.7+ 0.9 24 28 30+£04 Training

tfl1-1 fd-2 fdp-1 24.83 31.0 308 +£1.1 6.67 7.5 7.3 +0.6 Prediction
35S:TFL1 fd-2 fdp-1 31.33 34.2 340+ 1.3 11.0 8.2 7.7 £ 0.8 Prediction
35S:FT fd-2 fdp-1 25.8 26.2 263 +£2.2 5.6 7.4 7.2+0.6 Prediction

Table 3.4: Experimental and model leaf number data for the network with FD auto-activation. For each
genotype the table lists the mean experimental leaf number data and estimated (for the training set) or
predicted best-fit and mean + SD values for rosette and cauline leaves. The best-fit values use one set of
parameters and thus has no possible associated error. This sample is taken from all the nested samples and
is the one that maximises the likelihood function the most from the final set. Mean and SD based on 2000

posterior samples. SD, standard deviation.

Simulating this alternative network and comparing estimates of

leat number data to experimental leaf numbers reveal some differ-
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ences in the training set but in sum very little. The predictions for
the triple mutants slightly favour the FD auto-regulation model but
of course a full Bayesian model comparison is preferred. Running
the nested sampling algorithm with the slightly altered network ar-
chitecture gave a worse log evidence score of —62.68 + 0.18. Indeed
on Jeffreys” scale the Bayes factor between these two models deci-
sively favours the original assumption that FD is an auto-activator.
How can we account for this difference between biology and statis-
tics? Formally the Bayes factor is only equal to the posterior odds of
two models if we assume both hypotheses to be equally true. Biologi-
cally the prior odds should favour the LFY feedback to FD model by
many orders of magnitude based on the results of the experiments
suggested above. In fact given that an investigator should only de-
fine models with a reasonable verisimilitude in model space, the first
hypothesis could be discounted directly. Statistically the evidence in-
corporates an Occam factor [133], penalising more complex models
if their fit is not substantially improved. Comparing a basic least
squares fit to the training data for the best-fitting likelihood param-
eters from nested sampling reveals little difference in the sum of
squared errors between models, 43.1 compared to 45.7, actually in
favour of the network with LFY feedback on to FD. These numbers
came from the best-fit parameter set that was found by considering
the errors in the data as described by the likelihood function and
then using them in a simple least-squares residual which does not
consider the errors in the data. Thus we may not want to assign much
weight to this particular finding.

To further build an understanding of the parameter space, a simu-
lated annealing algorithm [120, 169] optimising the sum of squared
errors was run from a number of random starting parameter sets.
The procedure was cooled to near 0 from a starting temperature of
50, with the temperature reduction factor set at 0.85, and each ex-
ploration at a certain temperature involving 50 cycles with 20 sub-
cycles. The majority (94 out of 96 runs) of results from the initial
model were near to the lowest minimum value found, 27.9. In con-
trast for the new hypothesis a sole run (out of 83) was near its lowest
minimum (32.0), with most (81/83) entering a wide local minima

with a best fit more than double the optimal solution (around 82).
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This suggests that a large amount of parameter space fits well with
the FD auto-regulatory network, but not as much does with the al-
ternative hypothesis. This would account for a significant difference
in Occam factor and can therefore help us to explain the difference
in evidence results. Ultimately the biological evidence is overwhelm-
ing for a network that has a feedback term from the LFY hub to the
FD hub (depicted in Figure 3.7) and thus this is the model that was
taken forward.

Posterior estimates of rosette and cauline leaf numbers from this
newer network are shown in Figure 3.8. Firstly it can be observed
that we can accurately infer both types of leaf numbers with a clear
idea of the uncertainty attached with those estimates or predictions.
Secondly the violin plots show (symmetrically) the distribution of
our inferred leaf numbers is unimodal. This is important because an
average prediction could be the average of two, or more, predictions
that are different from the experimental value. Using a rigid method-
ology such as Bayesian inference allows this to be elucidated. In this
case we show that due to there being no multimodality a mean and
standard deviation will give a fair summary for both the estimates

and the predictions.
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Figure 3.7: New regulatory
network diagram. This net-
work shows all connections
in the network with LFY feed-
back on to FD. Both FT and
TFL1 act through FD (small
arrows) and these are shown
as ovals regulating the other
hubs (circles). FT is the input
and AP1 the output of the
network model. Filled arrow-
heads indicate activation and

T-bars represent inhibition.
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Figure 3.8: Estimated and predicted rosette and cauline leaf numbers for the model with LFY feedback
onto FD. 2000 posterior samples were used for kernel density estimates of each genotype as a violin plot.
The x-axis positions correspond to the mean number of experimental rosette and cauline leaves. The den-
sity estimates reveal that the predictions are unimodal. In a perfect-fit model the violins would all be on

the dark line.



RESULTS

3.4.2  Dynamics of the floral transition network

The dynamics of the wildtype network’s hub proteins representing
concentrations in a cell on the flanks of the apex are shown in Fig-
ure 3.9 for 2000 randomly-drawn equally-weighted posterior sam-
ples. It can be seen that despite variability in all hubs the output
hub, AP1, is under tight control. This is not very surprising given
AP1 dynamics are what constrains the likelihood function and there-
fore the model fitting. FT is most variable as it approaches its steady
state but in the wildtype network this has no consequence on the es-
timated leaf numbers. The effect on TFL1 of being repressed is clear
to see and it reaches a steady state around zero. FD experiences the
greatest delay in upregulation. This is because it has to wait until
sufficient LFY is in the system to bind and then activate it. LFY does
not accumulate immediately because there is a slight delay before the
higher transcription rate is active as it needs sufficient levels of AP1
to have both promoting binding sites occupied. AP1 transcription
and translation occurs very quickly in this wildtype set-up because
initial levels of LFY are present to bind to the AP1 hub promoter.
This is rapidly followed by rising FT levels which kick in to activate
the higher rates of upregulation.

Throughout the time period of the floral transition strongly rising
levels of the transcription factors in the network are observed. This
is in agreement with the literature [50, 78, 79]. The behaviour of our
TFL1 hub is perhaps also reflective of reality [81], at least assuming
that TFL1 protein levels can be detected at a similar level to our hub
levels, yet this is less clear. Because we have modelled a cell that is
poised to transition to a flower on the flanks of the apex it can be
thought of as initially being in floral anlagen — cells that form the
foundations of, in this case floral, organs. Conti & Bradley [81] show
that TFL1 protein moves without its expression domain including
into anlagen cells and there LFY is expressed. At some point these
cells experience stronger floral signals and TFL1 is restricted from
floral meristems. Thus even if TFL1 mRNA is not expressed in those
primordial cells at the early stages of development that this chapter
focuses on, its protein product is likely to be present before declining.
This shows the early TFL1 hub dynamics in the model could be a

decent description of the system.
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Another point to bear in mind when critically evaluating this net-
work’s dynamics is that the input is smooth so it is not surprising that
the output is smooth. Therefore the behaviour of the network to non-
monotonic input signals is investigated next along with other impor-
tant dynamics representative of the floral transition to reassure our-
selves that the larger network still maintains qualitative properties of

the network motifs.
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Figure 3.9: 2000 posterior samples of the wildtype network dynamics of the five variables. Darker intensity
indicates more samples at that concentration for each timepoint. FT will follow the same path initially for
all samples until AP1 crosses the rosette-to-cauline threshold but fans out after a while. TFL1 is repressed
as LFY and AP1 become established. The predictive dynamics of the AP1 hub closely match each other

despite the variation in the other hub proteins.

IRREVERSIBILITY

An important characteristic of the floral transition in wildtype Ara-
bidopsis is its irreversibility. This means that once committed to flow-
ering the primordia can not then revert back into vegetative tissue
before making floral organs. Because FT hub mutant plants flower
after a long time in suitable conditions [195], by design our network
can incorporate no FT hub production term and still output flow-
ers. However what if there was initially FT production that was then
withdrawn? This could represent for instance a light shift experi-
ment from long days to darkness or a construct that can inducibly

knockdown FT. This was investigated by setting the FT production
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term, Vgr, in the model to zero after a certain number of leaves had
been observed. Simulations, using the best-fit parameters, varying

the length of inductive conditions are shown in Figure 3.10. Flow-
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Figure 3.10: The effect of FT production withdrawal on the AP1 hub. FT is withdrawn after the indicated
number of leaves and its effect on the correspondingly coloured lines for AP1 is shown. Flowering time is
judged by AP1 crossing the 0.3 threshold. Longer times equate to delayed flowering. The wildtype (WT)
and FT-knockout (ft) scenarios are shown for comparison. Even a small induction of FT speeds up the time

to flower compared to the knockout line.

ering time is judged here by AP1 crossing the 0.3 threshold. As can
be seen flowering time is identical to the wildtype if FT is stopped
after a developmental time of 10 leaves, and near identical if termi-
nated at the eight leaf stage. Ceasing FT production after the for-
mation of six leaves causes a slightly delayed time to flower. On the
other hand the duration of FT production has a strong effect on the
timing of flowering if withdrawn early, at the two or four leaf stage.
Compared with the simulated complete lack of the FT hub (labelled
ft in Figure 3.10) flowering is still accelerated when FT production

is withdrawn after the formation of only two leaves. Once AP1 has
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crossed the rosette-to-cauline threshold (0.2; around the 8 leaf stage)
preventing FT production has little effect on the timing of flowering.
At this point the plant is committed to flowering which is consistent
with a study showing that one long day can be sufficient to cause
floral commitment under certain conditions [46]. Thus by introduc-
ing a flowering threshold this network can exhibit irreversibility, and
from earlier we know this is due to the memory element present in

the core regulatory motif.

NoisE FILTERING

FT expression is strongly influenced by temperature [18]. Therefore
plants are likely to experience large day-to-day fluctuations in FT lev-
els. To simulate these conditions first uniform random noise of up
to 50% of the signal vpr was given as input. With this level of noise
FT hub levels are only minorly perturbed, Figure 3.11 Left, with no
effect on the AP1 hub. Pushing this further very high noise levels
in FT production rates were simulated such that uniform random
noise of up to 200% vpr was given as input. These signals propagate
through to the levels of FT, Figure 3.11 Right, however the network
is also able to filter this out, resulting in a smooth AP1 curve. Under
these conditions the model simulates the ability of this developmen-
tal system to filter noisy environmental signals and make correctly
timed decisions. The buffering properties of the model result in AP1
levels that are unaffected by these perturbations because of the incor-

porated coherent feedforward loop.

CIRCADIAN OSCILLATIONS

Both FT hub genes FT and TSF are expressed in a circadian fashion
in planta [37, 54]. API expression, our marker for the output of the
flowering pathway, does not oscillate [196]. We wished to test how
well our full regulatory network also exhibits this ability to integrate
out and smooth input signals. Hence it was examined how oscillat-
ing production rates of FT influence the FT and AP1 hubs in partic-
ular. The input term, vpr, was multiplied by the oscillating function
sin(ct)?, where ¢ controls the frequency, either 0.5 (Figure 3.12 Left)
or 3 (Figure 3.12 Right). As shown in these figures the network is
able to filter out large oscillations in FT production rate at both high



RESULTS 109

0.9 0.9
S S
8 8
506 506
© <
IS <
(0] (0]
(&) (&]
C C
(@] (@]
003 00.3

0.0 0.0

0 20 40 60 0 20 40 60
Time Time

Variable — FTinput — FT — TFL1 — FD — LFY  AP1

Figure 3.11: Effect of signal noise on the network hubs. 50% (left) or 200% (right) random noise was added
to the signal (purple). The lower level of noise in the FT input barely filters through to the FT hub (red) thus
not surprisingly the AP1 (yellow) output is smooth. The high noise levels affect the FT hub more strongly

but they are also filtered out by the network so there is no effect on the AP1 hub.

and low frequencies. These modulations propagate through to FT
levels yet generate an unperturbed increase in AP1.

As stated previously our proposed network contains a motif that
is known to buffer noise well. However in this flowering time model
the ability to buffer noise is also partly a result of the magnitude of
the degradation rates compared to the steady state values. Doubling
the degradation rates, such that the modulation in vgr is fed through
even more strongly to FT, we still find that the network filters out
these perturbations, Figure 3.12 (Lower row). The full model there-
fore captures key properties of the floral transition in Arabidopsis,
including irreversibility and the filtering of noisy and circadian sig-

nals, due to the network motifs built into its architecture.

3.4.3 Parameter analysis

The marginal distributions of the 19 parameters over their prior range
are shown in Figure 3.13, and then after zooming in on regions of

non-zero probability in Figure 3.14. These distributions show a num-
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Figure 3.12: Effect of oscillating FT input signal on the network hubs. Upper row: degradation rates are set

at 0.1 as used throughout this chapter. The circadian oscillations at low frequency (left) of FT activation

(purple) propagate through to the FT hub (red) with no effect on the AP1 hub (yellow). High frequency

(right) FT activation oscillations transmit through to the FT hub with small amplitude and thus this does

not prevent a smooth rise in the AP1 hub. Lower row: the degradation rates are doubled to 0.2. Very small

modulations are seen at the start of the AP1 hub curve due to the massive amplitude in the FT hub's oscil-

lations (left). High degradation rates and fast oscillating FT input signal again damp the FT hub’s dynamics

without affecting AP1 (right).
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ber of interesting things justifying the use of a Bayesian treatment of
the problem. We note how some Hill parameters can take on most
values of their prior and thus are not constrained by the data. In con-
strast the data constrains some parameters very strongly. As these
distributions are correctly normalised to have an area equalling one
the parameters with higher values are the ones that are most defined.
In particular the binding coefficient of LFY on to the TFLI promoter,
K45, has a high probability in the region between 10™* and 1072 The
parameters controlling the binding coefficient of a number of species
to API are also well defined. This perhaps does not surprise because
the AP1 levels are the output of our system and must therefore be
constrained to give a reasonable likelihood score. No parameters
seem to show multimodality in their marginal distributions, but not
all have one strong peak. This discovery might not be accounted for
with classical statistical techniques. For example the mean and stan-
dard deviation of the Hill parameter controlling the binding of the
TFL1FD hub complex to API, h;3.5, would completely miss the fact
that more weight is given to the higher end of the parameter value,
around 4.

In fact this case highlights a strength of the Bayesian approach as
it can raise a concern, leading one to investigate model reliability but
providing an avenue for updating our degrees of belief. It seems that
high Hill coefficients are preferred for both h,3.5 and hy43, meaning
that for a second round of inference maybe the prior range should
be extended. However such large Hill terms are improbable in many
realistic situations. To account for this habit of large Hill coeflicients
resulting from parameter inference we could either be more specific
with our prior belief on the parameters by choosing a different prior
distribution, or one could add a penalty to the likelihood function. A
simple prior distribution to consider here could be a triangular dis-
tribution with most weight at the end nearest one and little weight at
high values of the Hill parameter. If the data were not informative
enough to overcome our prior belief then the parameters’ posterior
distribution would be dominated by the prior thus alleviating the
problematic high Hill coefficients. In this flowering time model uni-
form priors were initially chosen for all Hill parameters as we had

no knowledge of their likely values. After examining the posterior
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we have revealed that firstly, if the analysis was updated then two
parameters ought to have different prior distributions, and secondly
that our data does not constrain the choice of all parameters to real-
istic values.

A selection of joint distributions between parameters is shown
in Figure 3.15. No combinations of parameters appear multimodal
although there are correlations in some combinations (Figure 3.16).
For example, K43, the parameter controlling the binding of LFY onto
FD exhibits some correlation with other parameters. The binding
constants of the two mutual activators, AP1 and LFY, to each other
show a surprising yet evident non-linear correlation (Figure 3.16 Bot-
tom right). Some parameter joint distributions are so spread out
that they essentially look uniformly randomly distributed as in Fig-
ure 3.15 (Bottom row). These interesting figures all together show
that evaluating the posterior distribution will enable one to find more
information, such as the spread or correlations, that can be missed
from a point estimate of the parameters. Likewise it can be inferred
that some parameters are far more sensitive to their choice than oth-
ers, and thus in the future this could be an avenue for minimising
the proposed model.

Additionally the effect of some parameters on the flowering time
of the wildtype network was investigated qualitatively. It was found
that the interplay between K3 and K3 was very important. This is
intuitive as these parameters control the relative binding strength of
ED to either FT or TFL1. Tighter TFL1 binding to FD leads to de-
layed flowering, which can be compensated for by lowering K3 even
more, to give tighter binding between FT and FD. The competition
for FD binding is therefore critical to correct flowering time for the
input but what about for the output? Reducing values of K3:5, con-
trolling the binding of the TFL1FD complex on to the AP1 promoter,
again leads to a delay in AP1 accumulation. As previously this effect
can be counterbalanced by decreasing the value of K 3.5 so that FTFD
binds more tightly to the API promoter.

Satisfyingly these results support a number of experimental stud-
ies. The proposal that FT may interact with FD amongst others in a
transcriptional complex more strongly than TFL1 to activate flower-

ing genes [191] is endorsed by the qualitative analysis of our network.
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Figure 3.13: Estimated marginal posterior parameter distributions over prior range. The kinetic parame-
ters, K., have alog, -uniform prior range of [107%, 10]. The Hill terms, k., follow the prior U(1,4). More
kinetic parameters than Hill parameters have a higher probability density indicating they are the more
constrained. All marginals have been properly normalised with area equal to one, thus the y-axis values

represent estimated probability densities.
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gions. No parameters are multimodal however not all have one strong mode. Some Hill parameters can
take on most prior values with almost equal probability. Intriguingly this applies for k4., which is the Hill
term for binding of LFY on to the TFLT promoter whereas its corresponding kinetic parameter (Kj.,) is the
mostly tightly controlled parameter. Y-axis values represent estimated probability densities with marginal

distribution area equal to one.
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Yeast two-hybrid assays have shown that FT interacts more strongly
with FD than TFL1 in yeast [51, 191]. Looking at the marginal distri-
butions in Figure 3.14 of the parameters controlling the same inter-
actions, K3 and K33, shows that the values for K3 are higher leading
to its weaker binding to FD in our model. These results increase the
belief that the model really captures some of the biology with how the
network was constructed and the statistical treatment of the problem

of parameter inference.

3.4.4 A hint on spatial patterning of the SAM?

Having established a network architecture that captures the temporal
dynamics of cells undergoing the floral transition we also tentatively
wondered if the model might also help us understand the spatial ex-
pression patterns of the main floral meristem regulators. This is a
particularly interesting question because during development plants
show sharp boundaries of gene expression in the SAM. During the
floral transition initially diffuse and variable input signals, for ex-
ample FT, gradually increase over time, leading to the expression
of floral meristem genes such as LFY and API on the flanks of the
shoot, while the centre of the shoot has rising TFLI expression and
remains vegetative. It was hypothesised that low initial levels of the
LFY or TFL1 hubs in the model might be sufficient to determine
the stable acquisition of either a flowering (high AP1) or vegetative
(high TFL1) state. Switching between these initial conditions the
wildtype network has not been found to exhibit a bistable outcome
between flowering or vegetative fates. Instead, a flowering state is
often reached depending on the parameters (as discussed above).
This is expected for a number of reasons. As the temporal model
has flowers as its output, as mentioned, it can be thought of as rep-
resenting a cell on the flanks of the shoot apex poised to transition.
These cells transition to a high AP1 state, but they do not experi-
ence extended upregulation of TFL1, since TFL1I is repressed in floral
meristems [79]. By contrast, within the centre of the shoot, TFLI is
strongly upregulated upon flowering. It was found after experimen-
tal discussions that TFLI expression correlates across an entire Ara-
bidopsis plant with the level of FT expression as shown in Figure 3.17

(exactly the same as Figure 2.3 in the previous chapter). The simplest
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Figure 3.17: Reproduction

of Figure 2.3. There is a clear
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as determined by qPCR.
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Figure 3.18: Enhanced regu-
latory network diagram. This
network shows an additional
connection between FTFD
and TFL1. Filled arrowheads
indicate activation and T-bars

represent inhibition.

way of accounting for this behaviour in our model was to include a
term for the activation of TFLI by FTFD in the network, as shown
in Figure 3.18. Given our hub structure this need not be a direct
interaction, indeed it surely involves a number of intermediaries in
planta. In chapter 2 it was seen that for this data a sigmoidal model
had a strong weight of evidence for it against a linear model. This
suggests we can justifiably keep the similar structure based on Hill
equations in terms of hub binding for this interaction. The addition
of this connection requires four extra parameters for FTFD binding

to the promoter of TFLI as described by the following equation
Ky

p13:2 - KhIS:ZKh23:Z + Kh23:2x]i1§3:2 + Kh13:2x21§3:2 ’

13:2°%23:2 23:2 13:2

To avoid complicating the model even further this term was sim-
ply multiplied by the doubly activated TFLI1 rate which leads to a
competition between activation through FTFD and repression from
AP1 and LFY. Hence when AP1 and LFY are present at high concen-
tration they will be dominantly repressive over the effect of direct
FTFD-induced transcription of TFL1. The new term for TFL1 acti-
vation is then

V2 = VTFL1,358
+v7rr1,+ (1= ps2)paz + (1 — pa)psi2)
+ VTFLL,++ * P52 " P4:2 - P13:2-

It was tested whether this network was still capable of fitting to
the leaf numbers and if so, how its Bayesian evidence ranked com-
pared to the two models previously considered. Running nested sam-
pling on the same data set but with this extra connection in the model
gave a log evidence of —59.87 + 0.18. The previous model, with LFY
feedback on to FD, had alog evidence of —62.68 +0.18 thus the Bayes
factor is just under 3 — and on a normal scale is favoured 16 : 1. On
Jeffreys’ scale this would be strong evidence in favour of a model
with this extra term despite the four additional parameters. What
is the basis for this improvement in evidence? It is known (see sub-
section 1.5.3 and also MacKay [133]) the evidence comprises an Oc-
cam factor and a measure of goodness of fit. Here the former should
penalise our extended model requiring four more parameters, and
the latter should give more accurate leaf number estimates. Intrigu-

ingly much of the improvements come through superior estimates
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Genotype No. of rosette leaves No. of cauline leaves Data set
True Model True Model
Best-fit Mean + SD Best-fit Mean + SD
Wild type (Col) 7.9 8.9 87+04 1.4 2.0 1.9+ 0.09 Training
358:FT 4.4 3.6 3.8+0.2 1.0 1.6 1.7+ 0.06  Training
358:LFY 3.8 3.9 41+0.1 1.8 1.5 1.6 £0.04  Training
35S8:TFL1 27.5 26.8 28.1+1.5 157 169 143 +19  Training
Ify-12 13.0 12.3 12.8 £ 0.7 53 6.2 6.6 £ 0.6 Training
ft-10 36.4 35.5 370+ 14 9.3 8.6 8.8+1.0 Training
tfl1-1 7.7 8.3 8.5+0.4 0.4 1.9 1.9+ 0.08  Training
fd-2 18.5 18.1 16.1 £ 0.8 4.63 3.9 34+03 Training
fdp-1 11.2 9.8 94+04 2.0 2.2 2.1+0.1 Training
fd-2 fdp-1 32.9 32.8 31.6 £0.9 6.3 7.0 6.8 +0.6 Training
35S:TFL1 fd-2 23.8 25.3 260+ 1.5 8.2 4.5 45+04 Training
tfl1-1 fd-2 144 154 15.6 £ 0.7 4.6 3.4 33+03 Training
35S:FT fd-2 8.3 8.3 7.0+ 0.8 2.4 34 2.8+0.3 Training

tfl1-1 fd-2 fdp-1 2483 302 312+10 667 66  67+06 Prediction
358:TFLI fd-2 fdp-1 3133 340 349+11 110 72  73+07 Prediction
358:FT fd-2 fdp-1 258 285  26.1+2.1 56 68 66«06 Prediction

Table 3.5: Experimental and model leaf number data for the extended network with FTFD activating TFL1.
For each genotype the table lists the mean experimental leaf number data and estimated (for the training
set) or predicted best-fit and mean + SD values for rosette and cauline leaves. The best-fit values use one
set of parameters and thus have no possible associated error. This sample is taken from all the nested sam-
ples and is the one that maximises the likelihood function the most from the final set. Mean and SD based

on 2000 posterior samples. SD, standard deviation.

of mutations solely affecting the FD hub Table 3.5. The genotypes
fd-2, fdp-1 and fd-2 fdp-1 all have better estimated best-fits in the ex-
tended model, in particular the rosette leaves of the fd mutant. In
the training set for all three network models the best-fit leaf number
estimates of genotype 35S:TFL1 fd-2 are the source of the poorest
fits. This suggests we haven’t done as well capturing the suppression
of 35S:TFL1 by fd-2 as other genotypes. In terms of predicting the
triple mutant leaf numbers there are no substantial improvements or

regressions.
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For different parameter values, the vegetative centre of the SAM
was simulated, where TFLI is initially expressed at low levels and
LFY is absent [77-79]. In this model scenario, rising levels of FT
trigger the further upregulation of TFL1. The negative feedback of
TFL1 onto both API and LFY prevents their expression (Figure 3.19
Top). Under the opposite starting conditions, low levels of LFY and
no initial TFL1, corresponding to the primordium prior to floral evo-
cation, rising FT activates AP1 and LFY. Since this is a positive feed-
back loop, high levels of AP1 and LFY are rapidly established, and
TFLI is repressed, leading to a floral state (Figure 3.19 Bottom). Al-
though no parameter sets have been found where this is a stable state
— at very high leaf numbers (when in practice the plant may have al-
ready died) this breaks down and AP1 reaches the flowering thresh-
old — this can be seen as a starting hypothesis that warrants future
investigations. Up until late developmental times essentially the win-
ner takes all — vegetative or flowering programs are established —
depending on the initial levels of either TFL1 or LFY and their sharp
rise through the transition. This simulated outcome supports the
model of Ratcliffe et al. [79] who suggest that one possibility for the
spatial patterning is due to the relative timing of TFLI and the flo-
ral genes’ induction, and subsequent mutual inhibition in the centre
or periphery of the apex. In addition this gives us a lead to under-
standing the spatial patterning of the SAM where the activators of
the transition must also cause a synchronous activation of their own
repression in certain domains presumably due to floral signals being
perceived by upstream regulators of meristem identity. This pattern-
ing mechanism has parallels with floral induction in tomato, where
the floral signal SFT upregulates a repressor of floral meristem fate
in lateral meristems adjacent to floral meristems [197]. Further un-
derstanding the system of apical patterning is an exciting goal for

researchers in the future.

3.5 Discussion

3.5.1  Strengths and limitations of the model

A challenge to modelling complex biological systems, such as the

floral transition, is that many interacting components are involved
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and little is known in terms of their biophysical properties such as
biochemical concentrations, binding affinities for each other or half
lives within the cell. The mathematical modelling presented here
thus involves considerable simplifications in terms of quantitative
cell biology. We also simplified much hard work from excellent ge-
netic studies in Arabidopsis with the reductionist approach — using
knowledge of the major components and approximating key genes
for entire hub activities. The list of things approximated and not
modelled explicitly is vast. Therefore it is worth providing a brief
list where more details are available in section 1.3. In Arabidopsis
a number of pathways [5, 6] converge to stimulate flowering. This
chapter focused on FT, a key floral integrator, as the input to the net-
work. In one fell swoop this approximated the photoperiod pathway,
whose output is diurnal FT expression; the vernalisation pathway’;
and the autonomous pathway. The age-dependent and gibberellin
pathways were accounted for by gradually rising levels of the AP1
and LFY hubs. Numerous other players in this web have been impli-

cated: SPL transcription factors [35, 36], the floral integrator gene
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Figure 3.19: Initial condi-
tions can determine apical
cell state. For the timepoints
shown a switch between ini-
tial conditions of LFY (green
solid line) and TFL1 (blue
dash-dot line) affect hub be-
haviour. Top: LFY starts at O,
TFL1 at 0.1. TFL1 is able to
repress LFY and AP1 due to
continued increase in FT lev-
els. Bottom: Under opposite
starting conditions where LFY
is initially 0.1 and TFL1 is O,
LFY and AP1 are increased
and flower normally while

TFL1 is repressed.

? Although the rapid-cycling
wildtype Columbia-0 acces-
sion used as the genetic back-
ground for the genotypes in
this thesis does not have this

requirement.
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SOC1 [57], hormones such as auxin [28] and cytokinin [29], vari-
ous microRNAs [4], ambient temperature [15, 18, 19] and the role
of mechanical forces [82].

The model was motivated by known biological interactions and
the idea of using the available leaf number data to make the predic-
tions quantitative. This allowed us to train the network to the data
and enabled the resulting model to suggest experiments that can be
related back to biological entities. We did this by defining two thresh-
olds at effectively arbitrary values of 0.2 and 0.3. Given the number
of parameters in the model it is reasonable to believe that sensibly
changing the values of these thresholds would just lead to a corre-
sponding altering of the parameter distributions such that we still
fit to the data at a similar level. The network model is also simple
enough to understand some aspects of it intuitively because of the
well-studied motifs it is based on. These advantages comes at a cost.
First, by placing the network in an ordinary differential equation
framework, we need to carry out computationally costly parameter
space sampling. Although the employed nested sampling routine
has been shown to perform very well for this purpose it is still true
that we do not know whether or not our estimated parameter distri-
butions are realistic or not. Second, the reduction to activity hubs
means that our individual genes do not have direct in planta equiva-
lents. Despite basing our equations on kinetic binding between pro-
teins these are actually “hub proteins” and therefore an approxima-
tion of the effects of different proteins in the plant. Third, the model
currently largely neglects important spatial effects. Although we can
reproduce the overall behaviour of the transition, individual interac-
tions represent spatially averaged behaviour and conclusions from
this simplified network about such details must be considered care-
tully. For example we defined an appropriate network that represents
well a single cell in the apex periphery that is capable of entering the
transition. A cell elsewhere in the apex may, in fact, have a differ-
ent set of connections between hubs and thus experience somewhat
different behaviour.

Linear modelling of the system as presented in the early part of
this chapter also suffers from these limitations, and more besides.

The network approach taken here performs better than the linear
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model because it helps us to understand and explain dynamic be-
haviour. The increase in parameters this required also gives us more
flexibility in the fitting to the leaf number data. Thus we are able
to be more accurate in estimating the training genotypes along with
predictions that more closely match the triple mutant data — along
with the individual rosette and cauline leaf data shown above com-
pare Figure 3.20 with Figure 3.1 or Figure 3.2. It is also worth noting
that all the network models had decisive evidence for them versus

the linear model as judged on Jeffreys’ scale.

50

40

Estimated total leaf numbers

10

10 20 30 40
True total leaf numbers

Model set ZTraininng Prediction

Figure 3.20: Posterior sampling of the extended model for total leaf numbers. Nested sampling was run
with a likelihood function that minimised the sum of the model rosette and cauline leaves against the true
total leaf number. 2000 posterior samples were taken and summary statistics calculated for each genotype.
Compared with the linear models’ summaries, Figure 3.1 and Figure 3.2, these estimates and predictions
are far more reflective of the real data. We don't predict 35S:TFL1 fd-2 fdp-1 as accurately as in the linear
model but we are now more accurate for the entire data set. The evidence for this model, —47.96 + 0.15, is
far better than the linear models’ thus showing that, for this data set, the increase in parameters is quanti-

tatively justifiable and that the network approach is considerably more powerful than linear modelling.

Our model is also extensible. Adding further hubs to this net-
work, for example SOCI, is not too difficult and will lead to fur-
ther testable hypotheses. More expansively, models for the circa-

dian clock [110] upstream of the floral transition as well as models
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for downstream processes such as MADS-box transcription factors
specifying floral organs [106] could in theory all be coupled together
to produce a more complete picture of floral morphogenesis at the
SAM.

3.5.2  Outlook

Due to the clear mathematical foundations and robust statistical treat-
ment of our modelling there are a number of directions this work
could be expanded on in the future. In Arabidopsis two clear paths
present a fork in the road depending on what one is trying to achieve.
The main routes are either to attempt greater understanding of the
detailed mechanisms involved on a simplified molecular level or to
build a larger model with a greater set of features.

The first approach is the further minimisation of the presented
reductionist model. When deciding upon our hubs and their struc-
ture the aim was to capture the core essentials of the flowering time
network in the most basic possible model. However as touched upon
when analysing the parameter distributions some parameters could
potentially be removed from the system without loss of much flexi-
bility. It would then be interesting to see the smallest network that
could explain the data from the floral transition. One possibility is
to remove the TFL1 hub from the network — revisiting our initial
three-node motif — and define new equations to capture the data.
Of course we would then have to remove the plants with altered TFLI
expression from the data set, that is four out of 13 from the training
set, and two of three from the prediction set. If this path is followed
using a different data set should be strongly considered. Minimal
models can help dissect complex regulation if good resolution quan-
titative data is available [111]. For instance a data set representing
gene and protein abundance for the selected species over a number
of timepoints will give far richer insights than leaf numbers alone for
any flowering time modelling attempts.

The alternative path also requires a richer data set as it leads to
an extended model. As mentioned our model could be coupled with
others from the literature to provide a greater understanding of floral
development and patterning. This would necessarily require some

work in making sure all mathematical and biological assumptions
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were similar between initial models and would no doubt leave a final
model with a large number of parameters. A number of biological
assumptions made in our simplification process could be reversed,
perhaps independently of whether any models are chosen for cou-
pling. A very interesting report from Melzer et al. [198] showed,
amongst other things, that in the double-mutant socI-3 ful-2 the ef-
tect of 35S:FT on flowering is largely suppressed. This suggests an
important role for SOCI and FUL downstream of FT. How would
this fit in with our hubs? Presently our model output is the AP1 hub
which reflects the activities of, at least, API, CAL and FUL in Ara-
bidopsis. A recent study [199] demonstrates the likelihood of SOC1
and FUL binding as heterodimers to the promoters of their target
genes such as LFY. Given these data perhaps the assumption that
they contribute to more than one hub could be made more explicit by
adding them as extra factors. Though this of course leads to a thorny
issue — how exactly is the morphology of flowers judged? At what
point does a flower stop being recognised as such? In our model no
architectural differences between inflorescences were accounted for.
The fact that Ify mutant inflorescences look different to apI mutant
inflorescences [182] (of course not fogetting the amazing ap1 cal ful
cauliflower-like inflorescence) may lead to headaches when specify-
ing the outcome of such a model. A mention of architecture immedi-
ately brings one’s thoughts to a question of space. The current model
is temporal, and the propositions here extend this to tracking the dy-
namic behaviour of more proteins, and perhaps mRNAs, over time.
Ultimately these genes are all interacting and possibly diffusing in
the apex over time, and connections published in the literature may
not be true for all cell types at all timepoints. This therefore high-
lights the need for future work in Arabidopsis, as the model dicot
plant species, to ultimately focus on spatial cell-based models that
account for the differential expression patterning of the key floral
genes. Relevant experiments to inform these models would there-
fore include investigating the spatial and temporal dynamics of the
relevant genes and proteins through techniques such as live imaging
microscopy, laser microdissection and RNA sequencing throughout

the initiation of the floral transition.
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4.1 Modelling summary

Mathematical modelling is becoming an increasingly popular tool
within the field of systems biology. Numerous modelling approaches
are used in practice, ranging from machine learning of networks to
partial differential equations (PDEs) on complex geometries. With a
precise mathematical description of a problem, its solution can lead
to unexplored research avenues or solve unexplained puzzles. In
combination with experimentalists, iterative model building and bi-
ological verification or falsification can give greater knowledge about
the system under study. Therefore as a function of increasing data,
and by asking the right questions, scientific understanding can be
increased through this interdisciplinary approach.

To this end, there has been some previous computational mod-
elling of varying aspects of flowering time and flower development.
For instance Espinosa-Soto et al. and van Mourik et al. took differ-
ent approaches to build models that describe the regulation of floral
organ specification [104, 106], while Prusinkiewicz et al. considered
how differences in floral architecture may arise [103]. However there
have been few mathematical descriptions that have focused on the
dynamics of the floral transition.

In chapter 3 a reductionist approach was taken that enabled us
to suggest clear experiments whilst not being overburdened by aim-
ing for an all-encompassing model. A simplifying step of grouping
genes with common or redundant function into regulatory hubs was
taken. The effect of the various regulatory pathways that govern the
floral transition was approximated by assuming they converge on the
FT hub. Simplified models inevitably miss finer details of the biolog-
ical system, yet they provide a tractable route to understanding the
overall system behaviour. Though with this slight abstraction direct
molecular relevance is lost, we stand to gain in terms of qualitative
predictions that can be tested experimentally. To begin modelling a

pathway, looking for the basic properties of simple networks that ex-
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hibit the desired behaviour is a good first step. A simple three node
system, as initially considered in subsection 3.2.4, can give intuitive
understanding to many transcriptional or developmental networks,
not just the floral transition. Starting from known components, the
value of such a bottom-up approach lies in the simplicity and ease of
computation, as modelling more complicated networks can require
extensive computer simulations to illuminate their features. As with
all simplifications, our network inevitably cannot account for the full
spectrum of interacting pathways and variables seen in nature, but
an experimental-modelling cycle can stimulate interesting questions
that might otherwise be missed without modelling.

The models were made quantitative by scaling them to available
leaf number data for a number of mutant genotypes. It was shown
that a linear model is not sufficient to capture the variation in leaf
numbers for the data set we had. The need for increased flexibility
gave rise to a fairly simple network of core flowering time hubs that is
able to capture important characteristics of the floral transition due
to incorporated network motifs. Although the degree to which this
behaviour manifests itself is parameter dependent, at a qualitative
level this model is in agreement with many experimental observa-
tions. An intriguing feature of an extended network presented was
that, for some parameter values, initial levels of LFY and TFL1 seem
to control the determinacy of the cell for long developmental times.
Thus this provides a hint on spatial patterning of the SAM. The type
of model developed here is extensible in many directions and can
provide increased power to scientists looking to develop yet deeper

understanding of a crucial aspect of plant development.

4.2 Statistical summary

In this thesis Bayesian inference was used as the statistical framework
of choice. Bayesian statistics allows one to place probability distribu-
tions on the elements that have some uncertainty attached to them,
an obvious example being parameters. Typically, biological parame-
ters such as degradation rates or binding constants are unknown ex-
perimentally and hence need to be inferred from the data. By being
upfront about the prior assumptions our choices can be challenged

by those with different degrees of belief and by sampling the poste-
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rior distribution, predictions will be made that can give preference
or not for a range of hypotheses.

A modern algorithm for Bayesian inference is nested sampling,
which has seen success particularly in astrophysics due to the pop-
ular MultiNest implementation [164]. Nested sampling targets the
important component for Bayesian model comparison by calculat-
ing the evidence — the posterior normalisation constant. In gen-
eral this is a great challenge due to the need for evaluating this high-
dimensional integral that arises through marginalising the likelihood
over the prior. Not only can nested sampling effectively evaluate
this term it also produce samples from the posterior distribution
concurrently. In chapter 2 two major challenges in systems biology
— parameter inference and model comparison — were addressed
by the use of nested sampling. The summary statistics of parame-
ters inferred by nested sampling were very similar to those calcu-
lated by MCMC, the go-to method for Bayesian computation. For
a low dimensional example with experimental data where the evi-
dence could be calculated by brute-force integration on a fine grid
there was also good agreement between nested sampling and the nu-
merical result. It was also shown how sampling from the posterior
distribution can enable the reverse-engineering of the dynamics of
the repressilator system despite little data.

Given noisy and sparse data a potential difficulty for the judicious
modeller is the fair comparison of competing models. A set of four
biological oscillators were compared with a limited data set from one
variable. It was found that despite data being generated from the re-
pressilator, the evidence gave preference to a different model. This
also held true for published experimental data from the bacterial sys-
tem, and with synthetic noiseless data up until a very high resolution
timecourse was available. However when data was taken from two
system variables, despite being few, the data were able to give a Bayes
factor in preference of the known model. This has to be considered
important for future experimental design.

The models for the floral transition in chapter 3 also benefited
from the Bayesian method. In particular, despite the much better
fit to the data with more parameters, the models avoided the curse

of overfitting as even a model with 23 parameters was very strongly
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favoured over a linear model with five parameters. For the leaf num-
ber data set available the model that best explained the data in a par-
simonious way was able to fit accurately to these data and to quali-
tatively reproduce known properties of the floral transition. Model
parameters were analysed by taking account of their marginal distri-
bution or pairwise joint distributions. This analysis revealed a uni-
modal nature of the posterior parameter distribution and that there
were some correlations between certain parameters. The probability
density of some parameters was very high relative to others indicat-
ing that they are the most important for the model fit and thus tightly
constrained by the data.

From the questions posed in this thesis it seems that nested sam-
pling can blossom in the areas of computational and systems biology.
This notwithstanding, there are a few other modern approaches for
model comparison using MCMC such as annealed important sam-
pling and thermodynamic integration [118, 154, 163, 171] that were
not investigated here. These approaches for statistics examples are
reviewed by Friel & Wyse [200]. For the problems herein considered
nested sampling was shown to be accurate and, with the MultiNest
implementation, it is an efficient algorithm, its core cost being in the
computation of the log-likelihood function. It may not work as well
as other techniques for certain situations but only time will tell as it
gains popularity outside the physics community.

In summary, the use of Bayesian statistics through nested sam-
pling allowed us fully quantify our uncertainty, compare models and
infer parameters. Hence as more data and knowledge become avail-
able they can be used to update the models and refine our posterior

inferences.

4.3 Outlook

4.3.1 Temporal and spatial specificity

Gene network diagrams are qualitative in nature and do not give any
idea of time or space, thus missing potentially interesting dynam-
ics. Hence it is important for further work in Arabidopsis to move
away from the concept of a static GRN, whose structure does not

vary with time. Although, as here, the dynamics of such networks
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can be studied, it is important to recognise that the network struc-
tures themselves can be dynamic and vary over time. Simulating
these dynamic networks will propose new theories and suggest new
experiments that can lead to increased understanding of physiologi-
cal networks.

Moreover, there should be a move towards simulating these dy-
namic networks in varying spatial domains. For example, the final
model in chapter 3 provides a clue for future investigations into spa-
tial patterning of the apex. However to prove or disprove the hy-
pothesis requires a more advanced PDE approach where interacting
proteins may function differently depending on their spatial local-
isation. Given the detailed molecular knowledge that continues to
be discovered in model species it should be possible for future work
in Arabidopsis to consider spatial and temporal specificity in more
detail.

AP1 is a prime candidate in this regard. It was used as the output
for our models so that levels of this protein could be mapped to dif-
ferent states, that is vegetative growth, bolting or flower production.
Yet at a particular timepoint in primordium cells AP1 also represses
certain flowering genes. It has been shown that FD is repressed in
early floral primordium, around stage 2, the time when API expres-
sion is detected [50]. Thus, post-commitment, AP1 can be a repres-
sor of meristem fate and later has other roles like activating genes
required for floral morphogenesis [64]. Additionally, in the centre
of the flowers A class AP1 is repressed by C class AGAMOUS [183].

These results suggest manifold roles for a major floral gene that
depend on developmental time and spatial localisation within the
apex or establishing flower. In Arabidopsis there is detailed knowl-
edge about these specificities, yet such details can not be captured in
a single rigid representation of a genetic network. Henceforth math-
ematical modelling of this growing plant system should include both

time and space dimensions.

4.3.2  Outside of Arabidopsis

In crops and other species, where there is not the detailed genetic
knowledge available as in Arabidopsis, modelling GRNs can still have

a great impact, thus outside of Arabidopsis the picture is rosy. The
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modelling of flowering time in horticultural and agricultural crops
generally takes a QTL and/or linear modelling approach. This is
successful but misses much of the underlying biology. The incor-
poration of GRNs is little used in predictive crop scheduling or plant
breeding. Yet in the era of genome-wide transcription factor binding
maps and large-scale datasets, it is particularly timely to develop such
approaches for other species. Orthologues of key genes considered
herein such as FT and TFLI have been found in many species, for
example tomato, wheat, barley, rose, apple and rice [44, 201-204].

In a number of polyploid species multiple copies of orthologous
Arabidopsis genes occur. Therefore from a modelling viewpoint it
may be possible to take a reductionist approach by grouping these
genes into modules until the exact function of each copy is deter-
mined biologically. Simplifying the network to key hubs has the ad-
vantage of making it potentially easier to identify the critical network
interactions that account for the major behaviours of a system. This
can be used to further enhance the power of QTL-type approaches.

Additionally growing plants in their natural outside environment,
and the effect this has on them, is far more relevant agriculturally
than in stable laboratory conditions. How can this be tackled mathe-
matically? The input to the models in chapter 3 is just FT levels. If it
was known how environmental factors affected FT this could lead to
the ability to predict the result in terms of leaf numbers and therefore
developmental time, for many genotypes. Initially advanced growth
chambers could be used that mimic outside conditions of light, tem-
perature, rainfall and other components. Expression levels of FT
could be recorded and correlated with these external influences and
the resulting flowering time. The challenge is thus to characterise
perturbations of the control variables such as temperature, CO, and
water availability on the key inputs to the genetic networks and then
to drive the change of these variables by climate models. This multi-
scale approach will lead to the linking of the phenotype-based work
in crops with molecular level research.

In many years’ time plant breeders could benefit from knowing
how predictions of a changing climate will affect the in silico dynam-
ics of a modelled genotype, and thus steer their breeding programs

appropriately. Furthermore combining field recording of weather
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data and these ideas in important crop species could lead to live up-
dating of computational models which will prove very helpful for
farmers planning crop scheduling or harvesting at the optimal time.

All models rely on a number of parameters. Parameter determi-
nation or estimation is thus a key step towards predictions. No mat-
ter which species is chosen, being able to validate a model is vital
and this includes independently evaluating the parameters in sepa-
rate trials, both geographically and across seasons.

At a time when the changing climate is a hot topic the ability to
build models for the regulation of developmental outcomes provides
us with a means to test proposed genetic interaction networks and
hence to understand which factors are affected most by environmen-
tal variability. Current crop models for predicting flowering time
are highly valuable, however to fully exploit the wealth of genomic
information that is becoming available these models need to bridge
scales. Using gene network-based approaches should be able to cal-
culate flowering time accurately as a function of different inputs, be
they genotypic or environmental. This will lead to improvements for
plant breeders and farmers as they look to feed the growing world

population.

4.4 'The project

4.4.1  Evolution of the project

Compared with sitting on a tractor cultivating fields in the relatively
halcyon days pre-PhD this project, perhaps like many, has been an
maelstrom of frustration, confusion and disappointment. Yet despite
setbacks it is worth recording aspects that led to where we stand to-
day and from where we can see a bright outlook on the horizon. In
the early days a previous model for the floral transition developed
by Richard Morris was tested. Before settling on the reduced models
of chapter 3 many variants were tried, some wrong, some less wrong.
For example initially it was considered that AP1 might activate TFLI
— the reasoning being that both increase during the floral transition.
Now it seems obvious that their distinct spatial expression domains

can account for this observation. At the time, optimisation by simu-
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lated annealing was used to estimate the parameters of our flowering
models. However, we knew there was a better way.

This led to a side project that evolved into the results presented
in chapter 2. Richard Morris had serendipitously coded a version
of nested sampling in Fortran. The task was now to investigate pa-
rameter inference and model comparison in the Bayesian setting ac-
counting for full uncertainty. After learning to program in Fortran
and improving the original code, early tests proved very promising
on simple examples and artificial data sets. It was also used success-
fully by Antonio Scialdone (JIC) for early investigations into a starch
degradation model [205]. This gave us quite some confidence on the
various applications and potential for using nested sampling more
widely in systems biology modelling. It was actually after the initial
submission of the paper describing our results that the MultiNest im-
plementation [164] was tested. As it was even faster, offered more
features and was easy to use given the previous fortuitous exposure
to Fortran everything was redone using MultiNest, which enabled
clearer results to be presented.

Nested sampling also allowed for a full re-analysis of the previous
flowering time models. Hence the new results presented in chapter 3
are a culmination of over three and a half years hard work that unite

two disparate ideas into a complete story.

4.4.2  Continuation of the project

Our success with nested sampling has also led to further use in the
Morris group. Lydia Rickett (JIC) has done extensive investigations
into models of bacterial growth curves with a large experimental data
set. This has applications in the plant pathogen field and to food re-
searchers where currently optimisation methods are used for param-
eter searching and models are compared with classical techniques.
We are developing an R package for use by microbiologists so that
they can easily compare different models of microbial growth with
the posterior samples giving an idea of the uncertainty attached.
Finally Marc Jones (JIC) will hopefully enjoy a PhD on attempt-
ing to infer a flowering time network in oilseed rape (Brassica na-
pus). As an allopolyploid this is a significant challenge with multi-
ple copies of orthologous Arabidopsis genes like FLC and FT. These
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different copies may exhibit sub-functionalisation and/or their ef-
fects may be different between cultivars particularly given the in-
volvement of man for selection of the best lines in different conti-
nents. This work will hopefully build on the foundations laid by our
Arabidopsis model in chapter 3 to see if it can be extended to help

understand how other species effect the floral transition.
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