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Abstract

Water shortage is one of the most important environmental stress factors

that a↵ects plants, limiting crop yield in large areas worldwide. Plants can

survive water stress by regulating gene expression at several levels. One

of the recently discovered regulatory mechanisms involves small RNAs (sR-

NAs), which can regulate gene expression by targeting messenger RNAs

(mRNAs) and directing endonucleolytic cleavage resulting in mRNA degra-

dation. A snapshot of an mRNA degradation profile (degradome) can be

captured through a new high-throughput technique called Parallel Analysis

of RNA Ends (PARE) by using next generation sequencing technologies. In

this thesis we describe a new user friendly degradome analysis software tool

called PAREsnip that we have used for the rapid genome-wide discovery

of sRNA/target interactions evidenced through the degradome. In addi-

tion to PAREsnip and based upon PAREsnip’s rapid capability, we also

present a new software tool for the construction, analysis and visualisation

of sRNA regulatory interaction networks. The two new tools were used to

analyse PARE datasets obtained fromMedicago truncatula and Arabidopsis

v



ABSTRACT vi

thaliana. In particular, we have used PAREsnip for the high-throughput

analysis of PARE data obtained from Medicago when subjected to dehy-

dration and found several sRNA/mRNA interactions that are potentially

responsive to water stress. We also present how we used our new network

visualisation and analysis tool with PARE datasets obtained from Arabidop-

sis and discovered several novel sRNA regulatory interaction networks. In

building tools and using them for this kind of analysis, we gain a better un-

derstanding of the processes and mechanisms involved in sRNA mediated

gene regulation and how plants respond to water stress which could lead to

new strategies in improving stress tolerance.
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Chapter 1

Introduction

The work that we have carried out and presented in this thesis is primarily

focused upon the development of new computational tools and algorithms

that can be used for the analysis of small RNAs (sRNAs) and their tar-

gets. In particular, we develop a new tool that can be used for the high-

throughput identification and validation of sRNA targets and a new tool

that can be used for the generation, discovery and visualization of sRNA

regulatory interaction networks. Through the application of these new tools

to plant sRNA and degradome datasets, we have identified a number of

novel sRNA/target interactions and interaction networks. In addition, we

have identified biologically interesting sRNA/target interactions that are

potentially involved in a plant’s response to water stress. Below we give an

overview of the contents of this thesis.
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CHAPTER 1. INTRODUCTION 2

Chapter 2. In this chapter we provide some relevant biological back-

ground information on RNA silencing and sRNA biogenesis and function

in plants. We provide an overview of the methods used by next generation

sequencing technologies to obtain the data that our new tools analyse. We

then go on to review several computational sRNA target prediction tools

and sRNA target validation methods. Finally, with sequence alignment be-

ing a core operation of sRNA/target analysis, we review and benchmark

several short read alignment tools. These background topics are important

and relevant to later chapters of this thesis.

Chapter 3. In this chapter we describe the development of a new soft-

ware tool along with its embedded novel algorithms that can be used to

rapidly identify and validate sRNA/target interactions using libraries ob-

tained from a high-throughput sequencing method called Parallel Analysis

of RNA Ends (PARE). We describe the tools confidence measures such as

its p-value calculations and use of mRNA degradation signals. We then

go on to benchmark the software and compare the tool with a previous

low-throughput approach. We use our new tool to analyse plant sRNA and

degradome datasets and we demonstrate that conservation of sRNAs and

mRNA cleavage signals that are found in multiple samples can be used to

filter out background noise and confidently identify sRNA/target interac-

tions. Through the use of the tool and using a our conservation methods,

we identified over 4000 putative sRNA/target interactions. The idea for us-
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ing multiple datasets from plants that are biological replicates to filter out

background degradation and confidently identify interactions was jointly

conceived by Dr. Simon Moxon and myself. The idea and design of the

algorithms that are used to search for sRNA/mRNA interactions as well as

the implementation of the software, experimental testing, refinement of the

methods and the generation of results were my contribution to this work.

Dr. Hugh Woolfenden and Dr. Mathew Stocks provided assistance for mak-

ing the tool compatible with t-plot visualization tool called VisSR and the

UEA sRNA Workbench.

Chapter 4. In this chapter we describe the application of our new

software to datasets obtained from plants subjected to water stress. We

begin with a brief background on the importance of understanding how

plants respond to water stress and why this is important in relation to

changes in our climate. We go on to explain the composition of the datasets

that we used in our analysis and the methods that we used to conduct

the analysis. The degradome datasets that we describe in this chapter

were prepared by our collaborator Dr. Goyrgy Szzitya (UEA School of

Biological Sciences). We continue this chapter by describing the results of

the analysis using our new tool and describe the identification of a number

of novel sRNA/mRNA interactions potentially involved in plant water stress

response. In particular, two candidate interactions were selected for deeper

investigation and we consider the genes and sRNAs that are potentially
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involved within the water stress responsive interactions in more detail.

Chapter 5. Here we describe the development and use of a new soft-

ware tool that we designed to identify, analyse and visualize sRNA regula-

tory interaction networks that are evidenced through the RNA degradome.

We begin this chapter with a brief background on regulatory sRNA net-

works and continue by describing the methods employed by the tool for

network construction and visualization. We use the tool to analyse over

4000 sRNA/target interactions in Arabidopsis thaliana that were described

in Chapter 3. We identify a number of novel regulatory sRNA interaction

networks. The initial concept of the tool originated from discussions with

Dr. Simon Moxon and Professor Vincent Moulton. The development and

implementation of the software along with experimental testing, refinement

of the methods and the generation of results were my contribution to this

work.

Chapter 6. In this final chapter we present a suggestion for how the

work in this thesis could be continued. We provide a road-map for the de-

sign and use of a new tool that could be used for the prediction of novel

miRNAs by using a function first approach. We begin by explaining a pre-

liminary study on the prediction of miRNA-like sRNAs. We then go on to

suggest a framework for developing a new tool that could be used to predict

novel miRNAs that fall slightly outside the strict miRNA classification cri-

teria, but have supporting functional evidence through the degradome. We
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then suggest how data could be generated and analyzed by the tool to pre-

dict novel miRNAs, optimize the tool’s parameter settings and validate the

predictions. We end this chapter, and this thesis by presenting our overall

conclusions.



Chapter 2

Background

2.1 Summary

In this chapter we present a whistle-stop tour of some of the key aspects of

both the biology and computational methods involved in the work presented

in this thesis. RNA silencing is the biological process at the core of this work

and we begin with a description of the RNA silencing process and machinery.

We then go on to describe the e↵ectors of RNA silencing which are tiny

RNA molecules called small RNAs (sRNAs) and we detail several classes

of sRNAs. sRNAs are found in biological samples in great abundance and

next generation sequencing (NGS) methods are used to obtain the readout

of the RNA content from experimental samples in huge volumes. So, we

give an overview of the technology and principles behind NGS.

Using the data (sRNA reads) obtained from NGS technology, a first step

6



CHAPTER 2. BACKGROUND 7

in understanding a sRNA’s function is to identify messenger RNAs (mRNA)

that can be targeted by them. Because of the size of the data generated by

NGS technology, computational predictions of which mRNAs are targeted

by sRNAs are required. Therefore, we describe several popular sRNA tar-

get prediction tools. As the tools only provide predictions, experimental

validation is subsequently required and we explain two of the current ex-

perimental sRNA target validation methods. At the core of all DNA/RNA

sequence analysis are sequence alignment tools of which there are many that

are freely available, each with their own advantages and disadvantages. As

they are so important to the sRNA bioinformatician, we also briefly review

several of the most popular sequence alignment tools that are relevant to

this work.

2.2 RNA silencing

RNA silencing is a phenomenon that was independently discovered in an-

imals and plants in the early 1990s. The core RNA silencing machinery

is now known to be highly conserved between eukaryotic kingdoms, and

the common feature of all RNA silencing pathways is the production of

non-coding small RNAs (sRNAs), mostly in the size range of 20 to 25 nu-

cleotides (nt). These sRNAs are excised from longer, double-stranded or

hairpin RNA precursors by RNaseIII-type enzymes called Dicers [16] to
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form a double stranded sRNA duplex. One strand of the initial sRNA du-

plex is recruited into a member of the Argonaute protein family, which can

be part of a larger complex known as the RNA Induced Silencing Complex

(RISC). The sRNA component confers sequence specificity to RISC by es-

tablishing Watson-Crick base pairs i.e. pairs in the form of guanine:cytosine

(G:C) and adenine:uracil (A:U) hydrogen bonds [127], with potential target

mRNA molecules. Having bound to its target, the complex can silence the

target at the transcriptional or translational level by employing one of the

following mechanisms: (i) cleavage and degradation, (ii) translational re-

pression, (iii) DNA methylation and heterochromatin formation [24]. This

highly versatile machinery plays important roles in gene regulation, defence

against pathogens and genome maintenance [21],[72].

In plants, sRNA-mediated post-transcriptional gene regulation generally

leads to messenger RNA (mRNA) cleavage and degradation due to a high

degree of sequence complementarity between the sRNA and its mRNA tar-

get [7]. This cleavage is highly specific and the mRNA is “sliced” by an

Argonaute protein between positions 10 and 11 of the bound sRNA [73].

Below we describe several of the major sRNA classes that function within

the RNA silencing mechanism such as microRNAs (miRNAs) and small in-

terfering RNAs (siRNAs). These sRNAs regulate other RNA molecules, in

particular messenger RNAs (mRNA), and are important repressors of gene

expression. For recent reviews of RNA silencing see [56],[113].
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2.2.1 miRNAs

The first endogenous small non-coding RNA known as microRNA (miRNA)

was discovered in 1993 within the nematode model organism C. elegans [63].

Since this initial discovery, miRNAs have also been characterized in plants

and viruses. In plants, mature miRNAs typically have a sequence length

of 21 or 22nt. Their biogenesis is a multi-step process which begins in the

nucleus of a cell [12],[61] (see figure 2.1). A single stranded primary miRNA

(pri-miRNA) is transcribed from a miRNA gene by an RNA polymerase II

enzyme [61],[64]. The pri-miRNA is able to fold into an imperfect hairpin

type structure and is processed by an RNaseIII, Dicer-Like 1 enzyme [120]

resulting in a precursor miRNA (pre-miRNA). Further processing is carried

out by DCL1 to leave a double stranded RNA (dsRNA) duplex comprised of

the mature miRNA or guide strand annealed to its complementary sequence

called the miRNA “star” (miRNA*) or passenger strand. The duplex exits

the nucleus and enters the cytoplasm [94] where it is separated by a heli-

case enzyme [12]. The mature miRNA is recruited by an Argonaute protein

(AGO) and loaded into an RNA induced silencing complex (RISC) [124].

The mature miRNA (guide strand) confers sequence specificity to RISC,

which acts to negatively regulate target mRNAs. Depending upon the level

of complementarity between miRNA/mRNA, the mRNA is silenced by ei-

ther endonucleolytic cleavage or arrest of protein translation [14],[73].
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Figure 2.1: An overview of miRNA biogenesis and function in Arabidop-
sis miRNAs are transcribed from a gene and processed by DCL1, SE and HYL1
into an RNA duplex (miRNA/miRNA*). The duplex is methylated by HEN and
transported out of the nucleus by HST. The miRNA portion of the duplex binds
AGO1 to form RISC. The miRNA bound in RISC base pairs with a target mRNA
that is complementary to the miRNA. The target mRNA is repressed by either
cleavage or translational inhibition. This figure is reproduced from Phelps-Durr
(2010) [97].

2.2.2 siRNAs

Short interfering RNAs (siRNAs) are another class of sRNA found in plants

and animals. They are derived from long dsRNA, have a 2nt overhang at
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the 3’ end and are ~21nt in length. In contrast to miRNAs, exogenous

(originating externally) siRNAs exhibit perfect complementarity with their

target [31],[108]. An example of exogenous siRNA activated RNA silencing

was found by the experimental introduction of dsRNA into a cell [37]. Other

examples include transgenes and viruses [50].

There are several subtypes of endogenous siRNAs, one of which is cur-

rently thought to only be found in plants and is called a trans-acting short

interfering RNA (ta-siRNA). In plants, microRNAs can trigger trans-acting

siRNA biogenisis. Trans-acting siRNA (TAS) genes are transcribed in to

RNA and are then targeted by miRNAs in either one position or two posi-

tions and cleaved. These cleavages and, in particular, the cleavage position

on the transcript set the start of a phase window i.e. a small RNA is pro-

duced that starts 1nt after the end position of the previously excised sRNA.

An RNA dependant RNA polymerase 6 (RDR6) processes a cleaved tran-

script turning it into double stranded RNA. The dsRNA is then recognised

and processed by a Dicer-like 4 (DCL4) enzyme. The DCL4 enzyme cuts the

transcript in 21nt increments (phase window) to produce mature ta-siRNAs

[4],[9]. The 21nt ta-siRNAs may now be incorporated into RISC where they

guide the complex to mRNA targets and repress their translation or cause

cleavage [124].

~
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2.2.3 Other types of sRNAs

There are many other classes and sub-classes of sRNA that can enter into

the RNA silencing pathway and regulate mRNA expression [8],[59]. For

example, natural antisense transcript siRNAs (nat-siRNAs) are derived

from transcripts that contain complementary regions which can overlap to

form dsRNA [19] and the overlapping regions trigger the production of 21-

24nt sRNAs through dicer-like proteins [85]. Another class of sRNA is the

PIWI-interacting RNAs (piRNAs) which are only found in animal systems

[6, 43, 49, 126]. Their name derives from their interaction with PIWI pro-

teins that are mainly observed in the germline [122].

2.3 Next generation sequencing

DNA sequencing is a powerful tool in determining the nucleotide sequence

of DNA. The advent of next generation sequencing (NGS) technologies [78]

in the mid to late 2000’s has given rise to an explosion in the ability to

produce sequencing data as never seen before. This can be attributed to

the ongoing technological improvements which has driven down both the

financial cost and time required to carry out high throughput sequencing

experiments. Two of the most popular NGS platforms are Roche/454 and

Illumina/Solexa which among others, respectively employs the FLX and

HiSeq sequencing instruments.
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2.3.1 Generation of clusters

To use the sequencing instruments a sample library is prepared using a

propriety library preparation kit such as an Illumina branded product or a

third party kit. The library of single stranded DNA fragments are washed

across the surface of a flowcell for amplification. A flowcell is a transparent

glass surface similar to a microscope slide [52]. The flowcell is decorated with

adaptors complementary to those which were ligated to the DNA fragments

during library preparation and are attached to the flowcell through covalent

bonds. Adaptor-ligated DNA-fragments provide a template which bond to

the complementary adaptors attached to the flowcell. Bridge amplification,

also called bridge polymerase chain reaction (PCR) [52], is performed and

the resulting double-stranded DNA is denatured to leave single stranded

templates anchored to the flowcell. This process results in several million

dense clusters of clonal DNA fragments (copies) ready for sequencing.

2.3.2 Sequencing by synthesis

Sequencing occurs in chemistry cycles to determine each nucleotide base

and their order in the target DNA. During each cycle, nucleotides ‘A’, ‘G’,

‘C’ and ‘T’ each containing a unique florescent group are incorporated.

The incorporated nucleotides bond to a complementary nucleotide on each

clonal DNA fragment. DNA fragments are excited with a laser. The newly
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bonded nucleotide emits florescence within its cluster which is captured by

the sequencer camera. The colour-coded light is detected and captured

by the camera and the nucleotide base is identified. Subsequent cycles

continue to identify bases in order to determine the nucleotide sequence of

the template DNA fragments. This process is multiplexed and happens in

parallel so that each DNA template sequence within the sample library can

be identified.

The final output is a file containing all sequences within the submitted

library preparation. The file usually takes the form of FASTQ format [28]

which contains base-call quality scores (also known as phred quality scores

[34],[33]). Data repositories are available such as the National Center for

Biotechnology Information (NCBI) Sequence Read Archive (SRA) to pub-

licly index and store sequence data [65]. Due to the ever-increasing size of

NGS data as well as the cost of storage, the SRA allows several data com-

pression formats, such as sequence read archive (SRA) format and standard

flowgram format.

2.4 sRNA target prediction

To understand the function of a sRNA, an important step is to identify its

potential targets. Computational plant sRNA target prediction tools have

proved useful in identifying targets [29, 17, 5, 35] and generally attempt to



CHAPTER 2. BACKGROUND 15

model some biological characteristic discovered in vitro such as positional

base-paring properties. However, computational target prediction meth-

ods tend to rely heavily on the near-perfect complementarity between the

sRNA and the predicted target transcript. Predictions generated by such

tools tend to produce varying levels of false positive results, therefore fur-

ther experimental validation is required. The tools come in the form of local

command line or web-based applications and tend to comprise of an estab-

lished sequence alignment tool at the applications core. The core algorithms

are usually wrapped in code for pre/post processing where biologically rele-

vant supporting statistics are calculated e.g. minimum free energy (MFE),

or core alignments are filtered based upon current biological understanding

e.g. targets discarded based upon positional mismatches within a duplex

that are not found experimentally. Below we present several examples of

popular plant sRNA target prediction tools.

2.4.1 psRNATarget

psRNATarget is a web server that can be used for plant sRNA target predic-

tion [29] and builds upon a the Samuel Roberts Nobel Foundation’s previ-

ous tool for plant sRNA target prediction called miRU [132]. The tool uses

reverse complementary matching to identify potential targets through the

Smith-Waterman [116] algorithm implementation and the scoring system
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used by miRU [132]. The web-tool can also evaluate target site accessi-

bility by calculating un-paired energy (UPE) around the sRNA target site

using the RNAup program within the Vienna RNA Package [79]. Similar

to TAPIR (see 2.4.2), psRNATarget is able to identify potential transcript

translational repression as in the case of target mimicry by allowing and

reporting interactions that contain additional nucleotides within the cen-

tral region of the sRNA/transcript duplex. The web-tool uses a backend

pipeline operated upon a distributed computing platform. The software is

not publicly available for download. The web-interface o↵ers three methods

of user input: user-submitted sRNA searched against preloaded transcripts;

preloaded sRNAs searched against user-submitted transcripts or user sub-

mitted sRNAs searched against user submitted transcripts. All user inputs

are required to be in FASTA format. The output is a browser-viewable

or downloadable list of sRNA/target pairs. As this tool is web-based,

the user su↵ers from the disadvantage of reliance on network connectivity,

third-party web-server uptime, bandwidth usage and the tradeo↵ between

data size and the time required to upload/download data. However, for

researchers with limited access to computer facilities, the web-based nature

of this tool could be considered a benefit.
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2.4.2 TAPIR

TAPIR is a plant miRNA target prediction tool o↵ered as a web-server

and downloadable tool [17]. The underlying methods used by the tool are

the FASTA algorithm (not to be confused with FASTA format) [95] and

the RNAhybrid algorithm [102]. The web-tool can be used in two modes,

“fast” mode or “precise” mode using the two di↵erent backend algorithms

respectively where the precise mode using RNAhybrid is much slower in

compute time than fast mode. The precise mode is a key feature of TAPIR

and can be useful for predicting miRNA target mimicry. In brief, target

mimicry [39] is a level of sRNA regulation where multiple transcripts share

sequence similarity and can be targeted by the same sRNA. However, the

target mimic has several additional nucleotides between bases 10 and 11 of

the sRNA within the binding site, resulting in a bulge at the position where

cleavage would normally occur. Because of the bulge, the target mimic

is not cleaved, but instead sequesters the sRNA, therefore preventing the

sRNA from regulating other transcripts sharing sequence similarity to the

mimic. The web-tool takes as input user supplied sRNA(s) and transcript(s)

in FASTA format and outputs sRNA/target interaction predictions along

with supporting statistics such as minimum free energy (MFE) and align-

ment score. The alignment score system used by TAPIR is based on that

suggested by Allen et. al. [5]. As the tool is downloadable and o↵ered as a
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web-interface, the developers have made it possible for researchers to scale

their analysis in-line with the dataset size and compute resources available

to them.

2.4.3 TargetFinder

TargetFinder is a downloadable, command line based, plant sRNA target

prediction tool written in the Pearl scripting language [5, 35]. It makes

use of the FASTA35 [96] program to make a alignments between sRNAs

and transcripts. The tool takes as input a single sRNA sequence and a list

of transcripts in FASTA format. To predict sRNA/target interactions, the

tool first attempts to identify alignments between an input query sRNA

sequence and the supplied reference transcripts. Each alignment identified

is converted into an RNA duplex (sRNA/target) and given an interaction

score. The interaction score calculated is based upon observations made

on experimentally validated sRNA/target interactions where certain mis-

matched positions and types of base pair mismatches e.g. G:U pairs, e↵ect

the score. Predictions are output to the terminal and comprise the sequence

identifiers, score and interaction duplex. The position-dependent scoring

system implemented within this tool has successfully been used by several

other tools and methodologies in plant sRNA target prediction [17, 38, 89].
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2.5 sRNA target validation

Computational methods used to find sRNA targets tend to su↵er from a

high number of false positive predictions [88]. Therefore computational pre-

dictions usually require further experimental validation. Here we describe

two methods that can be used to validate sRNA/mRNA interactions.

2.5.1 Low throughput small RNA target validation

In plants, a common feature of the sRNAs we have described is that they can

silence mRNAs in a sequence specific manner through endonucleolytic cleav-

age. The examination of mRNA cleavage products is one of the steps nec-

essary for sRNA/target interaction validation. A method known as RLM-5’

RACE (RNA linker mediated 5’ rapid amplification of cDNA ends) can

be used to experimentally validate sRNA mediated cleavage by identifying

mRNA cleavage fragments/products for a particular mRNA. The technique

ligates a sequence adaptor i.e. attaches an adaptor through an enzymatic

process using covalent bonds, to the 5’ end of the target mRNA fragment

which is characteristically uncapped, i.e. the nucleotide base at the 5’ end

of the mRNA fragment has an exposed phosphate making the fragment lig-

ation competent. The target mRNA fragment is reverse transcribed into

cDNA and amplified through polymerase chain reaction (PCR) [107]. The

resulting PCR products can then be sequenced and the mRNA cleavage
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fragment identified.

To evidence sRNA function, the cleavage fragment can be aligned to the

reference mRNA and the first nucleotide at the 5’ end of the fragments are

expected to align to same position as the cleavage site of the complementary

sRNA, i.e. between base positions 10 and 11 of the sRNA [73]. This method

is low throughput as the 5’ RACE protocol needs to be performed for every

predicted cleavage site on each gene of interest. The methods also requires

prior knowledge of the flanking region adjacent to each predicted cleavage

site. Therefore, due to the time and resources required to carry out the 5’

RACE protocol, it is practical for only a limited number of sRNA target

validations. A new high-throughput technique called Parallel Analysis of

RNA Ends (PARE) may be used to identify and validate sRNA/target

interactions on a much larger scale, which we now describe.

2.5.2 High-throughput sRNA target validation

In 2008, German et al. [41] described a new technique, called Parallel Anal-

ysis of RNA Ends (PARE) or degradome sequencing, which can be used to

globally sample cleaved mRNA fragments using high-throughput sequencing

technology. This new technique can be used to identify new sRNA/mRNA

interactions [1],[42]. During the transcription process, mRNAs are given an

altered nucleotide known as a 5’ cap. This altered nucleotide is also known
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as a 7-methylguanosine cap. Its purpose is to protect the mRNA from ex-

onucleases. Exonucleases are enzymes that degrade RNA. When mRNAs

are subjected to sRNA mediated endonucleolytic cleavage, the mRNA is

sliced and the fragment upstream of the cleavage site degrades, yet the

downstream (3’ of the sRNA) remains stable. The remaining stable mRNA

fragments do not have a 5’ cap, but instead have a 5’ monophosphate and

are said to be uncapped at the 5’ end (see figure 2.2a).

This new experimental technique selectively clones all uncapped RNA

molecules which have a 3’ poly-A tail, but unlike 5’ RACE does not require

any knowledge of which mRNA is being targeted. Therefore, this method

can provide a snapshot of the mRNA degradation profile within the sample.

The snapshot of degraded mRNA fragments obtained using this method has

been termed the degradome. When the fragments within the degradome

are realigned to a reference/template mRNA in-silico, there is evidence of

clear peaks at the cleavage site of a mRNA corresponding to the position of

cleavage by a sRNA (see figure 2.2b). The degradome data provides support

for the interaction between sRNAs and their complementary mRNA targets

and this method has been successfully used to identify miRNA targets in a

variety of organisms [1, 3, 93].
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A

B

Figure 2.2: (A) An mRNA has a 5’ cap (5’ 7-methylguanosine) structure and
a 3’-poly A tail. An sRNA is loaded into an Argonaute (AGO) protein and
can target the mRNA which may lead to endonucleolytic cleavage. The mRNA
fragments that are un-capped (5’ monophosphate) after cleavage can be obtained
using high-throughput sequencing methods. (B) Cleavage that has been mediated
by an sRNA can be seen as a cleavage signal (peak) in the mRNA fragment
abundance when they are realigned to the mRNA.
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2.6 Sequence alignment

Sequence alignment is a fundamental operation within all NGS sequence

analysis strategies to identify sRNAs and their targets, and so we briefly

review several short read alignment tools. We carried out some benchmark-

ing to obtain performance timings using two datasets. A reference sequence

set containing 39,640 transcripts (cDNA TAIR9 cdna 20090619) was ob-

tained from The Arabidopsis Information Resource (TAIR) [118]. A sRNA

query dataset to be aligned to the reference transcripts comprise 900,000

unique, randomly generated, short sequences. The short query sequences

were within the size range of 20-25nt in length. We chose this dataset as

it represented the dimensions of the experimental data available to us. We

will call the reference transcripts and short query sequences Dataset A.

We ran Dataset A through RMAP, MicroRazerS, SOAP 2, PASS and

PatMaN on a machine with the following specification: Dell Power Edge

2950, Quad Core XEON L5420 processor (2.5GHZ), 32GB RAM (667MHZ),

4 x 500GB SERIAL ATAU 7.2K 3.5” hard disk drive, running Linux op-

erating system CentOS version 5.3. Due to each tool employing di↵erent

algorithmic properties, parameter options, number of allowable mismatches

and gaps, we will discuss each tool separately. A summary is given in table

2.1.
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2.6.1 RMAP

RMAP is a tool which has been specifically designed for aligning short

reads produced from next-generation sequencing technology and has re-

cently been updated with improvements to mapping accuracy and memory

requirements. The algorithm is essentially an approximate pattern match-

ing technique using seeds, where a seed is a variable length substring of a

query read [114],[110] .

The tool uses two mapping criteria. The first is that all unknown charac-

ters within a reference sequence, for example, the character ‘N’, are always

counted as a mismatch. The second criterion uses base-call quality scores

such as those scores provided in the FASTQ formatted files from NGS out-

put (see 2.3.2). Recognised characters within a query read are considered

either high quality or low quality depending upon their position and quality

score. Characters in low quality positions act as wild cards and will result

in a match [115].

In comparison to the other tools (see table 2.1), RMAP performs fast

alignments and we found that it could process 900,000 query reads, with up

to 10 mismatches, against a reference data set of 39,640 sequences (Dataset

A) in approximately 2 minutes. We found it to be the fastest alignment tool

with mismatches as compared to the other alignment tools we discuss here.

However, during this test we found that some alignments reported by other
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tools were not reported by RMAP. Using settings suggested within the user

documentation, the tool was unable to perform an alignment for several

of the query reads, therefore producing false negative results. Further ad-

justment of the tool’s parameter settings failed to produce the alignments

expected.

2.6.2 MicroRaZerS

MicroRazerS is a new addition to the SeqAn library [30] and is a tool which

has been specifcally designed for aligning small RNA reads and, in partic-

ular, microRNAs to a reference dataset. The application employs a q-gram

counting strategy, where a q-gram of length q is a sub-string of a query read.

An index of q-grams is built and is then used to scan the reference data and

filter potential alignments based upon the number of q-grams shared be-

tween reads and reference sequences. Alignments are then carried out upon

the filtered data using a seed approach [32]. We found that we could process

Dataset A in 17 minutes 21 seconds.

Though this tool can map reads to sequences allowing for a minimal

number of mismatches, there are no options to configure the number of

mismatches allowed during the mapping process. This means that if we

were to use this tool, we would be dependent upon the MicroRazerS im-

plementation of rules used to identify sRNAs, and the rules used are not
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clearly defined.

2.6.3 SOAP 2

SOAP 2 [70] is an updated version of SOAP [110],[69], which has been

re-implemented using Burrows Wheeler Transformation (BWT) compres-

sion[22] to improve its speed and memory requirements. The tool builds

a BWT index table of the reference sequences and scans over it using a

seed technique whilst allowing for up to 2 mismatches within the seed and

a user specified number of mismatches within the remainder of the string.

We found that we could process Dataset A in 3 minutes 35 seconds.

Though this tool performs fast alignments with mismatches and gaps,

its level of accuracy produces false negative results similar to RMAP. We

would surmise that its level of accuracy is linked to the use of seeds, the seed

length and number of allowable mismatches within the seed. Unfortunately

seed configuration is not parameterised. A potential problem with this

application is its dependence upon 64-bit architectures which could limit

its use.

2.6.4 PASS

PASS is a short read aligner which uses a seed word technique to perform the

mappings between query and reference sequences allowing for gapped and
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un-gapped alignments [23]. The algorithm aligns short reads to reference

sequences by building an index of seed-words which is aligned with a pre-

computed score table (PST). The PST is supplied with the software and

provides score values for mismatches and gaps which indicates the quality

of the alignment. The algorithm takes three steps in the alignment process.

Firstly, the indexed seed words are used to scan the query reads. Secondly,

it checks to see if the seed/read match can be extended to a full alignment

and finally it refines the alignment and its mapping score. We found that

we could process Dataset A in 5 minutes 28 seconds.

The tool allows mismatches but does not provide runtime parameters for

their alteration. Though the documentation associated with the tool does

not explicitly say how many mismatches are allowed, through testing, it has

been found to allow up to 7 mismatches when aligning a short read of 24

nucleotides in length. An advantage to this application is the multithreading

support which makes good use of multi-cored processors. It is written in

C++ and supported on both Windows and Linux platforms.

2.6.5 PatMaN

PatMaN is a short read alignment tool which uses a keyword search tree

[98]. The algorithm builds a search tree such that each query read is placed

into the tree as a path from root to leaf, where edges represent nucleotides
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and leaf nodes contain identifiers for query reads. The algorithm traverses

the tree evaluating each nucleotide within the reference sequence allowing

for a user defined number of mismatches and gaps. We found that we could

process Dataset A in 9 seconds with 0 mismatches allowed and 4 hours, 26

minutes, 21 seconds with 4 mismatches allowed.

Table 2.1: Timing comparison for short read sequence alignment tools

Tool Timing Total Configurable
(hours, mins, secs) mismatches mismatches

RMAP 1m 47s 10 yes
MicroRazerS 17m 21s undefined no
SOAP 2 3m 35s 2 partial
PASS 5m 28s 7 no
PatMaN 0m 9s 0 yes
PatMaN 4h 26m 21s 4 yes

2.7 Discussion

Since the discovery of RNA silencing in the early 1990’s, the sRNA field has

become a diverse and rapidly expanding field of research. The advent of

next generation sequencing and subsequent improvements in this technology

provides researchers with a rich source of information relating to sRNAs.

With this in mind, it is likely that many sRNAs and their targets, and

potentially even new classes of sRNA are yet to be discovered. As sRNAs

have been found to regulate gene activity in response to drought [91] and a

new high-throughput technique for sRNA analysis is available to us, we can
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use this knowledge to computationally analyse samples of RNA subjected to

water stress versus those that are grown under optimal conditions. However,

we first need computational tools to carry out this large-scale analysis. In

the next chapter we describe PARESnip, a software tool that we designed

to perform this task. In the following chapter we describe the application

of this new tool to a degradome experiment devised to understand water

stress in plants.
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High throughput sRNA/target

interaction identification and

validation using the degradome.

3.1 Summary

This chapter describes the multithreaded software application PARESnip

(Parallel Analysis of RNA Ends - Snip) that we designed to analyse and

validate sRNA/target interactions through the RNA degradome. In the

next chapter we will use it to analyse sRNA/mRNA interactions involved

in plant water stress. We start with describing the background followed by

a detailed look at the methods we used to create the tool. We then provide

the results from several degradome analyses and identify over 4000 sRNAs

30
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and their targets. This work was published in the journal Nucleic Acids

Research [38].

3.2 Background

As mentioned in the last chapter, high throughput sequencing has become a

de facto standard for the analysis of sRNA samples [36],[53],[83]. Typically,

a single experiment will produce millions of sRNA reads capturing a snap-

shot of the expression profile of the sRNAome in a single sample [92],[110].

As described in chapter 2, recent technological advances have enabled re-

searchers to conduct high throughput target identification experiments in

plants by using an approach called Parallel Analysis of RNA Ends (PARE)

[41]. However, computational tools to analyse such data are both scarce

and limited in functionality.

CleaveLand [2] was the first tool developed specifically to analyse de-

gradome data, and it has been successfully used to identify micro RNA

(miRNA) targets in a variety of organisms [1],[3],[71],[93]. Due to the algo-

rithms implemented in CleaveLand and the size of sRNA and degradome

data sets (typically millions of sequences) it is impractical to analyse all

possible sRNA/degradome interactions using this software in a reasonable

timescale without a large degree of parallelization across multiple machines.

As a consequence the tool is generally used to find cleaved targets of a small
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number of sRNAs, such as known or candidate miRNAs. This means that

users typically have to ignore the vast majority of sRNA reads in such anal-

yses and have to assume some prior knowledge of which sRNAs are likely to

have targets. As a result many legitimate sRNA mediated mRNA cleavages

could potentially be missed. While this is acceptable for users interested

in looking for targets of known miRNAs, it greatly restricts the possibility

to get a sense of all of the sRNA regulatory interactions leading to mRNA

cleavage. In addition, CleaveLand is a command line based application

that can only be used in a Linux/UNIX environment. This excludes a large

number of potential users who do not have access to, or expertise in, such

environments.

To the best of our knowledge, only two other methods have been de-

veloped for identifying sRNA/target interactions evidenced through the de-

gradome in addition to CleaveLand; SoMART [68] and SeqTar [133]. So-

MART is a collection of web server tools for processing sRNAs. To process

degradome data, the user first needs to predict sRNAs that could poten-

tially target a user supplied transcript with the Slicer detector tool. The

dRNA mapper tool can then be used to align degradome sequences to the

transcript sequence. The user then has to manually compare the output

from Slicer detector and dRNA mapper to identify cleaved targets. To au-

tomatically process more than one transcript the user would therefore have

to develop additional methods and post processing software. In addition,
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the SoMART website is restricted to a prescribed list of sRNA and de-

gradome databases. SeqTar attempts to broaden the alignment rules used

in CleaveLand between sRNAs and their potential targets so as to iden-

tify miRNA targets. As with CleaveLand, SeqTar su↵ers from the fact

that its underlying algorithms make it impractical to analyse all possible

sRNA/degradome interactions in a reasonable timescale without a large de-

gree of parallelization across multiple machines. Moreover, SeqTar is not

available in a publicly downloadable package, which greatly reduces its po-

tential user base.

In this chapter we describe a new, user friendly, cross platform de-

gradome analysis tool, PAREsnip, which enables flexible and comprehensive

high throughput target analysis, allowing users to identify genome wide net-

works of sRNA/target interactions resulting in transcript cleavage. As well

as being able to analyse data sets like CleaveLand PAREsnip is also able to

process entire sRNAome and transcriptome data sets in a short timeframe

on a typical desktop computer.

3.3 Methods

3.3.1 Input

For a specific organism the inputs for PAREsnip are:
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• mRNA dataset (transcriptome),

• transcript degradation fragments obtained from a PARE experiment

(degradome),

• small RNA dataset (sRNAome) and

• the genome sequence.

The first three inputs are required but the genome is optional. When in-

cluded, the genome is used during the data-filtering process described later.

All of the inputs must be in FASTA format and must only contain the char-

acters A, C, G, T and U. Sequences containing unknown characters and

ambiguity codes are discarded as they cannot be accurately aligned later.

FASTQ to FASTA and adaptor removal tools are provided within the UEA

sRNAWorkbench [89],[117]. An overview of the steps involved in processing

the input data is shown in Figure 3.1.
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3.3.2 Data filtering

Several user-configurable filters based on: sequence length, sequence abun-

dance and sequence complexity may be applied to the sRNAome. If a

sequence has an exact full-length match to known tRNA or rRNA, it will be

omitted. T/rRNA sequences are obtained from Rfam [48] and EMBL/Genbank

[58] sequence databases. If a genome is provided, sRNA sequences are

mapped to it using PatMaN [98]. Any sequences without a match to the

genome are removed from further analysis, as they are likely to be either

sequencing errors or sample contamination.

3.3.3 Signals of cleavage

Degradome fragments are exactly matched to the transcriptome and 5-end

alignment positions are recorded. The degradome fragment abundance at

any given position could represent an sRNA cleavage event at that position

[42],[1]. Potential cleavage sites on a single transcript can be categorized

according to degradome read abundance. Higher abundance reads are more

likely to be the result of endonucleolytic cleavage as opposed to random

degradation products, which are more likely to accumulate at a lower back-

ground level. PAREsnip uses the 5-category system defined in CleaveLand

(version 2) [2], which are:

• Category 0 is defined as a signal having greater than one raw read at
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the position. The abundance at that position is equal to the maximum

on the transcript, and there is only one maximum.

• Category 1 is the same as Category 0 in all aspects apart from there

is more than one maximum on the transcript. This means that there

are two or more signals on the transcript with the same strength

(abundance).

• Category 2 is defined as a signal having greater than one raw read at

the position. The abundance at that position is less than the maxi-

mum, but greater than the median abundance for that transcript.

• Category 3 is defined as a signal having greater than one raw read at

the position and the abundance at that position is less or equal to the

median value for that transcript.

• Category 4 is defined as only one raw read at the position.

The categorization of the signal strength is based on either the raw abun-

dance or weighted abundance of degradation fragments; the latter is the

default PAREsnip setting. Weighted abundance is calculated by dividing

the abundance of a degradome fragment (tag) by the number of positions

across all transcripts to which the tag has aligned. The strongest signals,

described as Categories 0, 1 and 2, convey the strongest empirical evidence

for true cleavage products [1]. The weaker Categories 3 and 4 signals could
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be di�cult to distinguish from background noise and random degradation.

It is therefore possible for the user to exclude any of the five categories

before commencing an analysis in PAREsnip.
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Figure 3.3: Data structure created from degradome fragments mapped to tran-
scripts. Bars represent 5 ends of degradome fragments aligned to a transcript.
Degradome signals are characterized by category. A sub-sequence of 26nt is
extracted from the transcript based on the cleavage site. The sub-sequence is
encoded into a partitioned 4-way tree according to the assigned category.

3.3.4 Data structures

Small RNA sequences are encoded into unique paths within a trie [44], which

is an m-way search tree data structure. Since RNA and DNA sequences are

described by the symbols (A,C,G,T or A,C,G,U) we use a 4-way tree (Figure
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3.2 A). Edges represent nucleotide bases and nodes o↵er path choice through

the tree. Many short sequences share a similar nucleotide composition.

By encoding all sequences into a 4-way tree, those that share a similar

composition will lie on the same path until the similarity ends and new

branches are created. A terminator node marks the end of a path and

therefore an sRNA sequence encoded within the tree. This structure allows

us to remove sequence and subsequence redundancy, therefore reducing our

search space and memory footprint. Also, the number of nucleotide/edge

comparisons required when attempting to search for a sequence within the

tree is reduced.

Once the sRNAs are encoded in the tree, target searches can be per-

formed. The starting node for each search is the 10th node because we

know that position 10 of the sRNA/target duplex must be complementary

in order to cleave a target [73],[106]. Therefore pairs of nodes at levels 10 and

11 within the 4-way tree are collected and placed into labelled bins (table

3.1) according to the pairs nucleotide composition. There are a total of 16

bins that correspond to the 16 possible dinucleotide combinations. Searches

for sRNAs that could cause cleavage at a given degradome peak position

are initiated by identifying the bin corresponding to nucleotides 10 and 11

of the candidate sequence. The tree is then traversed from nucleotide 10 to-

wards the root. We place a restriction that once a walk up the tree from an

entry point has occurred, the parent node of the entry point obtained from
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the bin may never be visited again during the current search and only de-

scendent nodes of the entry point may be traversed. This restriction ensures

that unnecessary nucleotide comparisons are not computed. We partition

the tree by hiding all paths that have starting nodes in any of the other 15

labelled bins.

Table 3.1: Organisation of partitioned 4-way tree entry points. Nodes
at levels 10 and 11 within a 4-way tree data structure are collected and placed
into labelled bins. There are a total of 16 bins as there are a total of 16 possible
dinucleotide combinations. The label for each bin is the nucleotide at level 10
followed by the nucleotide at level 11. The bins hold entry points into the tree
data structure. Entry nodes within a bin are used to partition the 4-way tree.

Bin Bin Tree Tree
Label Number Level 10 Level 11

AA 1 A A

AC 2 A C

AG 3 A G

AT 4 A T

CA 5 C A

CC 6 C C

CG 7 C G

CT 8 C T

GA 9 G A

GC 10 G C

GG 11 G G

GT 12 G T

TA 13 T A

TC 14 T C

TG 15 T G

TT 16 T T
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The organization of the data in this way lends itself to the fast map-

ping of sequences in an all-against-all search because only a small fraction

of the millions of sequences obtained from a high-throughput sequencing

experiment, that are encoded into the 4-way tree, have the potential to be

aligned with the candidate pattern. This is possible as we know that the

10th and 11th nucleotides of the sRNA, which sit at levels 10 and 11 in the

tree, must match the 10th and 11th nucleotide of the search pattern exactly

[106]. This contributes to the computational speed of PAREsnip.
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3.3.5 Search algorithm

The core of PAREsnips operation is what we call the Rule-Based Comple-

mentarity Search algorithm. It is a method of traversing the partitioned

4-way tree, searching for sRNA sequences that could potentially cleave a

transcript accounting for the degradome peak at a given position. The

method is designed to make as few nucleotide comparisons as possible and

will disregard the large sections of the 4-way tree that will never produce

a valid alignment, based on a set of previously described targeting rules

[106],[5]. The rules used by the search algorithm are user configurable and

the default settings are:

• No more than four mismatches between sRNA and target (G-U bases

count as 0.5 mismatches).

• No more than two adjacent mismatches in the sRNA/target duplex.

• No adjacent mismatches in positions 2-12 of the sRNA/target duplex

(5’ end of the sRNA).

• No mismatches in positions 10-11 of sRNA/target duplex.

• No more than 2.5 mismatches in positions 1-12 of the sRNA/target

duplex (5’ of sRNA).

The algorithm requires a candidate pattern on which to execute its rules.

The pattern is the reverse complement of the first 11-nt downstream and



CHAPTER 3. HIGH THROUGHPUT SRNA/TARGET INTERACTION
IDENTIFICATION AND VALIDATION USING THE DEGRADOME. 46

up to 15-nt upstream from the position of a categorized degradome cleavage

signal on the transcript. The algorithm looks at the two nucleotides either

side of the cleavage position in the pattern and identifies the appropriate

bin (Table 3.1). The algorithm retrieves a starting node from the bin and

traverses a single path up the tree to the root (Figure 3.2 B). As it does so,

it makes a nucleotide comparison between the pattern and the edge in the

path and tests the rule set (Figure 3.2 A). If at any point one of the rules

is broken, the search is aborted, the starting node discarded and the next

starting node is obtained from the bin. If, on the other hand, the algorithm

successfully reaches the root of the tree without breaking any of the rules,

then it returns to the entry point and begins a pre-order walk through the

tree. A history of alignment records is kept while the tree is traversed.

Each record is composed of nucleotide matches, mismatches and single gaps

along with a running alignment score. A mismatch contributes 1.0 to the

score, unless it is a G-U (wobble) pair in which case it contributes 0.5 to the

score. A gap in the alignment contributes a value of 1.0 to the score. If a

terminator node is found, then the algorithm must have reached it without

breaking the rules in one or more of the alignment records kept in its history.

In this case the algorithm examines its history of alignment records and

selects the alignment with the lowest score and places it onto a communal

stack of identified valid alignments. If at any point a rule is broken during

a traversal and there is no valid alignment in its maintained history, the
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algorithm no longer continues down its current path. When there are no

more paths to traverse, the algorithm looks in the bin and if there are any

remaining starting nodes, it will obtain the next starting node from the

bin and repeat the procedure until the bin is empty. The stack of valid

alignments represents possible sRNA/target interactions. Each interaction

within the stack is passed on to the system to calculate the P-value before

being reported to the user.

3.3.6 Calculating p-values

For each sRNA/target duplex reported by PAREsnip, a P-value is calcu-

lated. The P-value gives us a score that indicates how likely the reported

duplex occurred by chance. The P-value calculation methods are based

on those published in CleaveLand (version 2.0) [2] but use our Rule-Based

Complementarity Search algorithm and partitioned 4-way trees during the

calculation. For every position, on every mRNA containing a cleavage signal

a 26-nt sequence representing the sRNA-binding site is extracted and placed

into one of five possible category trees (Figure 3.3). The category trees are

the same in structure and function to the partitioned 4-way tree used to

encode sRNAs, but instead contain sections of mRNAs where cleavage has

occurred.

The sRNA for each sRNA/target alignment on the stack of valid align-
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ments is randomly shu✏ed and mapped to all target sites encoded into a

4-way tree (Figure 3.2 A). The chosen 4-way tree corresponds to the cate-

gory given to the output sRNA/target record. The random shu✏es of the

sRNA preserve dinucleotide frequency and are generated by the third-party

Java programme uShu✏e [55]. The user may define the number of shu✏es

to be used (the default is 100) and the resulting P-value is the number of

times the randomly shu✏ed sRNA aligns to a target site encoded within

the category tree. The P-value is provided as a decimal. For example, if

100 shu✏es were used and 5 of those aligned to a target site of the same

category, then the resulting P-value would be 0.05. An alignment below the

user-specified P-value cut-o↵ is accepted as valid and output to file or to

the user interface.

3.3.7 Output

PAREsnip displays results in a tabular format where each row in the table

shows an sRNA/target interaction. The columns show alignment category,

P-value, binding score and abundance information along with a visual se-

quence alignment of sRNA and target mRNA. Statistics relating to the

input data set are provided such as sequence count and sequence length

distribution. When the tool is operated in GUI mode (Figure 3.4), a results

table is displayed and updated as interactions are found. Columns and rows
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may be sorted and re-arranged and the data in the table may be saved as

comma separated value (csv) format. If the user operates the tool from

the command line, the table is saved straight to disk in csv format, which

can be imported directly into most spreadsheet and statistical packages.

PAREsnip lets the user generate and investigate publication quality t-plots

through the UEA sRNA Workbench tool called VisSR [89],[117].

3.3.8 Availability

PAREsnip is a multi-platform, multi-threaded (Figure 3.1) application writ-

ten in Java and is released as part of the UEA sRNA Workbench [89],[117]

(http://srna-workbench.cmp.uea.ac.uk). It may be run from the command

line or a graphical user interface (GUI).

3.4 Results

3.4.1 Benchmarking

To measure the runtime performance of PAREsnip we simulated 10 sRNA

data sets of increasing size. The sRNAs were generated by extracting 1924nt

sequences centred on cleavage positions within the Arabidopsis thaliana

transcriptome (TAIR 10 representative gene model) [118]. Transcripts,

cleavage positions and sRNA sequence lengths were selected at random.
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The performance of PAREsnip was measured by using the simulated sRNAs

with the A. thaliana transcriptome and the publicly available PARE de-

gradome library GSM278370 A. thaliana Col-0 wild-type seedlings [1],[11].

We observe a linear time operation with a peak memory requirement of 5.5

gigabytes.

We also benchmarked the performance of CleaveLand (version 2) and

compared the runtime with that of PAREsnip (Table 3.2). We found that

PAREsnip significantly outperformed CleaveLand for the considered data

sets. Note that, even though there is a version 3 of CleaveLand, we com-

pared PAREsnip with version 2 since the target prediction step of version 3

only receives a single sRNA sequence for analysis, and therefore cannot be

practically used on larger numbers of sRNAs without developing additional

software. Even so, to get a rough idea of the performance of CleaveLand

(version 3), we obtained an average runtime of 87s per sRNA sequence for

10 simulated sRNAs, which is roughly 3 times faster than version 2, but

still significantly slower than PAREsnip.

3.4.2 Comparison with CleaveLand

As CleaveLand is currently the only publicly available tool for degradome

analysis, we compared all miRNA targets reported by CleaveLand (ver-

sion 2) [2] with those reported by PAREsnip using two data sets. We ob-
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Table 3.2: Run time for PAREsnip and CleaveLand

Number of sRNAs CleaveLand Timing PAREsnip Timing

10 46 min 6s 29s

25 1h 55 min 25s 30s

50 3 h 51 min 35s 31s

1000 - 2 min 3s

10 000 - 10 min 14s

20 000 - 19 min 11s

40 000 - 39 min 8s

60 000 - 53 min 9s

80 000 - 73 min 24s

100 000 - 87 min 16s

tained all known mature A. thaliana miRNAs from miRBase (release 17) [60]

and analysed them using both tools, seeking targets within the transcrip-

tome (A. thaliana representative gene model TAIR release 10) [118] using

two publicly available degradome libraries: GSM278335 and GSM278370

A. thaliana Col-0 wild-type inflorescence tissue taken from Gene Expres-

sion Omnibus (GEO) [1],[11]. A collection of previously validated miRNA

targets obtained from the literature [42],[47],[54],[86],[35] and the MPSS

database [90] (Supplementary Table S1, see Chapter 3.5) were used to iden-

tify previously validated miRNA targets reported by both tools.

The results are summarized in Figure 3.5 (full results in Supplementary

Tables S2 and S3, see Chapter 3.5). As can be seen, PAREsnip reports

either the same number or slightly more previously validated targets than
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CleaveLand. The interactions reported by PAREsnip and not by Cleave-

Land or vice versa are due to the random factor within the P-value systems

used by both tools. For example, in contrast to CleaveLand, PAREsnip

uses dinucleotide random shu✏es when calculating a P-value through the

use of uShu✏e [55]. Furthermore, di↵erences between the interactions pre-

dicted by the two tools are probably also due to the reporting of hits that

contain a mismatch at position 10 (from 5’ of sRNA), multiple gaps within

a duplex and more than 2.5 mismatches or adjacent mismatches within the

seed region (positions 112 5’ of sRNA) of the duplex. Again, in contrast

to CleaveLand, these features within a duplex are not permitted by the

Rule-Based Complementarity Search algorithm used by PAREsnip.
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3.4.3 Filtering by p-value

To examine the usefulness of the P-value computed by PAREsnip as a con-

fidence score upon which predicted interactions can be excluded, we ran it

on all known mature A. thaliana miRNAs, GSM278370 [1],[11] degradome

and the A. thaliana transcriptome (representative gene model, TAIR release

10) (32) with increasing P-value thresholds. The predictions were compared

with previously validated interactions (Supplementary Table S1, see Chap-

ter 3.5) to provide an insight into the number of validated interactions

retained along with the number of other interactions reported in relation

to the increasing threshold (Figure 3.6). Note that a P-value cut-o↵ of 1

captures all possible predictions. PAREsnip reported a total of 91 validated

and 1026 non-validated interactions using a P-value cut-o↵ of 1. We find

that a threshold of 0.05 captures 94.5pc of possible validated interactions

(a loss of 5.5pc validated interactions) while capturing 7.6pc of the total

non-validated interactions. In light of this and other similar experiments

we have chosen a default P-value setting for PAREsnip of 0.05.
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3.4.4 Genome-wide discovery of sRNA/target interactions

Small RNA sample libraries obtained from a high-throughput sequencing ex-

periment typically contain millions of sequences. To look for interactions on

a genome-wide scale, including all sRNAs obtained from a high-throughput

sequencing experiment, we used PAREsnip to analyse the following data

sets: sRNAome GSM342999 A. thaliana Col-0 biological replicate 1 inflo-

rescence tissue [11],[87]; degradome GSM278335; transcripts: A. thaliana

(representative gene model TAIR release 10) [118]. For this and every sub-

sequent analysis the following settings were used: a maximum of 4.0 mis-

matches, 100 dinucleotide shu✏es and a P-value threshold of 0.05. Within

these data, PAREsnip reported 36,351 interactions. Despite the support

found for these interactions, in particular the degradation signal, observed

sRNA, sequence specificity within each duplex and low P-value, it is di�cult

to believe that so many interactions are genuine. Therefore the combined

restrictions of mismatch positions, the number of permitted mismatches

and P-value filter, on their own, do not appear to be su�cient measures

to extract valid interactions above the noise when performing an analysis

on such a large scale. It is likely that many degradome signals are not

the product of sRNA-induced cleavage but are instead random degradation

fragments that happen to also be complementary to one or more of the mil-

lions of sRNA inputs. To address this problem we employed cross-sample
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conservation with the aim of reducing the number of reported targets. The

rationale behind this approach is that both degradome fragments and sRNA

sequences that are products of random degradation are unlikely to be con-

served between biological replicates whereas bona fide cleavage signals and

functional sRNAs are likely to be present across samples.

To explore this approach we used PAREsnip to independently analyse

two sRNA biological replicates GSM342999 (set B1) and GSM343000 A.

thaliana Col-0 biological replicate 2 inflorescence tissue (set B2) [11],[87]

along with the degradome GSM278335. The results were compared and

only the conserved interactions across the two samples were retained. For

an interaction to be conserved the interaction must share the same target

transcript, cleavage site and sRNA sequence. In set B1 36351 interactions

were identified (Supplementary Table S4a and b, see Chapter 3.5) and in

set B2 26098 interactions (Supplementary Table S5a-c, see Chapter 3.5).

By comparing the interactions between the sets we found 7273 conserved

interactions. To ascertain whether such a result could occur by chance,

we carried out the same experiment again but using simulated sRNA sets

containing randomly generated sequences. The simulated sets (set R1 and

R2) maintained the same characteristics as the real sRNA libraries, includ-

ing unique and redundant sequence count and sequence length distribution.

The sequences themselves were randomly generated by sampling from the

Arabidopsis genome sequence. Set R1 identified a total of 21,783 interac-
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tions and R2 identified 21,862 interactions. Comparing the interactions of

R1 and R2 using the same conservation criteria we found that no interac-

tions were conserved. This indicates that sRNAs being observed in multiple

samples (biological replicates) could provide a method for extracting reliable

hits above noise with some measure of confidence.

We extended the conservation method to include signals of degradation

so that a reliable interaction should contain degradation products that are

conserved across multiple degradome library samples as well as the sRNA

being conserved across multiple sRNAomes. We analysed two data sets:

Set D1 comprised sRNAome-GSM342999 and degradome-GSM280226 A.

thaliana Col-0 inflorescence tissue [11],[42] and set D2 comprised sRNAome-

GSM343000 and degradome-GSM280227 A. thaliana xrn4 inflorescence tis-

sue [11],[42]. Reference transcripts were the A. thaliana representative gene

model (TAIR release 10) [118]. Within sets D1 and D2 we found a total

of 65110 and 49938 interactions, respectively. The 65110 interactions are

shown in Supplementary Table S6a-d (see Chapter 3.5), and the 49938 inter-

actions are shown in Supplementary Table S7a-c (see Chapter 3.5). Based

on the previously validated interactions (Supplementary Table S1, see Chap-

ter 3.5), 163 and 179 interactions within the total number of interactions

found in sets D1 and D2, respectively, had been previously experimentally

validated. When comparing the results of sets D1 and D2 we found a to-

tal of 4466 conserved interactions. Of the validated interactions, 149 were
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conserved giving an above 80pc retention rate. The 4466 conserved inter-

actions meet the binding rules criteria for mismatch positioning within the

sRNA/mRNA duplex and have a mismatch score of 4 or less. They have

a P-value of 0.05 or less and the sRNA and positional cleavage signal are

conserved across multiple samples.

3.5 Supplementary tables

The supplementary tables S1 through to S7 mentioned within this chap-

ter contain large amounts of data and it is not practical to include them

in print. However, for completeness, we provide a brief description of the

data contained within each supplementary table below and the data ta-

bles are freely available for download from Nucleic Acids Research Online

(http://nar.oxfordjournals.org/content/40/13/e103/suppl/DC1).

Supplementary table S1 shows the compiled results from a literature

review that was carried out to obtain experimentally validated and predicted

mRNA targets for all known miRNAs. All known miRNAs were obtained

from miRBase [60] and a total of 707 validated or predicted miRNA tar-

gets were obtained from 11 independent studies [10],[18],[25],[35],[36],[42],

[47],[54],[86],[90],[93].

Supplementary tables S2 and S3 show the results produced by

PAREsnip and CleaveLand when analysing two degradome libraries. Re-
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sults that had been previously experimentally validated are identified within

the tables.

Supplementary tables S4 through to S7 show the raw unprocessed

results produced by the PAREsnip tool in 4 degradome analyses.

3.6 Discussion

We have described a novel, freely-available application called PAREsnip, de-

signed for the identification of cleaved targets from sRNA and degradome

data sets generated using next-generation sequencing technologies. The tool

can also be used on small-scale experiments. PAREsnip is a user-friendly

GUI-based, cross-platform (Windows, Linux, MacOS) application that en-

ables biologists to run the application and analyse their data without the

need for dedicated bioinformatics support or specialized computer hard-

ware. We have also made a command-line version of the tool available for

users who wish to incorporate PAREsnip into computational pipelines.

We have shown that PAREsnip performs at least as well as current meth-

ods in detecting validated miRNAmRNA interactions in published data sets

and that it runs significantly faster than the competition on a standard desk-

top computer. The speed of PAREsnip opens up new avenues in the sRNA

field as it enables users to look for targets of all sequenced sRNAs rather

than a subset of sequences that they suspect might have a target (such as
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annotated miRNAs and trans-acting small interfering RNAs).

We have demonstrated that degradome and sRNA data are inherently

noisy (probably due to background mRNA degradation) and that searching

a random sRNA data set with the same properties as a real input data

set against the degradome can lead to a comparable number of predicted

target interactions. This makes it di�cult to separate real targets from

false positives when running on high-throughput data. However, by using

biological replicates of sRNA and degradome data sets we appear to be

able to remove spurious degradation products, as they are highly unlikely

to be conserved between two or more samples. We show that by using

this conservation method on a random sRNA set no targets are predicted

(resulting in zero false positives), whereas when applying it to a real set we

retrieve 4466 high-confidence interactions and recover 80pc of the previously

validated targets present.

PAREsnip is extensively user-configurable; this allows users to customize

search parameters and binding rules in order to make searches more liberal

or stringent. It was recently reported that several new miRNA targets were

discovered and validated using more relaxed binding rules implemented in

the SeqTar algorithm [133]. By relaxing the stringency of the binding rules

PAREsnip can also be used to search more deeply for individual miRNA

targets. Conversely, tightening the rules will lead to a reduction in the

number of candidates reported when run across entire sRNA sets. This
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flexibility also allows users to customize searches and could allow them

to optimize parameters for searching degradome data sets such as those

published by Bracken [20] and Karginov [57].

While the use of published binding rules and P-value filtering provides

a strong set of predicted sRNA/target interactions it is di�cult to estimate

an accurate false positive rate. One of the reasons is that currently there

is no experimental method to directly test sRNA/target interactions. The

only method is the 5’ RACE to map the non-capped 5 end of individual

mRNA fragments. However, this method is based on the same principle as

the PARE/degradome library generation and so it is questionable whether

it can be used to validate the high-throughput results. In fact, since 5RACE

experiments focus on a small region of an mRNA, it is more likely to yield

an artefact than the unbiased PARE/degradome library approach.

3.7 Conclusion

PAREsnip can be used to search for genome-wide interactions between all

sRNAs and transcripts as well as predicting targets of small groups of miR-

NAs. This high-throughput approach to degradome analysis opens a new

avenue for researchers interested in identification of sRNA targets. Due

to its speed and e�ciency PAREsnip removes the need for users to know

in advance which sequences are likely to have a target and instead allows
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users to generate complete networks of sRNA target interactions. By using

replicates and applying a conservation rule we predict over 4000 putative

sRNA/mRNA interactions in the Arabidopsis sets we analysed. This sug-

gests that sRNA-mediated targeting and cleavage of transcripts may be even

more widespread than previously anticipated and provides a useful new tool

for experimentalists to study such interactions in more depth. In the fol-

lowing chapter we will use PAREsnip to analyse sRNA/mRNA interactions

involved in plant water stress.



Chapter 4

Analysis of the RNA degradome

during plant water stress.

4.1 Summary

In this chapter we describe the analysis of stress response RNA degradome

datasets for barrel medic (Medicago truncatula), a model legume species.

These datasets were obtained from the high-throughput sequencing of four

experimental degradome libraries prepared using the PARE protocol. The

libraries were prepared by biologist Dr. Gyorgy Szittya (Dalmay group,

UEA). The data provides us with four snapshots of mRNA degradation

at two distinct intervals of water stress. The intervals are control and de-

hydration. This data provides us with a rich source of information that

we can analyse using the new PAREsnip tool. We used the tool to find

64
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previously described and potentially novel sRNA/target interactions and

compare levels of sRNA mediated activity across the water stress intervals.

4.2 Background

One of the consequences of a warmer climate is drier conditions for crops.

It has been projected that by 2050 seasonal average temperatures will be

higher than ever experienced in the past century [13]. Drier conditions and

temporary extreme weather conditions causing drought can threaten crop

yield and adversely a↵ect food production, farm income and food security

worldwide [45]. Plants can temporarily adapt to water shortage to sur-

vive suboptimal conditions. However, harvestable yields produced by stress

tolerant species is the focus of agriculture rather than plant survival. In

particular, agriculture prefers species that can tolerate abiotic stress such

as drought during the relatively short, but important growing periods.

Plants can respond to changes within their environment by regulat-

ing gene expression at the post-transcriptional level. Recent studies have

demonstrated changes in sRNA mediated gene regulation in response to

environmental stress factors such as cold [135],[121], salinity [40],[74] and

drought [134],[67] in a number of plant species such as Rice (Oryza sativa),

Wheat (Triticum aestivum), Poplar (Populus euphratica) and the model

plant Arabidopsis thaliana. A better understanding of how plants respond
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to environmental stress factors through sRNA mediated gene regulation

could allow experimentalists to potentially modify important crop plants

and improve their resilience to environmental change. For example, Ni et.

al. (2012) [91] demonstrated that within a transgenic line of Arabidopsis

thaliana, the over expression of the miRNA miR394a and the subsequent

down regulation of its mRNA target (Glyma08g11030) improved the plant’s

tolerance to temporary severe water stress conditions. They showed that

the transgenic plants over expressing miR394a lost water more slowly than

wild-type plants and upon rehydration, the majority of transgenic plants

were able to recover and continue growing, unlike wild-type plants which

had only a 25% survival rate.

Legumes are important crop plants, accounting for one third of the

worlds primary crop production, covering 12% to 15% of the worlds arable

surface [15],[46]. The model species barrel medic is a legume that has a

small diploid genome and has been used to study sRNA activity using high-

throughput sequencing techniques [119] and in particular, sRNA activity

during plant water stress [125]. Wang et. al (2011) [125] identified a total

of 40 (32 known and 8 novel) miRNAs that are responsive to water stress

in barrel medic. However, the study focused heavily upon di↵erential ex-

pression analysis of miRNAs rather than their mRNA targets. Currently,

miRBase [60] holds over 600 miRNA sequences for Medicago truncatula,

but little is known about their function. To better understand how im-
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portant crop plants such as legumes respond to water stress through gene

regulation, and identify the function of known miRNAs, several genome-

wide RNA degradation profiles of barrel medic were sequenced at di↵erent

stages of dehydration. The RNA degradation profile for roots and leaves

at control and dehydrated states were obtained using the PARE [41] proto-

col. With the high-throughput tool PAREsnip, we analysed the sequenced

barrel medic degradomes and identified potential stress responsive mRNAs

that are di↵erentially cleaved by miRNAs under water stress conditions.

4.3 Methods

4.3.1 Sequencing of the Medicago degradome

Tissue samples were extracted from Medicago truncatula leaves and roots

under control (hydrated) and water stress (dehydrated) conditions. Four de-

gradome libraries were prepared from the 4 tissue samples using the PARE

[41] protocol. High-throughput sequencing of the libraries was carried out

by BaseClear on the Illumina platform using the Genome Analyzer II in-

strument. The resulting RNA degradation profiles in FASTQ format were:

• Control leaf (hydrated): dataset named CTA,

• Stress leaf (dehydrated): dataset named SWA,

• Control root (hydrated): dataset named CTR,
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• Stress root (dehydrated): dataset named SWR.

4.3.2 Medicago genome, transcriptome and miRNAs

The Medicago genome and transcriptome (reference mRNAs) version Mt3.5v4

[130] were downloaded from the J.Craig Venter Institute (JCVI) file trans-

fer protocol (FTP) server. The FASTA formatted transcriptome comprise

full length cDNA sequences and their associated gene annotations obtained

from gene predictions. JCVI define a full length cDNA sequence as the

expressed regions (exons) and the untranslated regions (UTRs) but does

not include the intragenic regions (introns). All mature Medicago truncat-

ula miRNAs (348 total unique mature miRNA sequences) were downloaded

from miRBase (release 18) [60].

4.3.3 Data preparation

As the miRNAs downloaded from miRBase and the transcripts and genome

dowloaded from JCVI were in FASTA format already, only minor prepara-

tion was required. Adaptor sequences were removed from degradation frag-

ments in each of the 4 libraries (CTA, SWA, CTR, SWR) using the UEA

sRNA Workbench Adaptor Remover tool (version 2.3.2). The FASTQ for-

matted degradome files were converted to FASTA format required by the

PAREsnip degradome analysis tool. The redundant and non-redundant
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(unique) degradome read counts as well as size distribution for each of the

libraries are summarised in Figure 4.1:
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4.3.4 Analysis pipeline

To carry out the PAREsnip analysis on the four PARE libraries, three inputs

in the form of a degradome, a set of miRNAs and a transcriptome (mRNAs)

were required. More specifically, we used the following inputs:

• Analysis 1: Degradome CTA, all miRBase Medicago miRNAs, tran-

scriptome Mt3.5v4,

• Analysis 2: Degradome SWA, all miRBase Medicago miRNAs, tran-

scriptome Mt3.5v4,

• Analysis 3: Degradome CTR, all miRBase Medicago miRNAs, tran-

scriptome Mt3.5v4, and

• Analysis 4: Degradome SWR, all miRBase Medicago miRNAs, tran-

scriptome Mt3.5v4.

The parameter settings used for each of the above degradome analyses using

PAREsnip can be found in Appendix A.

The conservation method described in Chapter 3.4.4 was used to iden-

tify miRNA/ mRNA target interactions that are conserved between control

and stress samples for root as well as miRNA/mRNA target interactions

that are conserved between control and stress samples for leaf. The final

output of the computational pipeline consisted of six datasets identifying

degradome evidenced miRNA/mRNA interactions. The six datasets show
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interactions found in: dehydrated root sample only; dehydrated leaf sample

only; hydrated root sample only; hydrated leaf sample only; hydrated and

dehydrated root samples; hydrated and dehydrated leaf samples (Figure

4.2).
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4.3.5 Candidate selection

From the interactions conserved between control and stress samples, we

selected for deeper investigation those target transcripts that were cleaved

by miRNAs that had a di↵erentially cleaved fragment abundance between

the hydrated and dehydrated states. To identify a change in abundance of

cleavage products between conserved interactions found in both control and

stress states we calculated a log2 ratio:

log ratio = log2(
Stressi + o↵set

Controli + o↵set
),

where Stress and Control are parallel lists of cleaved fragment abundance

for conserved miRNA/mRNA interactions for the dehydrated and hydrated

states, respectively. i is the element within each list and o↵set is an inte-

ger providing a background correction for low cleavage fragment abundance

levels as suggested by Mohorianu et. al. (2011) [84]. A log ratio of 1 means

a two-fold change in cleavage fragment abundance between states and a

log ratio of 2 means a four-fold change etc. A positive value indicates en-

richment of cleavage fragments in the dehydrated state, whereas a negative

value indicates enrichment of cleavage fragments in the hydrated state.
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4.4 Results

4.4.1 Signals of degradation

High-throughput sequencing of the control (CTR) and stress (SWA) de-

gradomes prepared from roots resulted in 7,116,637 and 8,813,611 distinct

20-21nt signatures, respectively. For leaf samples, sequencing resulted in

8,439,454 and 7,446,162 distinct 20-21nt signatures in control (CTA) and

stress (SWA) samples, respectively. The degradome sequences for both root

libraries were matched to the genome and we found 4,429,787 (62%) and

5,603,150 (64%) of the distinct 20-21nt sequences matched. This roughly

agrees with the results reported by another study in Arabidopsis thaliana

where a similar count of the total number of PARE degradome signatures

were found matching the genome [42]. However, in leaf samples, more dis-

tinct 20-21nt signatures matched the genome than in root, with 8,439,454

(81%) and 7,446,162 (84%) matches for CTA and SWA, respectively. For all

four degradome libraries, the percentage of distinct signatures matching to

the genome at a single location ranged from 85% to 86%. This also roughly

agrees (~10% less) with results reported by another study in Arabidopsis

thaliana where there was a similar number of signatures mapping to one

location [42].

PAREsnip was used to analyse the degradomes. The degradome analy-

ses predicted over 2,000 miRNA/ mRNA interactions in root samples and

~
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over 3,000 miRNA/mRNA interactions in leaf samples, the di↵erence be-

tween interaction hits in root and leaf samples reflect the di↵erence in the

total number of genome matches found within the samples. This is a high

number of predictions and we surmise that several factors contributed to-

wards this. Firstly, the vast majority of the degradome assisted predictions

were category 4 interactions (only a single degradation fragment) and were

not conserved between samples. Secondly, the confidence values such as

cleavage signal strength, p-value and raw degradome fragment abundance

was initially set to capture all possible cleavage events. We therefore filtered

the results using more stringent confidence values. Only interactions with a

signal strength of category 0, 1 or 2, a p-value of 0.03 and a raw degradome

read abundance of 2 or more were retained.

A total of 366 interactions with strong signals of degradation that ful-

filled the confidence value criteria were identified. Of those 366 interactions,

106 were found to be conserved between stress and control libraries in root,

and 158 interactions were found to be conserved between stress and control

libraries in leaf (Figure 4.3).

Figure 4.3: Summary of interactions identified with strong signals of degradation.
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4.4.2 Di↵erentially cleaved genes

Thirteen of the 366 interactions demonstrated convincing evidence that the

mRNAs targeted could potentially be stress responsive (Table 4.1). The

thirteen potential stress response interactions met the confidence value cri-

teria in either control or stress analyses and they had an increase or decrease

in cleavage products between control and stress states. From the thirteen

interactions, two candidates were chosen for further investigation as they

were found in both root and leaf degradome samples for both water stress

and control.

The first candidate selected was the miRNA miR-172 which was found

to target the gene Medtr2g093060.1 (Figure 4.5). The degradation product

abundance was >2 fold less in stress than in control samples (Table 4.1).

Therefore the gene Medtr2g093060.1 is possibly up regulated in response to

water stress. The second candidate selected was miRNA miR1509b, which

was found to target the gene Medtr3g069290.1 (Figure 4.4). It had an

increase of degradation products in the dehydrated leaf and root samples

when compared to hydrated state (Table 4.1). Therefore, the mRNA is

likely to be down regulated in response to water stress.
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A

B

Figure 4.4: A: A t-plot showing the degradation activity for the transcript
Medtr3g069290.1. It identifies the cleavage site of mtr-miR1509b (red point).
The x axis gives nucleotide positions along the transcript. The y axis
gives the abundance of cleavage fragments. B: The interaction data showing
miR1509b/Medtr3g069290.1 alignment duplex, raw cleavage product abundance,
alignment score and p-value.
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A

B

Figure 4.5: A: A t-plot showing the degradation activity for the transcript
Medtr2G093060.1. It identifies the cleavage site of mtr-miR172 and mtr-172b
(red point). The x axis gives nucleotide positions along the transcript. The y

axis gives the abundance of cleavage fragments. B: The interaction data showing
miR172/Medtr2G093060.1 alignment duplex, raw cleavage product abundance,
alignment score and p-value.
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4.4.3 Genes containing AP2 domains subfamily members

Of our two candidate genes selected for deeper investigation, we first con-

sider the candidate Medtr2g093060.1 targeted by miR172. The gene has

been annotated (Mt3.5v4 [130] ) as belonging to the APETELA 2 family.

This is a large family of genes encoding transcription factors (TFs) and have

been well described in both Arabidopsis and Rice [103],[104] [109].

The common feature of an APETELA 2 family member is the existence

of a DNA binding domain called AP2/ERF, which is roughly 60-70 amino

acids in length. In Arabidopsis thaliana, genes containing AP2/ERF do-

mains have been classified into five subfamilies based on the number and

sequence of AP2/ERF domains on the gene [103],[104]. Two of the subfam-

ily members called Dehydration Responsive Ethylene Binding (DREB) and

Ethylene Responsive Factors (ERF) contain a single AP2/ERF domain.

TFs belonging to the DREB subfamily in other plant species have been

identified as responsive to water stress conditions [62]. In rice, the AP2

family has been classified into four subfamilies [109]. The classifications are

based on sequence similarity within the domain.

To consider if our gene of interest has the domain organisation of DREB/ERF

i.e. a single AP2 domain, we searched our query gene against Pfam [100]

and PROSITE [111],[112] databases. Pfam showed one significant hit and

one insignificant hit on the gene for the AP2/ERF domain. PROSITE
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showed only one significant hit for the domain. The database search show-

ing our candidate gene as having only a single AP2/ERF domain indicates

that the Medicago truncatula transcript Medtr2g093060.1 belongs to one of

these subfamilies.

Little is known about our second candidate gene Medtr3g069290.1 and

indeed it has been annotated by the transcriptome curators as “unknown

protein” (Mt3.5v4 [130]). However, the miRNA miR1509b that we found to

target Medtr3g069290.1 can provide some insight. The miRNA is conserved

in other legume species such as Soybean (Glycine max ) [66] and has been

found to be responsive to abiotic stress. In particular, in Wild-soybean

(Glycine soja), the miRNA miR1509b is up-regulated when the plant is

subjected to aluminum stress conditions [131]. This identifies miR1509b as

a stress responsive miRNA and from our data in barrel medic, the increased

down regulation of its target in response to water stress could imply a similar

up regulation of the miRNA.

4.5 Discussion

In this chapter, we have described the how we used our new software tool

PAREsnip to analyse the RNA degradome of an important crop species

subjected to water stress. We have identified a total of thirteen poten-

tially stress responsive interactions and considered two of those candidate
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interactions in detail.

The genes of interest within our two candidate interactions are likely to

be involved in water stress response and we have presented some compelling

evidence to support this. The candidate interactions are conserved between

four degradome samples and there is a significant change in cleavage prod-

ucts from control to dehydrated states. Furthermore, these findings are

supported through similarities with abiotic stress response in other plant

species. However, more conclusive evidence for our two candidate stress

responsive interactions could be obtained by the validation of the cleavage

by 5’ RACE and by testing the mRNA expression level through qRT-PCR

in both control and dehydrated states. Also, if the sRNA dataset could be

obtained, then we could test whether the expression level of miR-172 and

miR-1509b go down and up respectively during dehydration and go some

way towards explaining the decreased and increased cleavage products.



Chapter 5

Small RNA interaction networks

evidenced through the

degradome.

5.1 Summary

This chapter describes the software application PAREnets (Parallel Analysis

of RNA Ends - networks) that we designed to discover, analyse and visualise

sRNA regulatory interaction networks that are evidenced through PARE

data. We start by providing a brief background followed by a detailed look

at the methods we used to create the tool. We then present some results

of an analysis where we used the tool and identified a number of regulatory

interaction networks. This work is an adapted version of a manuscript that

84
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is in preparation for publication.

5.2 Background

Recent studies on sRNA interactions have shown that many sRNAs do not

operate independently, but instead can form part of larger, more complex,

regulatory networks. However, most studies within the literature have been

carried out on either a singular instance of a network, or a tiny subset of all

sRNAs, such as miRNAs. Others have focused on large-scale analyses but

based on computational predictions using sequence complementarity and

not empirical evidence. For example, Chen et. al. (2007) [26] describes

singular instances of regulatory networks such as a regulatory cascade that

is initiated by the miRNA miR173 resulting in the production of ta-siRNAs

from two TAS genes. Meng et. al. (2011) [81] considered all known miRNAs

and identified several regulatory networks involving co-regulation of tran-

scripts by miRNA and miRNA*s. MacLean et. al. (2010) [76] considered

all sRNAs and hypothesized the existence of large-scale sRNA networks

and predicted several interaction networks containing specialized hubs of

activity. However, the networks they generated were based on computa-

tional prediction alone and they conceded that their networks may contain

false-positive interactions.

At the time of MacLean et. al.’s study, it was di�cult to validate
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sRNA/target interactions in a high-throughput way, with such validations

being restricted to low-throughput methods such as 5’ RACE (Chapter

2.5.1). With the new genome-wide method of sRNA target validation

(PARE) and the development of our PAREsnip tool (Chapter 4) that can

be used to rapidly analyse the degradome and validate sRNA/target in-

teractions, it is now possible to attempt to discover large scale regulatory

interaction networks based on experimental evidence i.e. the degradome,

rather than predictions based on sequence complimentarity as well as single

instances of networks. We know that sRNAs play important roles in diverse

processes such as pathogen response [101], development [88], [99], reproduc-

tion [123] and stress response (Chapter 4) and we reason that large scale

regulatory networks of sRNA interactions are also involved in such diverse

processes. For example, sRNA networks have been found in the vegetative

and reproductive stages in the life cycle of rice [82]. Also, tissue specific reg-

ulatory networks have also been identified; for example, Ma et. al. (2013)

[75] found that some sRNA/target sub-networks were highly accumulated

in the roots of rice.

Considering the potential importance and growing number of regulatory

networks being found, there is a clear lack of computational tools able to

make use of the degradome as a resource and discover sRNA interaction

networks. This is not surprising considering that degradome sequencing is

a relatively new high-throughput validation method. However, with a grow-
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ing interest from the sRNA community in carrying out analyses involving

regulatory networks, there is a clear need for such tools. Indeed, to the best

of our knowledge, no tool exists that has been designed to discover, anal-

yse and visualize sRNA regulatory networks. A computational method has

been suggested [80], and several methods have been described and used to

discover sRNA networks,[82],[76],[81], but these methods have relied heav-

ily upon manual filtering, ad-hoc in-house computational pipelines, and are

not publicly available.

In this chapter we describe the design and use of a new user-friendly

software tool that we have developed and provisionally called PAREnets

(Parallel Analysis of RNA Ends and networks). It allows users to build and

visualize sRNA interaction networks which are evidenced through genome-

wide degradome analysis. By using the degradome to identify sRNAs and

their targets on a large scale, we hope to facilitate the discovery of new

regulatory interaction networks using a tool that requires very little com-

putational expertise. In the next section we will describe the methods that

we have developed within the software.
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5.3 Methods

5.3.1 Input

The tool takes as input two data files. The first is a FASTA file containing

reference transcripts. Annotation for each transcript need to be on the first

line of each transcript record, followed by the transcript sequence itself on

subsequent lines of a record. The second input file is the output from a

PAREsnip based degradome analysis in comma separated value (csv) for-

mat. An overview of the steps involved in processing the input data is

shown in Figure 5.1. The diagram in shown in Figure 5.1 provides a design

schematic for the dataflow and operations performed upon the data.

5.3.2 Output

The tool has two forms of output. Firstly, a text file that contains the

nodes and edges of the network and secondly, images in .png format of

networks that have been selected by the user. Though the tool is able to

output network data and images to file, the tool’s intended primary mode

of operation is through the use of a graphical user interface (GUI). The

networks drawn by the tool are presented to the user through an interactive

GUI (Figure 5.2) that can aid analyses by making the vast amount of data

contained within the networks more humanly understandable.
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Figure 5.1: Schematic of PAREnets. Boxes represent functions and solid arrowed
lines represent data flow. The functions and dataflow operating concurrently
using multithreading are enclosed within dotted lines. There are three individ-
ual units of execution that are designed to operate concurrently by using the
multithreading code that is built into the framework of the Java programming
language. The three units of execution are for the graphical user interface (Thread
A), data processing (Thread B) and data output (Thread C). Using multithread-
ing helps a computer system to maintain a responsive graphical user interface by
taking advantage of central processing units that have multiple cores.
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5.3.3 Nodes and edges within sRNA regulatory networks

A network is comprised of RNA molecules that are connected through either

degradome validated cleavage events or predicted points of origin. Nodes

within a network are sRNAs or mRNAs. sRNAs and mRNAs are connected

through edges. The type of edge that connects them describes the type of

interaction event between them. The six types of interaction event and

therefore six edge types connecting sRNAs with mRNAs within a network

are described as follows (see Chapter 3.3.3):

• degradome evidenced category 0 cleavage event (strong signal),

• degradome evidenced category 1 cleavage event (strong signal),

• degradome evidenced category 2 cleavage event,

• degradome evidenced category 3 cleavage event,

• degradome evidenced category 4 cleavage event (weak signal) and

• predicted transcript of sRNA origin.

Transcript nodes can be considered as either cleaved by an sRNA (target),

giving origin to an sRNA (origin) or both sRNA target and origin.
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5.3.4 Interaction filtering

Several filters based on cleavage signal strength and node type can be acti-

vated and deactivated by the user. Activation of a signal filter will remove

nodes and edges that are connected to a network that correspond to the

cleavage signal strength or category described in Chapter 3.3.3. Nodes of

predicted sRNA origin and their corresponding edges can be removed by

activating a control within the GUI.

5.3.5 Network construction

The massive number of interactions identified by PAREsnip and validated

by the degradome are output in large data tables. These large data tables

contain the interaction records that can be linked to form a larger network

(Figure 5.3 B).

To begin the construction of a network, the interaction records are parsed

and individual components of each record are extracted into memory. To

predict the potential origin of a sRNA, the tool maps all of the parsed

sRNAs against all of the input transcripts using exact matching criteria. If

a sRNA exactly maps to a transcript, a new interaction record is created

for the prediction.

Individual interactions are then grouped together and placed into bins.

Each bin contains all of the interactions for a network. Each interaction
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within a bin shares either an sRNA, mRNA or origin transcript with an-

other interaction. To do this, the tool selects an interaction record and sub-

sequently searches all other records for connections. An interaction record

is added to a bin if it contains either the same sRNA, mRNA or origin.

The search continues until all possible connections are exhausted. Each

connection found is placed into a bin. With each additional connection

placed into to a bin, a search is carried out for connections to that addi-

tion. Figure 5.3 (A) shows a network example where all interactions within

one bin are used to generate a network visualisation. A database using an

entity relationship model (ER model) [27] stores and dynamically manages

the interactions within the bins (Figure 5.1). Depending upon the input

data, the tool is able to rapidly generate and manage thousands of bins and

therefore thousands of networks.

5.3.6 Graphical display using Open GL

To prepare the network for interactive display, primitive geometry is at-

tached to each of the sRNAs, mRNAs and origins within the ERD. The

geometry is the visual representation of the data within each interaction

and is displayed as a polygon filled area [51]. The interactive display of the

networks has been programmed using the OpenGL application program-

mers interface (API) [128] and the Java programming language binding
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for the OpenGL API hosted by the JOGL (Java Open Graphics Library)

open-source project.

To organise the 2D coordinates for the geometry display, we use the Java

Universal Network/Graph (JUNG) Framework [77]. Within this framework

there are four layout algorithms that the tool uses to position the nodes in

each of the networks. The four layout algorithms are:

• Fruchterman-Reingold force-directed algorithm (FRLayout),

• Kamada-Kawai algorithm (KKLayout),

• a self-organizing map layout algorithm (ISOMLayout) and,

• a circle layout algorithm that positions vertices equally spaced on a

regular circle.

Once the nodes are displayed using the initial layout coordinates ob-

tained from the JUNG Framework, one can select any node and re-position

it within the viewable screen. This is achieved by using colour-picking meth-

ods [51]. The updated node position is recorded within the database. If a

node is selected, the node’s sequence, interaction, abundance and annota-

tion data is displayed. This allows quick and easy information gathering

from the network.

Displaying thousands of filled polygons within thousands of networks

and still maintain the interactivity of the software tool without lock-ups
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presents a challenge. To overcome this we used an axis-aligned bounding

box method to clip any network geometry that sits outside the viewable

space. This method is traditionally known as clipping [105]. Briefly, nodes

and sub-networks that are outside the viewable area of the tools 3D view-

port are completely, though temporarily, removed from the tool’s rendering

processes. This means that only a small subset of the total number of nodes

and edges within all of the networks are being rendered at any one time.

5.4 Results

5.5 Network analysis

In Chapter 3.4.4 we used PAREsnip to analyse two data sets (D1 and D2)

that were sequenced from A. thaliana biological replicates. From sets D1

and D2 we recovered 65,110 and 49,938 sRNA/mRNA interactions. The

results were compared and we found a total of 4,466 interactions that were

conserved across both replicates. We will call the 4,466 conserved interac-

tions reported by PAREsnip dataset P1.

To construct, visualise and discover regulatory networks within the in-

florescence tissue of A. thaliana we used our network tool to analyse the

dataset P1. The transcripts used for this network analysis were A. thaliana

representative gene model (TAIR release 10) [118].
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Within the data, we identified a total of 697 regulatory networks and

937 singletons. A singleton is a single interaction that was not placed within

a network and was therefore discarded. To give a feel for the scale of the

networks, we identified the number of nodes within each network and cre-

ated a size distribution (Table 5.1). Of the 697 networks, 630 (90%) of the

networks contained between 3 and 10 nodes and two networks contained

more than 90 nodes.

Table 5.1: Number of nodes within a network

Node Count # Networks

3-10 630

11-20 39

21-30 9

31-40 6

41-50 5

51-60 2

61-70 2

71-80 1

81-90 1

>90 2

Only 29 (4%) of the 697 networks contained one or more known miRNAs

or miRNA subsequences (isomirs). One of the 29 known miRNA mediated

networks is provided as an example in Figure 5.4. Ninety of the sRNA

e↵ectors within the networks that we have identified are yet to be described.

Ninety seven percent of the sRNA networks that we have identified using

%3E
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our tool are to the best of our knowledge not yet described. An example of

such a sRNA interaction network is shown in Figure 5.5.

5.5.1 Network validation

The interactions generated by the network tool are validated by the sequenc-

ing of degradomes and sRNAomes of two biological replicates. Therefore,

the cleavage signal, degradation fragments and sRNAs are found within two

plants that are grown under the same conditions. Furthermore, the inter-

actions have a p-value of less than 0.05 and meet the previously described

targeting rules. This provides compelling evidence for the interactions dis-

covered by the networks tool.

5.5.2 Availability

The degradome assisted network analysis and discovery tool that we have

described in this chapter is a multi-platform, multi-threaded, application

written in Java and will be released as part of the UEA sRNA Workbench

[89],[117] (http://srna-workbench.cmp.uea.ac.uk).

5.6 Discussion

In this chapter we have described a novel, freely available software solution

that can be used to discover and analyse sRNA networks. It makes use of
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the rich source of evidence that we call the degradome and it can do this

because it builds upon the power of PAREsnip. It is the first tool capable

of performing a genome-wide network analysis using the degradome within

a reasonable time-frame.

Several of the networks that we have identified contain interactions with

a low level abundance of degradation products. However, as the degradation

signals and sRNAs are conserved across plants, it could indicate an “inac-

tive” network that is laying dormant. Possibly inactive until a response or

need for the network to function arises. For example, a network may become

active during processes such as growth and development or stress response.

The networks with low-level degradation signals could give a promising clue

to some interesting functions laying dormant. Also, cross referencing gene

annotations for nodes within a network could lead to hypotheses about what

functions a particular network may be involved in.

We have identified 697 networks within the previously published PAREs-

nip results, of which 668 are potentially un-described and could provide a

starting point for further analyses. The degradome assisted network discov-

ery and analysis tool is a user-friendly GUI-based, cross-platform (Windows,

Linux, MacOS) application that enables biologists to run the application

and analyse their data without the need for dedicated bioinformatics sup-

port or specialized computer hardware.
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A

B

Figure 5.3: A: Network example showing predicted and validated interactions
from conserved degradation signals described in Chapter 3.4.4. The large nodes
are transcripts and small nodes are sRNAs. The coloured edges are validated
signals of degradation. A black edge connects a sRNA to its predicted transcript
of origin. A large grey node is a transcript of predicted sRNA origin. A large blue
node is a cleaved transcript supported by the degradome. B: A table showing
an example of the data used to construct a section of the network captured in
A:Lasso A.
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Figure 5.4: A network image and t-plot generated using dataset P1. It shows an
example of co-regulation for a known miRNA network (miR160 family).
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Figure 5.5: A network image and t-plot generated using dataset P1. It shows an
example of co-regulation for a novel sRNA regulatory network.



Chapter 6

Conclusion and future work.

The future work that we present in this chapter is an adapted version of

a grant proposal written in collaboration with Professor Tamas Dalmay

(School of Biological Sciences - UEA) and Professor Vincent Moulton (School

of Computing Sciences - UEA).

6.1 Summary

In this chapter we describe a road-map for a future project that builds

upon the genome-wide analysis capability of PAREsnip. We propose a new

software tool that could be used to detect the functional evidence of mRNA

cleavage within the degradome to support the prediction of novel miRNAs.

We finish this chapter with conclusions for this thesis and making some

closing remarks.

102
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6.2 Background

As we described earlier in Chapter 2.2.1, miRNAs are a class of sRNA

that are produced from a stem-loop structure (Figure 2.1) which contains

characteristic biogenesis features such as a two nucleotide 3’ overhang on the

miRNA and miRNA* as well as a limited number of gaps and mismatches

within the duplex.

Computational tools are used to analyse sRNAs that are obtained from

high-throughput sequencing experiments, and identify miRNAs based on

their biogenesis features. However, the computational thresholds for specific

biogenesis features such as length of stem, the size and number of bulges

and the number of mismatches are based upon a small number of initially

discovered miRNAs. More specifically, programs such as miRCat [117] and

miR-Deep [129] only consider biogenesis features and therefore have to use

strict thresholds to avoid making a large number of false positive predictions

and consequently they can miss functional miRNAs.

As we described earlier in this thesis (Chapter 2.5.2), the degradome

provides a snap-shot of a plant’s mRNA degradation profile, giving quan-

titative evidence of sRNA mediated cleavage. This is currently the most

widely accepted functional data for miRNAs [1],[42]. The PAREsnip tool

that we developed (Chapter 4) allowed us for the first time to search the

degradome data for cleavage products potentially caused by all the sRNAs
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in a given tissue. In Chapter 3.4.4 we identified more than 4000 interac-

tions caused by about 3500 unique sRNAs of which only 149 were known

miRNAs. A preliminary analysis of the non-annotated sRNAs potentially

causing cleavages revealed that hundreds of them “look like miRNAs (with

stem-loop structures and miRNA/miRNA* duplexes with 2 nt overhang)

but are just below the threshold for some of the criteria used to annotate

miRNAs. This raises the possibility that the currently used thresholds to

annotate miRNAs are too strict and that there could be many more plant

miRNAs than we currently know. We hypothesise that there is a large

population of miRNAs that are not annotated as such based on only the

biogenesis features using the current strict criteria. We propose that these

currently missed potential miRNAs could be annotated as miRNAs by in-

cluding the functional readout from degradome analysis and using slightly

relaxed thresholds for biogenesis criteria.

6.3 Future work objectives

Currently there are no computational tools available that can analyse both

the biogenesis and functional data available to identify novel miRNAs. We

suggest that by developing a new tool that combines degradome analysis

with relaxed biogenesis thresholds for miRNA prediction, we could identify

many new miRNAs and miRNA-like sRNAs. The new relaxed miRNA pre-
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diction thresholds could be experimentally validated using mutant plants.

Potential objectives for this project would be to

• develop a new program to predict miRNAs based on biogenesis and

functional data,

• generate sRNA and degradome libraries from a model organism such

as Arabidopsis thaliana, and

• predict new miRNAs using the tool and experimentally validate the

new miRNA predictions.

6.4 Suggested development of a new program

called miR-PARE

We suggest the development of a new program that could be used to predict

miRNAs based on biogenesis and functional data. The new miR-PARE

program could predict novel miRNAs by combining both biogenesis and

functional data using the core algorithms of PAREsnip [38] and the miRNA

prediction tool called miRCat [117]. A suggested pipeline is shown in Figure

6.1.

mir-PARE would take eight input files in FASTA format: a transcrip-

tome, a genome and three biological replicates of sRNA and PARE libraries,

respectively. The software would first identify sequences in the PARE and
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Figure 6.1: An overview of the suggested miR-PARE program

sRNA datasets that are conserved between the biological triplicates using

freely available short-read alignment software such as PatMaN [98] (Chapter

2.6.5) and filter out all other sequences. This initial step has been shown as

important in reducing noise within the data [38]. Further filters would then

be applied to the sRNA sequences to remove low complexity candidates and

sequences outside a user adjustable size range.

Next, the software would use the PAREsnip algorithms to identify abun-

dant mRNA cleavage fragments and sRNAs that can anneal to those sites

(i.e., predicted sRNAs/mRNA target pairs). The details of the sRNA/mRNA
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interactions found by PAREsnip would be stored for output later and the

identified sRNAs would be input to the miRCat algorithm. miRCat can be

modified to apply a cyclical approach where each sRNA would be processed

multiple times using increasingly less-strict parameter values on each pass

until either a hairpin structure would be predicted, or the maximum pa-

rameter thresholds would be reached (there are 16 adjustable parameters).

A database linked to miRCat would be used to store and monitor the pa-

rameter combinations that are applied to the miRCat algorithm. When a

hairpin structure would be predicted, the parameter combination that was

used would be stored in the database and the tool would link this with the

miRNA/mRNA interactions as well as the miRNA biogenesis predictions

and the results stored within the database.

The primary output of the tool could be the miRNA stem-loop secondary

structure and mature-miRNA/mRNA duplex as well as supporting statistics

such as p-values and sequence abundance data. These results could be

output through a user-friendly Graphical User Interface (GUI). Secondary

outputs could be the contents of the parameter database and sRNAs that

are identified by PAREsnip but did not result in a stem-loop prediction.



CHAPTER 6. CONCLUSION AND FUTURE WORK. 108

6.5 sRNA and degradome libraries

AGO1 (Figure 2.1) is the key component of the complex that cleaves the

mRNA targets so we could generate PARE data for the ago1 mutant plants

and use this data to filter out false positive targets. We could do this because

potential sRNA targets identified in the wild type PARE library should

show a smaller peak in the ago1 library if the target cleavage is indeed sRNA

dependent. We could generate libraries from the dcl1 mutant plants because

mutation in the DCL1 gene causes a significant down-regulation of miRNAs.

Therefore miRNA candidates identified using the sRNA and PARE datasets

from the wild type plants would hopefully show a reduced accumulation in

the dcl1 plants compared to the wild type. This control would enable us

to determine the optimum thresholds for the di↵erent parameters miRCat

relies upon.

6.6 Prediction of new miRNAs using miR-PARE

miR-PARE could be used to analyse new datasets and the ago1 and dcl1

datasets could be used to optimise the tool’s thresholds. Before running

miR-PARE, we would compare the PARE data obtained from wild type

and ago1 plants and filter out all of the potential sRNA targets (all de-

gradome peaks) that are not reduced in ago1 compared to wild type. The

remaining potential targets would be processed by miR-PARE using a cycli-



CHAPTER 6. CONCLUSION AND FUTURE WORK. 109

cal approach i.e., sRNA output by the PAREsnip algorithm would be pro-

cessed by the miRCat algorithm with increasingly less strict parameters

until either the sRNA is predicted as a miRNA or the maximum threshold

reached. However, altering the parameters poses a challenge as they are

not generally independent. For example, increasing the allowable length of

a hairpin structure may not yield a feasible prediction unless the number of

mismatches and/or gaps is increased. Therefore this step would need to be

carried out many times with di↵erent combinations of maximum thresholds

for each parameter. The di↵erent reiterations of miR-PARE are expected

to yield di↵erent lists of miRNA predictions. We could exploit the dcl1

sRNA data to decide which sets of thresholds were the best. The expres-

sion level of every predicted miRNA (obtained with di↵erent thresholds) in

the wild-type library would then be compared to the dcl1 mutant library. If

a predicted miRNA showed a significant reduction in expression level in the

dcl1 library compared to wild type, then the parameters stored within the

database which were used to predict the miRNA would contribute towards

a threshold window.

6.7 Future work discussion

We have described a framework for a new computational tool that could

be used to identify novel miRNAs based upon functional evidence, and
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suggested the sequencing of two mutant datasets that could be used to

support the configuration and use of the tool. Though this suggestion for

future work is based upon the development of a computational tool, we

envisage a collaboration with biologists would be required to enable the

production of the libraries from the mutant plants. We would hope that

this project is realised sometime in the future and our suggested program

contributes towards the annotation of many new miRNAs.

6.8 Thesis conclusions

In recent years, the advancements in next generation sequencing technolo-

gies has allowed us to gain an ever increasing number of biologically in-

teresting insights into the world of RNA silencing. However, the dramatic

increases in the quality, depth and amount of sequencing data being gener-

ated by NGS technology challenges the community to develop robust com-

putational tools, that are scalable, and can perform rapid execution of their

NGS data analysis.

In this thesis, we have gone some way to meet this challenge by develop-

ing the new PAREsnip tool, that for the first time has made it possible to

rapidly analyse sRNA/target interactions on a genome-wide scale within a

practical time frame using only modest computing resources. It is di�cult

to predict what other challenges future advances in sequencing technology
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may bring, but if advancements in sequencing technology continue on their

upwards trend and the size and quality of high-throughput sequencing data

continues to increase, then it is likely that there will be an even greater

demand for robust analysis tools that can manage the sheer volume of data

being produced.

We used the PAREsnip tool to analyze publicly available datasets and

we were able to confidently identify over 4000 sRNA/target interactions. We

then developed a tool to see if those interactions could form part of a larger

regulatory interaction network and identified more than 600 networks within

the data. Our findings imply that there are many sRNAs which operate

within regulatory networks that are yet to be annotated and the diversity

of sRNA biogenisis is not fully described by the existing annotation criteria.

In this chapter, we have suggested a novel approach to finding potentially

hundreds of novel miRNAs that could go some way to explaining some of

the functional sRNAs identified within our data. However, a challenge that

still lays ahead is to confidently annotate the remaining functional sRNAs

and this holds the potential promise of discovering a new class of sRNA.

NGS technologies have proved to be a valuable resource for providing

insights into how plants respond to stressful environmental conditions. A

better understanding of how plants respond to conditions such as water

stress can help towards mitigating and adapting to the environmental im-

pacts of climate change.
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We are getting closer to understanding the complexities of how plant

sRNAs interact with mRNAs and how these interactions work within plants.

We hope that this will lead to exciting improvements in crop plants that

will make them more resilient to environmental stress factors in the future.
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Appendix A

Parameter definitions

Below shows a list of PAREsnip parameter options followed by the param-

eter used (bold) and a description of the parameter.

• min sRNA abundance: 1. Targets will not be sought for any sRNA

with a raw abundance less than the specified minimum,

• subsequences are secondary hits: no. One sRNA sequence which hits

a transcript cleavage site may also have several sRNA subsequences;

• output secondary hits to file: no. Secondary hits are recorded and

may be output to file ;

• use weighted fragments abundance: yes. Categories can be calculated

using either raw degradation fragment abundance or weighted degra-

dation fragment abundance. Weighted fragment abundance is the raw

fragment abundance divided by the number of times the fragment

140
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aligned to the transcriptome. Ticking this check-box tells PARESnip

to calculate categories using weighted fragment abundance;

• category 0: yes. Peaks identified as category 0 will be included as

potential sRNA cleavage sites;

• category 1: yes. Peaks identified as category 1 will be included as

potential sRNA cleavage sites;

• category 2: yes. Peaks identified as category 2 will be included as

potential sRNA cleavage sites;

• category 3: yes. Peaks identified as category 3 will be included as

potential sRNA cleavage sites;

• category 4: yes. Peaks identified as category 4 will be included as

potential sRNA cleavage sites;

• discard tr rna: yes. Any sRNA which has a full length match to

t/rRNA will be discarded from the search;

• discard low complexity srnas: yes. Candidate targets are removed

if of low complexity. A low complexity sequence contains 2 or fewer

unique nucleotides;

• discard low complexity candidates: yes. Sequences within the sR-

NAome are discarded if the composition of the sequence is of low
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complexity. A low complexity sequence contains 2 or fewer unique

nucleotides;

• min fragment length: 20. Any degradation fragment having fewer

nucleotides that this threshold will be discarded;

• max fragment length: 21. Any degradation fragment having more

nucleotides that this threshold will be discarded;

• min sRNA length: 19. Any sRNA having fewer nucleotides than this

threshold will be discarded;

• max sRNA length: 24. Any sRNA having more nucleotides than this

threshold will be discarded;

• allow single nt gap: yes. A sRNA/target duplex may contain a single

nucleotide gap;

• allow mismatch position 11: no. A sRNA/target duplex may contain

a mismatch at position 11 (5’ sRNA);

• allow adjacent mismatches: no. A sRNA/target duplex may contain

more than 2 adjacent mismatches after position 12 (3’ sRNA);

• max mismatches: 4.0. The maximum number of mismatches permit-

ted within an sRNA/target duplex (G:U pairs = 0.5 mismatches);
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• calculate pvalues: yes. PARESnip will calculate p-values for each

interaction reported;

• number of shu✏es: 100. The number of dinucleotide shu✏es to be

used for p-value calculation;

• pvalue cuto↵: 1.0. The p-value threshold. A p-value calculation will

not continue past this threshold;

• do not include if greater than cuto↵: yes. Interactions with a p-value

exceeding the threshold will not be reported;

• number of threads: 7. The number of threads PARESnip should

use to perform the analysis. More threads reduce the time taken to

complete an analysis.
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2.1 An overview of miRNA biogenesis and function in Ara-

bidopsis miRNAs are transcribed from a gene and processed by

DCL1, SE and HYL1 into an RNA duplex (miRNA/miRNA*).

The duplex is methylated by HEN and transported out of the nu-

cleus by HST. The miRNA portion of the duplex binds AGO1

to form RISC. The miRNA bound in RISC base pairs with a

target mRNA that is complementary to the miRNA. The target

mRNA is repressed by either cleavage or translational inhibition.
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2.2 (A) An mRNA has a 5’ cap (5’ 7-methylguanosine) structure and

a 3’-poly A tail. An sRNA is loaded into an Argonaute (AGO)

protein and can target the mRNA which may lead to endonu-

cleolytic cleavage. The mRNA fragments that are un-capped

(5’ monophosphate) after cleavage can be obtained using high-

throughput sequencing methods. (B) Cleavage that has been

mediated by an sRNA can be seen as a cleavage signal (peak) in

the mRNA fragment abundance when they are realigned to the

mRNA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1 Schematic of PAREsnip. Boxes represent functions and solid

arrowed lines represent data flow. The functions and dataflow

operating concurrently using multithreading are enclosed with a
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3.2 (A) Applying the binding rules to the partitioned 4-way tree.

Small RNAs are encoded into a 4-way tree. The tree is parti-

tioned based on the nucleotides at positions 10 and 11 in the

pattern sequence to be searched for. As the tree is searched,

sRNA/target binding rules are applied. (B) Searching the par-

titioned 4-way tree. To search for a pattern within the tree we

start at level 10 denoted as (1), which corresponds to the 10th

nucleotide in a small RNA (counted from the 5 end). The tree

is followed towards the root performing Watson and Crick base

pairing denoted as (2). At each traversal, the binding rules are

checked. If the root is reached successfully the algorithm jumps

back to (1) and begins a pre-order walk down the tree, denoted

as (3). While walking down the tree, if the rules are broken,

then the traversals of that branch stop. If a terminator node

is reached, then a successful alignment has been made and an

sRNA/target interaction discovered. . . . . . . . . . . . . . . . 39

3.3 Data structure created from degradome fragments mapped to

transcripts. Bars represent 5 ends of degradome fragments aligned

to a transcript. Degradome signals are characterized by category.

A sub-sequence of 26nt is extracted from the transcript based on

the cleavage site. The sub-sequence is encoded into a partitioned

4-way tree according to the assigned category. . . . . . . . . . . 40
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3.4 PARESnip’s Graphical User Interface Elements of the in-

terface are numbered 1 to 28. (1) UEA sRNA Workbench. (2)

PARESnip. (3) Statistics related to the input data. (4) Starts an

analysis. (5) Help messages to the user. (6) Main output table.

(7) Gene annotation. (8) Cleavage category (signal strength).

(9) Nucleotide position of cleavage. (10) p-value. (11) Raw

abundance of degradation fragments aligned to position. (12)

Weighted degradation fragment abundance aligned to position.

(13) Normalised weighted abundance of fragments aligned to po-

sition. (14) Visual sequence alignment. (15) Total alignment

score (G:U pairs + mismatches + indels). (16) Analysis progress

bar. (17) Annotation of sRNA. (18) Abundance of sRNA. (19)

Normalised abundance of sRNA. (20) Unique identifier for each

record. (21) Total subsequences of sRNA which align to this

position. (22) Search tabular output for text. (23) Abundance

and subsequence filter for sRNAs. (24) Signal calculation op-

tion and signal strength reporting options. (25) Filters for low

complexity and length of degraded fragments and sRNAs. (26)

Allow a single gap in an alignment. (27) Number of shu✏es to be

used and cut-o↵ value when calculating p-values. (28) Number

of processors available and number of processors to be used. . . 44
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3.5 Venn diagram showing the comparison of results produced by

CleaveLand and PAREsnip. The Venn diagram shows the inter-

section of predictions made by PAREsnip and CleaveLand and

is a summary of the results within Supplementary Tables S2 and
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4.4 A: A t-plot showing the degradation activity for the transcript

Medtr3g069290.1. It identifies the cleavage site of mtr-miR1509b

(red point). The x axis gives nucleotide positions along the tran-
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The interaction data showing miR1509b/Medtr3g069290.1 align-

ment duplex, raw cleavage product abundance, alignment score
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5.1 Schematic of PAREnets. Boxes represent functions and solid

arrowed lines represent data flow. The functions and dataflow

operating concurrently using multithreading are enclosed within
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5.3 A: Network example showing predicted and validated interac-
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