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The extensive intratumor heterogeneity revealed by sequencing
cancer genomes is an essential determinant of tumor progression,
diagnosis, and treatment. What maintains heterogeneity remains
an open question because competition within a tumor leads to a
strong selection for the fittest subclone. Cancer cells also coop-
erate by sharing molecules with paracrine effects, such as growth
factors, and heterogeneity can be maintained if subclones depend
on each other for survival. Without strict interdependence be-
tween subclones, however, nonproducer cells can free-ride on the
growth factors produced by neighboring producer cells, a collective
action problem known in game theory as the “tragedy of the
commons,” which has been observed in microbial cell populations.
Here, we report that similar dynamics occur in cancer cell popula-
tions. Neuroendocrine pancreatic cancer (insulinoma) cells that do
not produce insulin-like growth factor II (IGF-II) grow slowly in
pure cultures but have a proliferation advantage in mixed cultures,
where they can use the IGF-II provided by producer cells. We show
that, as predicted by evolutionary game theory, producer cells do
not go extinct because IGF-II acts as a nonlinear public good, cre-
ating negative frequency-dependent selection that leads to a sta-
ble coexistence of the two cell types. Intratumor cell heterogeneity
can therefore be maintained even without strict interdependence
between cell subclones. Reducing the amount of growth factors
available within a tumor may lead to a reduction in growth fol-
lowed by a new equilibrium, which may explain relapse in thera-
pies that target growth factors.

game theory | tumor | evolution

Cancer is a process of clonal selection within the body on the
time scale of an individual’s lifetime (1–4): Tumor cells that

reproduce more rapidly increase in frequency at the expense of
neighboring healthy cells, even if this ▪▪▪Q:9 is deleterious for the
organism. For the same reason, cell subclones that have a pro-
liferative advantage within the tumor are expected to drive other
subclones to extinction. However, intratumor cell heterogeneity
is commonly observed (5, 6). Despite the implications for cancer
progression, diagnosis, and treatment (7–9), the mechanistic
basis for this heterogeneity remains unclear (3, 9).
One possible answer comes from the observation that cancer

cells not only compete for space and resources but also co-
operate by sharing molecules with paracrine functions, such as
growth factors. Because growth factors diffuse in the ECM, their
effects are not limited to producer cells and can be considered
a form of cooperation between cells (10). Heterogeneity can be
maintained in case of strict interdependence between cell sub-
clones because individual subclones are unable to proliferate
autonomously but can complement each other’s deficiency (10,
11), and hence coexist. An example of such a scenario has re-
cently been reported in a mouse model of mammary cancer (12),
where luminal cells secrete the oncogenic factor Wnt1Q:10 and basal
cells carry a cancer-driving mutation in the Hras geneQ:11 (11).
This kind of cooperation between subclones (11) is analogous

to mutualism in ecology (10); yet, like mutualism in ecology, a

strict interdependence is not always the case. More commonly,
a mutation may simply impair the production of a growth factor,
and thus create a nonproducer cell. This mutant “defector” cell
will still be able to “free-ride” on the growth factors produced by
its cooperative neighboring cells; hence, this subclone would be
expected to have a higher fitness and take over the population.
Although this kind of interaction has been studied extensively in
bacteria (13), where it has implications for the evolution of re-
sistance to antibiotics (14), and in yeast (15), it has received little
attention in cancer research due, in part, to a lack of adequate
experimental systems.
Here, we have analyzed the dynamics of cooperation and

defection for the production of insulin-like growth factor II
(IGF-II) in an experimental cancer system in vitro. IGF-II is an
ideal growth factor to study cooperation and defection among
cancer cells because it is up-regulated in many cancer types and
has been shown to stimulate cell growth and to protect cells from
apoptosis (16–19). We used β-tumor cell lines derived from
insulinomas of Rip1Tag2 Q:12mice (20) [henceforth called “pro-
ducer” cells (+/+)] and from the same transgenic mice carrying
a homozygous deletion of the IGF-II gene (16) [“nonproducer”
cells (−/−)] to investigate whether, in the absence of in-
terdependence between subclones, cell heterogeneity can be
maintained or nonproducer cells drive producer cells to extinc-
tion. As we shall see, cooperation and stable heterogeneity are
observed, a result that we analyzed by resorting to evolutionary
game theory (21).

Significance

Cancer cells compete for space and nutrients against healthy
cells and other cancer cells but also cooperate by secreting
growth factors. Clones that do not produce growth factors,
however, have a proliferation advantage because they can use
the factors produced by neighboring cells without the cost of
producing them. Therefore, the cooperative production of
growth factors by tumor cells should collapse. What maintains
cooperation within the tumor? Here, we use evolutionary
game theory to explain how heterogeneity can persist, and we
use experiments with pancreatic cancer cells to test the pre-
dictions of the theory. Cancer is a process of clonal selection,
and studying cancer cell populations using methods and con-
cepts from evolutionary biology can reveal potential evolu-
tionarily stable therapies.
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Results
IGF-II Is an Intratumor Public Good. We first determined experi-
mentally the growth rates of individual cultures. Pure cultures
of −/− cells grew more slowly than pure +/+ cultures in the absence
of exogenous IGF-II (Fig. 1A). This findingQ:13 is not surprising,
because IGF-II is known to enhance cell proliferation and sur-
vival. The growth rates of +/+ cultures were only marginally
affected by exogenous IGF-II (Fig. 1A), suggesting that the IGF-
II produced by the +/+ cells themselves is enough to sustain their
proliferation. The growth rates of −/− cultures, on the other hand,
increased at higher concentrations of IGF-II; more specifically,
proliferation is a sigmoid function of IGF-II concentration (Fig.
S1). Notably, at high concentrations of IGF-II, −/− cultures
exhibited higher growth rates than pure +/+ cultures (Fig. 1A),
indicating a cost for producing IGF-II.
If −/− cells can benefit from soluble IGF-II in the growth

medium, they can arguably also benefit from the presence of
IGF-II produced by +/+ cells. To verify whether this ▪▪▪ is the
case, we measured the growth rates of pure cultures in condi-
tioned medium derived from −/− and +/+ pure cultures. Indeed,
we observed that the growth rates of −/− cells improved when
cultured in the presence of conditioned medium from +/+ cul-
tures, whereas medium from −/− cultures had no significant effect
(Fig. 1B). This findingQ:14 suggests that a factor secreted by the +/+
cells is responsible for the increased growth of the −/− cells.
Because the two cell lines differ in the production of IGF-II, this
factor is arguably IGF-II itself.
The critical result was that −/− cells grew better than +/+ cells

in medium conditioned by +/+ cells (Fig. 1B). This findingQ:15 sug-
gested that −/− cells would also outperform +/+ cells in mixed
cultures if enough +/+ cells were cocultured. One could expect,
therefore, that nonproducer cells would increase in frequency
over time, because they are able to free-ride on the IGF-II
produced (at a cost) by their +/+ cooperative neighbors. Similar
observations have been made in bacteria (13, 14) and in yeast

(15), a problem that is generally referred to as the “tragedy of the
commons” in game theory (22): Because of the individual in-
centive to free-ride on other group member’s contributions,
a nonproducer has a fitness advantage that will eventually lead to
the demise of the population because of the lack of public good.
We experimentally tested this hypothesis by observing how
mixed cultures of +/+ and −/− cells change over time in vitro.
In the presence of 10% FBS (the concentration generally used

for maintaining β-tumor cells in culture), we observed a rapid
decline in the frequency of +/+ cells in mixed populations. At
lower serum concentrations, however, we observed the opposite:
The +/+ genotype increased in frequency. At intermediate levels
of serum, on the other hand, there was no clear winner: The two
cell types coexisted (Fig. 2). Only when starting the culture with
low initial frequencies of +/+ cells did they go extinct. The co-
existence of −/− and +/+ cells is of particular interest for our
understanding of intratumor cell heterogeneity. What maintains
a mixed population? Why does this heterogeneity disappear at
low and high levels of serum?

Nonlinear Benefits Maintain Heterogeneity. To decipher the growth
dynamics observed in the coculture experiments, we resorted to
evolutionary game theory (21). A +/+ cell pays a cost for pro-
ducing the growth factor, which a −/− cell does not pay, yet the +/+
cell has a higher benefit because of the extra growth factor pro-
duced by itself. When the extra benefit offsets the cost, +/+ cells
are predicted to increase in frequency, whereas they should de-
cline in frequency when the cost is higher than the extra benefit
(Fig. 3A) If this negative frequency-dependent benefit is non-
linear (because of synergistic effects and diminishing returns), clonal
selection will lead to an increase of −/− cells when there are too
many or too few +/+ cells, but not at intermediate frequencies. In
other words, because IGF-II acts as a nonlinear public good (23),
clonal selection can lead to a stable coexistence of +/+ and −/− cells
if the cost of producing IGF-II is not too high (Fig. 3B).
If this interpretation is correct, we expect to observe that +/+ cells

will go extinct in mixed populations when the cost/benefit ratio of
producing IGF-II is too high. In contrast, at lower cost/benefit
ratios, we should observe coexistence of the two cell types. Al-
though the cost of IGF-II production is constant, we can change
the benefit provided by endogenous IGF-II by varying the amount
of serum in the medium: Because serum contains additional
nutrients and growth factors (24) (including IGF-II), more serum
reduces the relative benefit of the IGF-II produced by the +/+ cells,
and thus increases its cost/benefit ratio. Likewise, reducing the
concentration of serum in the medium increases the benefit of
endogenously produced IGF-II, thus reducing its cost/benefit ratio.
The bistability predicted by the theory (the existence of an internal
unstable equilibrium, Fig. 3 A and B) would also explain why, given
the same amount of FBS, +/+ cells sometimes went extinct when
starting from low frequencies (Fig. 2).

Fig. 1. IGF-II is a nonlinear public good. (A) Growth rates of producer (+/+)
and nonproducer (−/−) cells in vitro (relative to day 1) at different concen-
trations of exogenous IGF-II in the growth medium. (B) Growth rates of +/+
and −/− cells in vitro (relative to the day with the minimum number of cells)
with medium containing FBS (7% or 10%) or in conditioned (cond.) medium
from −/− or +/+ cultures. Box plots show the median and the 25% and 75%
quartiles (upper and lower fences, respectively). Asterisks show significant
P values in a t test: *P < 0.05; **P < 0.005; ***P < 0.0005; ****P < 0.00005.

Fig. 2. Long-term dynamics of IGF-II production in vitro. Observed changes
in the frequency of IGF-II–producing cells (+/+) in mixed populations of +/+
cells and −/− cells seeded at varying ratios and under different concentration
of FBS in the culture medium; the cost/benefit ratio of IGF-II increases with
the amount of FBS.
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We tested this prediction by experimentally measuring the instant
growth rates of mixed populations (Fig. 3C). As expected, we ob-
served that +/+ cells declined in frequency at high serum concen-
trations but increased at lower concentrations if the frequency of +/+
cells was neither too high nor too low. Below a critical threshold, as
well as at very high frequencies of +/+ cell seeding, +/+ cell numbers
decreased, leading to the bistable system predicted by the theory
(Fig. 3B). The instant growth rates were also consistent with the
prediction that the equilibrium fraction of +/+ cells should decline
with the cost/benefit ratio of producing IGF-II (hence with serum
concentration), whereas the critical initial fraction of +/+ cells re-
quired for the population to reach a stable coexistence with the −/−
cells should increase. When the cost/benefit ratio was too high (high
serum concentrations), there was no internal equilibrium and the +/+
cells went extinct. Although we did not observe complete extinction
of the −/− type at low serum concentrations (Figs. 2 and 3C), the +/+
type could go to fixation if the cost of the growth factor was low
enough, and in this case, there would be no social dilemma (23).

Adding exogenous IGF-II changed the dynamics in a similar
way to increasing the amount of serum. An alternative inter-
pretation could be that adding IGF-II reduced the amount of
growth factor that must be produced by the cells to generate
a certain benefit. In other words, adding exogenous growth fac-
tors reduced the value (h Q:16) of the inflection point of the benefit
function (Fig. S2), thus reducing the equilibrium fraction of +/+
cells. Theory also predicted that the maximum growth rate
should be observed at intermediate frequencies of producers
(23), a prediction that was confirmed in our observations of the
growth rates of mixed populations in vitro (Fig. 4).

Dynamics in Planar Heterogeneous Networks. Although we have
assumed a well-mixed population of cells in the above arguments
about conflict and cooperation, many solid tumors, including the
insulinomas produced by our cells, are populations with a de-
fined spatial structure, a detail that is known to be important in
studies on the evolution of cooperation (25, 26). To verify the

Fig. 3. Varying the cost/benefit ratio of IGF-II production changes the outcome of competition between producer and nonproducer cells. (A) Fitness is
a nonlinear function of the fraction of +/+ cells; the fitness of +/+ cells depends also on the cost c of producing IGF-II. The dynamics depend on the relative
fitness of the two types. Circles denote equilibria (●, stable; ○, unstable), and arrows show the direction of the dynamics (h = 0.2, s = 10, n = 30). (B) Al-
ternative view of the dynamics of mixed populations. Equilibria occur where the difference in benefit between +/+ and −/− (i.e., the additional benefit for a +/+
cell due to its own production of IGF-II) equals c. (C) Experimentally observed changes in the frequency of +/+ cells in vitro after 5 d of coculture for different
initial frequencies and different amounts of serum (a measure of the cost/benefit ratio of producing IGF-II), and with additional exogenous IGF-II (100 ng/mL).
Error bars indicate the 25% and 75% quartiles.
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importance of spatial structure on the dynamics, we ran simu-
lations of evolution in spatial planar networks, in line with pre-
vious models of cooperation in spatially structured populations,
with the difference that monolayers of cells, being heterogeneous
planar networks, were modeled as Voronoi graphs (Fig. 5A and
SI Materials and Methods). Voronoi graphs resemble the dis-
tributions of polygons in cell tissues (27) rather than regular
lattices (in which all nodes have the same number of neighbors)
or a scale-free network (which is not planar), which are the two
topologies generally used in the study of cooperation in social
networks (25, 26).
Simulations of the evolution of growth factor production on

Voronoi networks showed that the +/+ and −/− cells can coexist in
stable equilibrium (Fig. 5 B–D). Similar to what happens in well-
mixed populations, increasing the diffusion range of the growth
factors reduces the amount of producer cells and the overall
fitness of the populations. Cooperation is more efficient when
the cost/benefit ratio of producing the growth factor is lower and

when intermediate levels of producers are required (i.e., when the
benefit function has an inflection at intermediate frequencies of
producers) (Fig. 5D). Increasing the diffusion range d of the growth
factor reduces the fraction of +/+ cells, and therefore the growth rate
of the tumor (Fig. 5D), because it increases the size of the group
that benefits from a cell’s production. Whereas the overall fraction
of +/+ and −/− cells remains relatively stable after a period of ad-
justment (Fig. 5C), the position of the +/+ and −/− clusters continues
to change over time (Fig. 5B and Fig. S3). Our simulations show
that the dynamics are not significantly affected by cell density (Fig.
S4) or by the frequency of cell passaging during culture (Fig. S5).

Discussion
Overall, our experimental results are in line with the predictions of
models of nonlinear public goods in the framework of evolutionary

Fig. 4. Growth rates peak at intermediate frequencies of producers. (A) Pre-
dicted fitness of the two cell types (dotted blue curve, +/+; dotted yellow
curve, −/−) and the average fitness of the population (solid black line) as a
function of the frequency of +/+ cells. Circles show the equilibria (●, stable;
○, unstable), and arrows show the direction of the dynamics (h = 0.2, s = 30,
c = 0.2, n = 10). (B) Benefit of growth factors and the corresponding predicted
average tumor fitness (payoff) as a function of the frequency of +/+ cells in the
population for given values of h (the position of the threshold: light to dark
curves; h = 0.1 to 0.5, s = 20, c = 0.4, n = 10). (C) Observed growth rates of
mixed cultures in vitro as a function of the fraction of +/+ cells. Boxes show the
mean and the 25% and 75% quartiles (upper and lower fences, respectively).

Fig. 5. Growth factor production as a public goods game on a network. (A)
Cells in a monolayer occupy the nodes of a planar heterogeneous graph. The
number of edges within the diffusion range d of the growth factor defines
the interaction group [here, d = 2 (blue cells)]. (B) Snapshots of simulations in
which −/− cells invade a population of +/+ cells (d = 3, c = 0.02, h = 0.5, s = 20).
(C) Changes in the fraction of producer cells (+/+) and in tumor fitness over
time in simulations (thick lines are the average of 10 simulations). (D) Fraction
of +/+ cells and fitness at equilibrium as a function of the inflection point h
and of the cost of production c for different values of the diffusion range d.
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game theory (23, 25, 26): Stable coexistence of producers and
nonproducers (and therefore stable heterogeneity) can be main-
tained if the effect of the growth factor is a nonlinear function of the
frequency of producers. Although cooperation requires positive
assortment in linear public goods games, and the dynamics in spa-
tially structured populations are therefore significantly different
from the dynamics in well-mixed populations (25, 26), in the case of
nonlinear benefits, cooperation is maintained in both well-mixed
and spatial populations by frequency-dependent selection. Strict
interdependence between subclones (10, 11) is not the case in our
system, and, as we have shown, it is not necessary to maintain
heterogeneity if the effect of the growth factor is nonlinear.
Because the fraction of producers is directly proportional to

the concentration of the growth factor, our results imply that
stable heterogeneity can be maintained if the benefit of a growth
factor is a nonlinear function of its concentrations. Although we
have focused on IGF-II, cooperation for the production of dif-
fusible factors is probably common in cancer cell proliferation
and in other processes that require diffusible molecules, such as
sustained angiogenesis, immune system evasion, and metastasis
(10). Collective effects have been previously reported for acidic
FGF-1 in bladder carcinoma cells (28). Nonlinear effects are
likely to be the rule for most biological molecules; the non-
linearity is generally a sigmoid shape described by the Hill
equation (29), and examples of sigmoid effects have been
reported for IGF-II and other growth factors (24, 30, 31).
Our results are related to studies of cooperation and compe-

tition in microbial cell populations where examples of co-
operation and defection for the production of public goods have
been observed (13–15). Similar to what happens for antibiotic
resistance in microbial populations (32), which is promoted by
the production of diffusible public goods (14), cooperation be-
tween tumor cells is an obstacle for therapies that target growth
factors. Reducing the amount of circulating growth factors may
lead to a reduction in tumor growth in the short term, but it will
also increase the inflection point of the benefit function (the
number of producer cells necessary to achieve a benefit), thus
simply shifting the equilibrium to a higher fraction of +/+ cells,
which may potentially explain the relapse observed in patients
treated with therapies targeting growth factors (33). On the other
hand, modifying the dynamics of the production of growth fac-
tors, by increasing their diffusion range for instance, might lead
to a stable reduction of tumor proliferation.
Although the view that cancer is an evolutionary process (1, 2) is

now widely accepted (3, 4), and the importance of understanding
its dynamics has been recognized (32, 34), evolutionary methods
are still largely neglected in the study of resistance to anticancer
therapies (35). Our results suggest that further work on the dy-
namics of “social” interactions among cancer cells may reveal
further insight into the dynamics of cancer, and hopefully guide
research toward evolutionarily stable therapies (36).

Materials and Methods
Cell Lines. β-tumor cell lines were derived from WT Rip1Tag2 mice (+/+) (16)
and from the same transgenic mice carrying a homozygous deletion of the

IGF-II gene (−/−) (17). The cell lines were maintained in culture in DMEM
supplied with 10% FBS Q:17, 1% glutamine, and 1% antibiotics. Conditioned
medium was obtained from subconfluent cultures kept for 48 h in DMEM
supplied with 5% FBS, 1% glutamine, and 1% antibiotics.

Proliferation Assay.A total of 30,000 cells were plated per well in 24-multiwell
plates. After treatment, cells were fixed with 2.5% glutaraldehyde dissolved
in PBS for 30 min at room temperature (RT). After washing twice with
deionized water, crystal violet 0.1% solution in 20% methanol was added in
each well for 15 min. Afterward, the solution was removed and each well was
washed with water and allowed to dry at RT. The color was dissolved in 50 μL
of 10% acetic acid solution and transferred in 96-multiwell plates, and in-
tensity was measured by a plate reader at 595 nm. The growth rate is de-
fined as the relative change in density during the log phase (after 10 d).

Measuring Frequencies by Flow Cytometry. The producer (+/+) type was stably
transduced by lentiviral infection with a pLenti-EGFP plasmid and selected
for EGFP expression by puromycin (2 ng/mL) treatment for 48 h. The pro-
ducer (+/+) type therefore expresses EGFP constitutively. We measured the
fraction of the two types in mixed populations using an Accuri C6 flow
cytometer (Becton Dickinson) (488-nm excitation, 533-nm emission, 300-nm
BP, FL1 emission filter Q:18) after gating out cellular debris and selecting only
single cells for analysis. We typically counted 50,000 cells.

Public Goods Game. A cell can be a producer (+/+) or a nonproducer (−/−) of
IGF-II. Producers pay a fixed cost c that nonproducers do not pay. A cell
benefits from the IGF-II produced by all of the cells in its group of size n. We
assume that the benefit function has a sigmoid shape. The benefits for +/+
and −/− cells are therefore, respectively, the normalized versions of V(j + 1)
and V(j), where V(j) = β/[1+e−s(j/n−h)]. We assume that β = 1 and 0 < c < 1, j is
the number of +/+ cells among the other n − 1 cells, h defines the position of
the inflection point (h→1 gives strictly increasing returns, and h→0 gives
strictly diminishing returns), and s defines the steepness of the function at
the inflection point (s→∞ models a threshold public goods game, s→0
models an N-person prisoner’s dilemma) (23).

Evolutionary Dynamics on Networks. In well-mixed populations, groups of size
n are updated at every generation. In spatially structured populations,
group size n is a function of the diffusion range d of the growth factor,
measured as the lowest number of edges (the shortest distance) between
nodes (Fig. 5A). The spatial network is a Voronoi graph obtained by
a Delaunay triangulation of random points on a sphere (to avoid distortions
due to edge effects) (SI Materials and Methods). The average connectivity is
six, with a unimodal distribution; nodes with fewer than four or more than
eight connections are rare (27). Individual cells occupy the nodes of a net-
work of size 1,000. The process starts with a number of nonproducers placed
at random on the graph. At each game round, strategies are updated
according to a standard death–birth process in which the probability that
a node reproduces is proportional to its fitness (25, 26) (SI Materials and
Methods). Results are obtained by averaging the final 20% of 1 million
generations, averaged over 10 runs.
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Public Goods Game. A cell can be a producer (+/+) or a non-
producer (−/−) of a growth factor. Producers pay a fixed cost c
that nonproducers do not pay. All cells (+/+ and −/−) benefit from
the public good produced by all of the cells in their group of size
n (in spatially structured populations, n depends on the diffusion
range of the factor, as discussed below). Fitness is therefore a
frequency-dependent function of the number of producer cells j.
We model this function using the logistic function

V
!
j
"
=

β
1+ e−sðj=n−hÞ

;

where β is the maximum benefit produced by the growth factor;
we can assume, without loss of generality, that β = 1 and 0 < c < 1.
The parameter h controls the position of the inflection point (h→1
yields strictly increasing returns, and h→0 yields strictly dimin-
ishing returns), and the parameter s controls the steepness of the
function at the inflection point (s→∞ yields a Heaviside step
function, and s→0 yields a linear function). We define the ben-
efit function b(j) of IGF-II as the normalized version of V(j):

bðjÞ=
#
VðjÞ‐Vð0Þ

$%#
VðnÞ‐Vð0Þ

$
:

The only notable effect of the normalization is that, for s→0, it
makes the benefit function an increasing rather than a constant
linear function, enabling us to model, in addition to the sigmoid
function commonly observed in biological molecules (1Q:1 ), the
threshold public goods game (s→∞) and the N-person prisoner’s
dilemma (s→0) commonly used in multiplayer public goods
games (2).

Fitness in Well-Mixed Populations. The initial cultures are well-
mixed populations on the day the cells are plated. In an infinitely
large population, the average payoffs of +/+ and −/− cells can be
written as, respectively,

W+=+ =
Xn−1

j=0

&
n− 1
j

'
x jð1− xÞn−1−j · b

!
j+ 1

"
− c

W−=− =
Xn−1

j=0

&
n− 1
j

'
x jð1− xÞn−1−j · b

!
j
"
;

where j is the number of +/+ cells among the other n − 1 cells in
the group. In a finite population, sampling of individuals follows
a hypergeometric distribution and the average payoffs of +/+
and −/− can be written as, respectively, (3)

W+=+ =
&
Z− 1
n− 1

'−1 Xn−1

j=0

&
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"
;

where i is the number of +/+ individuals in the population of size
Z. Assuming a stochastic birth–death process combined with
a pairwise comparison rule, two individuals from the population,
A and B, are randomly selected for update. The strategy of A will

replace the strategy of B with a probability given by the Fermi
function, p≡ 1=½1+ e−βðWA−WBÞ$, and the reverse will happen with
probability 1 − p. The quantity corresponding to the “gradient of
selection” in the replicator dynamics is given in finite popula-
tions by (3)

g
!
i
"
=
#
i
!
Z− i

"%
Z2$tanh

#
β
!
W+=+ −W−=−

"%
2
$
:

The quantity β specifies the intensity of selection (for β << 1,
selection is weak, and for Z→∞, one recovers the case of infinite
populations).

Network Topology. The two topologies usually considered in the
study of spatial games, regular lattices (in which all individual
nodes are topologically equivalent) and scale-free networks (in
which different individuals have a distinct number of connections)
(4, 5), are not appropriate for the study of monolayers of cells
because they either neglect the importance of variation in con-
nectivity (regular lattices) or are not planar (scale-free net-
works). We therefore use Voronoi networks.
A Voronoi diagram (tessellation) of a set of nodes is a col-

lection of convex polygons, each corresponding to one of the
nodes, with all of the points in one polygon being closer to the
corresponding node than to any other node. The boundary be-
tween two adjacent polygons is a line segment, and the line that
contains it is the perpendicular bisector of the segment joining the
two nodes. A Voronoi network is defined as such node-joining
segments. The average connectivity of Voronoi networks is six,
with a unimodal distribution; nodes with fewer than four or more
than eight connections are rare. The average group size for d = 1
(average neighborhood size) is therefore seven. Such a structure
resembles the distribution of polygons in cell tissues (6, 7).
More specifically, the Voronoi diagram of V Q:2is a subdivision of

space into Voronoi cells; for any vertex i belonging to V, the
Voronoi cell of i is the set of points with a distance to i not
greater than to any other vertex of V. The dual of the Voronoi
diagram is the Delaunay triangulation defined on the same
vertex set (Voronoi polygons correspond to Delaunay vertices).
Two-dimensional Voronoi graphs are obtained by a Delaunay
triangulation of random points, using the DelaunayTriangulation
implementation in Mathematica 8 (Wolfram Research, Inc.). If
the points are drawn on a circle or on a square, the imple-
mentation is straightforward. Points can also be drawn on a
sphere to avoid edge effects (this ▪▪▪ is equivalent to the com-
mon procedure of connecting the edges of a regular lattice to
form a toroidal network). Points on a sphere are defined by
colatitude (φ) and longitude (θ), both of which are drawn from
a uniform distribution with support [0,2π]. These points Q:3can be
mapped into the Cartesian space using the standard transfor-
mation x = r * sinφcosθ, y = r * sinφsinθ, z = r * cosφ, with r = 1.
To reduce the density of points around the poles, making them
evenly distributed over the spherical area, we define φ as
2ArcSin[Sqrt[Random[0,1]]] using the “Inverse CDF Method”
in Mathematica rather than simply drawing it from [0,2π]. In the
Cartesian space (the figures used here), the polygons appear
distorted at the edges, and they are actually connected with the
polygons on the opposite edge to form a sphere (as in a geographic
projection of the Earth).

Diffusion and Group Size in Spatially Structured Populations. In well-
mixed populations, groups of size n are updated at every genera-
tion. In spatially structured populations, group size n is a function
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of the diffusion range d of the growth factor, where d is the lowest
number of edges (the shortest distance) between nodes (d = 1
defines the one-step neighbors of a node). A standard assumption
in the study of public goods games on networks is that an in-
dividual’s action affects only the fitness of individuals one node
away: Each individual belongs to n different groups, with each
group centered on one of that individual’s one-step neighbors, and
an individual’s fitness is the sum of all of the payoffs accumulated
in all of the groups that individual belongs to (5). Although these
assumptions are reasonable for interactions in human social net-
works, this ▪▪▪ is not the case for cellular networks, because growth
factors produced by cells in a tissue typically diffuse beyond a cell’s
neighbors; the benefit a cell gets as a result of available growth
factors is a function of the number of producer cells within the
diffusion range of the factor, not just of the number of producers in
the upgrade neighborhood (one-step neighbors) or of all of the
individuals belonging to the neighbors’ groups. In other words, to
study diffusible public goods, we must decouple the interaction
neighborhood (the group playing the public goods game, defined
by the diffusion range d) and the update neighborhood (the one-
step neighbors) (8–13).

Evolution in Spatially Structured Populations. In spatially structured
populations, the process starts with a number of nonproducers
(−/−) placed at random on the graph in which all other nodes are
occupied by producers (+/+). At each round, strategies are up-
dated according to the following rule (5): A node x with a payoff
Px is selected (at random) for update (death), and a node y (with
a payoff Py) is then chosen among x’s neighbors. If Px < Py, x will
adopt y’s strategy (unconditional imitation); in the stochastic
case, replacement occurs with a probability given by (Py − Px)/M,
where M ensures the proper normalization, and is given by the
maximum possible difference between the payoffs of x and y.
Results are the average of the final 200,000 of 1 million gen-
erations, averaged over 10 different runs. In monolayers of cells
in vitro, cells are initially not confluent, and may therefore lack
one-step neighbors; we model nonconfluent cultures as networks
in which nodes corresponding to missing cells have a fitness
equal to zero. Transferring (passaging) cells in vitro is equivalent
to updating periodically with a new random network the spatial
structure of the populations every g divisions per cell; g = 1
corresponds to a well-mixed population, and g = 1 million cor-
responds to a population with a fixed spatial structure.
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Fig. S1. Cell proliferation is a sigmoid function of the concentration of IGF-II. The growth rates of −/− cells cultured in medium supplemented with different
amounts of IGF-II are shown. Error bars represent SD.
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Fig. S2. Evolutionary dynamics and equilibria of nonlinear public goods production. The benefit due to growth factors and the predicted fitness difference
between +/+ and −/− cells as a function of the frequency (Freq.) of +/+ cells in the population for given values of s (the steepness of the benefit function) and
different values of h (the position of the inflection point: 0, 0.25, 0.5, 0.75, 1; curves from light to dark gray) are shown. The difference in fitness between +/+ and −/−
cells determines the dynamics: Where it is positive, +/+ cells increase in frequency, and where it is negative, they decrease in frequency; equilibria occur where it is
zero (shown here only for the intermediate value h = 0.5: ●, stable; ○, unstable; arrows show the direction of change). β = 1, Z = 1,000, d = 3, c = 0.02.
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Fig. S3. Coexistence of producers and nonproducers. Snapshots of simulations of the spatial structure of a monolayer of cells at every 100 cell divisions. c =
0.02, h = 0.5, s = 20, d = 3.
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Fig. S4. Effect of cell density. Changes in the fraction of +/+ and tumor fitness over time in simulations of sparse to dense cultures (starting from 10%, 50%, or
90% confluent populations). d = 3, c = 0.02, h = 0.5, s = 20.
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Fig. S5. Effect of passaging cells. Changes in the fraction of +/+ and tumor fitness over time in simulations of populations whose spatial structure is updated
every g divisions per cell (g = 1 corresponds to a well-mixed population, g = 1,000 corresponds to a population with a constant spatial structure). d = 1, c = 0.01,
h = 0.5, s = 20.
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