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Abstract 

This work presents a comparison between an isolated and a non-isolated curved liquid jet 

emerging from a rotating nozzle through centrifuge spinning system. In the centrifugal 

spinning process, a polymer solution has been pushed by the centrifugal force through small 

nozzle of a rapidly rotating cylindrical drum. Thereby thin fibers are formed and collected on 

a collector in the form of a web. Centrifuge spinning suffered from a strong air resistance 

which leads to a more deflected jet as well as its rapidly solvent evaporation resulting in 

thicker nanofibers. In this work, centrifuge spinning has been equipped by a rotating 

collector, whereas the fabrication process was skillfully sealed from ambient airflow. A 

comparison was drawn between the trajectory of Newtonian liquid jets fabricated by 

centrifuge spinning and air-sealed centrifuge spinning. The captured images of the liquid jet 

trajectory using a high speed camera showed that non-isolated liquid jets were more curved 

than isolated liquid jets due to air resistance. A pre-presented non-linear analysis of the 



  

Navier-Stokes equations was carried out and the numerical solutions were compared with the 

experiments.There was fairly good agreement between the isolated jet trajectory and the 

model-predicted one, but there were differences between the non-isolated jet trajectory and 

the simulation results. The non-isolated jet curved more compared to the others due to air 

drag. Also, the diameter of polymeric nanofibers was predicted and compared with 

experiments. Some qualitative agreement was found. 

Keywords 

Air-sealed centrifuge spinning, Curved liquid jet, Isolated and non-isolated liquid jet, Air 

drag, Navier-Stokes equations, Asymptotic expansions.  

Introduction 

Nanofibers, defined as fibers with diameters of 100 nm to 500 nm [1], are desirable 

enhancements for a number of promising applications including medical textile [2, 3], 

filtration [4-6], protective textile [7], electronics [8], and optics[9]. 

Among the various methods used so far for producing nanofibers, such as drawing [10], 

template synthesis [11, 12], and self-assembly [13], electrospinning is a well-established and 

intensively investigated methodology, and is currently the only known technique that can 

fabricate continuous nanofibres [14-16].  

The major challenge associated with electrospinning is its production rate, compared with 

that of conventional fiber spinning. So far, several efforts have been made to increase the 

production rate of nanofibers. For instance, modified single-needle [17, 18], multi-needle [19-

27], needleless systems [28-34], a plastic filter set-up [35] and forcespinning have been 

developed to enhance nanofiber production rate. ForcespinningTM or centrifuge spinning uses 

centrifugal force, rather than electrostatic force, as in the electrospinning process [36]. The 



  

previous researches have indicated that applying the centrifugal force results in a significant 

increase in the production rate of nanofibers [36, 37]. Due to centrifugal force, the polymer 

solution sustained by its surface tension is radially transported outward through the nozzle. 

There is a critical rotational speed of the spinning head for which the centrifugal force finally 

overcomes the surface tension and the jet of the fluid is ejected from the tip of the nozzle. 

Centrifugal force, Coriolis force, viscous effects, and air drag are experienced by the jet in 

centrifuge spinning [38]. The jet follows a curved trajectory due to Coriolis and drag forces. 

An effect of air resistance is the deflection of the jet and causes the liquid jet to progressively 

bend up. Another effect of air resistance is the enhancement of surface instabilities [39]. 

Exposing the ejected liquid jet to the high velocity airflow causes the jet to lose its solvent 

rapidly and as a consequence, the extension of the jet becomes more difficult, resulting in 

thicker nanofibers as the other effect of air resistance [40]. It would be interested in 

eliminating the air resistance included in centrifuge spinning which will be discussed through 

the present work.  

Study on the formation of droplets under rotating forces was done by Wallwork et al. and 

Decent et al [41, 42]. In their study of the prilling process for producing fertilizers, one-

dimensional model equations were derived from the assumption that the flow is uniaxial and 

the center-line of the jet is steady at the leading order. Furthermore, a linear stability analysis 

of the derived inviscid model is performed in [41] and for the viscous model in [43].  

Other works regarding curved liquid sheets and jets include Vanden-Broeck and Keller [44], 

Entov and Yarin [45], Dias and Vanden-Broeck [46], Yarin [47] and Cummings and Howell 

[48]. In particular, Dias and Vanden-Broeck [44] investigated steady two-dimensional 

inviscid solutions with gravity, determining the trajectory of the flow, and Cummings and 

Howell [44] investigated nearly straight slender viscous fluid fibers arising in extrusion 

problems. 



  

E.I. Parau et. al. [49] presented a theoretical investigation of the effects of changing operating 

parameters on the break-up of curved liquid jets in stagnant air at room temperature and 

pressure. The Navier–Stokes equations were solved in this system with the usual viscous 

free-surface boundary conditions, using an asymptotic method based upon a slender-jet 

assumption without considering the effect of air resistance [49]. However, air resistance has 

significant effects on liquid jet dynamic. These effects could be incorporated into the theory 

by including air resistance into the equations of motion. A theory to include air resistance is 

probably doable, but not very simple. Therefore, neglecting air resistance causes some 

differences between simulation and experimental results. However, reducing air resistance 

makes possible to neglect the effects of air resistance on liquid jet dynamic; this would be 

obtained in the present work. It is expected that there will be an improvement in the 

agreement between simulations and experimental data.  

 So far various one-dimensional electrospinning models have been proposed with a focus on 

the effects of the rheological properties of the polymer solutions on fiber formation [50, 51]. 

Models describe all the stages of the electrospinning process using both linear and nonlinear 

models and incorporating the effects of solution viscosity, solvent evaporation and 

solidification, surface tension, and electric forces [21, 52]. Some of the factors mentined 

above are included in centrifuge spinning. In addition, rotational speed has significant effect 

on fiber formation. In current work, the effect of rotational speed on fiber morphology has 

been theoreticaly and experimentally studied.  

Therefore, the first aim of this work is to introduce air-sealed centrifuge spinning for the 

fabrication of nanofibers. This setup has been isolated from the surrounding air using a 

rotating collector. In our case, air resistance is negligible because of setup isolation. In 

addition, a comparison is drawn between trajectory of Newtonian liquid jets as well as non-

Newtonian jet fabricated by centrifuge spinning and ones fabricated by air-sealed centrifuge 



  

spinning. Images were captured of the jet trajectory using a high speed camera. Also, a non-

linear analysis of the Navier-Stokes equations was carried out. The experimental results were 

compared to numerical solutions of equations. Further, the diameter of poly acrylonitrile 

(PAN) nanofibers was predicted and compared with experiments. 

Materials and methods 

Physical properties of liquids and solutions 

The physical properties of three Newtonian fluids are given in Table 1. The trajectory of these 

fluids was captured during fabrication process. 

 

Table 1. Measured physical properties of Newtonian fluids 

Newtonian fluid Physical properties 

Viscosity (cp) Density (g/cm
3
) Surface tension (N/m) 

Water 1 1 0.0728 

Ethanol 1.2 0.789 0.0223 

Acetone 0.36 0.79 0.023 

 

Poly (acrylonitrile) (PAN) with Mn = 70000 g/mol and Mw = 100,000 g/mol was obtained 

from Iran Polyacryle Co. and used as received. N, N- dimethyl formamide (DMF) from 

Merck was used as the solvent of PAN. PAN powder was dissolved in DMF into solution 

with 13 wt% concentration at ambient temperature and was gently stirred for about 24 h to 

prepare a homogenous solution for spinning. The viscosity and surface tension of PAN 

solution were measured as 784 cp and 38.44 mN/m, respectively.  

Air-sealed centrifuge spinning and Centrifuge spinning 



  

Air-sealed centrifuge spinning setup is schematically shown in Figure 1. Air-sealed 

centrifuge spinning setup consists of a rotating drive shaft (A), a transparent plate(B), a 

rotating cylindrical receptacle (C), a metallic cylindrical collector (D), and a movable 

transparent door (E). The rotating cylindrical receptacle holds a syringe containing polymer 

solution. The needle attached to the syringe has a 300 µm outer diameter with a wall 

thickness of 70 µm and a length of 18 mm. Polymer solution is ejected from the needle tip. 

The distances from the nozzle tip to the rotation center and to the collector are adjusted to 5.3 

cm and 8 cm, respectively. The receptacle and the collector are firmly affixed to the drive 

shaft by the transparent plate. The movable transparent door is used to prevent air from 

entering and exiting. Hereafter, we call the collection of the receptacle, the nozzle, the 

collector, the transparent plate, and the movable transparent door, the head of spinning or 

spinning head. 

  

Figure 1. (a) Schematic of air-sealed centrifuge spinning system, (A) rotating drive shaft (B) 

transparent plate (C) rotating cylindrical receptacle (D) rotating metallic cylindrical collector 

(E) movable transparent door (b) Schematic of centrifuge spinning system 

Centrifuge spinning essentially consists of an axle of rotation, a cylinder to hold syringe, and 

a metallic cylindrical collector. The collector is stationary and does not contact to other parts 

of apparatus. Syringe with its holder is rotated by an axel.  The difference between centrifuge 



  

spinning and air-sealed centrifuge spinning is that the collector of air-sealed centrifuge 

spinning is rotated by the axel and the spinning head is sealed from the air. As a result, when 

air-sealed centrifuge spinning is rotated, the surrounded air through spinning head rotates 

with the same angular velocity and the air drag force is negligible. While, when centrifuge 

spinning is rotated, a strong airstream is created around the nozzle. Therefore, it is expected 

that liquid jet fabricated by centrifuge spinning is more bent up than a liquid jet produced via 

air-sealed centrifuge spinning. Also, fabrication of thicker nanofibers can be anticipated 

through centrifuge spinning because of exposing the liquid jet to the high velocity airflow. In 

fact, high velocity airflow causes the jet to lose its solvent rapidly and as a consequence, the 

extension of the jet becomes more difficult, resulting in thicker nanofibers, while air-sealed 

centrifuge spinning has good ability to produce finer nanofibers.  

Jet trajectory determination 

The trajectory of the liquid jet was captured by means of a high speed digital camera (Canon 

EOS 400D). The images from the camera were downloaded into a personal computer for 

analysis. Digital measurements were obtained using image analysis software (Digimizer4). 

Fiber diameter characterization 

The morphology of nanofiber mats was characterized using a FESEM (Hitachi S-4160) 

instrument. Before the FESEM observation, all samples were gold coated. The nanofiber 

diameters were measured from the FESEM image using Digimizer4 software. 

Results and Discussion 

Effect of air resistance on jet trajectory 

In centrifuge spinning, a strong airstream is produced by nozzle and nozzle receptacle. This 

airstream causes aerodynamic forces that deflect the jet and as a consequence, the liquid jet 



  

progressively bends up. Therefore, nanofibers deposition would be influenced by airstream. 

Also, air resistance leads the enhancement of surface instabilities which cause to fabricate 

beaded nanofibers. In addition, exposing the ejected liquid jet to the high velocity airflow 

causes the jet to lose its solvent rapidly and as a consequence, the extension of the jet 

becomes more difficult, resulting in thicker nanofibers. It seems that if both the nozzle and 

the collector rotate at the same time and direction, air stream rotates as a rigid body. 

Therefore, the effects due to aerodynamic forces on the jet are negligible. However, 

preventing the air to exit and enter the spinning head confirms the isolation of spinning 

process. 

To investigate the effect of air drag on jet trajectory, the fabrication process has been 

implemented using centrifuge spinning and air-sealed centrifuge spinning. Three fluids 

indicated in Table 1 have been used. Curved jets fabricated by centrifuge spinning and air-

sealed centrifuge spinning are shown in figure2. It can be seen in figure 2 that non-isolated 

jets produced by centrifuge spinning are more deflected than isolated ones due to air drag. It 

can be concluded that air-sealed centrifuge spinning exclude from airstream. Therefore, 

surface instabilities due to air drag are decreased by air-sealed centrifuge spinning.  



    

     

Figure 2, Jet trajectory for different liquids 

Also, to indicate the real path of the polymeric jet in air-sealed centrifuge spinning, spinning 

process was carried out using a PAN/DMF solution and rotational speed of 2500 rpm. Figure 

3(a) illustrates the real path of the jet in air-sealed centrifuge spinning system that was taken 

by high resolution Canon camera. Figure 3(a) shows that the jet travels in a straight trajectory 

instead of curved path and nanofiber mat is deposited in front of the nozzle. Also, no 

oscillation was observed in the centerline of the jet. Possible reason for these observations is 

neglibility of air resistance through air-sealed centrifuge spinning. The real path of the 

polymeric jet in centrifuge spinning is shown in figure 3(b). As shown in figure 3(b), the 

polymeric jet travels in a curved line. Also, the oscillations were observed in polymeric jet as 

shown in figure 3(b). As previously indicated centrifuge spinning was involved by a strong 



  

airstream. One effect of air resistance in centrifuge spinning is the deflection of jet which 

tends to curve the jet.  

 

Figure 3. Polymer jet trajectory in (a) air-sealed centrifuge spinning [40] (b) centrifuge 

spinning [53]  

 

Numerical Simulations of the Jet  

A jet leaving a rotating orifice of radius a situated on the curved face of a cylindrical drum of 

radius s0, which is rotating on its axis at a constant rate Ω was considered for simulation of 

fabrication process through air-sealed centrifuge spinning. The coordinate system used is an 

extension to cylindrical polar coordinates, (s, n, �), where s is the arc-length along the jet and 

(n, �) is polar coordinate in any cross section of the jet. This system was established and 

shown in more detail by Wallwark et al.[41]. The centerline was described by a Cartesian 

coordinate system (X(s, t), 0, Z(s, t)) in [41, 42]. We neglected the effects of the gravitational 

body force (setting g = 0). Also, the effects due to aerodynamic forces on the jet are 

negligible in the air-sealed centrifuge spinning due to its isolation. The forces including 

centrifugal (Fc), Coriolis (FC), and viscous (Fvisc) are experienced by the jet in air-sealed 

centrifuge spinning (figure 4). 



  
 

Figure 4, A schematic picture of the air-sealed centrifuge spinning 

 

These assumptions provide the following Navier-Stokes equations of motion for a curved 

liquid jet in the inviscid and viscous cases, namely 

(1) ∇. ��� = 0                  

 and 

(2) �	���
�
 + (��� . ∇)	��� = - 

�
�	∇� +	 ��	 ∇���� – 2	Ω	���� × ��� - Ω��� × (Ω���	× ��) 

 

Where u, p, µ, and ρ are the velocity, the pressure, the viscosity, and the density of the jet; Ω 

is the angular velocity of the spinning head, r is the position vector in the rotating frame, , and 

t is the time. The free surface of the jet is given by n = R(s, �, t), where R is the radius of the 

jet. The conditions on the free surface are given by the kinematic condition, the tangential 

stress condition and the normal stress condition. The kinematic condition states that particles 

on the surface must remain on the surface, 

(3)  
�
�� (�(�, �, �� − �� = 0 

The tangential stress condition and the normal stress condition are given by 



  

(4)  !. "#. $ = %& 

(5)  !. "#. ' = 0 

 

Where n is the unit normal pointing away from the surface of the jet, t is the tangent vector, σ 

is the stress tensor and γ is the surface tension. k is the mean curvature of the free-surface. 

The equations obtained from writing (1)–(5) in curvilinear coordinate are lengthy so they are 

not presented here but can be found in Pa˘ra˘u et al.[49]. A non-linear analysis of equations 

(1)–(5) was carried out by Pa˘ra˘u et al.[49].  

The governing equations have been converted to dimensionless form using the following 

characteristic scales and dimensionless groups (overbars have been dropped, in final 

dimensionless equaions): 

Characteristic Scales 

Tangential velocity: �( = 	
)	 

Radial velocity:	+̅ = -
) 

Azimuthal velocity: ./ = 0
) 

Pressure: �̅ = 1
�)2 

Radial point between the center and surface of the jet: �( = 3
4 

Radius of the jet: �( = 5
4 

Time: �̅ = �)
67 					  



  

Arc-length coordinates: 8( = 9
67    and    :̅ = ;

67 

Aspect ratio: < = 4
67 

Jet exit velocity: U 

Dimensionless Groups 

Reynolds number:	�= = �)4
�  

Rossby number: �> = )
67? 

Weber number: @= = 	 �)24
A  

One-dimensional model equations were derived from the assumption that the flow is uniaxial 

and the center-line of the jet is steady at the leading order and it does not depend on time. The 

equations in the bulk are 

(6) (86:66 − 866:6�(�B� − 3
�= �B6 − 1

@=�B
� − 2

�> �B

+ (8 + 1�:6 − :86
�>� = 0 

(7) �B�B6 = − 1
@= ( 1

�B
�6 +

:: + (8 + 1�86
�>� + 3(�B��B6�6

�=�B�
 

(8) �B6
2 �B + �B�B6 = 0 

(9) 86� + :6� = 1 

 

It can be observed from Eq. 19 that �B��B is constant and, by using R0 ( 0 ) = 1 and u0 ( 0 ) = 

1, we have �B��B = 1, therefore R0 can be replaced by 1 F�BG , 



  

(10) 

(86:66 − 866:6�(�B� − 3
�= �B6 −F�B

@= � − 2
�> �B

+ (8 + 1�:6 − :86
�>� = 0 

(11) �B�B6 = − 1
@=

�B6
2F�B

+ :: + (8 + 1�86
�>� + 3

�= (�B66 − �B6�

�B
� 

(12) 86� + :6� = 1 

 

In order to solve the problem, a good initial guess must be provided for each solution step. 

The first initial guess required to get started was taken as a straight cylinder of constant 

radius, without rotation. The nonlinear equations are solved at each step using Newton’s 

method. The previously calculated solution was used to provide initial guess for the next step. 

Simulation and comparison with experiment 

Jet trajectory: Newtonian fluids 

The fluid material properties (Table 1) combined with the processing conditions indicated at 

Table 2, are used to obtain the dimensionless groups required in the simulation model.  

The dimensionless parameter values (Table 2) are used in the simulation code, which allows 

the determination of a simulated jet trajectory. Experimental trajectory profiles for isolated 

and non-isolated jet are extracted from the experimental images as seen in figure 2. The 

experimental and simulated curves can now be directly compared. 

Table 2.  Processing parameters and dimensionless parameters of Newtonian fluids  

Newtonian fluid Processing parameters Dimensionless parameters 

Rotational speed (rpm) Flow rate (ml/h) Re Rb We 

Water 1440 79.5 88 0.146 1.33 

2160 157 173.6 0.192 5.17 



  

2880 263 290.4 0.243 14.4 

Ethanol 1440 72 52.32
 

0.132 2.8 

Acetone 1440 144 349.3
 

0.265 11 

 

It can be seen from figure 5 that the trajectory profile of the isolated water jet and simulation 

are in good agreement: the model is correctly predicting the trajectory of isolated water jet. 

Increasing the rotational speed causes more deflection of non-isolated jet. It can be deduced 

that the isolated jet has not experienced air drag, unlike non-isolated jet. There is a difference 

between trajectory of non-isolated water jet and simulation; particularly at higher speed. It is 

caused by increasing air drag with increasing rotational speed.  

There is a little deflection between isolated acetone as well as ethanol jet and simulation 

(figure 6). However, there was still fairly good agreement between them. Also, the non-

isolated jet of acetone as well as ethanol is more deflected than the simulation due to air drag. 

 



   

Figure 5, Jet trajectory for water: Isolated jet, Non-isolated jet, and Predicted Jet 

 

Figure 6, Jet trajectory for acetone and ethanol: Isolated jet, Non-isolated jet, and Predicted 

Jet 

 

Jet radius: viscous fluid 

As discussed in the introduction, the PAN solution as a viscous fluid has been spun through 

air-sealed centrifuge spinning. The fluid was spun under conditions indicated at Table 3. 

FESEM images of nanofibers fabricated by air-sealed centrifuge spinning at different 

rotational speeds are shown in figure 7. Previously, Valipouri et.al. [40] found that nanofibers 

manufactured by centrifuge spinning are much thicker than those produced by air-sealed 



  

centrifuge spinning. In fact, the jet in centrifuge spinning is exposed to the strong airstream, 

which increases the evaporation rate of jet solvent. Therefore, the elongational viscosity of 

the jet reaches to a level that makes any further deformation (stretching) impossible [40].  

 

Table 3.  Processing parameters for spinning of PAN solution and dimensionless parameters  

Processing parameters Dimensionless parameters 

Rotational speed (rpm) Flow rate (ml/h) Re Rb We 

2160 0.2862 4.08×10
-4 

3.53×10
-4 

3.33×10
-5 

2880 0.5724 8.16×10-4 5.315×10-4 1.33×10-4 

3600 0.7111 1.02×10-3 5.31×10-4 2.08×10-4 

4320 0.9598 1.36×10
-3 

5.88×10
-4

 3.68×10
-4

 

 

Mean diameter of all samples is indicated at Table 4. It can be seen from the FESEM images 

that increasing the rotational speed of spinning head tends to increase nanofiber diameter. 

Diameter of nanofibers fabricated at 2160 rpm is 171 nm, while nanofibers diameter at 

rotational speed of 2880, 3600, and 4320 rpm, was determined as 216, 212, and 220 nm 

respectively. Centrifugal force as an extensional force causes to the jet to be extended. 

Therefore, it is expected to fabricate finer fibers with increasing rotational speed, whereas 

nanofiber diameter increased by increasing rotational speed, here. Increasing rotational speed 

from 2160 rpm to 4320 rpm causes to highly increase flow rate from 0.2862 to 0.9598 ml/h. 

It was found that lower flow rates yielded fibers with smaller diameters [54]. Too high flow 

rates resulted in thicker fibers, as they do not get enough time to dry before reaching the 

collector[55, 56]. 

 

Table 4.  PAN nanofiber diameter: experimental and simulation 



  

Rotational speed Experimental nanofiber Simulation predicted jet diameter 

2160 171
 

0.0139
 

2880 216
 

0.0163 

3600 212 0.0160 

4320 220 0.0167 

 

 

Figure 7, FESEM images of PAN nanofibers fabricated via air-sealed centrifuge spinning at 

rotational speed of: (a) 2160 rpm  (b) 2880 rpm  (c) 3600 rpm (d) 4320 rpm 

 

Using the spinning conditions indicated at Table 3, the dimensionless groups for quantitative 

simulation can be determined. These values of the dimensionless groups (Table 3) are used to 

simulate expected jet radius profiles as well as jet trajectory through air-sealed centrifuge 

spinning. The predicted jet radius profiles can then be compared with experiment. It can be 

seen from figure 8 that with increasing the rotational speed, the jet path expands farther from 

the nozzle. However, all jets have the same trajectory during the first step near the nozzle. 

The jet diameter as a function of arc length was plotted and is shown in figure 9. There is a 



  

little difference between all trends. It can be seen from the asymptote of all curves that the jet 

diameter at 2160 rpm is less than others. The simulated diameters of all samples are 0.0139, 

0.0163, 0.0160, and 0.0167 DU at 2160, 2880, 3600, and 4320 rpm respectively in 

dimensionless arc length, 2.4 units (Table 4). This prediction precisely matches the trend 

observed for the influence of rotational speed in the experiments. Also, like the experimental 

result the jet diameter at rotational speed of 2880, 3600, and 4320 are approximately similar 

to each other.  

 

Figure 8, Predicted steady trajectory for PAN solution jet at different rotational speed 

 

Figure 9, Predicted PAN jet radius vs arc length at different rotational speed 

 



  

Conclusion 

We have demonstrated that air-sealed centrifuge spinning is released from airstream and air 

drag. A comparison between an isolated and a non-isolated curved jet emerging from a 

rotating nozzle has been carried out through air-sealed centrifuge spinning as well as 

centrifuge spinning system. Images were captured of the jet trajectory using a high speed 

camera. Non-isolated jets were more curved than isolated jets due to air resistance. The 

experimental results were compared to numerical solutions to the Navier–Stokes equations. 

There was fairly good agreement between isolated jet trajectory and model-predicted one, but 

there were differences between non-isolated jet trajectory and simulation results. The non-

isolated jet curved more compared to others duo to air drag. Also, the diameter of PAN 

nanofibers was predicted and compared with experiments. There is the same trend in 

nanofiber diameter with increasing rotational speed in both experiment and simulation.  
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• We present a novel method for the fabrication of ultrafine polymeric nanofibers. 

• Air-sealed centrifuge spinning was skillfully sealed from ambient airflow.  

• The liquid jet trajectory in centrifuge spinning and novel method was compared. 

• Non-isolated jets were more curved than isolated ones due to air resistance. 

• There was a good agreement between isolated jet trajectory and model-predicted one. 

  

 


