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ABSTRACT 

 

In a range of nanophotonic energy harvesting materials, resonance energy transfer (RET) is the mechanism for the 

intermolecular and intramolecular transfer of electronic excitation following the absorption of ultraviolet/visible 

radiation.  In the nonlinear intensity regime, suitably designed materials can exhibit two quite different types of 

mechanism for channeling the excitation energy to an acceptor that is optically transparent at the input frequency.  Both 

mechanisms are associated with two-photon optical excitation – of either a single donor, or a pair of donor chromo-

phores, located close to the acceptor.  In the former case the mechanism is two-photon resonance energy transfer, 

initiated by two-photon absorption at a donor, and followed by RET directly to the acceptor.  The probability for 

fulfilling the initial conditions for this mechanism (for the donors to exhibit two-photon absorption) is enhanced at high 

levels of optical input.  In the latter twin-donor mechanism, following initial one-photon excitations of two 

electronically distinct donors, energy pooling results in a collective channeling of their energy to an acceptor 

chromophore.  This mechanism also becomes effective under high intensity conditions due to the enhanced probability 

of exciting donor chromophores within close proximity of each other and the acceptor.  In this paper we describe the 

detailed balance of factors that determines the favored mechanism for these forms of optical nonlinearity, especially 

electronic factors.  Attention is focused on dendrimeric nanostar materials with a propensity for optical nonlinearity. 
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1.   INTRODUCTION 

 

The elucidation of detailed principles for electronic energy flow in multichromophore polymers1 has led to a 

proliferation of new energy-harvesting materials tailored for a host of nanophotonic applications.2-4  An extensive range 

of multiply-branched polymers known as dendrimers, and other schematically related multichromophore assemblies, 

prove highly effective in the capture of optical radiation, reflecting a multiplicity of antenna chromophores and the high 

efficiency of RET mechanisms for intramolecular channeling of optically acquired energy to an acceptor core.  Energy 

capture and storage applications range from uses as photosensitisers in the laser photodynamic therapy of cancer5,6 to 

devices based on organic light-emitting diodes.7,8  Increasingly, attention is being focused on applications associated 

with response to laser input and the associated high levels of irradiation.  Already, the principles of two-photon 

fluorescence RET are involved in quite distinct areas such as two-photon three-dimensional imaging9-10 – a technique 

with well-known advantages for biological specimens due to reduced scatter, enhanced depth profiling and a reduction 

of photolytic damage resulting from the facility to employ long wavelengths.  Here we focus on the energy transfer 

mechanisms of optically nonlinear photoactive materials, with a particular focus on dendrimeric systems.  

 

Under conditions of high optical flux, suitably designed dendrimeric polymers can exhibit two quite different types of 

mechanism for channeling excitation energy to an acceptor that is optically transparent at the input frequency.11-14  Each 

mechanism is initiated by the absorption of two photons within the peripheral, antenna region of the dendrimer.  This 

may result in the optical excitation of either a single donor, or a pair of donor chromophores.  The first mechanism15-18 

involves a twin-donor process which, following one-photon excitations of two separate and electronically distinct 
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chromophores (A and A ), results in energy pooling i.e. a collective migration of donor energies to the acceptor 

chromophore, * * *A +B+A A+B +APooling  .  The second mechanism19,20 entails initial two-photon absorption by a 

single chromophore A, and subsequently proceeds by two-photon resonance energy transfer (TPRET) directly to a 

neighbouring acceptor B, i.e. TPRET *A +B A+B  , where the two-star superscript denotes a two-photon excited 

state.  In previous work it has been established that high intensity laser input is equally effective in fulfilling the 

conditions for each mechanism.  Energy pooling and TPRET can compete, if each is allowed, since they both lead from 

the same initial state to a final state in which the acceptor is electronically excited.  However these two mechanisms 

cannot display quantum interference, due to the differences in the patterns of energy dissipation and dephasing through 

internal vibrational redistribution (IVR) in the donor ensemble. 

 

To expedite future progress in the design and development of optically nonlinear light-harvesting systems, it is clearly 

necessary to ascertain the means of differentiating, optimizing and exploiting the mechanisms for energy capture.  Since 

the mechanisms that are available to mediate energy harvesting under conditions of high photon flux differ markedly 

from those available at lower intensities, a primary aim is to secure a thorough understanding of the principles that apply 

to systems specifically designed for operation at high levels of laser intensity, and the balance of factors and constraints 

that determine the favoured mechanism for each form of optical nonlinearity.  This work identifies the principal factors. 

 

2.   COOPERATIVE AND ACCRETIVE TRANSFER: ENERGY POOLING PROCESSES 

 

As illustrated by figure 1 the fundamental process of energy pooling accommodates;16 (a) cooperative transfer, where 

initial one-photon excitations in each of two neighboring donors are followed by RET from both donors directly to the 

acceptor, and (b) accretive transfer, where the initial excitation energy of one donor is passed to a partner donor and the 

sum of the two excitations transfers to the acceptor.  A theoretical representation based on molecular quantum 

electrodynamics (QED) can be used to derive an expression for the overall efficiency of energy pooling, 

accommodating both transfer mechanisms.  To resolve the rate equations, we need to consider the detailed nature of the 

RET step and statistical features associated with the initial excitation and donor conditions.  Determining factors are the 

number of donors contained within the laser focal volume, the probability of two such donors being excited over a 

common period of time (through not requiring simultaneity of excitation), and the efficiency of energy transfer to the 

acceptor i.e. the complex RET step that completes the mechanism. 

 

 

 

 

 

 

 
 

Fig. 1.  Cooperative transfer (left) and accretive (right). A  and A'  are interchangeable; arrows denote the energy transfer. 

  

First consider the probability of satisfying the initial conditions for excitation of a donor pair.  Let NA be the number of 

donors at the laser focus; the number of pairs is ½NA (NA–1), and if N1A signifies the number of donors in the relevant 

electronic excited state, the probability of both partners in any one pair being excited is (N1A/NA)2, assuming the decay 

lifetime is short compared to the laser pulse duration.  Under such steady-state conditions we have; 
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where 
0 1

Ak 
 is the de-excitation rate constant and 

1 0

Ak 
 is the absorption rate constant for the donor chromophore A 

(dependent on the input intensity at the appropriate frequency).  Application of molecular QED leads to the following 

result, cast in terms of molecular properties; 
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Here I is the irradiance, 0 is the transition electric dipole moment connecting the donor ground state and excited state, 

and 
*A

f  is the density of states for the excited state, reflecting vibrational broadening.  The dissipative effect of IVR 

does not feature in the electronic inter-state kinetics, though the associated red-shift in the emitted radiation is 

necessarily apparent and emerges in the following.  Under normal conditions, i.e. below the saturation limit, 
1 0 0 1

A Ak k 
 and equation (1) gives; 
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For the RET step, we have to consider both energy pooling transfer mechanisms.  As shown in earlier work based on 

molecular QED15,16 the results emerge, from fourth-order time-dependent perturbation theory, in the form of the 

following rate equation; 
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Here the first term corresponds to cooperative transfer, while the further two terms relate to accretive transfer, and each 

is cast in Cartesian components using the implied summation convention for repeated indices i, j, k and l.  Also,   and 

  correspond to the donor emission circular frequencies, where 0   and 02    due to excited state IVR, 

given that 0  is the optical input frequency, and the donor-acceptor displacement vectors are defined as: B AR = R R , 

B A
 R = R R  and A A

 R = R R .  Finally, each jk is a generalized two-photon response tensor and Vij defines the 

electric dipole-electric dipole coupling tensor in the short-range region and is expressed, generally, by the following 

equation; 
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Note, equation (5) is a good approximation for the Vij tensor of the studied system, since within the chromophore array 

we have R   (where 2 k  designates the wavelength regime associated with energy transferal); for the 

representation of transfer between well-separated molecules, one would need to employ a more complex retarded E1-E1 

coupling tensor21 – of which (5) is only the first term.  Putting together the various factors delineated above, the 

ensemble averaged rate equation for the energy pooling process is as follows; 
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Here for conciseness the frequency dependence of the ab factors is now implicit and follows from the superscripts.  

Equation (6) will serve as a basis for judging the relative efficiency of energy pooling and two-photon energy transfer 

mechanisms; the latter is the subject of the next section. 

 

3.   TWO-PHOTON RESONANCE ENERGY TRANSFER PROCESSES 
 

TPRET is a process in which the two-photon excitation of a single donor is followed by conventional one-photon RET 

to the acceptor.  To construct the rate equation for the complete process, a similar development to that used in the last 

section is employed.  For the ensuing analysis the relevant population factor is simply the number of suitably excited 

donors within the focal volume, N2A.  With steady-state conditions we have; 
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where 2 0

Ak   and 0 2

Ak   are the two-photon absorption and de-excitation rate constants respectively – the former again 

derived from molecular QED in rotationally-averaged form as follows;22 
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Here e e  is the self-product of the laser polarisation unit vector, which equates to 0 and 1 for circular and plane 

polarisations, respectively.  For the single-step RET which delivers energy to the acceptor we have the familiar result 

from second-order time-dependent perturbation theory;23 
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Thus the total rate equation for a two-photon resonance energy transfer process emerges as; 
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where 
 2

11g  is the single-site degree of second-order optical coherence,24 and again the frequency dependence of the 

molecular tensors is implicit.  It is apparent that the only significant similarity between equations (6) and (10) is the 



shared feature of a quadratic dependence on mean irradiance.  The relative efficiencies of the two mechanisms are 

determined by other factors, key amongst which are those relating to the detailed form and strengths of the electronic 

transitions. 

 

4.   COMPARISON OF ELECTRONIC FACTORS  
 

Each of the mechanisms for optically nonlinear photoactivity entails a different form of interaction for the donor and 

acceptor units.  The selection rules for one-photon and two-photon processes differ and, for a given system, one or more 

of the mechanisms or sub-mechanisms may be forbidden by local symmetry.  The transition dipole moments ab for 

single-photon processes are associated with the irreducible representation (irrep) D(1–) of an odd-parity rank 1 tensor, 

whilst for the two-photon interactions the representations of the even-parity rank 2 tensors ab comprise the irreps D(0+) 

 D(1+)  D(2+).25  The (1+) irrep components of the two-photon tensors vanish only if the latter relate to two 

energetically equivalent photon events (e.g. the absorptions of two photons having identical frequency) – otherwise they 

remain, as for example in any resonance Raman scattering process.  The detailed form of the irrep components is 

governed by the local point group symmetry, D3h in many photoactive materials of dendrimeric form.26,27 The nature of 

the associated donor and acceptor transitions imposes conditions on the validity of each mechanism.  Generally, the 

direct product of the initial and final state representations must span at least one of the irrep components of the relevant 

transition tensors.  For example the accretive sub-mechanism is only symmetry-allowed if the donor decay transition has 

transformation properties replicated by a component of D(1–), i.e. the irrep for the initial photoabsorption.  Furthermore, 

the same transition must have the transformation properties associated with a component of D(0+)  D(1+)  D(2+).  The 

excitation transition dipole moment of the acceptor will also need to transform as one or more components of D(1–).  

Detailed analysis of the D3h case reveals that when the direct product of the donor ground and excited state 

representations includes the irrep E , all of the discussed mechanisms are permitted; only cooperative pooling is 

allowed when the same product spans
2A .   

 

Despite the portrayal of many real dendrimeric and allied polymer materials as planar systems, attention must be paid to 

their actual flexibility and hence, their secondary structure and packing.28,29  In fact, many high-generation dendrimers 

are more closely biomimetic precisely because of their essentially globular habit – a facet hidden by the common 

graphical depictions.30    Globally, this will tend to obviate any symmetry in the complete dendrimer; locally, however, 

it may be expected that three-fold site symmetry will be retained for dendrimers based on 1,3,5-trisubstituted benzene.  

Unless there is any local twist in the structure, it is likely that the effect of folding will be to lower the site symmetry 

from D3h to C3v .  In this case, the irreps E  and 
2A  will correlate to E  and  

1A , respectively, and corresponding 

conclusions can be drawn from the above D3h analysis.. 

   

In general, the initiation of TPRET requires only one excited donor and the initial energy deposition is localised to that 

species.  Often, photoactive materials are designed with spacer units separating the donors and acceptors, so as to retain 

their distinct electronic integrity and preclude charge transfer.  However, if two or more identical donor species within 

the proximity of each other are electronically coupled to any significant extent, an exciton may form.  Excitons in this 

context31 are associated with an uncertainty in the location of the photon energy deposition and are generated when the 

number of excitations within a chromophore array is less than the number of donors it comprises.  Hence energy pooling 

processes, which require two excited donor species, may engage three or more donors in excitonic states.  Consider, for 

example, a threefold symmetric, nodal component of a dendrimer comprising chemically identical donors A, B and C 

each at one corner of an equilateral triangle, with an acceptor, D, at the centre.  Both in TPRET and energy pooling a 

donor exciton intermediate can form, as is illustrated by figure 2 and the equation;  
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Fig. 2.  Energy scheme for transfer of excitation energy from donor array exciton (A+B+C)** to acceptor, D. 

 

Although associated in each case with the energy of two input photons, the exciton is recognized to have a different 

structure for the two processes.  Specifically, (A+B+C)** is one of two forms – either (A**+B+C) and its permutations 

for TPRET, or (A*+B*+C) and permutations for energy pooling.32,33  As the number of donors surrounding an acceptor 

on a given dendrimer node increases, the significance of excitonic transfer also grows, and increasingly favors the 

accretive mechanism – a point we shall return to in the discussion.   
 

The detailed form of spectral overlap associated with each mechanism is a matter of considerable interest.  As in 

conventional single-donor energy transfer, to determine a rate equation connected to Förster theory for TPRET 

mechanisms requires the consideration of spectral overlap between the donor fluorescence spectrum and the dispersive 

absorption cross-section of the acceptor – the detailed form depending on distance, and in the short range leading to the 

familiar Förster result.   The QED formulation of this rate equation is given by;23 
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Equation (11) includes the radiative lifetime of the donor, A, the cross-section of the acceptor absorption and donor 

emission spectra, these are defined generally as; 
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respectively.  Here,  is the population distribution function of the initial vibrational states of the specified species, each 

of the indices n, r, m, p specifies the set of vibrational etc. sublevels of the transfer species, the energies of the initial and 

final state of each species are included in the energy-conserving delta function.  In detail FA() is determined by the exit 

state of A, which is a consequence of initial excitation and subsequent IVR.  Also included in equation (11) is ( , )g  R  
which in the short-range (intramolecular) limit is 

6 2

3
( , ) ( )g c R   R , where 3

  is an orientational factor; 
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Hence we obtain; 
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The form of spectral overlap associated with the energy pooling processes, i.e. twin-donor transfer, is more complex due 

to the energy transferal of ħ from two donor species to one acceptor.  The rate observable accommodates both transfer 

mechanisms and also their quantum interference as given by the following;34 

 

 

     

       

   

2 2 2
, 1 2

1 2 1

2

2
, , ,

2Re , , , ,

, , .

B

fB A A acc acc coop

RET fi fi fi

acc acc acc coop

fi fi fi fi

acc coop

fi fi

M M M

M M M M

M M


       

      

 

R R R R R R

R R R R R R R R

R R R R

 

(16)

 

 

where Mfi is the quantum amplitude of cooperative (coop) or accretive (acc1, acc2) transfer – acc1, acc2 differentiating 

contributions which differ only through the interchange of A and A .  For example, the cooperative component of 

equation (16) (also signifying the expression for a system where selection rules preclude accretive transfer) is given by; 
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where FA and FA′ are both given by equation (13), and the cross-section of the acceptor two-photon absorption, 

 ,B    , is determined by writing the rate of two-photon absorption (TPA), as follows; 
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Here n and n′ are photon numbers derived from number states and V is the quantisation volume.  Equation (18) can be 

rearranged to give; 
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For the case where selection rules dictate that only accretive transfer occurs, three terms persist (acc1, acc2 and their 

interference) and the appropriate result can again be directly recovered from equation (16). 

 

5.   DISCUSSION 
 

It is of interest to compare other features that distinguish the two main transfer mechanisms for energy pooling.  These 

include; (i) quantum interference, whose manifestation is evident when considering the two transfer mechanisms for 

energy pooling, because the two electronic couplings that each of these involves are concerted and not step-wise 

processes, as the QED calculations show.  In other words the quantum pathways from the initial to the final state 

traverse only virtual states, in which energy losses are not sustained into or beyond the femtosecond timescale; (ii) 

nanoscale architecture – it emerges that energy pooling processes in dendrimeric systems with a threefold symmetric 

nodal motif are generally dominated by the cooperative transfer mechanism due to the closer proximity of the donor and 

acceptor species in comparison to the donor-donor separation.  This follows from the form of the coupling tensors in the 

two cases, Vij(R)Vkl(R′) for the cooperative mechanism and Vij(R′′)Vkl(R′) for the accretive, bearing in mind that each 

V(R) has an overall dependence on R–3, where R is the magnitude of the appropriate displacement vector.  In terms of 

this distance dependence, considered in isolation from other factors, the favorability of the accretive over the 

cooperative mechanism is enhanced as the number of donor molecules around the acceptor increases, by a factor that 

rises from 0.037 to 9.76 as the number of surrounding donors increases from three to nine.  It is also of note that the two 

mechanisms are in this sense on an equal footing only when six donors surround an acceptor, as the donor-donor and 

donor-acceptor separations are then equal.  

 

In this paper we have begun to address the principles associated with a multitude of factors whose interplay determines 

the favoured mechanism for optically nonlinear photoactivity.  In general, nanomaterials of this kind are designed to 

expedite one specific mechanism.  In most of the work that has concerned the characterisation of these systems, it has 

not been recognized that the two mechanisms can operate in parallel, given suitably placed chromophore energy levels, 

and subject to the geometric and symmetry-based criteria that we have delineated.  Our results also emphasize the 

significance of quantum interferences within energy pooling framework.  There is considerable scope to exploit this 

diversity of mechanisms, and it is our hope that as increasingly detailed principles emerge, these will inform and steer 

future efforts in the creation of photoactive nanomaterials.   
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