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1. Abstract 

 

The neural crest is a transient population of cells that arises at the 

border between the neural and non-neural ectoderm. These cells are 

induced, undergo an epithelial-to-mesenchymal transition, and then 

migrate along stereotypical pathways to form an array of derivatives 

such as pigment cells, cranio-facial cartilage and sensory neurons. 

Neural crest cells have long been studied and much about these cells 

and their interactions is still not fully understood. The small molecule 

compound leflunomide inhibits neural crest development. 

Leflunomide’s mode of action is to inhibit pyrimidine biosynthesis, 

thereby, preventing RNA transcription. Neural crest genes are actively 

transcribed and like many embryonic stem cells and tumour cells genes 

undergo an increased level of transcriptional pausing and subsequent 

elongation making a number of these genes sensitive to leflunomide. It 

was unclear at what stage of neural crest development leflunomide was 

acting.  

 

Here, I initially developed a quantitative approach using real-time PCR 

to measure gene expression in Xenopus. Secondly, using real-time PCR I 

have shown that neural plate border genes are not affected by 

leflunomide. Thirdly, the neural crest specification genes are affected 

and the pan neural plate marker Sox2 is not affected by leflunomide. I 

have confirmed by quantitative real-time PCR that the expression of 

genes involved in neural crest specification the proto-oncogene cMyc 

and cMyc responsive genes are affected. cMyc is implicated in 

embryonic stem cell transcriptional elongation and is well 

characterised to play an important role in neural crest specification.  

 

 

1.1 Key words: Neural crest cells, multipotent, leflunomide, 

transcriptional elongation, cMyc, Sox 10
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2. Introduction 

 

2.1. Xenopus 

 

2.1.1. Xenopus as an animal model to study development 

 

There are more than 20 species of African clawed toed frog. Two 

species namely, Xenopus laevis (X. laevis) and Xenopus tropicalis (X. 

tropicalis) are widely used in research laboratories as vertebrate 

animal models for studying early development i.e. cleavage, 

gastrulation, neurulation and organogenesis.  Xenopus are a favourable 

developmental model for scientific use as they can lay hundreds of eggs 

at once, which will develop synchronously to allow for experiments to 

be planned and synchronised accordingly (Harland and Grainger, 2011). 

X. laevis eggs are 1.2 - 1.4 mm in diameter and are large enough to be 

easily manipulated. These embryos are resilient to harsh environments 

and can withstand microinjection into targeted blastomeres. X. 

tropicalis embryos are more widely used for genetic studies. X. 

tropicalis has had its diploid genome sequenced and annotated, unlike 

the X. laevis pseudo-tetraploid genome that is poorly annotated and is 

incomplete (Schmitt et al., 2014). 

 

2.1.2. Overview of Xenopus development  

 

The Xenopus life cycle (figure 2.1) is divided into basic developmental 

stages using the Nieuwkoop and Faber fate map as a standard example 

of Xenopus developmental stages (Nieuwkoop and Faber, 1967; Schmitt 

et al., 2014). Xenopus embryos at stage 1 where fertilisation has taken 

place will form the zygote. The zygote is partitioned into two regions, 

the animal pole, which is pigmented, and the vegetal pole that appears 

opaque (Wolpert and Tickle, 2010). Sperm enters the unfertilised egg, 

the oocyte, in the region of the animal pole. The zygote undergoes 
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cleavage at two hours after fertilisation resulting in two blastomeres of 

equal size. Cell divisions occur after the first cleavage event every 30 

minutes until the embryo reaches the blastula stage at which point 

many thousands of cells make up the embryo. Embryos at this stage 

contain a fluid filled cavity named the blastocoel (Wolpert and Tickle, 

2010). 

 

Figure 2.1: The Xenopus life cycle  
The embryos are staged according to the Niewkoop and Faber fate map 
(Niewkoop and Faber, 1967). The stages that the Xenopus embryo will go 
through are blastula, gastrula, neurula, tailbud and tadpole developmental 
stages. The tadpole undergoes metamorphosis into the adult froglet. The 
timing of Xenopus development is temperature dependent. 
 

Once the embryos have matured having reached the blastula stage they 

will undergo gastrulation. Gastrulation involves the reorganisation of 

the mesoderm, endoderm and ectoderm classed as the three germ 

layers. Initially, the blastopore lip forms on the dorsal side of the 

embryo at the position of the Spemann organiser. The Spemann 

organiser is needed for dorsal ventral patterning of the embryo. Then 

the mesoderm and endoderm begin to involute in at the blastopore and 

the ectoderm will cover the surface of the embryo by a movement 
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known as epiboly (Wolpert and Tickle, 2010). Post gastrulation the 

embryos undergo neurulation to form neurula stage embryos (figure 

2.2).  

 

2.2. Neural crest development 
 
2.2.1 Overview of neurulation 
 
During neurulation the neural plate rises and folds along the dorsal 

midline to form the neural tube (figure 2.2). The neural crest cells begin 

to arise at the border of the ectoderm and the neuroectoderm. Post 

neurulation the neural tube closes and the neural crest cells undergo an 

epithelial to mesenchymal transition (EMT) and they migrate away 

from the neuroepithelium in a rostral to caudal progression to specify a 

variety of cell lineages. The embryo will undergo a drastic change in 

body shape as it undergoes convergent extension movements to 

elongate into a tailbud stage embryo. During convergent extension 

organogenesis occurs and the embryo will develop its notochord, 

neural tube and somites that are precursors of muscle (Wolpert and 

Tickle, 2010). Development continues as the tadpole constructs its 

facial features such as the eye, ear, mouth and branchial arches. The 

latter stages of development include construction of the heart to pump 

oxygenated blood around the body and other vital organs essential for 

life (Wolpert and Tickle, 2010).  

 

Induction and specification of neural crest cells arises during 

gastrulation and continues until organogenesis due to a gene regulatory 

network bridging between the neural plate, non-neural ectoderm and 

the paraxial mesoderm (Huang and Saint-Jeannet, 2004; Sauka-

Spengler and Bronner-Fraser, 2008a). Neural crest cells during 

neurulation are found within the neural folds and at the dorsal neural 

tube (figure 2.2). 
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Figure 2.2: Formation of the neural tube by neurulation 
The central nervous system arises from a specialised epithelium, the neural 
plate. This process relies on the inhibition of bone morphogenetic protein 
(BMP) signalling. Folding of the neural plate to produce the neural groove is 
initiated by the formation of a distinct hinge point in the ventral region, the 
floor plate. At the end of neurulation, the lateral edges of the neural plate fuse 
and segregate from the non-neural epithelium to form a neural tube. The roof 
plate and floor plate form at the dorsal and ventral midline of the neural tube, 
respectively. The roof plate becomes a new organising centre that produces 
BMPs that provides dorsal patterning signals. Neural crest cells derive from 
the dorsal neural tube and migrate out to form the peripheral nervous system, 
as well as melanocytes and cartilage in the head. Neural crest cells have been 
shown to form at an intermediate level of BMP signalling. 
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The cell-cell adhesion between cells are lost promoting the 

delamination and migration of neural crest cells that will terminally 

differentiate when they have stopped migrating once they have moved 

to their correct temporal and spacial location. Finely tuned gene 

regulatory networks that receive multiple signals and transcription 

factors are responsible for neural crest properties such as multipotency, 

induction, specification, migration and differentiation (Sauka-Spengler 

and Bronner-Fraser, 2008a). 

 
2.2.2. The Neural Crest 

 

Neural crest cells have been widely studied and continue to be the 

matter of fundamental advances in areas of developmental biology such 

as inductive interactions and cell migration over the length of the 

developing embryo. In the wake of the 21st century studies of neural 

crest cells have also proven essential in making significant advances in 

areas such as cancer research, regenerative medicine (including stem 

cells and their use in tissue engineering), and constructing gene 

regulatory networks to aid our understanding of the genes that govern 

neural crest cell development (Sieber-Blum et al., 2006; Song et al., 

2008; Zito et al., 2008). 

 

Neural crest cells are highly migratory and form many divergent 

derivatives including neurons and glia of the sensory, sympathetic, and 

enteric systems, melanocytes, and the bones, cartilage, and connective 

tissues of the face (Anderson, 1993; Baker and Bronner-Fraser, 1997; 

Hall, 1999; Unsicker, 1993). In addition to this neural crest will 

contribute to C-cells (parafollicular cells) of the thyroid gland and 

endocrine cells like the chromaffin cells of the adrenal medulla (Le 

Douarin and Teillet, 1974; Polak et al., 1974). The initiation of neural 

crest cells is strongly associated to the development of the “new head” 

(Gans and Northcutt, 1983; Kuratani, 2008). Underlying neural crest 
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formation is the gene regulatory network that evolved during the early 

Cambrian period up until the beginning of the vertebrate lineage 

(Meulemans and Bronner-Fraser, 2005; Sauka-Spengler and Bronner-

Fraser, 2006, 2008b; Sauka-Spengler et al., 2007). 

 

Figure 2.3: Neural crest cell populations in the developing chick embryo 
 

We can divide neural crest cells into subpopulations characterised by 

their origin and the locations to which they migrate. These neural crest 

populations can be classed as cranial, trunk, cardiac and vagal neural 

crest (figure 2.3). Cranial neural crest arises from the presumptive 

brain and will form cranio-facial cartilage and will contribute 

connective tissue and nerves that innervate the skull. Cranial neural 

crest gives rise to bone and cartilage contributing to the skeleton of 

animals (Cano et al., 2000; Cebra-Thomas et al., 2007; Clark et al., 2001; 

Freitas et al., 2006; Graveson et al., 1997; Lumsden, 1988; Sanchez-

Martin et al., 2002; Smith et al., 1994).  

 

The vagal neural crest cells that come from the neck area of an embryo 

will migrate to inhabit the intestine. Here, they will give rise to ganglia 

of the enteric nervous system (ENS). These neural crest derived ganglia 

create radially symmetrical contraction and relaxation of the gut that 

propagates a wave in an ante-retrograde fashion to control intestinal 

peristalsis. If these ganglia fail to innervate the intestine this can cause 
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megacolon disease referred to as Hirschsprung’s disease (Heanue and 

Pachnis, 2007). 

 

Vagal neural crest have only recently been identified to give rise to 

cardiac neural crest. Vagal neural crest contributes to 

musculoconnective tissue of blood vessels and the septum, which is a 

physical structure that partitions the left side of the heart from the right 

side to create an outflow of blood into the aorta and pulmonary artery 

to delivery oxygen-saturated blood to the body and oxygen-depleted 

blood to the lungs, respectively (Jiang et al., 2002; Le Lievre and Le 

Douarin, 1975). 

 

2.2.3. The neural plate border and neural crest induction 

 

A series of inductive interactions between border cells and the neural 

plate, epidermis and underlying mesoderm gradually partition the 

border region into two spatially and molecularly distinct regions with 

neural crest forming immediately next to the neural plate and the pre-

placodal region. Neural crest progenitors begin to be induced at the 

neural plate border region earlier than the pre-placodal region, 

although induction of both populations overlaps temporally (Pegoraro 

and Monsoro-Burq, 2013). Genes such as Msx1/2 and FoxD3 will 

localise with Pax3 or Pax7 to the developing neural folds where nascent 

neural crest cells will form, marked by the expression of Snail and SoxE 

family genes (Milet and Monsoro-Burq, 2012). At the neural fold stage, 

neural crest markers and the pre-placodal region are distinct, with 

neural crest markers expressed in the neural folds and pre-placodal 

genes expressed more laterally in the ectoderm (Groves and Labonne, 

2014). Evidence suggests that mutually repressive interactions occur 

between transcription factors of the neural crest and placode lineages, 

just as earlier interactions mark out the boundary between neural and 

non-neural ectoderm (Groves and Labonne, 2014). To demonstrate this, 
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Six1 is a pre-placodal gene that is able to repress the neural crest 

transcription factors Msx1 and FoxD3, whereas Pax7 and Msx1 can 

repress Six1 (Sato et al., 2010). The tissue interactions that promote 

neural crest formation are well characterised. Neural crest cells 

emigrate from the junction of the neural folds with the adjacent 

ectoderm. It has been proposed that these tissues interact to give rise to 

neural crest through early signals from the mesoderm and cells derived 

from the ectoderm that may function to strengthen and maintain a 

neural crest precursor state. 

 

It has long been reported that gene regulatory networks govern neural 

crest cell properties such as multipotency, induction, specification, 

migration and differentiation (Sauka-Spengler and Bronner-Fraser, 

2008a). There are three signalling pathways required for neural crest 

induction, namely, Wnt, fibroblast growth factor (FGF) and bone 

morphogenic protein (BMP) signalling. The accepted model for neural 

crest cells arising at the neural plate border in Zebrafish and Xenopus 

proposes that BMP4 and BMP7 set up a dorso-ventral gradient that is 

tightly controlled by the BMP antagonists Noggin, Chordin and 

Follistatin. These BMP antagonists that are expressed in the underlying 

dorsal paraxial mesoderm inhibit BMP and therefore initiate neural 

crest induction; however, more importantly induce neural ectoderm. 

(Bonstein et al., 1998; Marchant et al., 1998). But, BMP signalling alone 

without Wnt signalling is not enough to induce neural crest. BMP and 

Wnt signalling must act in synergy for neural crest induction (LaBonne 

and Bronner-Fraser, 1998; Mayor et al., 1997).  

 

FGF2 and FGF8 are FGFs that are secreted from the paraxial mesoderm 

and have been shown to play a crucial role in neural crest cell induction 

(Monsoro-Burq et al., 2003). Upstream of BMP signalling is the Notch 

pathway that enhances neural crest development at the lateral border 

of the neural plate. Notch or Hairy2, which is downstream of the Notch 
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pathway if overexpressed, has been shown to result in the expansion of 

neural crest at the neural plate border (Endo et al., 2002; Glavic A Fau - 

Silva et al.). BMP activation is required for the maintenance of neural 

crest cells that are developing through neurulation (figure 2.4). 

 

 

Figure 2.4: Signalling and patterning to define the neural crest                      
(a) Annotation of ectoderm regionalisation at the end of gastrulation. (b) 
Signals and transcription factors implicated in neural border induction 
(during gastrulation), neural border stabilisation (end of gastrulation, early 
neurulation); neural crest proliferation and specification (neurulation) in 
Xenopus. Taken from Monsoro-Burq et al., 2012. 

BMP4 from the neural plate border and Wnt signalling arising from the 

mesoderm next to the neural crest region are essential for maintaining 

the neural crest (Steventon et al., 2009).  The Zic transcription factors, 

Zic1 and Zic3 and the Pax transcription factors, Pax3 and Pax7 are 

required for neural crest induction as they specify the neural plate 

border (Groves and Labonne, 2014). Pax3 (Xenopus) and Pax7 (Chick) 

are expressed shortly after gastrulation at the future neural plate 

border. (Groves and Labonne, 2014) Both Zic1/3 and Pax 3/7 are up 

regulated at the border of the neural plate by the loss of BMP signalling. 
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These transcription factors are referred to as neural plate border 

specifiers. Neural plate border specifiers increase the expression of 

FoxD3 and Slug/Snail2 by selectively enhancing Wnt, BMP and FGF 

pathways that actively regulate their expression (figure 2.4) 

(Meulemans and Bronner-Fraser, 2004).  

 

In summary, pre-neural ectoderm develops under the guidance of FGFs 

and the suppression of BMP and Wnt signalling, while non-neural genes 

are regulated by Wnt and BMP signals. As neural tissue starts to form in 

response to FGFs and the suppression of Wnt and BMP signalling, 

neural crest progenitors become specified under the control of FGF and 

Wnt signals and suppression of BMP signals. At the same time, pre-

placodal tissue becomes discernible from non-neural ectoderm under 

the influence of FGFs and the suppression of both Wnt and BMP signals. 

Finally, as neurulation starts, Wnts and BMPs expressed at the edge of 

the neural plate stabilise and maintain a neural crest cell fate, whilst 

signals along the anterior-posterior (AP) axis induce formation of 

specific placodes (figure 2.5). 
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Figure 2.5: A graphical summary of the signals received by embryonic 
ectoderm during the establishment of the neural plate, neural crest, pre-
placodal region and epidermis  
(A) Pre-Gastrula. Wnt and BMP signals in the ectoderm initiate differentiation 
of non-neural ectoderm, while these signals are counteracted by FGFs and 
BMP and Wnt inhibitors from the organiser or hypoblast. (B) Early Gastrula. 
Wnt and FGF signals start to induce the first neural crest genes; BMP signaling 
is not required for this step and may be actively inhibited. (C) Late Gastrula. 
Pre-placodal genes begin to be induced by FGFs and by an attenuation of Wnt 
and BMP signals. Wnts and BMPs begin to be expressed at the edge of the 
neural plate and continueto induce neural crest tissue. (D) Early Neurula. The 
final resolution of the border region into four distinct regions. Retrieved from 
Groves and Labonne, 2014. 
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2.2.4. Neural crest specification through early and late neural crest 

specifiers 

 

Neural crest cells are specified by well characterised factors including 

Snail1, Slug/Snail2, Sox9, Sox10, AP2, FoxD3, Twist, Id3 and cMyc 

(Sauka-Spengler and Bronner-Fraser, 2008a). Neural crest specifiers 

act cooperatively to regulate their expression (Sauka-Spengler and 

Bronner-Fraser, 2008a).  Slug and FoxD3 expression is controlled by 

FGF8 from the paraxial mesoderm where it is regulated itself by Msx1. 

In addition to this, Zic1 and Pax3 expression is essential for Slug and 

FoxD3 expression via Wnt canonical signalling (Monsoro-Burq et al., 

2005; Sato et al., 2005). Wnt-dependent Pax3 regulation is responsible 

for Sox10 expression which is able to create a positive feedback loop to 

maintain its own regulation (Honore et al., 2003). The action of Wnt 

signalling may be important to activate Gbx2 expression, which is the 

earliest transcription factor for neural crest specification upstream of 

Pax3 and Msx1. Gbx2 expression is required to posteriorise the neural 

folds showing that this transcription factor is extremely important for 

specifying the neural crest (Li et al., 2009). 

 

Genes involved in neural crest specification can be segregated into two 

sets, i.e. early and late neural crest specifiers, respectively. Early neural 

crest specifiers are expressed at the neural plate border and they have 

been characterised as Snail, cMyc and Id3. Late neural crest specifiers 

are expressed in pre-migratory neural crest and their expression is 

sustained during migration and they have been characterised as FoxD3, 

Slug and Sox10. Sox10 belongs to the SoxE super family of genes 

characterised by a homologous sequence called the high mobility group 

(HMG-box) (Sauka-Spengler et al., 2007). This HMG box is a DNA 

binding domain that is highly conserved throughout eukaryotic species. 

Maintenance of neural crest cell pluripotency and proliferation may be 

controlled by neural crest speciers cMyc and Id3 to control the cell cycle. 
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These transcription factors may regulate apoptosis and proliferation 

when the fate of some neural crest cells is determined (Bellmeyer et al., 

2003; Kee and Bronner-Fraser, 2005; Light et al., 2005). Loss of 

function experiments have shown that losing either cMyc or Id3 that is 

downstream of cMyc will result in a complete loss of neural crest 

progenitors. In contrast, if Id3 is overexpressed neural crest cells retain 

their pluripotent potential and therefore it can be suggested that Id3 is 

a regulator of cell cycle control to make a decision whether the neural 

crest cell will proliferate or follow apoptosis (Bellmeyer et al., 2003; 

Hong et al., 2008; Kee and Bronner-Fraser, 2005; Light et al., 2005). 

PhB1 is located downstream of cMyc and promotes the expression of 

Slug/Snail2, Twist and FoxD3 through the reversible repression of E2F1 

(Schneider et al., 2010).  

 

2.2.5. The EMT process and migration in neural crest cell development 

 

The neural crest is a textbook example of a cell population that 

undergoes an epithelial to mesenchymal transition (EMT). Epithelial 

cells present in the dorsal neural tube undergo reprogramming to 

transform into a migratory mesenchymal cell population (Nieuwkoop 

and Faber, 1967; Untergasser et al., 2012). As mentioned previously 

neural crest cells that arise at the neural plate border and non-neural 

ectoderm receive signals from both these tissues to activate signalling 

pathways to specify neural crest (Chavali et al., 2005; Meulemans and 

Bronner-Fraser, 2004; Thiery and Sleeman, 2006). Cells arising at the 

neural crest border form the dorsal neural folds and expression of 

neural crest specifier genes such Sox10, Slug/Snail2, Snail and FoxD3 

allow a small number of these cells to become pre-migratory neural 

crest cells (Meulemans and Bronner-Fraser, 2004; Sauka-Spengler and 

Bronner-Fraser, 2006). It is these pre-migratory neural crest cells that 

undergo an epithelial to mesenchymal transition allowing them to 

migrate away from the neural folds to different regions of the embryo 
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where they then terminally differentiate into the various cell types 

already mentioned. 

 

In metazoans, epithelial and mesenchymal cells are the dominant cell 

types when contributing to the organisation of the various animal body 

plans, which differ in morphology and function. Epithelial cells display 

phenotypically characteristic apico-basal arrays, organised 

cytoskeletons, and attachment to surrounding cells through adhesion 

junctions allowing them to create uniform layers. In contrast, 

mesenchymal cells are not polar and do not form intercellular junctions 

and are generally more migratory.  

 

Mesenchymal cells are able to move throughout the extracellular matrix 

by secreting matrix metalloproteases (MMPs) (Thiery and Sleeman, 

2006). Interestingly, cells displaying either epithelial or mesenchymal 

cell phenotypes can switch between the two, respectively, during early 

stage embryonic development.  Neural crest cells are able to regulate 

MMP activity through the release of tissue inhibitors of MMPs (TIMPs) 

(Chang and Werb, 2001). MMP2 has been implicated in the migration of 

cardiac neural crest cells and metaloprotease-10 (ADAM10) has been 

reported to be involved in the development of the cornea (Altschul et al., 

1990; Cai et al., 2000). Morpholino knockdown of MMP2 expression in 

the dorsal neural tube perturbs the neural crest cell EMT (Duong and 

Erickson 2004). Expression of MMP14 has been found to be important 

for migrating trunk and cranial neural crest (Harrison et al., 2005). 

Interestingly, ADAM13 expressed in Xenopus is crucial for neural crest 

cells to detach from the neuroepithelium to undergo migration 

(Tomlinson et al., 2009).  

 

Levayer & Lecuit (Mayor and Theveneau, 2013) have defined events 

important for EMT: 

1) specification of a sub-population of cells fated to undergo EMT 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2) loss of intercellular adhesion mediated by cadherins at adherens 

junctions  

3) loss of polarity markers   

4) cytoskeletal reorganisation to drive cell delamination  (this is an 

active process) 

5) degradation of the basement membrane. 

 

However, the steps outlined may not occur chronologically and are not 

all needed to determine if EMT has occurred (Mayor and Theveneau, 

2013). It should be considered that while there are many signalling 

cascades such as Wnt, FGF and BMP there are many molecules involved 

in neural crest formation and migration. 

 

2.2.6. Differentiation of neural crest cells 

 

Neural crest cells terminally differentiate due to specific groups of 

neural crest specification transcription factors that regulate specific 

effector genes, which give the cell its fully differentiated characteristics 

and properties (figure 2.6). It is widely accepted that neural crest cell 

differentiation is temporally and spatially regulated. For example, the 

neural crest specifier Sox10 has an important role in cell differentiation, 

it will continue to be expressed past neural crest specification in the 

migrating neural crest cell. Sox10 observed in premigratory neural 

crest is fated to develop into melanophores and neurons but continues 

to be expressed in these differentiated cells to upregulate its effector 

genes. (Sauka-Spengler and Bronner-Fraser, 2008a). To take this 

example further into melanophores, Sox10 can up-regulate 

microphtalmia-associated transcription factor (Mitf) which will then 

regulate the expression of the enzyme dopachrome tautomerase (Dct). 

Dct is required for melanin synthesis in melanophores (Elworthy et al., 

2003; Potterf et al., 2001).  
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Figure 2.6: Neural crest differentiation  
Neural crest cell differentiation is regulated by a network of genes involved in 
neural crest specification such as Sox10 that promote the expression of 
effector genes that are able to induce the cells to undergo terminal 
differentiation. Terminal differentiation of neural crest cells gives rise to a 
variety of cell types including smooth muscle, cartilage, bone, pigment cells, 
sensory neurons, glia and adrenal cells. Based on Mayor and Theveneau, 2013. 
 

In contrast, certain transcription factors are absolutely essential for 

repressing the expression of genes involved in neural crest cell lineages 

to promote cells going down a different lineage. A good example of this 

is FoxD3 can repress Mitf in melanophores to cause a lineage switch, 

resulting in them changing their lineage to give rise to glial cells 

(Thomas and Erickson, 2009). The differentiation of other cell types is 

down to comparable temporal and spatial regulation by gene regulatory 

networks. Neural crest cells during development terminally 

differentiate and in order to do this specific ligands must be present, for 

example, in mammals; melanophores must maintain their terminally 

differentiated state and survive. The cell surface ligands these 

melanophores express must dimerise with the c-kit receptors and 
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Endothelin B receptors expressed on the surface of surrounding cells 

(Tachibana, 2000). Neural crest cell differentiation is a highly regulated 

process and requires the timely expression of different transcription 

factors to give rise to various cell lineages. 

 

2.2.7. Melanophores 

 

Neural crest cells can give rise to pigment cells or melanophores in the 

skin, which function to protect animals from DNA damage caused by 

high-energy penetrating ultraviolet radiation (Cooper and Raible, 2009). 

Melanophores make and transfer melanin to neighbouring cells 

resulting in uniquely identifiable pigmentation patterns. Pigmentation 

phenotypes in amphibian and fish can change rapidly in response to 

their environment for protection, by means of mimicry, camouflage or 

warning colouration or to encourage sexual selection (Cooper and 

Raible, 2009). Melanogenesis requires Mitf expression that can be 

identified in melanoblasts during migration from the neural tube 

(figure 2.7).  

 



 34 

Figure 2.7: Melanophore development  
Neural crest cells migrating along ventral (black) and dorsolateral (white) 
pathways are specified by many transcription factors. Melanophores are 
formed from neural crests migrating along the dorsolateral pathway and are 
specified by transcription factors illustrated here. Based on Thomas and 
Erickson, 2008. 
 

Chick and mouse mutants of Mitf possess defects in their pigmentation 

or patterning. Mitf has been shown to up regulate tyrosinase and 

tyrosinase related protein 1 (Tyrp-1) during melanogenesis (Thomas 

and Erickson, 2008). Wnt3a activation of melanophores increases Mitf 

expression in the dorsal neural tube during migration of neural crest 

cells. Another important signal in melanophore development is that of 

the kit receptor and its ligand KitL. Mutations of either the kit receptor 

or KitL result in pigmentation defects (Thomas and Erickson, 2008). 

Heterozygous Kit mutations are the cause of piebaldism in humans. Kit 

receptor activation by KitL results in signalling cascade activation that 

phosphorylates Mitf, increasing its transcriptional activity (Thomas and 

Erickson, 2008).  

 

Endothelin signalling has a role in melanophore development and 

migration. It is currently thought that Edn-3 signalling interacts with 

the Kit receptor signal cascade in mammals to promote melanoblast 

differentiation (Thomas and Erickson, 2008). In chick EdnrB1 has been 

shown to be expressed in early neural crest (Lecoin et al., 1998). When 

these differentiate into melanophores this EdnrB1 expression is 

replaced by EdnrB2 expression. It has also been demonstrated that the 

Edn3 ligand that binds specifically to EdnrB2 is expressed in the 

ectoderm at the same stage of pigment cell development (Elworthy et 

al., 2003; Lecoin et al., 1998). Experiments in chick have shown that 

knocking down EdnrB2 significantly reduces the number of 

melanophores present (Shin et al., 1999). 
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2.2.8. Melanoma and the neural crest 

 

Melanoma is a rare and potentially aggressive type of skin cancer that 

can metastasise from the skin to other organs in the body. Melanoma 

arises from the neural crest derived melanophores that are located in 

the epidermal base layer of the skin. Melanoma can arise in areas of 

non-sun exposed skin as well as in areas of sun-exposed skin. 

Melanoma has a low mortality rate if excised when it is slow growing 

and has not yet penetrated the basal layer of skin. Once the melanoma 

has penetrated into the dermal layer of the skin it can then invade and 

metastasise, thereby, significantly increasing the mortality rate 

(Iyengar and Singh, 2010; Uong and Zon, 2010). The mortality rate for 

melanoma is very high due to its propensity to metastasise and to 

chemotherapy resistance. Melanoma is treatable in the early stages, 

however, once the cancer has metastasised treatment is limited and 

prognosis is poor. Both genetic and environmental factors are 

contributing factors to developing melanoma, but individuals who are 

Caucasian and exposed to the UV radiation from sun exposure are 

referred to as high-risk candidates for skin cancers. A number of genes 

implicated in neural crest and melanophore development have been 

identified in melanoma to be mis-regulated (Uong and Zon, 2010).  

 

The B-raf oncogene gene mutation that encodes B-RAF protein is the 

most commonly mutated gene that has been identified in melanoma. 

This mutation makes up for 60 % of all known melanoma gene 

mutations. A substitution in valine (V) to glutamate (E) at codon 600 

(BRAF-V600E) results in a 700 fold increase in BRAF kinase activity, 

which deregulates activation of the downstream MEK/ERK effectors 

and drives cell proliferation (Uong and Zon, 2010). p53 loss of function 

experiments in Zebrafish expressing the BRAF-V600E mutation using a 

Mitf promoter give rise to melanomas similar to those identified in 

patients that present in the clinic (Patton et al., 2005). The BRAFV600E 
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mutation, therefore, is linked to the formation of melanoma observed in 

60 % of melanoma patients. A number of neural crest cell genes have 

been identified to play a role in melanoma formation such as Mitf, 

Slug/Snail2 and Endothelin receptor B (EndrB). Mitf promotes cell cycle 

progression and tumour survival and growth when overexpressed 

(Garraway et al., 2005). In early tumour formation knock down of 

Slug/Snail2 in melanoma cell lines has shown a slower rate of cell 

migration making this neural crest gene a player in melanoma 

metastasis (Gupta et al., 2005; Uong and Zon, 2010). Overexpression of 

EndrB has been identified to lead to increased BRAF activity in 

melanoma and has been found in a small number of melanoma patients 

(Uong and Zon, 2010). EndrB may increase endogenous levels of Snail 

expression resulting in more aggressive tumour penetration deep into 

the skin until it reaches the stratum basale where it can find a blood 

supply in order to metastasise (Bagnato et al., 2004). Sox9 and Sox10 

are two neural crest specifiers identified in end stage melanoma. Their 

expression may be used as markers for how aggressive the melanoma is 

in individual patients (Bakos et al., 2010). Pax3 specifies the neural 

crest and its expression in melanophores may contribute to melanoma 

formation in response to environmental stimuli (Medic and Ziman, 

2010). In summary, melanoma is a multifactorial disease and 

compounds that act in synergy to target different pathways may 

provide better prognosis for patients and reduce chemotherapy 

resistance. 

 

2.2.9. Neural crest diseases/Neurocristopathies 

 

Failure of neural crest development in humans results in a number of 

genetic diseases that are known as neurocristopathies.  Examples 

include, but are not limited to: Waardenburg syndrome, Hirschsprung 

disease, piebaldism, congenital central hypoventilation syndrome, 

pheochromocytoma, paraganglioma, Merkel cell carcinoma, multiple 
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endocrine neoplasia, neurofibromatosis type I, CHARGE syndrome 

(Coloboma of the eye, Heart defects, Atresia of the nasal choanae, 

Retardation of growth and/or development, Genital and/or urinary 

abnormalities, and Ear abnormalities and deafness), familial 

dysautonomia, DiGeorge syndrome, Axenfeld Rieger syndrome, 

Goldenhar syndrome (hemifacial mi crosomia), craniofrontonasal 

syndrome, Noonan syndrome, LEOPARD syndrome, 

cardiofaciocutaneous syndrome and Costello syndrome (congenital 

melanocytic nevus, melanoma and certain congenital heart defects of 

the outflow tract) (Mayanil, 2013). Here, I will briefly introduce two 

neurocristopathies.  

 

Hirshprung’s disease is one disease where the major symptom is 

aganglionic megacolon that results from the loss of neural crest derived 

enteric neurons. Mutations in the RET gene is known to cause 

Hirschprung’s disease (Badner et al., 1990; Romeo et al., 1994). 

Waardenburg syndrome (WS) is another example of a neurocristopathy 

that can be subdivided into four syndromes depending upon a number 

of symptoms with different levels of severity. All neural crest derived 

cell types can be affected in Waardenburg syndromes. In all cases of 

Waardenburg syndrome a loss of skin pigmentation as caused by a loss 

of melanocytes and often deafness is observed in individuals (Read and 

Newton, 1997). The least severe Waardenburg syndrome is WS2 as 

individuals only have defects in pigmentation. WS2 is often linked with 

mutations in MITF, although Sox10 mutations can cause the same 

phenotype (Bondurand et al., 2007; Tassabehji et al., 1994). Individuals 

who have WS1 display a loss of skin pigmentation and dystopia 

canthorum, which is lateral displacement of inner canthi in the eye 

giving the physical appearance of a wider nasal bridge. However, those 

who have WS3 in addition to the phenotypes observed in WS1 also have 

limb deformities. Therefore, individuals with WS1 and WS2 

demonstrate that the formation of neural crest cell derived craniofacial 
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cartilage and melanocytes are affected. Mutations in Pax3 are known to 

cause these Waardenburg syndromes (Tassabehji et al., 1992). The last 

syndrome to be described is WS4, which is a combination of symptoms 

from Waardenburg syndromes and Hirschprung’s (Omenn and 

McKusick, 1979). Mutations in several genes have been associated with 

this syndrome including endothelin B receptor (EDNRB), its ligand 

endothelin 3 (EDN3), and Sox10 (Edery et al., 1996; Kuhlbrodt et al., 

1998).  

 

2.3. Chemical genetics 

 

2.3.1. Chemical screens and compound identification 

 

Chemical genetic screens utilise novel small compounds (< 2000 Da) to 

alter the function of specific genes and so determine their role in 

developmental processes. Chemical genetic screens are easy to set-up 

and can target a specific gene at a specific time point by adding or 

taking the compound away. Chemical genetic screens can utilise freely 

available compound libraries and have the advantage of being 

inexpensive to set-up and free to run in house. This type of screening 

using compounds from libraries is extremely useful for high-

throughput phenotypic studies to uncover novel compounds that have 

the potential of being therapeutic drugs to treat disease. Current 

chemical genetic screens that utilise small vertebrates such as Xenopus 

and Zebrafish is advantageous over the use of mammalian models as 

they provide an inexpensive way to find new drugs, their targets and to 

assay compound toxicity (Wheeler and Brandli, 2009; Zon and Peterson, 

2005). Amphibians can be used in chemical screens due to their 

opaqueness, which makes phenotypic analysis easier, quick 

development time and production of thousands of eggs at any one time, 

which makes the process high-throughput due to their ability to absorb 

compounds from the surrounding media (Wheeler and Brandli, 2009). 
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Xenopus embryos have been used in chemical screens for these reasons 

mentioned. The large number of Xenopus embryos that can be collected 

are small enough to develop in a 96-well plate. The compounds can be 

added to salt media and the embryos can be left to develop in optimal 

conditions as the compound is absorbed across the permeable vitelline 

membrane through the embryo epidermis (Tomlinson et al., 2005; 

Wheeler and Brandli, 2009). We use Xenopus embryos in our laboratory 

to carry out in-depth analysis of several compounds. Currently, our 

most promising compound is leflunomide, which will be discussed next. 

 

2.3.2. Leflunomide 

 

Leflunomide is currently marketed under the trade name Arava® for the 

treatment of rheumatoid arthritis in the UK. It is an inhibitor of 

dihydroorotate dehydrogenase (DHODH) and was identified in a 

chemical genetics screen in my laboratory in collaboration with 

colleagues at Harvard Medical School to alter pigment development in 

Xenopus laevis and Zebrafish (Danio Rerio). During this screen of 2000 

compounds, NSC210627 was identified to inhibit pigment cell 

development in Xenopus and Zebrafish. The chemoinformatic Discovery 

Gate algorithm was used to identify compounds with a high level of 

structural similarity (figure 2.8). 
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Figure 2.8: Chemical structures of DHODH inhibitors  
Top Left: NSC210627. Top Right: brequinar. Bottom Left: leflunomide. Bottom 
Right: A771726 (teriflunomide).  
 
The compound brequinar was identified, an inhibitor of DHODH. 

Leflunomide is structurally dissimilar to brequinar but also inhibits 

DHODH and phenotypically mimics the effect of NSC210627 (White et 

al., 2011). The enzyme P450 converts leflunomide to its active 

metabolite teriflunomide.  Leflunomide is an already prescribed drug 

that has been approved both by the United States Food and Drug 

Administration (FDA) and the UK Medicines and Healthcare products 

Regulatory Agency (MHRA) to treat rheumatoid arthritis. Leflunomide 

is inexpensive and along with its approved drug status it was selected 

for further experiments. DHODH is an enzyme responsible for 

pyrimidine biosynthesis and is therefore required for RNA 

transcription and DNA replication. Leflunomide is therefore thought to 

act by inhibiting the transcription of genes involved in melanophore 

development (Loffler et al., 1997; White et al., 2011).  

 

Leflunomide in Zebrafish causes complete abrogation of melanophores 

and iridophores at 38 and 72 hours post fertilisation, respectively 

(figure 2.9). Interestingly, leflunomide treatment results in significant 

down regulation of neural crest cell genes such as Sox10 and 
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Slug/Snail2 and of Dct and Mitf that are genes expressed to regulate 

pigmentation development in melanophores (figure 2.9). Gene 

expression in blood and notochord remains unaffected by leflunomide 

treatment (White et al., 2011). Unpublished data from the Wheeler 

laboratory has shown that neural crest genes in Xenopus embryos can 

be specifically affected by leflunomide (Hatch and Wheeler, IN PRESS). 

Leflunomide has been shown to reduce the number of neural crest cells 

in cell culture further suggesting this drug specifically affects the self-

renewal of this multipotent cell type (White et al., 2011). Melanoma 

tumours have been documented to adopt a similar genetic signature to 

that of the neural crest by expressing many of these genes involved in 

normal neural crest development and melanophore specification. 

Leflunomide, therefore, may be used to treat patients with melanoma 

(White et al., 2011). Using a combination of leflunomide and a 

BRAFV600E inhibitor (PLX4720) administered into mouse melanoma 

xenografts has been shown to completely prevent tumour formation in 

vivo (White et al., 2011).  

 

 

Figure 2.9 The effect of leflunomide on Zebrafish  
Top two images show that post leflunomide treatment zebrafish loose 
melanophores, a neural crest derivative, entirely when compared to the DMSO 
control. The bottom two images show neural crest progenitors using GFP 
regulated by a Mitf promoter. Post leflunomide treatment there is a loss of 
these progenitors shown by the loss of GFP expression. Retrieved from White 
et al., 2011. 
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Leflunomide is thought to carry out its function through the inhibition 

of transcriptional elongation by preventing the synthesis of pyrimidines. 

This will deplete the pool of cellular pyrimidines available for RNA 

synthesis and DNA replication. It has been shown in Zebrafish that 

leflunomide treatment phenotypically mimics spt5/spt6 Zebrafish 

mutants. Spt5 mutants also elicit an almost complete overlap of genes 

affected to that of leflunomide treated embryos. This includes a 

reduction of the expression of neural crest genes Sox10, Crestin and 

Mitf as shown by microarray. Experiments performed using human 

melanoma cell lines showed leflunomide to specifically inhibit the 

transcriptional elongation of Myc target genes. This is of strong interest 

to us as Myc is implicated to play roles in both neural crest specification 

and transcriptional pause release in embryonic stem cells.  (Bellmeyer 

et al., 2003; Hong et al., 2008; Rahl et al., 2010). 

  

2.4. Transcriptional regulation 

 

2.4.1. RNA polymerase pausing and transcriptional elongation 

 

For cells to proliferate, differentiate and grow they must regulate their 

genes through transcription. Transcription requires RNA polymerase II 

(RNA pol II) recruitment to the promoter region by DNA-binding 

transcription factors (Hochheimer and Tjian, 2003). Following on from 

this, RNA pol II regulates gene expression in various cell types. 

Temporally regulated genes require promoter proximal pausing of Pol 

II. Promoter proximal pausing is where Pol II stops transcribing a gene 

and is held in a poised state at the 5’ end of the gene within 50 

nucleotides of the transcriptional start site (TSS) (Core and Lis, 2008). A 

gene is held in a poised state by the recruitment of pause factors; 

negative elongation factor (NELF), DRB-sensitivity inducing factor 

(DSIF) and transcription factor IIS (TFIIS) (Wada et al., 1998; 

Yamaguchi et al., 1999). NELF strongly associates with the clamp 
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domain of RNA pol II through its subunit NELF-A. DSIF is made up of 

two constituent subunits, Spt5 and Spt6. If either of these subunits is 

mutated, transcriptional elongation can be inhibited (Keegan et al., 

2002; Missra and Gilmour, 2010). Transcriptional elongation requires 

the positive transcription elongation factor, p-TEFb, that forms a part of 

the super elongation complex (SEC) machinery. Cyclin dependent 

kinase 9 (CDK9) and cyclin T1 are recruited to form the p-TEFb 

complex in eukaryotic cells (Bres et al., 2008; Kohoutek, 2009) (figure 

2.10). 

 

 

Figure 2.10: RNA polymerase pausing and transcriptional elongation 
RNA polymerase (Pol) II can stall after transcription initiation approximately 
50 nucleotides downstream of the transcriptional start site. Release from 
polymerase pausing is initiated by developmental and environmental signals. 
In the paused state Pol II associates with both DSIF and NELF and the C-
terminus is phosphorylation on serine 5 residues. The P-TEFb complex can 
induce pause release by phosphorylating on the serine 2 residue and also DSIF 
and NELF. NELF will dissociate from the complex and transcriptional 
elongation will commence.  
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Poised RNA pol II is associated in a complex with both DSIF and NELF. 

To initiate transcriptional elongation, phosphorylation of serine 

residues in locations 2 and 5 of the “YSPTSPS” motif in the C-terminal 

domain (CTD) of the large subunit of Pol II must take place. 

Phosphorylation of PolII at CTD and phosphorylation of the Spt5 

subunit of DSIF is performed by p-TEFb to allow for transcription and 

the synthesis of full-length gene transcripts. Once phosphorylation of 

both RNA pol II and Spt5 occurs NELF will dissociate from the complex. 

DSIF will remain associated with RNA pol II to switch its function to 

promote transcriptional elongation (Fujita et al., 2009). Pause release 

mechanisms in eukaryotes also involve other transcription factors such 

as transcription factor IIF (TFIIF) and TFIIS (TFIIS). Pausing and 

elongation during transcription is widely recognised as transcription 

elongation checkpoint control (TECC) (Luo et al., 2012).  

 

Transcriptional pausing may maintain stem-cell pluripotency and 

therefore prevent the transcription of genes involved in differentiation 

as approximately 30 % of genes in embryonic stem cells are held in a 

poised state with no elongation. The literature also reports that not 

only can RNA pol II transcribe genes in a sense direction; transcription 

can occur in an antisense direction (Rahl et al., 2010; Seila et al., 2008).  

 

2.4.2. The p-TEFb complex 

 

Recruitment of the positive elongation factor complex (p-TEFb) is 

essential for transcription after polymerase has been released from its 

poised state. The p-TEFb complex located in the nucleus is conserved 

across eukaryotes. The p-TEFb complex comprises enzymatic subunits 

CDK and cyclin that undergo a conformational change to initiate kinase 

activity (Zhou et al., 2012). CDK9 is a core protein involved in all p-

TEFb complexes, which is hyper-phosphorylated at Thr186 (T-loop) (Li 

et al., 2005). P-TEFb enzymatic activity is tightly regulated by 
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phosphorylation to control transcription of genes held in a poised state. 

P-TEFb can reversibly bind 7SK small nuclear ribonucleoprotein 

particle (snRNP) to regulate transcription and can be identified in an 

inactive or active phosphorylation state within the nucleus (figure 2.11). 

P-TEFb is inactive if bound to 7SK snRNP and will become active when 

rapid transcription is needed to occur by its recruitment into the super 

elongation complex (SEC) (Peterlin and Price, 2006; Zhou et al., 2012). 

 

P-TEFb when inactive is bound to the inhibitory domain of RNA binding 

proteins hexamethylene bisacetamide (HEXIM) 1 or 2, which are in turn 

bound to 7SK snRNP. HEMIM 1 and 2 have been found to compensate 

for each other both in vitro and in vivo. They act by inhibiting the p-

TEFb function and so are thought to be entirely novel CDK inhibitors 

(CDKI) as no other CDKIs interact with RNA to mediate inhibition 

(Barboric et al., 2005; Byers et al., 2005; Michels et al., 2004; Nguyen et 

al., 2001; Yik et al., 2005; Zhiyuan et al., 2001). La-related protein 7 

(LARP7) and methyl phosphate capping enzyme (MePCE) bind to the 

7SK snRNP complex to aid its binding to p-TEFb (He et al., 2008; 

Krueger et al., 2008; Xue et al., 2010).  

 

The inhibitory complex formed between p-TEFb and 7SK snRNP means 

that p-TEFb activity is carefully regulated and its activity can be 

narrowed down to precise genes when it is needed. This can stop the 

release of poised genes before they are needed (Zhou et al., 2012). 

Knoweldge of how p-TEFb can target specific genes is still unknown. It 

is thought that p-TEFb can be directed by different transcription factors 

that bind to it in response to signalling cascades allowing it to 

incorporate into many diverse forms of the super elongation complex 

increasing the specificity between P-TEFb and its target genes. 

Incorporation into the super elongation complex has been shown to 

heighten p-TEFb’s enzymatic activity (Luo et al., 2012). 

 



 46 

2.4.3. The super elongation complex (SEC) 

 

The super elongation complex (SEC) is composed of active p-TEFb and 

a number of different regulatory proteins and their subunits (figure 

2.11). As well as the super elongation complex accommodating the 

active p-TEFb complex it also associates with eleven-nineteen lysine 

rich leukaemia 1 and 2 (ELL1 and ELL2, respectively), AF4/FMR2 

family member 1 (AFF1) and AF4/FMR2 family member 4 (AFF4) (Lin 

et al., 2010; Yokoyama et al., 2010). Interestingly, super elongation 

complexes vary in these additional constitutive proteins depending 

upon the gene that they are transcribing. ELL proteins (ELL1 and ELL2) 

are known to compensate for each other and the same has been 

demonstrated for AFF proteins (AFF1 and AFF4) (Biswas et al., 2011). 

AFF proteins hold the complex together to support the formation of the 

SEC complex (Luo et al., 2012) (figure 2.11). 

 

 

 
 
Figure 2.11: The super elongation complex (SEC)  
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In mammals the SEC is comprised of the positive transcription elongation 
factor b complex (p-TEFb), AFF family member 1 or 4, one of the eleven-
nineteen lysine-rich leukemia (ELL) proteins, ENL and AF9. These proteins are 
also associated with RNA polymerase associated factor c (PAFc) via the YEATS 
domain of AF9. When associated with the SEC, p-TEFb is active and 
phosphorylates the C terminal domain of RNA Pol II, DSIF and NELF allowing 
NELF to dissociate and positive transcription elongation to occur. Based on Li 
et al., 2005. 
 

SEC complexes are located at promoter regions of genes when active 

transcription is necessary to respond to Wnt and FGF signals, for 

example, or to acute changes in temperature. It is for this reason that 

heat shock and rapid response genes are predominantly regulated by 

RNA polymerase pausing (Fuda et al., 2009; Luo et al., 2012). The main 

function of SEC that will be described here is within a developmental 

context. Published articles suggest SEC recruitment to poised genes is 

not only essential for rapid gene induction but to allow synchrony 

amongst genes in development, specifically during early development. 

 

Experiments involving Drosophila melanogaster (fruit fly) have 

described that during embryonic development particular sets of genes 

can be coined “synchronous” genes. These synchronous genes have a 

paused pol II at the promoter. These genes such as short gastrulation 

(sog), tended to be found in complex gene regulatory networks. Other 

genes did not show this necessity for paused pol II. These genes were 

termed “stochastic” genes and they demonstrated erratic and 

unpredicatable gene expression, for example thisbe (ths) (Boettiger and 

Levine, 2009). Studies have shown that pausing is important and 

present on genes that are rapidly induced and also on those that are 

considered master regulator genes whose expression is tightly 

regulated. Gilchrist recently has shown that genes known to be rapidly 

induced such as antibacterial genes do not have a paused pol II. 

Conversely, genes involved in regulating the fly’s innate immune system 

can undergo pausing. Therefore, the types of genes which pausing is 

crucial for the expression of remains unknown (Gilchrist et al., 2012). 
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Chromatin immunoprecipitation (ChIP) sequencing is a widely used 

method to analyse protein interaction with DNA. Much of the evidence 

for a paused RNA pol II has come from ChIP seq experiments carried 

out in embryonic stem cells. The first of these experiments showed that 

a paused polymerase associated with the components of the SEC can be 

recruited consistently to embryonic stem cell genes (Lin et al., 2011). 

The embryonic genes cMyc and the heat shock protein hsp70 have been 

shown to have a poised RNA polymerase bound to them. The 

recruitment of SEC to these genes occurs via the N terminal domain of a 

mediator protein subunit (Med26) (figure 2.12). Loss of Med26 results 

in reduced SEC associated RNA polymerase II spanning the length of 

cMyc and hsp70 in ChIP sequence experiments using human cell lines. 

Another group has shown that SEC associated proteins and Med26 are 

located at the promoter of hsp70 before heat shock and loss of Med26 

results in reduced phosphorylation of serine 2 of pol II on cMyc and 

hsp70 genes indicating that Med26 is required not only for the 

recruitment of SEC but to regulate and maintain the positive 

transcription of these genes (Takahashi et al., 2011). 
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Figure 2.12: Med26 recruits the SEC to RNA polymerase II  
The N-terminal domain of the mediator subunit Med26 interacts with TFIID 
associated with poised RNA polymerases at the promoter region. Induction of 
some signals promotes the release of Med26 from TFIID allowing it to 
associate with the SEC via EAF. This allows positive transcription elongation 
to occur. Based on Jang et al., 2005.  
 

Components of the SEC and novel proteins regulating polymerase 

activities are still being discovered. One such protein is transcription 

termination factor TTF2 that has been shown to co-localise with an 

exonuclease protein Xnr2 at the starting position of poised genes. Loss 

of both TTF2 and Xnr2 shown by ChIP sequencing has revealed an 

extension of paused transcript from the transcription start site 

extending along the exon of the gene (Brannan et al., 2012). These 

experiments reveal a possible function for TTF2 and Xnr2 to promote 

early termination of gene transcription (Brannan et al., 2012). 
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2.4.4. Regulating productive elongation 

 

Triggering p-TEFb activation results in phosphorylation of DSIF and 

NELF resulting in dissociation of NELF from RNA pol II allowing 

transcriptional elongation to follow. DSIF remains associated with the 

RNA pol II complex and switches from productive elongation phase to 

promotion (Rahl et al., 2010). After p-TEFb has phosphorylated CDK 

and cyclin proteins, it can return to its inactive state. Subsequent to this, 

elongation occurs and is controlled by TFIIS and the rate of elongation 

is mediated by TFIIF (Fish and Kane, 2002; Zhou et al., 2012). Poised 

Pol II can be rescued by TFIIS by promoting cleavage of halted RNA 

transcript therefore permitting the formation of a new 3’ end that is 

incorporated into the RNA pol II active site allowing transcription to 

continue (Fish and Kane, 2002). 

 

Histone modifications are essential for productive elongation to occur 

to allow access to regions that are inaccessible to RNA pol II. We know 

that RNA pol II associates with RNA polymerase associated factor c 

(PAFc), which methylates H3K4 and H3K79, that arises from a complex 

between PAFc and SEC.  Methylation of H3K4 and H3K79 are molecular 

beacons for genes undergoing active transcription (Sims et al., 2004). 

Components of PAFc have been identified to be Rtf1, Paf1, Ctr9, Leo1 

and Cdc73 (Krogan et al., 2002; Sims et al., 2004). PAFc requires Rad6 

and SET for ubiquitination and trimethylation of histones, respectively, 

since PAFc has not been found to possess any enzymatic activities 

(Briggs et al., 2002; Dover et al., 2002; Krogan et al., 2003a; Krogan et 

al., 2003b; Wood et al., 2003). PAFc has been found to be an essential 

adaptor complex to cross link RNA pol II and methyltransferases. PAFc 

has been described to form a complex with SEC, p-TEFb and factors 

associated with Pol II for example TFIIS and DSIF (Chen et al., 2009; He 

et al., 2011; Kim et al., 2010). In summary, transcriptional control is a 
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tightly regulated process to prevent premature transcription and the 

timely transcription of embryonic genes. 

 

2.4.5. Role of cMyc in transcriptional elongation 

 

Recently the transcription factor cMyc has been implicated to play a 

role in proximal pause release in embryonic stem cells. cMyc has always 

been associated with both the self-renewal of embryonic stem cells and 

multipotent neural crest cells. (Rahl et al., 2010).  A study has 

previously reported that Myc is able to associate to the p-TEFb complex 

and is subsequently involved in RNA polymerase pause release. 

(Bellmeyer et al., 2003; Gargano et al., 2007; Kanazawa et al., 2003). 

cMyc expression in embryonic stem cells is now hypothesised to 

regulate transcriptional pause and release of embryonic genes through 

recruiting p-TEFb to RNA polymerase II (RNA pol II). Loss of cMyc 

expression results in reduced phosphorylated levels of serine 2 RNA pol 

II with a marked decrease in elongation of genes. However, RNA pol II 

polymerase pausing is not affected, as the endogenous level of Ser5-

phosphorylation associated with initiation remains unchanged. Genes 

that are primarily regulated by cMyc expression under go an increased 

level of pausing and elongation (Rahl et al., 2010). It may be assumed 

that cMyc is involved in transcriptional elongation in other types of 

proliferative cells. The upturn in proliferation genes observed in a 

variety of cancers may be partially due to elevated cMyc expression. 

Therapeutics that affect cMyc but are not direct Myc targets may be 

useful cancer drugs, such as leflunomide, since an increase in genes 

associated with proliferation is observed when cMyc is upregulated 

(Rahl et al., 2010; White et al., 2011). 

 

cMyc is believed to undergo RNA polymerase pausing (figure 2.13). In 

studies were the SEC subunits Paf1 and Med26 have been knocked 

down to display a loss of SEC components along the gene body of cMyc 
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and other paused genes. RNA pol II has been found in ChIP-seq 

experiments to accumulate at the promotor region of paused genes. 

This result in there reduced transcription and consequently, overall 

mRNA present in these cells is much less. As a consequence of pausing a 

reduction in Ser2 phosphorylation is observed that is associated with 

positive transcription elongation. This study strongly suggests that 

transcription of cMyc requires transcription of Med26 and Paf1 to enlist 

the SEC to its promoter site (Takahashi et al., 2011). 

 

Figure 2.13: Myc undergoes RNA polymerase pausing  
(top) For the myc gene to be transcribed it must associate with the active form 
of p-TEFb in association with the SEC. This occurs as Brd4 will also associate 
with p-TEFb and attach to the chromatin at the myc promoter region. 
(bottom) A possible therapeutic target of myc overexpressing cancers is Brd4. 
Inhibitors of Brd4 have been shown to downregulate myc gene expression. 
Based on Guo et al., 2000.  
 
Interestingly, Brd4 knock down has been shown to result in reduced 

cMyc expression. Brd4 present in another active p-TEFb complex is 

normally associated with basal level transcription. In human acute 

myeloid leukaemia (AML) cells Brd4 knock down resulted in reduced 

cMyc expression and were found to lower cancer cell self-renewal 

(Zuber et al., 2011). Bdr4 was reported in this study to associate with 
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the chromatin at the promoter site of cMyc. AML cells that were treated 

with I-BET151, an inhibitor of Brd4, caused it to dissociate from the SEC 

resulting in a loss of cMyc expression (figure 2.13) (Zuber et al., 2011). 

To conclude, inhibition of Myc expression by preventing the function of 

the SEC may be a potential target for many cancers that overexpress 

Myc protein. 
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3. Aims 
 
Using the pyrimidine biosynthesis inhibitor leflunomide as a tool to 

prevent transcriptional elongation I aim to confirm the importance of 

this process during neural crest specification. Our laboratory, in 

collaboration with the Zon laboratory, has shown that leflunomide’s 

action inhibits the transcriptional elongation of cMyc target genes in 

Zebrafish (Danio Rerio), Xenopus and melanoma cell lines (White et al., 

2011). cMyc has been shown to play an important role in initiating the 

transcription of genes required for neural crest specification 

(Bellmeyer et al., 2003). I aim to show quantifiably that administering 

leflunomide on X. laevis embryos can prevent the expression of neural 

crest specifying genes such as Slug, Sox10 and cMyc. Results gained will 

implicate the importance for a regulator of transcriptional elongation 

during neural crest development. Unpublished data from my host 

laboratory strongly suggests this would be the case as transcriptional 

pausing and subsequent elongation has very recently been shown to 

regulate genes associated with embryonic stem cell pluripotency (Rahl 

et al., 2010). Our laboratory hypothesises that this level of 

transcriptional control is also the case for neural crest cells as they 

share a stem cell like multipotent potential. Candidate genes involved in 

neural crest cell specification must be tightly regulated to prevent 

inappropriate differentiation, therefore, transcriptional pausing would 

prevent the transcription of genes keeping their multipotent potential. I 

aim to investigate this process in neural crest cells by identifying neural 

crest cell genes sensitive to leflunomide by developing a quantitative 

method using real-time PCR in Xenopus. Results gained will 

complement unpublished data in my host laboratory to investigate the 

effect of inhibiting transcriptional elongation on neural crest specific 

genes to show that transcriptional regulation is important for neural 

crest specification. 
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4. Research Methods and Materials 

 

4.1. Obtaining Xenopus laevis embryos 

 

4.1.1. Xenopus source 

 

The adult Xenopus laevis used in this thesis were obtained from the 

University of Portsmouth in the European Xenopus Research Centre 

(Portsmouth, UK) originally sourced from Nasco. Xenopus laevis were 

maintained in a temperature-controlled room at the Controlled 

Environment Facility (University of East Anglia, UK) for the subsequent 

production of eggs and sperm for experiments. 

 

4.1.2. Male dissection and testis isolation 

 

The dissections of males for testes were carried out following the 

legislation in the Animals (Scientific Procedures) Act 1986. Male frogs 

were anaesthetised by immersion in a solution of ethyl 3-

aminobenzoate methanosulfonate salt (Sigma, A5040-25G) (0.5 g in 

300 mL of dH2O) for 2 hours at 4°C or until the heart has stopped 

beating as advised by the Named Animal Care & Welfare Officer 

(NACWO). The depth of anaesthesia was assessed by the absence of a 

withdrawal reflex by checking for autonomic responses. Male frogs 

were exsanguinated and testes were removed post-mortem and cleared 

of attached blood vessels and connective tissue. Testes were placed in 

ice-cold testes storage buffer and stored at 4°C and used the following 

day. The male carcass was stored for 1 month at -18°C and then 

disposed of by incineration. 

 

 Testes storage buffer: 80% foetal calf serum, 20% 1.0 x MMR, 

1:1,000 U gentamycin sulphate  

 PMSG: 100 U/mL PMSG was prepared in PBS and stored at 4°C. 
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4.1.3. Induction of egg production 

 

To induce ovulation, pigmented adult female Xenopus laevis frogs were 

primed by injection with 100 U of pregnant mare serum gonadotropin 

(PMSG) intervent into the dorsal lymph sac. Primed frogs were kept at 

18°C for 4 – 7 days without feeding. 14 hours prior to the first egg 

harvest the primed frogs were induced with 500 U of human chorionic 

gonadotropin (HCG) – Intervent and placed at 16°C. 

 

4.1.4. In vitro fertilisation 

 

Embryos were collected from induced female frogs into 9 cm Petri 

dishes. Excised sections of male testes were macerate in a 1.5 mL 

eppendorf tube using a pestle in 1 mL of 1.0 x MMR to release sperm. 

The testes 1.0 x MMR solution was evenly distributed onto the eggs 

using a 3 mL pipette for 5 minutes at 18°C. The use of a high salt 

solution  (1.0 x MMR) prevents sperm entry and allows maximal 

dispersion of the sperm over the eggs prior to sperm entry. The eggs 

were then immersed in 0.1 x MMR for 20 minutes at 18°C allowing 

fertilisation. Eggs can then be visually assayed for cortical rotation, an 

indication of successful fertilisation, where the plasma membrane and 

cortex rotate relative to the inner cytoplasm.  

 

 0.1 x MMR: 10 mM NaCl, 0.2 mM KCL, 0.1 mM MgCl2, 0.2 mM 

CaCl2, 0.5 mM HEPES (pH 7.5) 

 1.0 x MMR: 100 mM NaCl, 2 mM KCL, 1 mM MgCl2, 2 mM CaCl2, 5 

mM HEPES (pH 7.5) 

 

4.1.5. De-jellying of fertilised embryos 

 

Post fertilisation the eggs were stripped of their jelly coat to allow 

experimental manipulation. The eggs were immersed in excess 2% 
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cysteine (pH 8.0) dissolved in 1.0 x MMR and transferred to a 250 mL 

glass beaker. Embryos were then gently swirled until de-jellying is 

complete as observed by the tight stacking of the embryos. The 

embryos were then washed in 0.1 x MMR to remove trace amounts of 

cysteine and any debris. Embryos were to develop until they reach the 

required stage of development according to Nieuwkoop and Faber 

(Nieuwkoop and Faber, 1967).  

 

4.1.6. Fixing embryos 

 

Once embryos reach a stage that is required as depicted by Nieuwkoop 

and Faber, they were fixed (Nieuwkoop and Faber, 1967). Embryos 

were fixed using MEMFA (3.7 % formaldehyde, 1.0 x MEM salts made 

up to the required volume using DEPC dH2O). They were then left for 1 

hour at room temperature, washed 3 times in PBST and dehydrated in 

25 %, 50 %, 75 % methanol and stored in absolute methanol at 4°C. 

 

4.2. In situ hybridisation probe synthesis 

 

4.2.1. Preparation of competent cells 

 

A 5 mL culture of DH5α Escherichia coli (E.coli) was incubated 

overnight in Lysogeny Broth (LB) at 37°C with shaking at 200 rpm. 200 

mL of LB media was inoculated with primary culture and was incubated 

at 37°C with shaking at 200 rpm until the optical density (OD) at 600 

nm reached 0.3 to 0.4. When the OD is reached the culture is split into 4 

x 50 mL falcon tubes and incubated on ice for 15 minutes. The cells are 

spun down at 2,000 rpm at 4°C for 10 minutes. The supernatant is 

discarded and the bacterial pellet was re-suspended in 16 mL of filter 

sterilised TB I buffer. The cells were placed on ice for 15 minutes and 

then spun at 2,000 rpm at 4°C for 10 minutes. The supernatant is 

discarded and the pellet is re-suspended in 4 mL of filter-sterilised TB II 
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buffer. 1 mL aliquots were then stored at -80°C until required for 

transformations. 

 

Solutions 

 TB I pH 5.8: 0.1 M RbCl2, 0.068 M MnCl2H2O, 0.01 M CaCl2, 1 M 

KAc pH 7.5, 37.5 mL glycerol was added to adjust the total 

volume to 250 mL and pH using 0.2 M HAc. 

 TB II: 0.5 M MOPS pH 6.8, 0.01 M RbCl2, 1.04 M CaCl2H2O, 37.5 

mL glycerol was added to adjust the total volume to 250 mL. 

Aliquots were stored at -80°C. 

 

4.2.2. Transformation 

 

1 μL of plasmid DNA was ligated into 100 μL of competent DH5α E. coli 

cells and left on ice at 4°C for 30 minutes. Competent cells underwent 

heat shock at 42°C for 2 minutes to allow the cells to ingest the plasmid 

DNA. Heat shock was followed by 5 minutes incubation on ice. 300 μL of 

SOC media was added to the competent cells after incubation and a 

further incubation on ice for 5 minutes. 1 hour at 37°C was required to 

allow growth of the bacteria. 200 μL of ligated cells were plated out 

onto agar and LB plates containing the correct antibiotic. The 

inoculated plates were left at 37°C overnight to allow colony formation. 

 

4.2.3. DNA midi prep 

 

Transformed cells that formed colonies were removed by a sterile 

pipette tip and incubated in 50 mL LB media supplemented with 

carbicillin overnight at 37°C with rocking at 200 rpm. The DNA plasmid 

was then isolated using the Qiagen™ Hi-speed plasmid purification kit 

(Qiagen, 12643) according to manufacturers instructions. 1 μL of the 

final product was run on a 1% agarose gel at 65 V until the migration of 

the bands was sufficient to identify the different sizes of DNA 1 kb 
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ladder (New England Biolabs, N3232L). 1 μL was placed on a 

nanodrop™ spectrophotometer to determine the DNA concentration of 

the purified DNA plasmid. 

 

4.2.4. Restriction digest  

 

Clones within plasmid constructs were linearised by restriction 

digestion using an appropriate restriction enzyme. 2 – 10 μg of plasmid 

was added to 2 μL of the required restriction enzyme. 5 μL of buffer was 

added and made up to 50 μL with RNase free water. This was incubated 

at 37°C for a minimum of 2 hours or alternatively overnight. The 

linearised plasmid was visualised on a 1 % agarose gel.   

 

4.2.5. Ethanol precipitation 

 

Digests were purified using ethanol precipitation. 1:10 v/v of 0.3 M 

sodium acetate and 250 μL of ethanol were added to a 50 μL digest and 

left overnight at -20°C to precipitate. After overnight precipitation the 

sample(s) were then centrifuged at 16,700 rpm for 15 minutes. The 

supernatant was discarded and the DNA pellet washed with 70 % 

ethanol prepared using RNase free water and centrifuged at 16,700 rpm 

for 5 minutes. The ethanol was aspirated off and the pellet was left to 

air dry at room temperature. The pellet, once dried, was re-suspended 

in 20 μL of RNase free water and stored at -20°C. 

 

4.2.6. Agarose gel electrophoresis 

 

Agarose gels are prepared at a 1 % concentration. 0.5 g of agarose was 

dissolved in 50 mL of 1 x TAE buffer by heating to 80°C. Ethidium 

bromide was added to the agarose once cooled to 60°C at a 

concentration of 0.5 μg/mL to visualise the DNA using a UV trans 

illuminator following electrophoresis. DNA sample(s) were mixed with 
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1/10 volume of 10 x DNA loading dye before loading in the well(s). 

Electrophoresis was carried out at 70 V for 65 minutes. 

  

4.2.7. Probe synthesis and purification 

 

Plasmids that contain the gene of interest were linearised using the 

appropriate restriction enzymes to digest at restriction sites to give 

sense and anti-sense RNA probes. Linearised DNA was purified prior to 

probe synthesis. Probe synthesis required the following components to 

be included in the reaction mixture made up to 20 µL with RNase free 

water; 4 µL 5x transcription buffer, 2 µL DTT, 1 µL DIG labelled UTPs, 1 

µL RNAsin, 1 µL linearised DNA, 2 µL RNA polymerase. The reaction 

mixture was incubated for 3 hours at 37°C. Adding 30 µL of RNase free 

water to the reaction mix and centrifuging it through a G50 column 

according to manufacturers instructions purified the probe. 5 µL of 

probe was run on a 1 % agarose gel and visualised by a UV trans 

illuminator to verify probe quality. 5 µg of purified probe was then 

added to 10 mL of hybridisation buffer and stored at -20°C. Plasmids 

used to make probes are shown in the table 4.1. 

 

Clone 

name 

Sense 

RE 

Antisense 

RE 

Sense 

polymerase 

Antisense 

polymerase 

Source 

Sox10 Xho1 EcoR1 T7 T3 Dr Victoria 
Hatch 
(University 
of East 
Anglia) 

Table 4.1: In situ hybridisation probes 

 

4.2.8. Whole mount in situ hybridisation (WISH) 

 

Embryos for WISH were rehydrated from absolute methanol by using 

75 %, 50 %, 25 % methanol prepared in phosphate buffered saline 
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supplemented with 0.1 % Tween-20 (PBST) for 10 minutes each 

followed by x 2 PBST washes for 5 minutes with rocking at room 

temperature. Embryos were treated with 10 µg/mL Proteinase K for 5 

to 10 minutes depending the embryonic stage of development i.e. stage 

18 for 10 minutes, stage 15 for 8 minutes and stage 12 for 5 minutes. 

Xenopus embryos were washed twice in PBST for 10 minutes and 

incubated in 3.7 % formaldehyde/PBST for 30 minutes with rocking at 

room temperature. Embryos were washed 3 times in PBST for 10 

minutes and incubated in hybridisation buffer at 60°C for 6 hours. The 

embryos were placed in fresh hybridisation buffer with the appropriate 

probe and incubated overnight at 60°C with rocking.  

 

The probe was removed after overnight heating and stored at -20°C. 

Embryos were washed with fresh hybridisation buffer for 20 minutes 

and underwent 3 washes in 2 x sodium chloride and sodium citrate 

solution (SSC) for 30 minutes and 2 washes in 0.2 x SSC for 30 minutes, 

all at 60°C. Embryos were washed twice in Maleic acid buffer with 

0.1 % Tween (1.0 x MABT) for 30 minutes at room temperature and 

then placed into a 1.0 x MAB and 2 % Boerhinger Mannhein Blocking 

(BMB) solution for 1 hour at room temperature with rocking. BMB 

solution was replaced with antibody solution containing anti-

deoxygenin (1:2000) and incubated overnight at 4°C with rocking.  

 

Antibody solution was removed and embryos were washed in 1.0 x 

MABT 5 times for 30 minutes at room temperature with rocking and 

incubated in a MABT wash overnight at 4°C with rocking. The colour 

reaction was then carried out by washing the embryos in fresh alkaline 

phosphate buffer twice for 10 minutes at room temperature with 

rocking. Embryos were placed in nitro blue tetrazolium / 

dimethylformamide (NBT/BCIP) in alkaline phosphate buffer (67.5 µL 

NBT, 52.5 µL BCIP made up to 15 mL with alkaline phosphate buffer) 

until the preferred colour intensity was observed. Embryos were put in 
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5.0 x TBST solution overnight to remove background colour and then 

imaged with a Zeiss stmi SV6 microscope. 

 

Solutions 

 Alkaline Phosphatase Buffer: 100 mM Tris (pH 9.5), 50 mM 

MgCl2, 100 mM NaCl, 0.1 % Tween 20 

 Antibody solution: 2 % BMB, 20 % goat serum, anti-DIG Fab 

fragment, (1:2000 dilution) in 1 x MAB 

 BCIP: 50 mg/mL in 100 % DMF 

 Blocking solution: 2 % BMB in 1 x MAB 

 BMB (Boehringer Mannheim Blocking agent) 10 %: 10 % (w/v) 

in BMB preheated (50 °C) 1 x MAB, stirred until dissolved and 

then autoclaved, aliquoted and stored at –20°C 

 Hybridisation buffer: 50 % formamide, 5 x SSC, 1 mg/mL Torula 

RNA, 100 g/mL Heparin, 1 x Denharts solution, 0.1 % Tween 20, 

0.1 % CHAPS, 10 mM EDTA 

 MAB 1 x (Maleic Acid Buffer): 100 mM Maleic acid; 150 mM 

NaCL (pH 7.5) 

 MEMFA: 10 % MEM salts, 10 % formaldehyde 

 MEM salts: 0.1 M MOPS, 2 mM EGTA, 1 mM MgSO4, pH7.4 

 NBT (Nitro Blue tetrazolium): 75 mg/mL in 70 % 

dimethylformamide (DMF) 

 PBS 10 x: 2.5g NaH2PO4.H2O, 11.94g NaHPO4.H2O, 102.2g NaCl, 

400 mL DEPC dH2O. pH adjusted to 7.4 and volume to 1 L 

 PBST: 1.0 x PBS, 0.1 % Tween 20 

 Proteinase K (10 µg/ml): 1 µL proteinase K, 1 mL PTw 

 SSC 20X: 175.3g NaCl, 88.2g sodium citrate. pH adjusted to 7.0 

and volume to 1 L with DEPC H2O 
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4.2.9. Bleaching pigmented X. laevis embryos 

 

Embryos’ for WISH were bleached to observe in situ staining. Embryos 

were placed in a solution of 5.95 mL DEPC H2O, 3.3 mL 30 % H2O2, 0.5 

mL formaldyhyde and 0.25 mL 20 x SSC and incubated on a light box 

until pigment was removed. Post-bleaching the embryos were washed 

three time in PBS for 15 minutes and fixed in MEMFA overnight at 4°C. 

 

4.3. Real-time PCR 

 

4.3.1. Quantitative PCR methodology 

 

Real-time PCR has standardised the detection of DNA and RNA 

transcript in biologically important samples. A single copy of a unique 

sequence can be amplified and detected. In theory, there is a 

quantitative relationship between the initial amount of cDNA generated 

and the amount of transcript post-amplification. The use of real-time 

PCR has eliminated the variability previously associated with 

touchdown PCR by allowing the quantification of PCR product to now 

be both routine and reliable. 

 

Real-time PCR is a sensitive and reproducible method for quantifying 

RNA target concentration in Xenopus and in other biological systems by 

using polymerase chain reaction. SYBR green is a dye used to detect 

double stranded DNA and is the chosen reporter for real-time PCR 

assays in this thesis. The process of amplifying target cDNA generated 

from a reverse transcriptase reaction is described as follows:  

 

1. When SYBR Green dye is added to a sample it immediately binds to 

all double-stranded DNA present in the sample.  
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2. During the PCR, DNA Polymerase amplifies the target sequence, 

which creates the PCR products, or “amplicons.”  

 

3. The SYBR Green dye then binds to each new copy of double-stranded 

DNA.  

 

4. As the PCR progresses, more amplicons are created. Since the SYBR 

Green I dye binds to all double-stranded DNA, the result is an increase 

in fluorescence intensity proportionate to the amount of PCR product 

produced.  

 

SYBR Green was the chosen real-time PCR chemistry for assays in this 

thesis as it can monitor the amplification of any double stranded DNA 

sequence in real time. Since no probe is required, the major advantage 

was that many genes could be analysed at a reduced cost if we are to 

compare the cost of oligonucleotide primers vs. Taqman probes. The 

disadvantage of using SYBR green is that it may generate false positive 

signals by binding to non-specific double-stranded DNA sequences. 

 

Real-time PCR reactions are characterised by the moment in time 

during cycling that amplification of a PCR product is detected rather 

than the amount of product that has accumulated after 40 cycles, for 

examples. The greater the amount of template DNA at the start of 

cycling the sooner a significant increase in fluorescence is recorded. 

The detection of a fluorescent signal is recorded autonomously on an 

amplification plot in real time. The amplification plot is the florescent 

signal intensity vs. the cycle number. An increase in florescence above a 

baseline (background signal) indicates the detection of accumulated 

PCR product. The parameter cycle threshold (Ct) is defined as the cycle 

number at the point the florescence detected passes the fixed threshold. 

Comparing the Ct scores generated from untreated vs. treated samples 
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is used to determine the fold change in gene expression as performed in 

this thesis. 

 

4.3.2 General guidelines 

 

Bacteria and RNases are potentially contaminants in the working place 

that can cause some major problems, including the degradation of RNA 

and the amplification of non-specific PCR products. The bench and 

routinely used equipment, such as the pipettes, were regularly cleaned 

with detergent and RNase Zap® (Ambion). Sigma water (Sigma) was 

used in all reagents and procedures required for the following 

molecular biology protocols. Additional Sigma water (Sigma) 

autoclaved with 0.1 % diethylpyrocarbonate (DEPC) (Sigma) was also 

prepared for work associated with RNA. All glass and plastic ware was 

either autoclaved or manufacturer-certified sterile prior to use. 

 

4.3.3. RNA extraction 

 

X. laevis embryos (n=10) were placed in a 1.5 mL eppendorf tube and all 

liquid was removed and replaced with 1 mL TRIzol™ reagent 

(Ambion®, 15596-026) before flash freezing in liquid nitrogen at -

196°C for 15 minutes. Embryos that were not to be used after flash 

freezing were stored at -80°C until required. Harvested embryos in 

TRIzol™ were thawed on ice at 4°C and vortexed until all material was 

masticated leaving a homogenous solution. RNA is stable in TRIzol™ as 

the reagent deactivates RNAses to allow for long-term storage. 500 μL 

of chloroform was added to the homogenous mix of embryos in TRIzol™ 

and inverted 5 to 10 times and incubated at room temperature for 10 

minutes to permit complete dissociation of nucleoprotein complexes. 

The eppendorf tube(s) were spun at 16,400 rpm (24 x 3,75 g) for 10 

minutes in a cooled centrifuge at 0°C. At this stage, if the centrifugation 

had not been sufficient, the DNA-containing interphase would appear 
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turbid due to poor compaction. An additional chloroform step would 

resolve this. After centrifugation the eppendorf(s) are placed on ice at 

4°C and the upper phase is placed into a new tube. Care is taken at this 

stage to avoid aspirating the DNA-containing white interphase as this 

will lead to DNA contamination in the RNA preparation. 500 μL of ice-

cold isopropanol and 1 μL of Glycoblue™ (Invitrogen, AM9516) were 

added to precipitate the RNA. The eppendorf tube(s) were then 

vigorously vortexed and incubated at room temperature for 10 minutes 

before centrifugation at 0°C for 30 minutes at 16,400 rpm. The 

supernatant was removed and discarded leaving behind the RNA pellet, 

which was a visible blue colour. The RNA pellet is washed with 70 % 

ethanol (prepared using RNase free water) and centrifuged at 0°C for 

10 minutes. The ethanol was removed and the RNA pellet was left to 

air-dry at room temperature before being re-dissolved in 45 μL of 

RNase free water in preparation for DNase treatment.  

 

4.3.4. DNase treatment 

 

10 x DNase I buffer was added to each RNA sample to a final 

concentration of 1 x 6 μL of DNase I was added to each sample and 

incubated at 37°C for 30 minutes. 1 μL of 250 mM EDTA stock was then 

added to prevent chemical scission during heat inactivation of DNase I 

at 75°C for 10 minutes. RNA was precipitated using 500 μL absolute 

isopropanol and 1 μL Glycoblue™ to remove EDTA, which may inhibit 

downstream reactions by chelating Mg2+ ions and was then re-

suspended in 20 μL of RNase free water once the pellet had air dried at 

room temperature. 
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4.3.5. Determining RNA concentration by spectrophotometry and 

denaturing gel electrophoresis 

 

To determine the amount of RNA extracted from X. laevis embryos 

(n=10) after TRIzol™ extraction and DNase I treatment, it is a 

requirement to use a nanodrop both to determine the amount of RNA 

present and to detect DNA or phenol/chloroform contamination. 

Absorbance measurements will detect any molecules absorbing at a 

specific wavelength post-purification resulting in a signal for 

nucleotides, RNA, ssDNA and dsDNA that will absorb at 260 nm and 

contribute to the total absorbance. The ratio of absorbance at 260 nm 

and 280 nm is used to quantitate the purity of RNA used for subsequent 

real-time PCR experiments. A ratio of ~ 1.8 is accepted as “pure” for 

DNA; a ratio of ~ 2.0 is accepted as “pure” for RNA. If the ratio is 

substantially lower in either case, it may indicate the presence of 

protein, phenol/chloroform or other contaminants that absorb strongly 

at 280 nm. The nanodrop used to determine RNA concentration in this 

thesis is the NanoDrop® ND-1000 spectrophotometer that gives a 

consistent 260/280 ratio. The second measure of RNA purity is the 

260/230 ratios. The 260/230 values for “pure” RNA are higher than the 

260/280 values and are within the range of 2.0 to 2.2. Again, if this ratio 

is substantially lower then, it may also indicate the presence of 

contaminants that absorb at 230 nm. The RNA extraction protocol 

previously described the use of Glycoblue™ that absorbs at both 

260/280 and 260/230. This does affect the nanodrop quantification but 

is not significant. The expected Glycoblue™ 260/280 and 260/230 

values are 1.71 and 0.84, respectively.  

 

To confirm that the RNA extracted has not degraded due to RNase 

activity, gel electrophoreses using a 1.5 % denaturing formaldehyde gel 

in MOPS buffer can be used. 1 g of agarose powder in 72 mL of dionised 

water was stirred and heated to 80°C. 10 mL of 10 x MOPS buffer was 
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added and stirred. Once the agarose mix had cooled to 60°C 18 mL of 

fresh formaldehyde (37 %) was added and stirred. The mix was then 

poured into a northern blot tank and allowed to cool at room 

temperature. Once set, the gel was immersed in 1 x MOPS buffer. The 

RNA sample(s) were heated at 70°C for 10 minutes with 2 x RNA 

loading dye (Thermo scientific, R0641) for visualisation under a UV 

trans illuminator. Electrophoresis was carried out at 70 V for 65 

minutes. Intact total RNA run on a denaturing gel will have sharp 28S 

and 18S rRNA bands. Completely degraded RNA will appear as a very 

low molecular weight smear. 

 

 10 x MOPS buffer: 0.4 M MOPS (pH 7.0), 0.1 M sodium acetate, 

0.01 M EDTA (pH 8.0) 

 

4.3.6. cDNA preparation 

 

First strand cDNA Synthesis Using SuperScript™ II reverse transcriptase 

enzyme (Invitrogen, 18064-014) was used to make cDNA from 

template RNA in the range of 1 ng - 5 μg in a 20 μL reaction volume. 

Using nuclease-free micro centrifuge tube(s) 1 μL of random 

hexadeoxynucleotides (Promega, C1181), 1 μL of 10 mM 

deoxyribonucleotides [dATP, dCTP, dGTP and dTTP] (Promega, U1410) 

and 1 μg of total RNA (x μL) were added and made up to a 20 μL volume 

with RNase free water. The mix was then centrifuged for 1 minute to 

settle contents and incubated at 65°C for 5 minutes and placed back on 

ice at 4°C. 4 μL of 5 time First strand buffer, 2 μL of 0.1 M DDT and 1 μL 

of RNasin (Promega, N2611) was vortex and centrifuged at 16,700 rpm 

for 30 seconds before incubation at 25°C for 2 minutes. 1 μL of 

Superscript II enzyme (200 U) was added and incubated at 25°C for 10 

minutes with a longer incubation at 42°C for 50 minutes to allow cDNA 

synthesis. The superscript II enzyme was heat inactivated to stop the 

reaction at 70°C for 15 minutes. cDNAs were diluted 1:20 to give a final 
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concentration of 10 ng/μL. Oligo(dT)15 Primer is unsuitable for use as a 

primer for first-strand cDNA synthesis in X. laevis as the primer 

hybridises to the poly(A) tail of mRNA which X. laevis mRNA does not 

have. 

 

4.3.7. Real-time PCR procedure 

 

Real-time PCR was performed on cDNA extracted from whole embryo 

(n=10) lysates treated with DMSO ± leflunomide (batch #012M4002V, 

L-5025, Sigma) with samples loaded into plates in triplicate. 

Brightwhite 96-well plates (BW-FAST) and high quality optical plate 

seals (BW-ADVSEAL) were used (PrimerDesign Ltd, Southampton, UK). 

Gene-specific nucleotide sequences were detected using Precision™ 

FAST-LR 2x mastermix (PrimerDesign Ltd, Southampton, UK). Real-

time PCR was performed in a final volume of 20 μL (10 μL 2 x master 

mix / 1 μL primer [0.25 μMol; 0.25 x 10-6 mol/dm-3] / 5 μL cDNA [5 ng / 

μL; 300 nmol] / 4 μL RNase free water) using a 7500 FAST real-time 

PCR instrument (Roche) under the following cycling conditions: 95°C 

for 20 s, 40 cycles at 95°C for 3 s, 60°C for 30 s.  After cycling, a melting 

curve was recorded between 60°C and 95°C under the following 

conditions: 95°C for 15 s, 60°C for 1 min, 95°C for 15 s, 60°C for 15 s 

with a ramp rate of 0.11°Cs-1.  

 

4.3.8. Primer design 

 

Detection primers were designed using Primer3 software 

(http://biotools.umassmed.edu/bioapps/primer3_www.cgi) 

(Untergasser et al., 2012) and custom designed by PrimerDesign Ltd, 

UK where indicated in table 4.2. Their oligonucleotide sequences are 

provided in Table 4.2. In-house designed primers were synthesised by 

eurofins (Norwich, UK) and custom primers were designed by and 

purchased from PrimerDesign Ltd (PrimerDesign Ltd, Southampton, 
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UK). The primers used in this thesis produce low Ct scores and a single 

peak in the derivative of the melting curve, and did not amplify non-

template controls (NTC) and no reverse transcriptase (-RT). 

 

Nucleotide sequences for genes of interest were generated from the 

NCBI website (http://www.ncbi.nlm.nih.gov/pubmed) and for those 

genes that were not available on NCBI their nucleotide sequences were 

downloaded from the Xenopus genome browser available from Simon 

Moxon (TGAC, The Genome Analysis Centre, Norwich) that were held 

on the servers at the University of Yale, USA. The downloaded Xenopus 

genome browser sequences are given a CUFF link identification number. 

 

For NCBI and CUFF link sequences that were input through the Primer3 

algorithm a list of parameters were set in order to generate adequate 

real-time PCR primers. The following set of parameters was used to 

design in house primers (Untergasser et al., 2012): 

 pair towards 3' end to increase specificity of primers 

 pair separated by an exon-exon boundary e.g. last exon & 

penultimate 

 amplified region around 200 bp 

 GC content: 50-60% 

 minimum length: 18 nt , max length 24 nt (best: 20 nt) 

 melting temperature: min 60°C, max 63°C, best 60°C 

 maximum Tm difference: 10°C (shouldn't be more than 1°C in 

final pair) 

 maximum 3' self complementary: 1 

 maximum poly-x: 3 

 

The primers that were chosen using these parameters were verified by 

“blasting” the primers sequences (Altschul et al., 1990). The gene of 

interest should come out with the lowest expected (E) value and no 

other gene should be detected.  The E-value is a parameter that 
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describes the number of hits that can occur by chance when searching a 

database of a particular size. The lower the E-value, or the closer it is to 

zero, the more “significant” the match is (Untergasser et al., 2012). 

 

4.3.9. PCR product purification for sequencing reaction 

 

Real-time PCR product was purified using the QIAquick™ PCR 

purification kit (Qiagen, 28104) according to manufacturers 

instructions in another laboratory to prevent sample contamination. 

The primers used to generate PCR product were sent with purified 

product to Source Bioscience Ltd, Cambridge, UK. Source Bioscience 

performed was Sanger Sequencing to identify the sequence of the PCR 

product. 

 

4.3.10. geNORM analysis – suitable reference genes 

 

geNORM is an algorithm used to determine the most stable reference 

genes from a set of tested candidate reference genes in a given sample 

panel. A gene expression normalisation factor can be calculated for each 

sample based on the geometric mean of a user-defined number of 

reference genes. The geNORM kit was purchased from PrimerDesign 

Ltd, UK. This kit provided primers for some of the genes listed in table 

4.3. 
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Table 4.2: Neural crest primers

Xenopus laevis gene name Gene 
symbol 

Accession 
number/ XL 
genome 
browser CUFF 

Sequence 
length 
(bp) 

Product 
length 
(bp) 

Tm 
(°C) 

Sense primer Anti-sense primer References 

XL SRY (sex determining 
region Y)-box 10 

Sox10 NM_001088889 3,324 115 71.5 GATGAAGAAGAAGAAGAAGAAACA
AAA 

TCCAGTCGTAGCCATTTAACAC Primer Design Custom X. 
laevis design 

XL twist basic helix-loop-helix 
transcription factor 1 

Twist1-a NM_001085883 1,379 109 76.3 GAGTAACAGCGAGGAAGAGC CTTCACTGAGATCGGACTGTC Primer Design Custom X. 
laevis design 

XL snail family zince finger 2 Snail2-a NM_001086282 1,785 114 71.2 CCCTATTTCCTTGTTGCGTTTAA CTTCGTAAAGCACCTGAGAATG Primer Design Custom X. 
laevis design 

XL Zic family member 3 Zic3 NM_001087619 2,364 107 68.2 TTGAACCAAGGCGGAAATG CTTTGTTAGTCTGTAGCCATCT Primer Design Custom X. 
laevis design 

XL SRY (Sex determining 
region Y)-box 2 

Sox2 NM_001088222 1,190 87 75.7 CGGGCATGTCTCTGGGATC GCGAATGGGAAGAAGAGGTG Primer Design Custom X. 
laevis design 

XL SRY (sex determining 
region Y)-box 9 

Sox9-a NM_001090807 3,071 130 75.8 CACACATCAAGACCGAGCAA CGGGTGATAGTTGGGTATGAAG Primer Design Custom X. 
laevis design 

XL paired box 3 Pax3-a NM_001095524 3,109 123 77.1 GGCTCTGATATTGACTCCGAAC CGGGTAGTGGGTTCTCTCG Primer Design Custom X. 
laevis design 

XL proto-oncogene c-myc II Myc NM_001090653 2,487 93 73.8 GAAACACCACCCATCAGCAG CTCTTCCTCGTCGCAGTCT Primer Design Custom X. 
laevis design 

XL Zic family member 1 Zic1 CUFF.8063.1 2,435 140 81.6 GCACGTTCATACATCGGACA 
 

TGGACCTTCATGTGCTTCCT 
 

Christopher Ford 

XL distal-less homeobox 5 DLX5 CUFF.15807.1  
 

1,301 142 82.9 GAGAGCTGCCTCCAGAACAC 
 

GTTCCCACACCACTGGAGAC Christopher Ford 

XL homeobox containing 
peptide Xhox 7.1 

MSX1b BC081101 1,619 
 

145 84.3 AAAGCCCAAGCTTCTCACCT 
 

TGCTTCTGCCTGAACTTCCT 
 

Christopher Ford 

XL forkhead box D3 FoxD3b NM_001085609 1,756 148 85.7 GATGCAGAGGGTAAGGGTGA TCAGGGTGAGCTTCTTCTGG Christopher Ford 

XL snail family zinc finger 1  Snail1 CUFF.39257.1 1,917 151 80.5 CCTCTTGTCTGGGACACTGG AAGGGCTGATGGGAGACTTT 
 

Christopher Ford 

XL AP-2 alpha (activating 
enhancer binding protein 2 
alpha) (tfap2a-a) 

AP2a NM_001087569 1,936 132 81.6 GAGCAAGTAACGCGGAAGAA 
 

CTGTATCCCAGGCTCCAGAA 
 

Christopher Ford 

XL gastrulation brain 
homeobox 2, gene 2  

GBX2.2 CUFF.32795.1 
 

2,310 130 81.1 TGCTGCCTTCTCTGCTTCT 
 

GCTTCCTTCCCAGACTCCTC 
 

Christopher Ford 

XL inhibitor of DNA binding 3, 
dominant negative helix-loop-
helix protein 

ID3 CUFF.8787.1 1,788 154 81.9 CAAGGGACCAGGTATGGATG CCTGGCACCAACTCTTTCAG 
 

Christopher Ford 

XL basic-helix-loop-helix 
transcription factor hairy2 

Hairy2 AF139914 
 

1,804 138 86.6 GCCATGAATTACCAGCAACC 
 

GCCTCCCTGGAATACCTTTG 
 

Christopher Ford 
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Table 4.3: Reference gene primers

Xenopus laevis gene 
name 

Gene 
symbol 

Accession 
number/ XL 
genome browser 
CUFF 

Sequen
ce 
length 
(bp) 

Product 
length 
(bp) 

Tm (°C) Sense primer Anti-sense primer References 

XL Actin, beta actb NM_001088953 1,662 139 77.1 PRIMER SEQUENCES PROTECTED BY INTERNATIONAL COPYRIGHT LAW Primer Design X. laevis 
GeNORM kit 

XL Eukaryotic translation 
elongation factor 1 alpha 1 

eef1a1 NM_001087442 1,730 149 79.1 PRIMER SEQUENCES PROTECTED BY INTERNATIONAL COPYRIGHT LAW  Primer Design X. laevis 
GeNORM kit 

XL Ornithine 
decarboxylase 1 

odc1 NM_001086698 1,973 151 77.6 PRIMER SEQUENCES PROTECTED BY INTERNATIONAL COPYRIGHT LAW  Primer Design X. laevis 
GeNORM kit 

XL Glyceraldehyde-3-
phosphate dehydrogenase 

gapdh NM_001087098 1,183 106 71.4 PRIMER SEQUENCES PROTECTED BY INTERNATIONAL COPYRIGHT LAW  Primer Design X. laevis 
GeNORM kit 

XL Succinate 
dehydrogenase complex, 
subunit A, flavoprotein 

sdha NM_001087301 2,349 166 78.1 PRIMER SEQUENCES PROTECTED BY INTERNATIONAL COPYRIGHT LAW  Primer Design X. laevis 
GeNORM kit 
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4.4. Statistics 

 

4.4.1. Statistical analysis 

 

The data for real-time PCR experiments was analysed using the 7500 

FAST software. Measured Ct values for real-time PCR technical and 

biological replicates for each gene of interest were analysed using the 

NORMA-gene algorithm (Heckmann et al., 2011). NORMA-gene reduces 

systematic and artificial between-replicate bias utilising the entire data 

set of the target genes being studied. NORMA-gene is applicable to small 

data sets greater than five genes of interest and is used as my primary 

analysis tool as it produces equal or better normalisation compared to 

delta-delta Ct method (Heckmann et al., 2011).  NORMA-gene reduces 

systematic (e.g. general effects of sample preparation such as RNA 

extraction) variance and does not change relative differences between 

treatments. A difference in relative normalised expression of the target 

genes between leflunomide -treated and -control samples was assessed 

using the student’s t-test. leflunomide affects gene transcription, thus 

impacting upon both metabolic and neural crest pathways making 

reference gene normalisation unreliable using the delta-delta Ct method 

(Smith and Hall, 1990). 

 

 

 

 

 

 

 

 

 

 

 



 75 

5. Results 

 

5.1. Real-time PCR primer design and optimisation 

 

For this study novel primers were designed and optimised for Xenopus 

laevis to quantitatively validate changes in gene expression profiles due 

to leflunomide treatment. Genes involved in neural crest formation that 

are sensitive to leflunomide treatment were confirmed by real-time 

PCR in order to validate in situ hybridisation data and RNA deep 

sequencing data from my host laboratory. The real-time PCR results 

generated in this thesis complements other data generated within my 

host laboratory. 

 

The final primers can be seen in methodologies Table 4.2 with 

corresponding amplification plots and melt curves for each primer set 

in figures 5.2 & 5.3. Each individual primer set satisfies the 

characteristics essential for excellent primer design as outlined by Apte 

& Daniel and Dieffenbach (Heanue and Pachnis, 2007; Le Lievre and Le 

Douarin, 1975) that were used to create the primers in this thesis. In 

table 4.2, it can be seen that each of the primers were within the 18 to 

22 bp range with the exception of some primers that had additional 

adenine (A) bases at the 3’ end to aid oligonucleotide annealing. 

Primers that had similar melting temperatures (Tm) within 5°C of one 

another were run on the same plate. The guanine (G) and cytosine (C) 

ratio for each primer was within the range of 50 to 60 %. Ideally, the G 

and C content is optimal in the range of 45 to 50 %, however, primers 

that had a GC content outside of this range performed as expected. Ten 

primer sets were novel designs to the study and have not been 

previously published, these include: Zic1, Dlx5, Msx1b, FoxD3, Snail2, 

Ap2a, GBX2.2, Id3a and Hairy2. An external company named 

PrimerDesign Ltd designed nine primers that were also novel and these 

include: Sox10, Sox2, Sox9a, Twist1a, Snail2, Zic3, Pax3a and cMyc. 
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PrimerDesign Ltd designed primers that were unable to be generated 

by myself as they failed to amplify sequence specific transcript from 

target cDNA.  Gene accession numbers and cufflink ID’s for those 

primers designed from the Xenopus Genome Browser (available from 

Dr Simon Moxon) are listed in table 4.2. An average of five primer sets 

were generated for each gene of interest and only those that met the 

criteria outlined in figure 5.1 were used to create a putative bank of 

Xenopus laevis neural crest primers.  

 

A strategy including criteria described in the method 4.3.9 was devised 

during optimisation of the real-time PCR set-up. This strategy was 

adapted and altered from Apte & Daniel and Dieffenbach to fit the 

requirements for using real-time PCR to detect gene expression within 

Xenopus laevis samples (Figure 5.1.) (Heanue and Pachnis, 2007; Le 

Lievre and Le Douarin, 1975).  

 

For the evaluation of each primer set, both specificity and sensitivity 

tests were performed. The basic local alignment search tool (BLAST) 

(Altschul et al., 1990) was used to compare sequences of interest 

against various gene and genome databases, such as Ensembl 

(http://www.ensmbl.org) and NCBI (http://www.ncbi.nlm.nih.gov). 

Initial BLAST homology searches discovered that the newly designed 

primers were specific to the gene of interest. This was also confirmed 

experimentally, when the amplicons were identified at specific stages of 

Xenopus development with their known temperature signatures. Primer 

specificity was observed by melt curve analysis as tall sharp melt 

curves were observed for all validated primer sets. Genes of interest 

were unamplified in the presence of genomic DNA to test the specificity 

of the primers that were synthesised from genes that have only one 

exon. The occurrence of false positives generated in the method 

outlined previously as a result of specificity issues would thus be 

limited or extant.  The amplification plots and melt curves for the neural 



 77 

plate border genes are shown in figure 5.2, the neural crest specifier 

plots are shown in figure 5.3 and for the reference genes (table 4.3) 

used in the geNORM analysis are shown in figure 5.4.  
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Figure 5.1: Primer design and optimisation workflow chart 
An illustration of the management strategy used to outline the minimal criteria for the primer design/selection process.
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Figure 5.2: Neural plate border amplification plots and melt curve 
analysis. 
The neural plate border genes Zic1, Zic3, Pax3, Dlx5.5 and Msx1b were 
amplified from stage 18 template cDNA synthesised using SuperScriptII and 
detected using SYBR FAST. The primer sets for genes Zic1, Dlx5.5 and Msx1b 
were designed in house and PrimerDesign Ltd designed mixed primers sets 
for Zic3 and Pax3. Zic3 and Pax3 were amplified with 18s RNA control (Light 
blue and pink, respectively). Fluorescence signals from FAST SYBR measured 
in channel 1 (520 nm) for amplification plots and melt curves. Amplification 
plot axis labels: cycle number (x-axis), ΔRn (y-axis).  ΔRn is the reporter signal 
normalised to the fluorescence signal of ROX (an inert dye in SYBR reagents). 
Melt curve axis labels: Temperature (°C) (x-axis), Change in rate of relative 
fluorescence units (-d(RFU)T/dT) (y-axis). 
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Figure 5.3: Neural crest specifier amplification plots and melt curve 
analysis including the pan neural marker Sox2. 
The neural crest specier genes FoxD3, Id3a, Twist, Hairy2, Slug/Snail2, Gbx2.2, 
Snail1, Sox9, cMyc, Sox10, Ap2a and the pan neural marker Sox2 were 
amplified from stage 18 template cDNA synthesised using SuperScriptII and 
detected using SYBR FAST. The primer sets for genes FoxD3, Id3a, Hairy2, 
Gbx2.2, Snail1 and Ap2a were designed in house and PrimerDesign Ltd 
designed mixed primers sets for Twist, Slug/Snail2, Sox9, cMyc, Sox10 and 
Sox2. Twist, Slug/Snail2, cMyc, Sox9, Sox10 and Sox2 were amplified with 18s 
RNA control (pink, red, blue and pink, respectively). Amplification plot axis 
labels: cycle number (x-axis), ΔRn (y-axis).  ΔRn is the reporter signal 
normalised to the fluorescence signal of ROX (an inert dye in SYBR reagents). 
Melt curve axis labels: Temperature (°C) (x-axis), Change in rate of relative 
fluorescence units (-d(RFU)T/dT) (y-axis). 
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Figure 5.4: Reference genes used for geNORM analysis amplification 
plots and melt curve analysis 
The reference genes for geNORM analysis ornithine decarboxylase 1 (Odc1), 
ribosomal protein L13 (Rpl13), glyceraldehyde 3-phosphate 
dehydrogenase (Gapdh), eukaryotic translation elongation factor 1A (Eef1a), 
Succinate dehydrogenase complex, subunit A (Sdha) and beta actin (Actb) 
were amplified from stage 18 template cDNA synthesised using SuperScriptII 
and detected using SYBR FAST. PrimerDesign Ltd designed the mixed primer 
sets for these reference genes. Amplification plot axis labels: cycle number (x-
axis), ΔRn (y-axis).  ΔRn is the reporter signal normalised to the fluorescence 
signal of ROX (an inert dye in SYBR reagents). Melt curve axis labels: 
Temperature (°C) (x-axis), Change in rate of relative fluorescence units (-
d(RFU)T/dT) (y-axis). 

 

5.2. Confirming leflunomide batch inhibits Sox10 expression by in situ 

hybridisation and that Sox10 primers are specific by sequencing 

 

In order to validate that the effect of leflunomide observed in the real-

time PCR assays is genuine, whole mount in situ hybridisation was 

performed to detect Sox10 expression. Sox10 is a neural crest cell gene 

specifically expressed in the neural crest region of early embryonic 

stage embryos. Leflunomide specifically affects Sox10 gene expression 

at 60 μM where loss of expression is observed. The effect of leflunomide 

at 60 μM was quantified by assigning embryos into separate divisions of 

no effect, partial loss and complete loss (figure 5.5). Sox10 expression 

in control embryos (n=51) displayed a wild type phenotype in the 

neural crest region. Leflunomide treated embryos (ntotal=61) displayed 

a wild type phenotype of 14.7 % (n=9), a partial loss phenotype of 

9.84 % (n=6) and a complete loss of expression in 75.41 % (n=46) of all 

embryos treated. These results confirmed the batch of leflunomide used 

to treat embryos elicits the expected efficacy as seen in other studies 

(unpublished data, Wheeler laboratory). 

 

To confirm that the oligonucleotide primers designed are specific, 

sequencing was performed to validate the Sox10 amplicon generated by 

real-time PCR. Sox10 was chosen to validate primer specificity as it is 

only expressed in neural crest cells at stage 12 and leflunomide 
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specifically affects its expression. The oligonucleotide sequence 

identified in figure 5.6 has 100 % sequence homology to that of Sox10 

identified under the accession number NM_001088889.1 in the NCBI 

database. 

 

Figure 5.5: Quantification of Sox10 in situ hybridisation to confirm 
leflunomide batch efficacy 
The expression of Sox10 was quantified by counting the number of observed 
wild type, partial loss and loss phenotypes observed after leflunomide 
treatment. [DMSO treated embryos showed no loss of expression and show 
wild type Sox10 expression in the neural crest (n=51).] The leflunomide 
treated embryos displayed a wild type phenotype of 14.7 % (n=9), a partial 
loss phenotype 9.84 (n=6) and loss of expression in 75.41 % (n=46) of the 
total number of leflunomide treated embryos (n=61). 
 

TGTAATGTAACGGGTCTNTNACCTCCGTAGTAGGCATATACTGTCGAATG 

CACGTTCTACACATGTGTGGTTCAATATTGTGCTACTGTACTGCGACA 

Figure 5.6: Sox10 amplicon generated using Sox10 primers 
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5.3. Genomic averaging of multiple internal reference genes (geNORM) 

 

To reveal the most stably expressed reference genes, genomic 

averaging of multiple internal reference genes (geNORM) was 

conducted. The geNORM algorithm determines the most stable 

reference genes from a set of six tested candidate reference genes in 

wild type Xenopus laevis samples. From this, it is possible to calculate a 

gene expression normalisation factor for each sample based on the 

geometric mean of six reference genes. The experimental layout was 

determined “perfect” by geNORM analysis. Results gained were from 

the same run to maximise experimental power.  

 

geNORM calculates the gene expression stability measure (M) for a 

reference gene as the average pairwise variation (V) for that gene with 

all other tested reference genes. Stepwise exclusion of the gene with the 

highest M value allows ranking of the tested genes according to their 

expression stability (figure 5.7a) (Vandesompele et al., 2002). 

 

geNORM analysis revealed the optimal number of reference targets to 

be two (geNORM V<0.15 when comparing a normalisation factor based 

on the 2 or 3 most stable reference genes). As such, the optimal 

normalisation factor can be calculated as the geometric mean of 

reference targets rpl13 and odc1. High reference gene stability was 

observed (average geNORM M ≤ 0.5). This is observed when evaluating 

candidate reference targets on a homogenous set of samples (e.g. 

untreated cultured cells, or blood from normal individuals). The 

average expression stability of the reference genes are ranked from 

least stable to most stable in figure 5.7b. The reference genes are 

ranked least stable to most stable: actb, sdha, eef1a1, gapdh, rpl13 and 

odc1, respectively. Figure 5.7b summarises the optimal number of 

reference genes to normalise gene data, too. The two most stable genes 

revealed by geNORM analysis are odc1 and rpl13. Gapdh was identified 
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as the most unstable reference gene versus the five other target genes 

tested; however, Gapdh was determined stable for normalisation. In 

summary, Xenopus laevis provides a very stable system for gene 

expression assays using real-time PCR and all reference genes studied 

are suitable targets for normalisation. 

 

 

 



 87 

Figure 5.7: geNORM  analysis of reference gene stability and the number 
of reference genes required for normalisation 
GeNORM analysis was performed to establish how stable reference gene 
expression is in Xenopus laevis and the required number of reference genes to 
generate reliable data. (A) Average expression stability of remaining reference 
targets. (B) Determination of the optimal number of reference genes.  
 

5.4. Leflunomide affects reference gene expression  

 

In order to quantify the effect of leflunomide on reference gene 

expression without bias, cDNA was synthesised using two different 

reverse transcriptase kits purchased from different manufacturers. 

Assessing the ability of leflunomide to alter reference gene expression 

was analysed by comparing the cycle threshold value (Ct) of DMSO-

treated samples against leflunomide-treated samples. Secondly, in 

order to optimise real-time PCR sensitivity by observing low cycle 

thresholds, it was necessary to compare different reverse transcriptase 

kits. The first reverse transcriptase kit used was SuperScript® II reverse 

transcriptase that has been genetically engineered by the introduction 

of point mutations in the RNase H active center to reduce RNase H 

activity. This structural modification eliminates degradation of RNA 

molecules during first-strand cDNA synthesis and can generate real-

time PCR products up to 12 kb and enzymatic activity is optimal at 42°C. 

The SuperScript® II Reverse Transcriptase kit can use total or poly(A)+ 

RNA. The second reverse transcriptase kit tested was PrimerDesign 

precision nanoScript. Precision nanoscript is a novel, mutated form of 

the Moloney Murine Leukemia Virus enzyme (M-MLV) enzyme. The 

enzyme contains multiple point mutations and has been engineered to 

enhance its processing power and versatility in a reverse transcription 

reaction. Principally, the enzyme retains greater activity over a wider 

range of temperatures than other modified MMLV enzymes and has 

greater thermo-stability. Reactions performed at higher temperatures 

are faster and increase the total cDNA yield. Higher temperature 

reactions also produce longer transcripts and are more reproducible 
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due to lower levels of secondary structure in the template. The enzyme 

also has an enhanced affinity for primer template complexes enabling 

efficient transcription of very low concentrations of RNA.  

 

Leflunomide has been identified to regulate neural crest cell gene 

transcription and has been shown previously by RNA-sequencing in the 

Wheeler group to affect global gene expression in Xenopus animal cap 

assays. I have confirmed by real-time PCR that leflunomide affects the 

expression of the reference genes used in this thesis. The reference 

genes identified by geNORM analysis are highly expressed genes and 

are not co-regulated. Several conclusions can be drawn from data 

displayed in figure 5.8. Using cDNA synthesised from the superscript II 

kit, a difference in cycle threshold is observed. Secondly, the superscript 

II kit performed better than expected when compared to nanoScript as 

the cycle threshold for each reference gene was significantly reduced 

for superscript II versus nanoScript. The cycle thresholds observed for 

cDNA synthesised from precision nanoscript are close to the limit of 

detection. Lastly, an increase of transcript is observed in all leflunomide 

treated samples versus non-treated samples across all the reference 

genes assayed. To conclude, superscript II performed better than 

nanoScript and is therefore the chosen reverse transcriptase kit used in 

this thesis. The most significant conclusion that can be drawn from this 

data is that leflunomide affects all genes; therefore, reference genes are 

very difficult to find and use.   
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A) Invitrogen Ltd 

 
 
B) PrimerDesign Ltd 

 
 
Figure 5.8: Identifying the optimal reverse transcriptase kit and analysis 
of the effect of leflunomide on reference genes 
Graph A: Invitrogen superScriptII kit using Applied Biosystems SYBR reporter. 
Graph B: PrimerDesign nanoScript kit using Applied Biosystems SYBR 
reporter. Real-time PCR showing level of mRNA expression after 60 μM 
leflunomide treatment at stage 4 compared to DMSO-treated whole embryos. 
From graph A showing the level of expression of stage 18 reference genes 
from cDNA synthesised using the superScript kit are Eef1a1 (17.33 ± 1.37, p= 
0.00014), Gapdh (23.89 ± 1.16, p= 0.00015), Rpl13 (23.46 ± 1.27, p= 0.00026), 
Odc1 (19.70 ± 1.20, p= 6.53x10-5), Actb (20.47 ± 1.24, p= 0.00746), Sdha 
(24.47 ± 1.60, p= 3.37x10-6). *= p≤0.05 to p>0.0000001.  From graph B 
showing the level of expression of stage 18 reference genes from cDNA 
synthesised using the nanoScript kit are Eef1a1 (24.36 ± 5.17, p= 0.11), Gapdh 
(30.31 ± 4.96, p= 0.21), Rpl13 (28.40 ± 2.48, p= 0.09), Odc1 (24.37 ± 2.52, p= 
0.07), Actb (22.09 ± 4.52, p= 0.09), Sdha (31.77 ± 2.07, p= 0.06). NS = not 
significant. *= p≤0.05 to p>0.0000001. Error bars are of the st.dev. 
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5.5. Testing reporter dyes in real-time PCR 

 

In order to increase amplicon detection in reporter dye-based real-time 

PCR, two SYBR intercalating dyes were tested. SYBR reporter dye 

Applied Biosystems SYBR was compared with PrimerDesign FAST SYBR 

by plotting the cycle threshold for amplicons generated from primers 

that amplify reference gene rpl13 cDNA from stage 18 embryos (figure 

5.9).  PrimerDesigns’ FAST SYBR has a more efficient enzyme than 

Applied Biosystems’ SYBR green as a difference of two cycle thresholds 

is observed. To reduce the cycle thresholds of the genes of interest in 

this thesis it was necessary from this result to switch to using 

PrimerDesigns’ FAST sybr. 

 

Figure 5.9: Testing SYBR reporter dyes to increase amplicon detection 
Applied Biosystems SYBR green and PrimerDesign FAST SYBR were tested on 
cDNA from stage 18 wild type embryos using primers to amplify rpl13. 
PrimerDesign FAST SYBR detects rpl13 two cycle thresholds earlier than 
Applied Biosystems SYBR. PrimerDesign FAST SYBR is a more sensitive 
reporter. 
 

5.6. Analysis of neural crest cell genes by real-time PCR 

 

5.6.1 Neural plate and neural plate border specifiers 

 

Previous experiments carried out in my host laboratory have shown 

that treatment of 60 μM leflunomide causes Xenopus embryos to display 

a loss of neural crest derivatives such as melanophores, cranio-facial 

cartilage and sensory neurons (unpublished data). The reduction in this 
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variety of derivatives suggests that the neural crest cells themselves are 

not forming or are not being specified into neural crest cells and 

consequently not undergoing differentiation into the different cell types 

they are able to form. Neural crest cells are initially induced at the 

neural plate border at stage 12 due to the upregulation of neural plate 

border specific genes such as Zic1, Zic3, Pax3, Dlx5 and Msx1. To 

explore the stage of neural crest development in that transcriptional 

elongation is important during early neural crest formation it was 

necessary to treat embryos at an early stage. Stage 4 embryos were 

treated with 60 μM leflunomide and allowed to develop until stage 12 

where they underwent Trizol treatment to isolate total RNA and 

subsequent real-time PCR to identify neural plate border markers 

expression. Embryos were analysed by real-time PCR at stage 15 to 

investigate any possible effect leflunomide might have on general 

neural plate development by carrying out real-time PCR for the pan 

neural plate marker Sox2. 

 

Real time PCR cycle thresholds for the neural plate border markers Zic1, 

Zic3, Pax3, Dlx5 and Msx1 after DMSO treatment are representative of 

wild type expression cycle thresholds of the neural plate border genes 

assayed in stage 12 and stage 15 embryos (figure 5.10). Post 

leflunomide treatment there appears to be no change in the expression 

of these neural plate border genes and their expression resembles that 

of the wild type expression when normalised to the DMSO treated 

embryos. However, Msx1b (0.54 ± 0.017666 s.dev, p=0.01) at stage 12 

in response to 60 μM leflunomide is downregulated by 1.8 fold. These 

results suggest that leflunomide is not having an effect on early neural 

crest induction at the neural plate border. Comparably, the neural plate 

marker Sox2 (figure 5.11l) shows wild type expression in both the 

DMSO-treated and leflunomide-treated embryos by indicating that 

leflunomide has no effect on general neural development as confirmed 

by in situ hybridisation (summary figure 5.12). Real-time PCR data for 
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the neural crest border genes is shown in table 5.1.  Validation of real-

time PCR data was confirmed by a screen of neural plate border 

specifiers by in situ hybridisations (figure 5.12).  
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Figure 5.10: Neural plate border specifiers treated with 60 μM 
leflunomide 
Real-time PCR showing level of mRNA expression after 60 μM leflunomide 
treatment at stage 4 compared to DMSO-treated whole embryos. Panel A to E 
show the level of expression of stage 12 neural crest border specifers: Zic1 (A), 
Zic3 (B), Pax3 (C), Dlx5 (D) and Msx1b (E) and a negative reverse 
transcription (RT) control and no target control (NTC) for each assay. No 
significant change in expression was seen for any of these genes NS = not 
significant. Msx1b at stage 12 was significantly downregulated. *= p≤0.05 to 
p>0.0000001. Error bars are st.dev and the n number represents the number 
of technical replicates including two biological controls.  
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Table 5.1: Neural plate and neural plate border specifier real-time PCR data 
Tabulated real-time PCR results for neural plate and neural plate border genes showing fold change plus/minus standard deviation and t-test 
to shown significance of gene expression on stage 12 and stage 15 embryos treated with 60 μM leflunomide. 
 

 Stage 12 Stage 15 
Xenopus laevis 
gene 

No. of real-time 
PCR runs with 3 
technical 
replicates 

Fold change ± 
s.d. (6dp) 

Two-tailed 
Student’s t-test 

No. of real-time 
PCR runs with 3 
technical 
replicates 

Fold change ± 
s.d. (6dp) 

Two-tailed 
Student’s t-test 

Zic1 10 1.12 ± 0.016723 p= 0.250 12 0.95 ± 0.023535 p=  0.97 

Zic3 6 0.87 ± 0.017819 p= 0.215 6 0.87 ± 0.027121 p=  0.55 

Pax3 6 0.87 ± 0.017694 p= 0.810 6 0.80 ± 0.026572 p=  0.07 

DLX5 10 0.71 ± 0.016742 p= 0.222 12 0.76 ± 0.024595 p=  0.73 

MSX1b 10 0.54 ± 0.017666 p= 0.010 12 0.67 ± 0.023532 p=  0.57 
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5.3.2 Neural crest specifiers 

 

Following induction at the neural plate border the neural crest cells 

then undergo specification. A number of genes have been shown to be 

involved in this process. To analyse the effect of leflunomide on neural 

crest specification, real-time PCR experiments were carried out using a 

range of neural crest specifying genes. Embryos were treated with 60 

μM leflunomide and left to develop until stage 12 and stage 15 where 

they then underwent processing for real-time PCR of neural crest 

specifier genes. 

 

The most obvious downregulation for these neural crest specifiers was 

seen after real-time PCR analysis of Slug and Sox10. The real-time PCR 

results showed that Slug/Snail2 levels in the 60 μM leflunomide-treated 

embryos at stage 12 and stage 15 were downregulated by 1.9 fold (0.51 

± 0.017883 st.dev, p= 1.03 x 10-08) and 2.5 fold (0.40 ± 0.026547 st.dev, 

p= 2.99 x 10-07), respectively (figure 5.11e). Likewise, Sox10 levels of 60 

μM leflunomide-treated embryos at stage 12 and stage 15 were 

downregulated by 2.4 fold (0.42 ± 0.017662 st.dev, p= 3.38 x 10-13) and 

1.7 fold (0.60 ± 0.027310 st.dev, p= 8.02 x 10-08), respectively (figure 

5.11j). Other neural crest specifiers showed some downregulation of 

expression but not as striking as Slug and Sox10 at both stage 12 and 

stage 15. cMyc expression in the neural crest region shown by in situ 

hybridisation (figure 5.12c) was shown to be obliterated, however, real-

time PCR could not reflect this as cMyc is expressed in neural tissue 

where leflunomide does not alter its expression (Hatch and Wheeler, 

unpublished). cMyc is an early neural crest specifier and starts to be 

expressed in the neural crest at stage 12 as detected by real-time PCR. 

DMSO treated embryos showing wild type cMyc expression (figure 

5.12) show expression in the early neural crest cells in the anterior of 

the embryo and also dorsal neural tissues. cMyc is not specific for 

neural crest and plays a role in determining other tissue types. Real-
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time PCR revealed cMyc to be downregulated by 1.5 fold (0.68 ± 

0.017355 st.dev, p= 0.0002) in stage 12 embryos treated with 60 μM 

leflunomide. Sox10 wild type expression shown in figure 5.5j is specific 

for the neural crest cells at stage 15 and continues to be expressed in 

migrating neural crest cells where its expression is crucial for neural 

crest cell differentiation. Along with cMyc this neural crest specifier 

showed a striking downregulation of expression after leflunomide 

treatment that was detected by real-time PCR. 

 

Additional neural crest specifier genes that were assayed at stage 12 

and stage 15 include FoxD3, Gbx2.2, Twist, Id3, Slug/Snail2, Hairy2, 

Snail1, Sox9, cMyc, Sox10, and Ap2a. These data are represented in 

table 5.2. These all show specific expression in the neural crest cells by 

in situ hybridisation (Hatch and Wheeler, unpublished data). Post 

leflunomide treatment these neural crest specifiers show some 

downregulation of expression (figure 5.11) with the exception of FoxD3 

(figure 5.11a), Hairy2 (figure 5.11f), Sox9 (figure 5.11h) and Ap2a 

(figure 5.11k), which are unaffected or are upregulated by 60 μM 

leflunomide treatment. Sox2 is a neural marker and leflunomide does 

not affect its expression. FoxD3 expression is seen to increase at stage 

12 and Hairy2 expression is seen to increase at stage 12 and stage 15 

which may be due to their expression in neural tissue and not due to 

leflunomide treatment directly. In situ hybridisation is poor at reflecting 

overexpression of genes, which may be a reason why the 

overexpression of these genes has only been reported in this thesis. 

However, RNA-sequencing has shown FoxD3 expression in wnt + 

noggin injected animal caps (neural crest samples) at stage 15 to be 

downregulated. This has been confirmed by in situ hybridisation. In the 

same samples RNA-sequencing has shown Hairy 2 to remain unaffected 

by leflunomide treatment, however, real-time PCR has revealed their 

expression to increase significantly at stage 12 and stage 15. Taken as a 

whole, these results suggest that leflunomide is acting on neural crest 
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cells during their specification to selectively inhibit their specification. 
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Figure 5.11: Neural crest specifiers treated with 60 μM leflunomide 

Real-time PCR showing level of mRNA expression after 60 μM leflunomide 
treatment at stage 4 compared to DMSO-treated whole embryos. Panels from 
A to K show the level of gene expression of neural crest specifiers: FoxD3 (A), 
Gbx2.2 (B), Twist (C), Id3a (D), Slug/Snail2 (E), Hairy2 (F), Snail1 (G), Sox9 
(H), cMyc (I), Sox10 (J), Ap2a (K) and the pan neural marker Sox2 (L). All 
assays were performed alongside a negative reverse transcription (RT) 
control and no target control (NTC). The genes that show significance are 
indicated with *= p≤0.05 to p>0.0000001,**=p≤0.0000001 to >0.0000000001 
and ***= p≤0.0000000001 to ∞. NS = not significant. Error bars are of the 
st.dev and the n number represents the number of technical replicates 
including two biological controls. 
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 Stage 12 Stage 15 
Xenopus laevis 
gene 

No. of real-time 
PCR runs with 3 
technical 
replicates 

Fold change ± 
s.d. (6dp) 

Two-tailed 
Student’s t-test 

No. of real-time 
PCR runs with 3 
technical 
replicates 

Fold change ± 
s.d. (6dp) 

Two-tailed 
Student’s t-test 

FoxD3b 10 1.22 ± 0.016202 p= 0.023 12 0.93 ± 0.024376 p=  0.49 

Twist 6 0.51 ± 0.016805 p= 0.0001 6 0.87 ± 0.027037 p=  0.003 

Slug 6 0.51 ± 0.017883 p= 1.03 x 10-08 6 0.40 ± 0.026547 p=  2.99 x 10-07 

Snail1 10 0.80 ± 0.017508 p= 0.389 12 0.75 ± 0.023267 p=  0.02 

cmyc 6 0.68 ± 0.017355 p= 0.0002 6 0.86 ± 0.027141 p=  0.09 

AP2a 10 0.87 ± 0.017618 p= 0.292 12 0.82 ± 0.023894 p=  0.21 

GBX2.2 10 0.72 ± 0.016652 p= 0.0002 12 0.81 ± 0.023839 p=  0.02 

ID3 10 0.75 ± 0.016638 p= 0.0003 12 0.74 ± 0.023482 p=  0.03 

Hairy2 11 1.18 ± 0.017502 p= 0.002 12 1.18 ± 0.027018 p=  0.03 

Sox9 6 0.69 ± 0.018026 p= 0.0002 6 0.74 ± 0.027283 p=  4.64 x 10-07 

Sox10 6 0.42 ± 0.017662 p= 3.38 x 10-13 6 0.60 ± 0.027310 p=  8.02 x 10-08 

Sox2 (NPB) NOT EXPRESSED 6 0.83 ± 0.026703 p=  0.14 

Table 5.2: Neural crest specifier genes and neural plate border specifier sox2 gene real-time PCR data 
Tabulated real-time PCR results for neural crest specifier genes and neural plate border Sox2 gene showing fold change plus/minus standard 
devidation and t-test to shown significance of gene expression on stage 12 and stage 15 embryos treated with 60 μM leflunomide.
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Figure 5.12: Leflunomide inhibits the transcription of neural crest 
specifier genes. 
(A) Whole mount in situ hybridisation carried out on embryos treated with 
either DMSO or 60 μM leflunomide from stage 4 until stage 13 (Zic1, Zic3 and 
Pax3) or stage 15 (Sox2). Neural plate border markers Zic1, Zic3 and Pax3 
show no change in expression. Likewise, no change is seen for neural plate 
marker Sox2. (B) Whole mount in situ hybridisation carried out on embryos 
treated with either DMSO or 60 μM leflunomide from stage 4 until stage 13 
(cMyc) or stage 15 (Sox10, Slug and FoxD3). Neural crest tissue-specific loss of 
cMyc expression is seen in the anterior region of the embryo (black arrows) 
and no loss of expression is seen in the posterior neural tissue. Loss of Sox10 
expression (black arrows) and some loss or alteration of expression on Slug 
and FoxD3 can be seen. Scale bar represents 0.5 mm. (C) Real-time PCR 
showing level of mRNA expression after 60 μM leflunomide treatment at stage 
4 compared to DMSO-treated whole embryos. Top panel shows the level of 
expression of stage 12 neural crest border specifers: Zic1, Zic3, Pax3, Sox2 and 
a negative reverse transcription (RT) control and no target control (NTC). No 
significant change in expression was seen for any of these genes (NS = not 
significant). Bottom panel shows the level of expression of neural crest 
specifiers cMyc at stage 12 (n=6) others at stage 15; Sox10, Slug, Sox9, Snail1 
and a negative reverse transcription (RT) control and no target control. All of 
these show a significant decrease in expression level. *= p≤0.05 to 
p>0.0000001,**=p≤0.0000001 to >0.0000000001 and ***= p≤0.0000000001 
to ∞. Error bars are st.dev and the n number represents the number of 
technical replicates including two biological controls. Copyright authorisation: 
In situ hybridisation images courtesy of Dr Victoria Hatch for reproduction in 
this thesis to support real-time PCR data and for reference purposes only. 
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6. Discussion 

 

6.1. The importance and relevance of studying the neural crest cells 

 

Appearing synchronously alongside the vertebrate lineage, neural crest 

cells were principally responsible for the development of the “new head” 

and “new neck” of vertebrate animals. The neural crest was also 

responsible for the predatory behaviors that follow from these 

morphological changes (Gans and Northcutt, 1983; Kuratani, 2008). 

Interestingly, the diversity that we see today not only in humans, but 

also in Galapagos finches as studied by Charles Darwin (beak shape and 

size), are due to the governance of neural crest cells that form the 

cartilage and bones of the face, as well as pigmentation which arises 

from the neural crest cell derivative, the melanophore. Neural crest 

cells that form at the neural plate border between the neural and non-

neural ectoderm, are unique as these cells migrate over long distances 

along stereotypical pathways to give rise to derivatives that are highly 

diverse and specialised (Knecht and Bronner-Fraser, 2002; Le Douarin 

et al., 2007). 

 

We aimed to study the neural crest in ever-greater detail, to reveal the 

intricate levels of control that allows this population of cells to succeed 

in its contribution to the developing embryo and in disease such as 

neurocristopathies and cancer. Our depth of understanding is not 

restricted to the potential of these cells to develop, but also allows us to 

uncover other self-renewing populations such as somatic stem cells and 

cancers. There are countless pathologies that involve the neural crest, 

due to their ability to proliferate, metastasise and their resilience 

against therapeutics. The potential for translational advances is 

enormous, as the genes that govern the neural crest may potentially 

represent therapeutic targets. A wealth of knowledge has been gained 
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from studying the neural crest and related pathologies, however, many 

questions still remain.  

 

6.2. Primer design and selection process 

 

In the present study, the objective was to quantitatively analyse the 

effect of leflunomide on neural crest cell gene regulation during early 

embryonic development. For this study, oligonucleotide primers were 

selected to target five neural plate border genes, eleven neural crest 

specifier genes and one pan neural plate marker gene Sox2. To further 

strengthen our hypothesis that leflunomide can specifically affect 

neural crest specification genes other neural plate markers such as 

Nestin, NeuroD1 and Sox1 are needed for real-time PCR analysis.  These 

genes all have been identified as playing an important role in neural 

crest development in Xenopus laevis and other vertebrate species. To 

date, no single study has examined the simultaneous detection of these 

neural crest genes in Xenopus or any other species. The primers 

designed for Xenopus laevis are entirely novel and have not been 

previously published making this study useful for researchers to refer 

to for neural crest real time PCR primers. 

 

Careful primer design was essential for progression of this present 

study, since the selection of non-optimal primers may incorrectly 

amplify unwanted DNA and cause problems further downstream. The 

primer characteristics of optimal primers for the purpose of identifying 

neural crest cell genes sensitive to leflunomide were that they would 

have high target specificity, are robust to reduce the occurrence of 

mispriming and that they detect amplicons with lower cycle thresholds. 

To ensure that the most suitable primers were synthesised, stringent 

design criteria were met (Bustin et al., 2009). 
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Molecular biologists have conflicting views on the considerations for 

the most optimal primer design conditions. To illustrate this, Apte & 

Daniel and Dieffenbach (Heanue and Pachnis, 2007; Le Lievre and Le 

Douarin, 1975) suggests that the Tm between the forward and reverse 

primer should be similar; conversely, SantaLucia Jr. advocates the 

opposite methodology (Jiang et al., 2002). The software that designs 

primers also has a role in these conflicting arguments as no two design 

programmes will generate primers that are identical for the same DNA 

sequence because matches are calculated by different algorithms. When 

primers are designed, the literature will only make reference to the 

primer design software used. Primer3 has been used in this thesis to 

design in-house primers, as Primer3 has been previously demonstrated 

to be exceptional for designing primers for sequences with both AT-and 

GC-rich regions and has a high success rate (Chavali et al., 2005). 

 

While computer software was used to enhance the selection of the most 

optimal target regions on the gene of interest, certain parameters were 

user-specified. User-specified selection of desired annealing 

temperatures and both the oligo and final amplicon sizes were defined 

to select primer sets. User-specified settings were then used by the 

design software to generate primers with defined criteria. User input 

was further needed to select the most ideal primer set from the top five 

matches generated algorithmically. A high degree of skill and primer 

design knowledge was required to then select the best of those five 

primer sets chosen for testing on cDNA. The chosen primers were 

considered suitable because of the fulfillment of essential primer design 

parameters: the closeness in Tm for sense and anti-sense primers, the 

GC content and marginal secondary structure formation. Disparity in Tm 

between the sense and antisense primer of each set was determined to 

be within a 1 – 2 °C range. The significance of satisfying these 

parameters is closely linked with primer specificity. Commonly seen in 

primer design is that specificity is lost when primer pairs are 
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inadequately matched for both Tm and GC content (Heanue and Pachnis, 

2007).  Primers that met these estimations were deemed to have a 

theoretically high efficiency for annealing and a reduced chance of miss-

priming.  

 

6.3. The importance of correct data analysis 

 

Real-time PCR is the current state-of-the-art approach used to measure 

gene expression. This method can be applied in biological and 

biomedical research. Leflunomide was found to affect all the reference 

genes used in this thesis. Two reference genes that were included on 

plate runs were Rpl13 and Odc1, these genes were determined to be the 

most stably expressed genes in Xenopus laevis. Using the 2–

[delta][delta]Ct method, where  [delta][delta]Ct = [delta]Ct,sample - 

[delta]Ct,reference. I found that genes such as Sox10 and Slug where 

upregulated or remained unchanged due to leflunomide treatment at 

either stage 12 or stage 15 depending upon normalisation to Rpl13 or 

Odc1 (supplementary data). Normalisation in some instances gave 

conflicting results and did not agree with RNA-sequencing data and in 

situ hybridisation data already generated in our laboratory. The real-

time PCR data generally agreed that neural plate marker genes were 

not affected by leflunomide, conversely, of all the neural crest 

specification genes analysed, all tended to upregulate their expression 

in response to treatment. These results were confusing and 

contradicted our working hypothesis that neural crest specification is 

affected by leflunomide. This data is available in the supplementary 

section of this thesis. In order to prove that my real-time PCR data did 

reflect the expected result and that using the comparative Ct method 

was unsuitable, another analytical approach was needed. The NORMA-

gene method was employed and was found to correctly analyse my data, 

discussed next. 

 



 108 

6.4. Drawbacks and solutions in real-time PCR data analysis 

 

Real-time PCR is a robust technique, however, results can vary 

depending upon factors such as RNA integrity, reverse transcriptase 

efficiencies, sample-to-sample variations in amplification efficiency, and 

variation in cDNA sample loading. It is essential for the experimenter to 

reduce these variations are far as is possible (Heckmann et al., 2011). 

Normalisation to an internal control is a sure way to reduce sample-to-

sample variations in real-time PCR. The widely used internal control is 

attained using reference genes or better a normalisation factor derived 

from several reference genes using algorithms such as geNORM 

(Vandesompele et al., 2002). Conversely, the use of reference genes 

suffer from a circular argument. For example, analysts normalise gene 

of interest expression data to exclude the systematic variation by using 

reference gene expression data gathered by the same method as the 

data that is required to be normalised. Therefore, we assume that 

reference genes are unaffected by experimental treatment(s).  These 

assumptions are often logically valid because if the premises are true, 

the conclusion must be true. In many studies, reference genes are 

chosen at random and have not been validated for the particular 

experimental conditions. In my case leflunomide was found to affect all 

my reference genes that were validated for my model system (Xenopus 

laevis). These reference genes were validated in untreated embryos 

using geNORM, an approach used to find the most stably expressed 

reference genes. Searching for and validating reference genes is time 

consuming and very expensive and may not be successful or practical. 

Samples that are heterogeneous i.e. 10 embryos treated with 

leflunomide; requires a comprehensive normalisation approach. 

Conventional normalisation using reference genes can introduce 

unintentional random variation to the mean expression of genes of 

interest if the reference gene(s) being used are poor or are affected by 

treatment i.e. leflunomide. This inadvertently will result in invalid 
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conclusions being drawn from the data, which increases the risk of type 

I and type II statistical errors being made (supplementary data). I 

report the use of an algorithm, NORMAgene, which is a data driven 

normalisation approach that does not require the use of reference 

genes. This has allowed me to focus my research effort on studying 

neural crest cell genes to quantitate how sensitive these genes are to 

leflunomide treatment at different stages of development.  

 

6.5. cMyc is sensitive to leflunomide treatment during early 

development 

 

To identify which genes were sensitive to leflunomide treatment real-

time PCR was performed to identify these genes. cMyc is sensitive to 

leflunomide treatment in the whole embryo, which has also been shown 

by in situ hybridisation and morpholino knockdown of neural crest 

markers. These experiments showed that leflunomide has no effect on 

the development of early neural plate border markers such as Zic1, Zic3, 

Pax3 at stage 12 and 15 and Msx1b at stage 15. The changes in gene 

expression were seen in genes involved in neural crest specification 

and differentiation such as Sox10. The two genes demonstrating the 

greatest level of knockdown by real-time PCR were Sox10, a neural 

crest specifier also expressed in the migrating neural crest, and 

Slug/Snail2, an early neural crest specifier. cMyc, which is also an early 

neural crest specifier, did not give the strongest knockdown in 

expression as it is not affected when expressed in neural tissue. Because 

these experiments were performed on whole embryos there was a 

homogenous mix of neural and neural crest cMyc transcript. By in situ 

hybridisation cMyc expression is lost completely in the neural crest 

region but remains unaffected in the neural folds.  

 

Accumulating evidence indicates that neural crest formation is a 

complex, multistep process. cMyc has been shown to be an early neural 
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crest specifier. Studies in Xenopus have shown that myc is required for 

downstream neural crest specifiers such as Sox10 to be expressed. The 

expression of neural crest specifiers is important for the development 

of neural crest derivatives such as craniofacial cartilage, melanophores 

and sensory neurons (Bellmeyer et al., 2003).  Bellmeyer also reported 

that by knocking down cMyc expression in Xenopus results in the loss of 

expression of trigeminal placode markers such as Six1. A loss of 

expression of Sox10 was also observed in the trigeminal, seventh (VII), 

ninth (IX), and tenth (X) cranial ganglia (Bellmeyer et al., 2003). I would 

hypothesise that if cMyc is the direct primary target of inhibiting 

transcriptional elongation in the neural crest then a loss of trigeminal 

placode markers would be observed after the knockdown of p-TEFb 

components using morpholinos. The same study showed this to be true 

by in situ hybridisation that tbx2, elrd and NeuroD after knock down of 

CyclinT1 and Cdk9 (Bellmeyer et al., 2003). This provides convincing 

evidence that myc may undergo RNA polymerase pausing and 

transcriptional elongation. 

 

It is a logical assumption for myc to be the direct primary target for 

gene regulation by transcriptional elongation and RNA polymerase 

pausing in the neural crest. Takahashi has recently shown that cMyc 

can undergo RNA polymerase pausing when Med26, a component of the 

super elongation complex is knocked out in stem cells (Adams et al., 

2008). Looking at all the evidence to date in conjunction with its role in 

neural crest cell specification a convincing argument can be made for 

cMyc to be a master regulator of gene regulation. To confirm that Sox10 

was not also a direct target and that its downregulation is a 

consequence of the loss of myc expression, it is necessary to rescue myc 

expression using a myc construct after knockdown of the p-TEFb 

components CyclinT1 and Cdk9. Sox10 expression was rescued by the 

myc expressing construct which strongly supports the argument that 

Sox10 is not itself a target of p-TEFb but must be lost due to the loss of 
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cMyc signals from further upstream (Hatch and Wheeler, unpublished). 

This is illustrated in figure 6.1 to show the position of p-TEFb in neural 

crest specification for neural crest cell development. 

 

 

Figure 6.1: Schematic illustration of the position of p-TEFb in neural 
crest development 
P-TEFb may target cMyc directly as loss of p-TEFb results in a downregulation 
of cMyc, Sox10 and other neural crest specification genes shown in this 
illustration. This hypothesis suggests that cMyc is the master regulator of 
Sox10 and that the changes in gene expression of other neural crest specifiers 
may be due to loss of Sox10. Shown here is an oversimplified gene regulatory 
network depicting the levels of gene regulation. Shown in this illustration 
from top to bottom are the inductive signals, neural plate border specifiers, 
neural crest specifiers, neural crest effectors and neural crest derivatives. 

 

Wnt and BMP signalling play an important role in embryonic 

development but this relationship between these signalling cascades 

and cMyc is poorly understood. Myc has been shown in studies 

conducted in colon cancer to position itself downstream of Wnt 

signalling (Myant and Sansom, 2011). Conversely, an upregulation of 

Wnt is observed with a downregulation of cMyc in RNA-sequencing 

data of neural crest animal caps in the Wheeler laboratory. The 
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downregulation we observe in our data is not as extreme as our 

oberservations in in situ hybridisation data. We hypothesise that Wnt is 

upregulated in order to maintain myc in an equilibrated state, after 

downregulation of myc through inhibition of transcriptional elongation 

during early neural crest specification in stage 12 Xenopus embryos. 

Wnt expression must be upregulated in order to increase the amount of 

myc level to their endogenous level. There is also uncertainty to why 

BMP is upregulated in neural crest animal caps post leflunomide 

treatment as observed in our laboratories RNA-sequencing data. 

Follistatin is BMP antagonist that is also downregulated in this data. It 

may be that different levels of crosstalk are at play between Wnt and 

BMP in a tissue dependent manner and for these signals to have a 

mutual target in the same cell or tissue (Itasaki and Hoppler, 2010). To 

expand on this further it has been found that in the developing mouse 

kidney elevated levels of BMP signals caused an increase in canonical 

Wnt signalling which results in the formation of a phospo-Smad1/tcf4/ 

β-catenin complex. This complex is able to upregulate the expression of 

cMyc, which may provide an argument that there is a level of synergy 

between BMP and Wnt in order to increase cMyc expression (Hu and 

Rosenblum, 2005). 

 

6.6. Melanoma and cMyc expression 

 

cMyc is a proto-oncogene that does not require to be mutated to 

contribute to neoplastic transformation. Deregulated expression of 

cMyc at low levels is sufficient to initiate this process. The transforming 

ability of cMyc may be due to its ability to modulate gene expression 

and therefore, promote genes involved in oncogenesis and metastasis. 

cMyc is a protein with many functions that can affect genome stability 

and thereby, promote cancer cell development (Mai and Mushinski, 

2003). In many cancers such as melanoma cMyc is found to be 

overexpressed resulting in enhanced cell proliferation and 
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differentiation. The expression of cMyc protein is tightly regulated by 

mitogens (Amati et al., 1993), and both cMyc protein and mRNA have 

very short half-lives enabling finely tuned regulation of cMyc activity 

(Schlagbauer-Wadl et al., 1999). cMyc is a neural crest cell gene that is 

closely regulated in migratory neural crest cells by transcriptional 

pause-release by recruitment of the p-TEFb complex (Hatch and 

Wheeler, unpublished). I hypothesis that by knocking out components 

of the p-TEFb complex in melanoma cells then cMyc expression can be 

knocked down which may result in real therapeutic benefits for 

melanoma patients. Small molecule compounds such as Cyclin and CDK 

inhibitors that specifically block the recruitment of p-TEFb components 

such as CyclinT and CDK9 in melanoma cell metastasis may have some 

therapeutic potential in the clinic. The proposed mechanism for the 

recruitment of p-TEFb to regulate the expression of cMyc is shown in 

figure 6.1. 

 

6.7. Conclusions and future work 

 

The work presented in this thesis shows that neural crest cell specifiers 

are sensitive to leflunomide treatment at early stages of development. 

This work has quantified the expression patterns of neural crest cell 

genes shown by in situ hybridisation experiments.  I have also 

strengthened the argument that the regulation of transcriptional 

elongation is important for the development of neural crest cells. By 

inhibiting transcriptional elongation, a decrease in the expression of the 

neural crest specifier genes cMyc and Sox10 and other neural crest 

markers leads to developmental defects in the normal development of 

neural crest derivatives that include cranio-facial cartilage, sensory 

neurons and melanophores.  cMyc has been shown here in stage 12 

embryos to be sensitive to inhibition of transcription elongation and so 

it is likely that cMyc is a primary target of RNA polymerase pausing. 

Inhibition of cMyc has been shown by unpublished work in my host 
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laboratory to cause developmental defects. We also see a significant 

downregulation of Sox10 and Snail2/Slug expression during early 

development in response to leflunomide treatment. We know that 

Sox10 is not a primary target of RNA polymerase pausing as loss of 

Sox10 expression can be rescued by injection of cMyc RNA (Hatch and 

Wheeler, unpublished data). 

 

To further validate these results it would be good to perform these 

experiments in animal cap tissue. By moving these leflunomide assays 

into animal caps the hope would be to see a more drastic 

downregulation of cMyc and other neural crest specifier genes. To 

confirm that cMyc is a primary target of transcriptional regulation, 

valuable data would be generated if loss of Sox10 expression was 

rescued with injected cMyc but a loss of endogenous cMyc was still 

observed. This may be performed using ChIP-PCR or ChIP-sequencing 

with specific antibodies against RNA pol II to elucidate at which 

location along the exon of the gene the polymerase is not generally 

located i.e absent at position Ser2 or Ser5. cMyc in other cell types has 

been shown to be paused, however, it would be developmentally 

relevant to reveal this in the Xenopus whole embryo or in neural crest 

animal caps by injection of wnt and noggin. The hypothesis that we 

would generate from this is that RNA pol II is normally found at the 

promoter region of cMyc revealing that if it is found 50 bases 

downstream of its promoter then it is held in a poised state. RNA 

polymerase pausing is known to be crucial in other cell types such as 

stem cells and it may be suggested that it is also specific for neural crest 

cells. Our laboratory will continue to unravel the developmental 

processes in neural crest regulation and reveal further the mechanisms 

that govern neural crest cell fates.
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Supplementary Figure 7.1: Neural plate border specifiers treated with 
60 μM leflunomide normalised to ODC1 
Real-time PCR showing level of mRNA expression after 60 μM leflunomide 
treatment at stage 4 compared to DMSO-treated whole embryos. Panel A to E 
show the level of expression of stage 12 neural crest border specifers: Zic1 (A), 
Zic3 (B), Pax3 (C), Dlx5 (D) and Msx1b (E) and a negative reverse 
transcription (RT) control and no target control (NTC) for each assay. No 
significant change in expression was seen for Zic3, Dlx5 and Msx1b at stage 12. 
No significant change in expression was seen for Zic1, Zic3, Pax3 and Msx1b at 
stage 15. NS = not significant. Zic1 and Pax3 at stage 12 and Dlx5 at stage 15 
were significantly up or downregulated. *= p≤0.05 to p>0.0000001. Error bars 
are st.dev and the n number represents the number of technical replicates 
including two biological controls.  
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Supplementary Table 7.1: Neural plate and neural plate border specifier real-time PCR data normalised to ODC1 
Tabulated real-time PCR results for neural plate and neural plate border genes showing fold change plus/minus standard deviation and t-test 
to shown significance of gene expression on stage 12 and stage 15 embryos treated with 60 μM leflunomide. Data has been normalised to ODC1. 
 

 Stage 12 Stage 15 
Xenopus laevis 
gene 

No. of real-time 
PCR runs with 3 
technical 
replicates 

Fold change ± 
s.d. (6dp) 

Two-tailed 
Student’s t-test 

No. of real-time 
PCR runs with 3 
technical 
replicates 

Fold change ± 
s.d. (6dp) 

Two-tailed 
Student’s t-test 

Zic1 12 0.80 ± 0.18 p= 0.008 12 1.70 ± 1.56 p= 0.158 

Zic3 6 1.02 ± 0.21 p= 0.807 6 0.96 ± 0.23 p= 0.682 

Pax3 6 1.30 ± 0.21 p= 0.005 6 1.19 ± 0.26 p= 0.109 

DLX5 12 1.13 ± 0.31 p= 0.251 12 1.23 ± 0.31 p= 0.019 

MSX1b 12 1.16 ± 0.33 p= 0.190 12 1.88 ± 1.41 p= 0.042 
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Supplementary Figure 7.2: Neural crest specifiers treated with 60 μM 
leflunomide normalised to ODC1 
Real-time PCR showing level of mRNA expression after 60 μM leflunomide 
treatment at stage 4 compared to DMSO-treated whole embryos. Panels from 
A to K show the level of gene expression of neural crest specifiers: FoxD3 (A), 
Gbx2.2 (B), Twist (C), Id3a (D), Slug/Snail2 (E), Hairy2 (F), Snail1 (G), Sox9 
(H), cMyc (I), Sox10 (J), Ap2a (K) and the pan neural marker Sox2 (L). All 
assays were performed alongside a negative reverse transcription (RT) 
control and no target control (NTC). The genes that show significance are 
indicated with *= p≤0.05 to p>0.0000001. NS = not significant. Error bars are 
of the st.dev and the n number represents the number of technical replicates 
including two biological controls. 
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 Stage 12 Stage 15 
Xenopus laevis 
gene 

No. of real-time 
PCR runs with 3 
technical 
replicates 

Fold change ± 
s.d. (6dp) 

Two-tailed 
Student’s t-test 

No. of real-time 
PCR runs with 3 
technical 
replicates 

Fold change ± 
s.d. (6dp) 

Two-tailed 
Student’s t-test 

FoxD3b 12 0.87 ± 0.20 p= 0.086 12 1.08 ± 0.40 p= 0.514 

Twist 6 1.32 ± 0.44 p= 0.108 6 1.27 ± 0.38 p= 0.109 

Slug 6 1.57 ± 0.39 p= 0.005 6 1.53 ± 0.72 p= 0.102 

Snail1 12 0.87 ± 0.20 p= 0.090 12 1.25 ± 0.35 p= 0.027 

cmyc 6 1.01 ± 0.18 p= 0.935 6 1.24 ± 0.20 p= 0.014 

AP2a 12 1.08 ± 0.26 p= 0.396 12 0.99 ± 0.38 p= 0.948 

GBX2.2 12 1.42 ± 0.29 p= 0.001 12 1.50 ± 0.69 p= 0.016 

ID3 12 1.02 ± 0.17 p= 0.782 12 1.29 ± 0.50 p= 0.056 

Hairy2 12 1.05 ± 0.18 p= 0.454 12 1.15 ± 0.18 p= 0.006 

Sox9 6 1.15 ± 0.32 p= 0.283 6 1.29 ± 0.36 p= 0.071 

Sox10 6 1.23 ± 0.41 p= 0.192 6 1.07 ± 0.15 p= 0.301 

Sox2 (NPB) NOT EXPRESSED 6 1.07 ± 0.28 p= 0.541 

Supplementary Table 7.2: Neural crest specifier genes and neural plate border specifier sox2 gene real-time PCR data normalised to 
ODC1 
Tabulated real-time PCR results for neural crest specifier genes and neural plate border Sox2 gene showing fold change plus/minus standard 
deviation and t-test to shown significance of gene expression on stage 12 and stage 15 embryos treated with 60 μM leflunomide. Data has been 
normalised to ODC1.
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Supplementary Figure 7.3: Neural plate border specifiers treated with 
60 μM leflunomide normalised to Rpl13 
Real-time PCR showing level of mRNA expression after 60 μM leflunomide 
treatment at stage 4 compared to DMSO-treated whole embryos. Panel A to E 
show the level of expression of stage 12 neural crest border specifers: Zic1 (A), 
Zic3 (B), Pax3 (C), Dlx5 (D) and Msx1b (E) and a negative reverse 
transcription (RT) control and no target control (NTC) for each assay. No 
significant change in expression was seen for Zic1 at stage 12 and for Zic3, 
Dlx5 and Msx1b at stage 15. NS = not significant. Zic3, Pax3, Dlx5 and Msx1b at 
stage 12 and Zic1 and Pax3 at were significantly upregulated. *= p≤0.05 to 
p>0.0000001. Error bars are st.dev and the n number represents the number 
of technical replicates including two biological controls.  
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Supplementary Table 7.3: Neural plate and neural plate border specifier real-time PCR data normalised to Rpl13 
Tabulated real-time PCR results for neural plate and neural plate border genes showing fold change plus/minus standard deviation and t-test 
to shown significance of gene expression on stage 12 and stage 15 embryos treated with 60 μM leflunomide. Data has been normalised to 
Rpl13. 
 

 Stage 12 Stage 15 
Xenopus laevis 
gene 

No. of real-time 
PCR runs with 3 
technical 
replicates 

Fold change ± 
s.d. (6dp) 

Two-tailed 
Student’s t-test 

No. of real-time 
PCR runs with 3 
technical 
replicates 

Fold change ± 
s.d. (6dp) 

Two-tailed 
Student’s t-test 

Zic1 10 1.04 ± 0.35 p= 0.750 12 1.22 ± 0.52 p= 0.168 

Zic3 6 1.42 ± 0.16 p= 9.356 x 10-05 6 0.99 ± 0.27 p= 0.929 

Pax3 6 1.81 ± 0.28 p= 2.978 x 10-05 6 1.22 ± 0.33 p= 0.132 

DLX5 10 1.46 ± 0.40 p= 0.006 12 1.29 ± 0.56 p= 0.085 

MSX1b 10 1.54 ± 0.49 p= 0.008 12 1.66 ± 0.82 p= 0.011 
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Supplementary Figure 7.4: Neural crest specifiers treated with 60 μM 
leflunomide normalised to Rpl13 
Real-time PCR showing level of mRNA expression after 60 μM leflunomide 
treatment at stage 4 compared to DMSO-treated whole embryos. Panels from 
A to K show the level of gene expression of neural crest specifiers: FoxD3 (A), 
Gbx2.2 (B), Twist (C), Id3a (D), Slug/Snail2 (E), Hairy2 (F), Snail1 (G), Sox9 
(H), cMyc (I), Sox10 (J), Ap2a (K) and the pan neural marker Sox2 (L). All 
assays were performed alongside a negative reverse transcription (RT) 
control and no target control (NTC). The genes that show significance are 
indicated with *= p≤0.05 to p>0.0000001. NS = not significant. Error bars are 
of the st.dev and the n number represents the number of technical replicates 
including two biological controls. 
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 Stage 12 Stage 15 
Xenopus laevis 
gene 

No. of real-time 
PCR runs with 3 
technical 
replicates 

Fold change ± 
s.d. (6dp) 

Two-tailed 
Student’s t-test 

No. of real-time 
PCR runs with 3 
technical 
replicates 

Fold change ± 
s.d. (6dp) 

Two-tailed 
Student’s t-test 

FoxD3b 10 1.13 ± 0.32 p= 0.278 12 1.11 ± 0.46 p= 0.456 

Twist 6 1.84 ± 0.58 p= 0.006 6 1.29 ± 0.33 p= 0.059 

Slug 6 2.27 ± 0.77 p= 0.002 6 1.53 ± 0.57 p= 0.047 

Snail1 10 1.14 ± 0.29 p= 0.182 12 1.33 ± 0.62 p= 0.081 

cmyc 6 1.41 ± 0.20 p= 0.001 6 1.30 ± 0.40 p= 0.101 

AP2a 10 1.47 ± 0.35 p= 0.002 12 1.04 ± 0.52 p= 0.807 

GBX2.2 10 1.87 ± 0.31 p= 1.433  x 10-06 12 1.61 ± 1.19 p= 0.090 

ID3 10 1.29 ± 0.27 p= 0.009 12 1.45 ± 0.75 p= 0.049 

Hairy2 11 1.21 ± 0.32 p= 0.068 12 1.41 ± 0.37 p= 0.001 

Sox9 6 1.59 ± 0.35 p= 0.002 6 1.35 ± 0.49 p= 0.117 

Sox10 6 1.71 ± 0.52 p= 0.007 6 1.09 ± 0.21 p= 0.322 

Sox2 (NPB) NOT EXPRESSED 6 1.10 ± 0.30 p= 0.450 

Supplementary Table 7.4: Neural crest specifier genes and neural plate border specifier sox2 gene real-time PCR data normalised to 
Rpl13 
Tabulated real-time PCR results for neural crest specifier genes and neural plate border Sox2 gene showing fold change plus/minus standard 
deviation and t-test to shown significance of gene expression on stage 12 and stage 15 embryos treated with 60 μM leflunomide. Data has been 
normalised to Rpl13. 
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