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Abstract

Background

Metatranscriptome sequence data can contain highly redundant sequences from 

diverse populations of microbes and so data reduction techniques are often 

applied before taxonomic and functional annotation. For metagenomic data, it 

has been observed that the variable coverage and presence of closely related 

organisms can lead to fragmented assemblies containing chimeric contigs that 

may reduce the accuracy of downstream analyses and some advocate the use of 

alternate data reduction techniques. However, it is unclear how such data 

reduction techniques impact the annotation of metatranscriptome data and thus 

affect the interpretation of the results. 

Results

To investigate the effect of such techniques on the annotation of 

metatranscriptome data we assess two commonly employed methods: clustering 

and de-novo assembly. To do this, we also developed an approach to simulate 

454 and Illumina metatranscriptome data sets with varying degrees of taxonomic 

diversity. For the Illumina simulations, we found that a two-step approach of 

assembly followed by clustering of contigs and unassembled sequences 

produced the most accurate reflection of the real protein domain content of the 

sample. For the 454 simulations, the combined annotation of contigs and 

unassembled reads produced the most accurate protein domain annotations. 

Conclusions

Based on these data we recommend that assembly be attempted, and that 

unassembled reads included in the final annotation for metatranscriptome data, 
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even from highly diverse environments as the resulting annotations should lead 

to a more accurate reflection of the transcriptional behaviour of the microbial 

population under investigation.

Keywords: Metatranscriptomics; sequence processing; data reduction; 

clustering; assembly

Background

The sequencing and in-silico analysis of messenger RNA (metatranscriptomics) is 

now routinely being applied to complex microbial communities in diverse eco-

systems, including, but not limited to: soil [1], [2], [3], marine [4], [5], [6] and 

intestinal [7], [8] habitats. The typical goals of metatranscriptomics are to 

taxonomically classify transcripts, predict their functions and quantify their 

abundances, and to relate these to environmental data in order to reveal how 

environmental conditions impact microbial communities in different habitats. 

Metatranscriptome data sets typically consist of hundreds of thousands of 454 

sequences, or, more recently tens of millions of Illumina sequences per sample. 

Low taxonomic diversity and/or highly expressed genes can lead to a high 

degree of data redundancy; that is highly expressed multiple identical or nearly 

identical sequence fragments. In an investigation into the proportion of artificial 

and natural duplicates in pyrosequenced metatranscriptome data, Niu et al. 

reported that as much as 60% of all sequences in an early metatranscriptome 

data set were likely natural duplicates [9]. Therefore, some form of data 

reduction strategy is beneficial before running computationally intensive 

homology searches.
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Two approaches that are commonly employed to reduce redundancy in large 

data sets are (a) assembly: where sequences are assembled into longer 

contiguous fragments (contigs) and (b) clustering: sequences are grouped into 

clusters sharing a defined degree of similarity. 

The decisions as to whether to perform data reduction and which method to 

employ are influenced by several factors: (i) The availability of reference 

genomes: if sufficient reference genomes are available for a small number of 

dominant species then the sequences can be mapped to them and taxonomy 

and function inferred and the relative abundance of the transcripts calculated. 

(ii) Read length - are the unprocessed reads long enough to return annotations? 

Current Illumina platforms produce shorter reads than 454 (up to 300bp for the 

Illumina MiSeq compared to ~1kb with the 454 GS-FLX Titanium) and are likely to 

return a lower hit rate to protein databases compared to longer 454 reads [10]. 

(iii) The diversity of the sample: although assembly can produce longer 

sequences and increase the accuracy of subsequent annotations, the variable 

coverage of transcripts in metatranscriptomics data sets and the presence of 

closely related organisms can lead to chimeric contigs. Indeed, for highly diverse 

metagenomic samples it has been recommended that assembly not be 

performed at all [11]. (iv) The aims of the analysis: if the read length is adequate 

for annotation and the intention is to count features (e.g. taxonomic affiliations 

of rRNA sequences) then clustering at high identities is a recommended 

alternative [12]. With the lower coverage but higher read length of 454 

metatranscriptome data, assembly is relatively uncommon and instead authors 

tend to either cluster or annotate sequences individually. Clustering is regularly 

used for detecting and removing sequencing artifacts from 454 data [13], [14], 
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grouping rRNA data into operational taxonomic units (OTUs) [15], [16], and 

grouping proteins into families [17], [18]. 

In addition to the known benefits of a reduction in the size of the data set and 

therefore computation time, we set out to assess whether, by clustering 

translated metatranscriptome sequences and transferring protein domain 

annotation from cluster representatives to cluster members - some of which may 

only partially cover protein domains used for classification, we can accurately 

increase the number of classifiable reads. 

More specifically, we investigated some popular data reduction tools and 

assessed their performance on simulated 454 and Illumina metatranscriptome 

data in terms of the accuracy of resulting protein annotations. Note that although 

several approaches have been described to simulate metagenomic data sets 

[11], [19], [20], [13], [21] and RNA-SEQ data [22], to date only small scale 

attempts have been made to simulate metatranscriptome data sets based on a 

small number of species [23], [24].

Results

Simulated 454 data

The simulated 454 data sets contained 250,000 sequences each, totalling ~50 

megabases of sequence per diversity level. Between 12 and 14% of 454 

sequences from each data set returned matches to Pfam-A. When compared to 

the theoretical domain content, the correlation coefficients for all read 

annotation were 0.591, 0.605 and 0.576 for LD, MD and HD respectively (see 

Table 1).

Then, taking the parameter set that provided the largest increase in true 
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positives minus false positives, compared to the annotation of all unclustered 

reads, we found that the best clustering parameters were: ≥ 60% overall 

similarity and 100% coverage of cluster member sequences for the LD data set; 

≥80% similarity and 100% coverage of the cluster members for the MD data set; 

and ≥60% similarity, ≥25% coverage of the cluster representative and between 

0-50% minimum coverage of cluster members for the HD data set (see 

supplemental Figure S1). 

While the best performing clustering parameters produced a net gain (TP – FP) of 

between 1,104 and 1,656 domains (see Figure S1), the correlation coefficients 

were slightly lower than for all read annotation (0.589, 0.601 and 0.573 for LD, 

MD and HD respectively (see Table 1)).

The MIRA assemblies incorporated ~50% of all sequences into 24,858 and 

27,752 contigs for the LD and MD samples respectively, and ~30% of sequences 

into 26,909 contigs for the HD sample. The average contig lengths were 298.6, 

298.3 and 257.3 base pairs for LD, MD and HD, respectively (see supplemental 

Table S2 for assembly statistics). The average contig entropy was 0.037, 0.0603 

and 0.0552 for LD, MD and HD respectively (see Figure 3) with 94.75%, 90.52% 

and 92.62% of contigs possessing an entropy of zero. 

For the LD and MD data sets, the net gain of true positives (TP – FP) was a 

~100% increase, and for the HD data set an increase of ~20% was achieved 

(see Figure 1). The contigs alone had a weaker correlation with the theoretical 

domain content than all read or clustered read annotation (see Table 1). When 

combined with the debris sequences, the correlation coefficients for all three 

samples were higher than for all all-read or clustered annotations (0.610, 0.621 
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and 0.579 for LD, MD and HD respectively (see Table 1)). This could be due to 

two factors: firstly the low proportion of sequences incorporated into the contigs, 

(less than a third of all sequences were used for the HD contigs) and secondly 

the assemblies may be biased towards high-abundance transcripts (see Figure 2 

– top right).

Clustering of the 454 assemblies (combined contigs and debris) led to a very 

slight increase in the detection of true positives (~500) but the overall effect was 

a very slight reduction in the correlation with the theoretical domain content 

compared to the unclustered assembly (see Table 1). 

Simulated Illumina data

Around 4% of the Illumina reads could be annotated with Pfam-A domains. The 

correlation coefficients for all read annotation with the theoretical domain 

content were (0.717, 0.734, 0.703 for LD and HD and MD respectively see Table 

1). 

The Illumina data sets were clustered with the best performing parameter set for 

the equivalent diversity level identified in the 454 simulations described above. 

While clustering reduced the data sets by ~40% for LD and MD and ~25% for 

the HD data set the resulting annotations had a weaker correlation to the 

theoretical domain content of the sample (0.709, 0.728 and 0.698 for LD, MD 

and HD respectively see Table 1).

The Trinity assemblies incorporated ~40% of sequences from the LD and MD 

data sets into 31,799 and 41,191 contigs respectively with an average length of 

~400nt. For the HD data set, ~14% of reads from the HD data set into 33,210 

contigs with an average length of 328nt. The average contig entropy was 0.037, 
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0.056 and 0.059 for LD, MD and HD respectively (see Figure 3) with 94.55%, 

91.1% and 92% of contigs possessing an entropy of zero. 

The number of domains correctly identified increased by ~10 fold for the LD and 

MD data sets and by ~4 fold for the HD data set compared to individual 

sequence annotation (see Figure 1). The correlation between the annotation of 

the contigs alone and the theoretical domain content of the sample were higher 

than for all read annotation (see Table 1). Again it appears that the contigs 

capture the majority of the high-abundance transcripts and the unassembled 

debris capture the lower abundance transcripts (see Figure 2, Figure S2), a 

combination of the two provides a stronger correlation with the known domain 

content of the samples than either individually (0.842, 0.808 and 0.812 for LD, 

MD and HD respectively see Table 1).

Clustering of the Illumina assemblies (combined contigs and debris) produced a 

net gain of between 117,325 to 234,958 extra domains, however this made only 

a relatively small improvement to the correlations with the known domain 

content of each sample (see Table 1).

Discussion

The simulations show that the diversity of a metatranscriptome sample greatly 

impact the accuracy of protein domain annotations; with the high diversity 

simulations producing the weakest correlations with the known domain content 

of the sample. With a highly diverse population of organisms and transcripts, the 

average coverage of each transcript will decrease, thus clustering will result in 

many small clusters and fewer transcripts will be sequenced to sufficient depth 
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to allow extension into longer contiguous fragments. 

However, regardless of the diversity level a better reflection of the domain 

content of the samples was achieved through applying data reduction 

techniques. The largest improvements in the correlation with the known domain 

content of the samples was achieved through assembly (contigs and debris 

combined) for the 454 simulations and assembly followed by clustering the 

contigs and debris together for the Illumina simulations. Using near default 

parameters, highly homogeneous (>90% of contigs with an entropy of 0 at the 

sequence level) contigs were recreated from both 454 and Illumina data. 

It has been noted previously that assembly of 'omics data is likely to favour 

highly abundant organisms [12], and it therefore follows that it would also favour 

highly abundant transcripts. The results of our simulations suggest that the 

annotations of contigs alone are insufficient, and we therefore recommend that 

they should be combined with those of the debris sequences to provide a better 

reflection of the real domain content of the samples.

Overall, the simulated Illumina samples produced stronger correlations with the 

known protein domain content than the dollar cost-equivalent amount of 454 

sequence data. While we attempted to perform this analysis as consistently as 

possible, it was necessary to employ different assembly programs for the 454 

and Illumina data – (Although we did perform Trinity assemblies of simulated 454 

data, the results were poor; see supplemental Figure S3). However, the overall 

pattern of correlations from the different methods is fairly consistent and it 

seems likely that the stronger correlations of the Illumina simulations are due to 

the greatly increased coverage provided rather than any biases introduced by 
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the methods. 

While these simulations have their limitations, the results achieved were 

consistent with trials on real metatranscriptome data. We applied the data 

reduction methods previously employed on simulated data to two real 454 

metatranscriptome data sets: the mid-bloom, marine metatranscriptome from 

[4]; and the 110m marine metatranscriptome from an oxygen minimum zone 

[14]. Although the genuine domain content of a real microbial 

metatranscriptome is unknown, the results obtained from the Gilbert and 

Stewart metatranscriptomes were, in terms of data reduction and annotation 

rates, consistent with the medium and high diversity 454 simulations (see 

supplemental Figure S4). Also, a recent study demonstrated that assembly of a 

simulated low diversity eukaryotic metatranscriptome could recreate a high 

number of contigs with low chimerism [25].

In the future, these methods could be extended to exploit the increasing 

availability of microbial genomes and transcriptomes. For example, in real 

metatranscriptome data, the most abundant transcripts are often associated 

with fundamental processes such as biosynthesis [26]. As more microbial 

transcriptome data become available (e.g. through sequencing efforts such as 

the MMETSP (http://marinemicroeukaryotes.org/)), it should be possible to refine 

these models of transcript abundance to reflect increased levels of transcripts 

involved in core processes and thereby produce more realistic simulations of 

metatranscriptome data.
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Conclusions

Based on our simulations, it appears that older recommendations to omit the 

assembly stage when dealing with high-diversity samples do not extend to 

metatranscriptome data. Our results also show that including unassembled reads 

in downstream annotation can improve the overall accuracy and we would 

recommend that they should not be discarded after assembly. Therefore, 

whether dealing with 454 or Illumina data, we recommend combining 

annotations from contigs and unassembled (debris) sequences for 454 samples 

and employing a two-step data reduction of assembly followed by clustering of 

contigs and debris for Illumina.

The high coverage afforded by Illumina sequencing has made it an increasingly 

popular choice for sequencing microbial communities. As more purpose built de-

novo transcript assemblers become available there is a need for a systematic 

assessment of assembly tools and sequencing protocols for Illumina 

metatranscriptome data.

Methods

Simulated data sets

To simulate microbial metatranscriptome data sets with varying degrees of 

diversity, we created three population profiles to represent low, medium and 

high diversity communities (referred to as LD, MD and HD respectively from here 

on). To tie in our simulations with previous simulation studies, we based them on 

the organism lists and genome coverage levels used in a simulated metagenome 

study [20]. The genome coverage values from the Pignatelli study were scaled to 
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create discrete organism abundances to give a total population size of 

approximately 1,000 for each sample (see supplemental Table S1 for list of 

organisms used).

For each diversity level, we then generated a set of species-specific transcript 

expression profiles. For each of the 112 species in the samples, we generated a 

Pareto-like, power law distribution (P(k) ∝ k -r) to model the expression values of 

each gene. This distribution has been empirically demonstrated (based on 

genome-wide microarray data) to apply to gene expression from a range of 

model organisms such as Escherichia coli (bacteria) , Saccharomyces cerevisiae 

(yeast) , Arabidopsis thaliana (plant) , Drosophila melanogaster (insect) and 

Homo sapiens (mammal) [27], [28]. For each species we used J. Cristobal Vera's 

transcript simulator (http:/personal.psu.edu/jcv128/software.html) to produce an 

expression profile using an r exponent of 1.69 (exponent for E. coli value as 

shown by [27]), where each gene could take an expression value between 1 and 

1,000 within a Pareto power law distribution, reflecting the number of transcript 

copies present in the cell, which is then scaled up by the total abundance of the 

organism in the sample.

Using the gene sequences for the 112 species from the Joint Genome Institutes 

Integrated Microbial Genomes database (JGI-IMG) [29] we then created the 

transcript pools. Briefly, for each diversity level we scaled each expression profile 

by the abundance of that organism (as defined in the population profile) and 

created a pool of full-length transcripts.

For the 454 data sets we randomly sampled 250,000 sequences from each 

transcript pool, taking fragments of up to 400bp. We then ran these fragments 
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through 454sim [30] using GS-FLX error models to introduce sequence errors and 

translated the resulting sequences into their longest open reading frames. We 

also used the same population and expression profiles to create a test data set 

for each diversity level consisting of sequence fragments taken directly from the 

manually curated, error-free amino-acid gene models for the same organisms. 

For the Illumina data sets we randomly sampled 7.5 million, 100bp single-end 

reads from each transcript pool. This equates to ~15X more bases sequenced 

with Illumina compared to 454, based on estimations by Mende et al. [13]. To 

introduce sequence errors the sampled transcripts were run through the Illumina 

simulator Art [31] using Genome Analyzer II settings. 

Clustering

All nucleotide sequences were translated into their longest open reading frames 

and clustered with CD-HIT [32]. A nested loop was used to increment overall 

sequence similarity (C) from 40% to 100% (in 20% increments), and then 

percentage coverage of the cluster representative (aL) and cluster members (aS) 

increasing in 25% increments from 0 to 100%.

Assemblies

The simulated 454 nucleotide data sets and the two real metatranscriptomes 

were assembled using MIRA [33], in de-novo, accurate, EST mode, with non-

uniform read depth, and all other parameters as default. Both the contigs and 

debris (reads not incorporated into any contig) were translated into their longest 

open reading frames.

The Illumina data sets were assembled using Trinity [34] with default settings for 

a single-end read assembly. As Trinity does not report the specific reads 
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incorporated into assembled transcripts, we aligned all reads back to the final 

Trinity assemblies with alignRead.pl script of the Trinity package using Bowtie 

[35] allowing us to scale protein annotation by contig coverage.

We combined the assembled contigs and debris (or unmapped reads for the 

Illumina data sets), translated them into their longest open reading frames and 

clustered them using a single parameter set to assess clustered assemblies. 

Annotation

The original full-length genes of all JGI-IMG genes used, and the longest open 

reading frames of all individual sequences and contigs were compared against 

the Pfam-A database (Release 26.0) [36] with pfam_scan.pl 

(ftp://ftp.sanger.ac.uk/pub/databases/Pfam/Tools/OldPfamScan/HMMER2/pfam_sc

an.pl) using default gathering thresholds. Protein annotations were scaled by 

cluster size or the number of reads incorporated/mapped to a contig for 

clustered and assembled data respectively. To show how well the resulting 

annotations of each method (individual read/clustered reads/assembled reads 

etc.) reflected the real domain content of each sample, we calculated the 

Pearson correlation coefficient of annotated sequences/clustered 

sequences/contigs against the full domain content of the original sample - that 

is, the domain content of the equivalent number of full transcripts in the sample. 

For comparative purposes each unique domain was counted once per 

gene/contig/sequence.

Contig entropy

To investigate the extent of potential contig chimericity – that is, the level of 

heterogeneity in the set of reads incorporated into a contig - we took a similar 
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approach to [37] and measured contig entropy for both MIRA 454 and Trinity 

Illumina assemblies. We measured contig entropy as follows: 

ENTROPY = −∑
p=i

log pi/ p t

Where pi represents the fraction of reads originating from transcript i and pt 

represents the total read set for the contig.
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Table captions

Table 1. 

Title: Correlation coefficients between simulated data set annotations and 

known protein domain content.

Legend: Summary of Pearson correlation coefficients between processed data 

sets and the known domain content of sample for low diversity (LD), medium 

diversity (MD) and high diversity (HD) simulated 454 and Illumina 

metatranscriptomes. 1Assembly includes annotation from both contigs and debris 

sequences.

454 Illumina

LD MD HD LD MD HD

ALL 0.591 0.605 0.576 0.717 0.734 0.703

CLUSTERED 0.589 0.601 0.573 0.709 0.728 0.698

CONTIGS 0.579 0.595 0.512 0.772 0.817 0.735

DEBRIS 0.551 0.554 0.578 0.688 0.702 0.692

ASSEMBLY1 0.610 0.621 0.579 0.842 0.868 0.812

CLUSTERED 
ASSEMBLY

0.610 0.620 0.578 0.843 0.869 0.815
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Figure legends

Figure 1. 

Title: Results from Pfam-A annotated simulated metatranscriptomes.

Legend: Percentage of true positives, false positives, true negatives and 

potential domains (domains present in original full-length transcript) based on a 

comparison with the known domain content of the data sets for all reads (ALL), 

best clustering (CLS), assembly (ASS) and clustered assembly (CLA). a) results 

for simulated 454 data sets, from left to right: low, medium and high diversity. b) 

results for simulated Illumina data sets from left to right: low, medium and high 

diversity.

Figure 2. 

Title: Correlation between high diversity simulations and known protein domain 

content.

Legend: Correlation plots of Pfam-A annotations of each processed data set 

compared to known domain content for a) high diversity 454 simulated data set 

and b) high diversity Illumina simulated data set. Top row, left to right: all reads 

unprocessed; clustered reads; assembly - contigs only. Bottom row, left to right: 

assembly – debris only; assembly – contigs and debris combined; clustered 

assembly. Pearson correlation coefficient shown in top left corner.

Figure 3. 
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Title: Contig entropy for assembled simulated metatranscriptomes.

Legend: Contig entropy plotted against contig length for a) MIRA assembled 

simulated 454 data sets and b) Trinity assembled simulated Illumina data sets. 

Plots represent, from left to right: low diversity (LD), medium diversity (MD) and 

high diversity (HD) data sets.
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Supplemental

Table S1 – Summary of organisms used for simulations

Table S2 – Summary of assembly statistics

Figure S1– Histogram of increase TP and increase FP for 454 simulations

Figure S2 – Additional correlation plots

Figure S3 – Entropy plot for Trinity 454 assembly

Figure S4 – Plot of TP etc for real metatranscriptomes compared to simulations
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