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1 Introduction

A finite, connected graph Γ with vertex set V (Γ) and path-length distance d is said to be distance-
regular if, for any vertices x, y ∈ V (Γ) and any integers 1 ≤ i, j ≤ max{d(z, w) : z, w ∈ V (Γ)},
the number of vertices at distance i from x and distance j from y depends only on i, j and d(x, y),
independent of the choice of x and y. Many distance-regular graphs arise from classical objects, such
as the Hamming graphs, the Johnson graphs, the Grassmann graphs, the bilinear forms graphs,
and the dual polar graphs amongst others. In particular, distance-regular graphs give a framework
to study these classical objects from a combinatorial point of view. In addition, distance-regular
graphs and association schemes give an algebraic-combinatorial framework to study, for example,
codes and designs [12, 18].

In their 1984 book, E. Bannai and T. Ito conjectured that there are only finitely many distance-
regular graphs of fixed valency greater than two (cf. [5, p.237]). In this paper we prove that their
conjecture holds:

Theorem 1.1 There are only finitely many distance-regular graphs of fixed valency greater than
two.

History
A distance-transitive graph is a connected graph Γ such that for every four (not necessarily distinct)
vertices x, y, u, v in V (Γ) with d(x, y) = d(u, v), there exists an automorphism τ of Γ such that
τ(x) = u and τ(y) = v both hold. It is straight-forward to see that distance-transitive graphs are
distance-regular graphs. In [14, 15], P. J. Cameron, C. E. Praeger, J. Saxl and G. M. Seitz proved
that there are only finitely many finite distance-transitive graphs of fixed valency greater than two.
They did this by applying Sims’ conjecture [33] for finite permutation groups (i.e. that there exists
an integral function f such that |Gx| ≤ f(dGx) holds, where, for G a primitive permutation group
acting on a finite set Ω, Gx denotes the stabilizer of x, x ∈ Ω, and dGx denotes the length of any
Gx-orbit in Ω \ {x}), which they also showed to hold by using the classification of the finite simple
groups (in [15] they gave a proof without many details, and in [14] Cameron worked out a detailed
proof with an explicit diameter bound).

Note that for small diameter there are many distance-regular graphs which are not distance-
transitive. On the other hand there are only five families of distance-regular but not distance-
transitive graphs known with unbounded diameter, namely the Doob graphs [19] (see also [12,
p.262]), the quadratic forms graphs [20] (see also [12, p.290]), the Hemmeter graphs [13] and the
Ustimenko graphs [37] (for both, see also [12, p.279]) and the twisted Grassmann graphs [17]. Any
member of the first four families is vertex-transitive, whereas the twisted Grassmann graphs have
exactly two orbits under the full automorphism group [17].

The first class of distance-regular graphs for which the Bannai-Ito conjecture was shown is the class
of regular generalized n-gons. Feit and Higman [21] (cf. [12, Theorem 6.5.1]) showed that a regular
generalized n-gon has either valency 2 or n ∈ {3, 4, 6, 8, 12}. In addition, R. M. Damerell, and
E. Bannai and T. Ito have independently shown that there are only finitely many Moore graphs
with valency at least three [4, 16].
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In the series of papers [6, 7, 8, 9], E. Bannai and T. Ito showed that their conjecture holds for
valencies k = 3, 4, as well as for the special class of bipartite distance-regular graphs. In [27] and
[28], J. H. Koolen and V. Moulton also showed that the conjecture holds for distance-regular graphs
of fixed valency k = 5, 6 or 7, and for triangle-free distance-regular graphs of fixed valency k = 8, 9
or 10. More recently, in [3], together with S. Bang, they showed that the Bannai-Ito conjecture
holds for regular near polygons and geodetic distance-regular graphs.

The proof for the Bannai-Ito conjecture that we present in this paper builds upon many of the
concepts and ideas developed in [2, 3, 27, 28].

Structure of the paper
In Section 2, we present some definitions and previous results concerning distance-regular graphs
and associated sequences and related structures, and in Section 3 we present some properties of
certain generalizations of these sequences. In Section 4, we state without proof the key result of
the paper (Theorem 4.2) and used this to prove Theorem 1.1. We also present an outline proof
of Theorem 4.2, before proving it in Sections 5 to 9. In Section 10, we will present an application
of Theorem 1.1 to distance-regular graphs of order (s, t). We conclude in Section 11 by discussing
some possible future directions.

2 Preliminaries

In this section, we review some of the well-known theory of Christoffel numbers for orthogonal
polynomials, interlacing and distance-regular graphs that will be used in this paper. We refer the
reader to [5], [12] and [36] for more details.

2.1 Christoffel Numbers

Let L1 be the arbitrary tridiagonal matrix defined by

L1 :=



α0 β0

γ1 α1 β1

γ2 α2 β2

. . .
γi αi βi

. . .
γn−1 αn−1 βn−1

γn αn


, (1)

where αi ≥ 0, βi−1, γi > 0 are real numbers with α0 = γ0 = βn = 0 and γ1 = 1, and αi+βi+γi = β0

holding for all 1 ≤ i ≤ n. Let vi(x) (0 ≤ i ≤ n+ 1) be the polynomials defined recursively by the
equations

v0(x) := 1, v1(x) := x, (2)
xvi(x) = βi−1vi−1(x) + αivi(x) + γi+1vi+1(x) (1 ≤ i ≤ n− 1) , (3)
vn+1(x) = (x− αn)vn(x)− βn−1vn−1(x), (4)

4



and Fi(x) (0 ≤ i ≤ n) be the monic polynomials defined by setting F0(x) := 1, F1(x) := x+ 1 and

Fi(x) := γ2 · · · γi(v0(x) + v1(x) + · · ·+ vi(x)) (2 ≤ i ≤ n).

Note that for each 2 ≤ i ≤ n, the polynomial Fi(x) satisfies the recurrence relation

Fi(x) = (x− β0 + βi−1 + γi)Fi−1(x)− βi−1γi−1Fi−2(x). (5)

Moreover, by (2)–(5), for each 0 ≤ i ≤ n, the polynomials vi(x) and Fi(x) have degree i and have
exactly i distinct real roots in the closed interval [−β0, β0] (cf. [36, Theorem 3.3.1]). Note that the
polynomial (x− β0)Fn(x) is the minimal polynomial of the matrix L1.

Now, let κ := β0 and define

κi := vi(κ) (0 ≤ i ≤ n), and (6)

ui(x) :=
vi(x)
κi

(0 ≤ i ≤ n). (7)

Put κ := κ1. Then the polynomials ui(x) (0 ≤ i ≤ n) satisfy

ui(κ) = 1 (0 ≤ i ≤ n); (8)

u0(x) = 1, u1(x) =
x

κ
, xui(x) = γiui−1(x) + αiui(x) + βiui+1(x) (1 ≤ i ≤ n). (9)

The sequence (ui(x))ni=0 is called the standard sequence of L1, and if θ is an eigenvalue of L1, then
the column vector (u0(θ), u1(θ), . . . , un(θ))T is a right eigenvector of L1 associated to θ, by (9).

Note also that it follows by (7) that, for each eigenvalue θ of the matrix L1, the equation

n∑
i=0

v2
i (θ)
κi

=
n∑
i=0

κiu
2
i (θ) (10)

holds.

Now, let β0 = θ0 > θ1 > θ2 > · · · > θn be the eigenvalues of L1 and, for i = 0, 1, . . . , n, define

mi :=

 ∑n
j=0 κj∑n

j=0

v2
j (θi)

κj

 (11)

as well as the symmetric bilinear form (·, ·) on the polynomial ring R[x] by

(f, g) :=
n∑
i=0

mif(θi)g(θi).

Then, (vi, vi) 6= 0 holds for all 0 ≤ i ≤ n, and (vi, vj) = (vi, vi)δi,j holds for all 0 ≤ i, j ≤ n, where
δi,j is the Kronecker delta function on N0 × N0, where N0 is the set of non-negative integers. In
particular, it follows that (vi)ni=0 is a sequence of orthogonal polynomials with respect to (·, ·). Note
that within the theory of orthogonal polynomials, the numbers mi are referred to as the Christoffel
numbers of the sequence (vi)ni=0 ([36, Theorem 3.4.1], [5, p.201]). Analogously, we call the number
mi as defined in (11), the Christoffel number of L1 associated with θi.
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2.2 Interlacing

We now recall two results stated in [2] that provide us with some interrelationships between the
eigenvalues of the matrix L1 as defined in (1). The first generalizes the well-known Interlacing
Theorem [12, Theorem 3.3.1], from which it immediately follows.

Lemma 2.1 Suppose that A is a real n× n matrix for which there exists a non-singular diagonal
matrix Q such that the matrix Q−1AQ is real and symmetric. If η1 ≤ . . . ≤ ηn are the eigenvalues
of A and θ1 ≤ . . . ≤ θn−1 are the eigenvalues of the matrix obtained by removing the ith row and
ith column of A, with i ∈ {1, . . . , n}, then

η1 ≤ θ1 ≤ η2 ≤ . . . ≤ ηn−1 ≤ θn−1 ≤ ηn.

Note that in [2, Lemma 3.1] the condition that Q has to be a diagonal matrix was omitted. Without
this condition the lemma is not true.

In particular, since βiγi+1 > 0 (0 ≤ i ≤ n − 1) and L1 is tridiagonal, it follows that L1 satisfies
the conditions on A given in Lemma 2.1, and therefore the eigenvalues of L1 must satisfy the
inequalities given in this lemma.

The second result guarantees the existence of eigenvalues of L1 lying within certain limits.

Lemma 2.2 ([2, Theorem 3.2])
Let αi, βi, γi (0 ≤ i ≤ n) be non-negative integers satisfying α0 = γ0 = βn = 0, βi−1, γi > 0,
αi + βi + γi = β0, βi−1 ≥ βi and γi ≥ γi−1 for all 1 ≤ i ≤ n, and let L1 be the tridiagonal matrix
as defined in (1). For each 1 ≤ i ≤ n− 1, let `(i) := |{j : (γj , αj , βj) = (γi, αi, βi), 1 ≤ j ≤ n− 1}|.
Then the following statements hold.
(i) If `(i) ≥ 2 then there is an eigenvalue θ of L1 with

αi + 2
√
βiγi cos

(
2π

`(i) + 1

)
≤ θ < k.

(ii) If `(i) ≥ 3 then there is an eigenvalue θ of L1 with

αi + 2
√
βiγi cos

(
jπ

`(i) + 1

)
≤ θ ≤ αi + 2

√
βiγi cos

(
(j − 2)π
`(i) + 1

)
,

for all j = 3, . . . , `(i).

2.3 Distance-Regular Graphs

We now review some basic definitions and results concerning distance-regular graphs.

For Γ a finite, connected graph, denote by d(x, y) the path-length distance between any two vertices
x, y in the vertex set V (Γ) of Γ (i.e. the length of a shortest path), and by D = DΓ the diameter
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of Γ (i.e. the maximum distance between any two vertices of Γ). For any y ∈ V (Γ), let Γi(y) be
the set of vertices in Γ at distance precisely i from y, where i ∈ N0 is a non-negative integer not
exceeding D. In addition, define Γ−1(y) = ΓD+1(y) := ∅.

Following [12, p.126], a finite, connected graph Γ is called a distance-regular graph if there are
integers bi, ci, i = 0, 1, . . . , D, such that, for any two vertices x, y ∈ V (Γ) at distance i = d(x, y),
there are precisely ci neighbors of y in Γi−1(x) and bi neighbors of y in Γi+1(x). In particular, Γ is
regular with valency k := b0. The numbers ci, bi and

ai := k − bi − ci (0 ≤ i ≤ D)

(i.e. the number of neighbors of y in Γi(x) for d(x, y) = i) are called the intersection numbers of
Γ. Note that bD = c0 = a0 := 0 and c1 = 1. In addition, we define ki := |Γi(y)| for any vertex
y ∈ V (Γ), i = 0, 1, . . . , D. This definition for distance-regular graphs is easily seen to be equivalent
to the one given in the introduction.

For Γ a distance-regular graph as above, we define

TΓ :=
(

(ci, ai, bi)
)D
i=1

(12)

and we let
GΓ :=

(
(γi, αi, βi)

)g+1

i=1
(13)

denote the (necessarily unique) maximal length subsequence of TΓ for which the i th term of GΓ is
not equal to the (i+ 1) th term of GΓ for all 1 ≤ i ≤ D − 1. In addition, we define the numbers

h = hΓ := |{j : (cj , aj , bj) = (c1, a1, b1), 1 ≤ j ≤ D − 1}| , and (14)
t = tΓ := |{j : (cj , aj , bj) = (b1, a1, c1), h < j ≤ D − 1}| (15)

which are called the head and the tail of Γ, respectively. Note that by [2, Lemma 2.1], it follows
that tail t satisfies the following :

t ≤ h and, if t ≥ 1 then (cD−t, aD−t, bD−t) = · · · = (cD−1, aD−1, bD−1) = (b1, a1, 1). (16)

2.3.1 Intersection Numbers

For the rest of Section 2, we suppose that Γ is a distance-regular graph with valency k ≥ 3, diameter

D ≥ 2, intersection numbers ai, bi, ci, 0 ≤ i ≤ D and GΓ =
(

(γi, αi, βi)
)g+1

i=1
.

In [12, Proposition 4.1.6] and [2, Lemma 2.1 (ii)], it is shown that the following inequalities always
hold :

k = b0 > b1 ≥ b2 ≥ · · · ≥ bD−1 > bD = 0 and 1 = c1 ≤ c2 ≤ · · · ≤ cD ≤ k, (17)

ai ≥ a1 + 1−min{bi, ci} (1 ≤ i ≤ D − 1). (18)

In particular, it follows that for every term (γi, αi, βi) in GΓ, βi ≥ βi+1 and γi ≤ γi+1 hold. For
each 1 ≤ i ≤ g, define

s(i) = sΓ(i) := min{j : (cj , aj , bj) = (γi, αi, βi) , 1 ≤ j ≤ D − 1}, (19)
`(i) = `Γ(i) := |{j : (cj , aj , bj) = (γi, αi, βi), 1 ≤ j ≤ D − 1}|, (20)
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and define s(g+ 1) = D. Note that s(1) = 1 `(1) = hΓ, `(g+ 1) = 1, and that s(i+ 1)− s(i) = `(i)
holds for all 1 ≤ i ≤ g.

2.3.2 Diameter Bounds

The following result is originally due to A. A. Ivanov [26] (cf. [12, Theorem 5.9.8]). Note that N
denotes the set of positive integers.

Theorem 2.3 (A. A. Ivanov’s Diameter Bound)
Let k ≥ 3 be an integer. Then there is a function F : N→ N so that, for all distance-regular graphs
Γ with valency k, diameter DΓ, and head hΓ, the inequality

DΓ ≤ F (k) hΓ

holds.

Note that it was also shown in [26] (cf. [12, Theorem 5.9.8]) that one can in fact take F (k) = 4k in
the last theorem.

Now, in order to show that there are only finitely many of distance-regular graphs Γ with fixed
valency k ≥ 3, it suffices to show that the diameter DΓ of any such graph is bounded above by
some function f : N→ N depending only on k, since |V (Γ)| ≤ 1 +

∑DΓ
i=1 k(k− 1)i−1. Thus, in view

of Theorem 2.3, it also suffices to show that the head hΓ is bounded above by some function g in
k. In particular, the following result also holds (as we can take g(k) to be a constant function).

Corollary 2.4 Suppose that k ≥ 3 and C ≥ 1 are positive integers. Then there are only finitely
many distance-regular graphs Γ with valency k and head hΓ ≤ C.

2.3.3 Eigenvalues of Distance-Regular Graphs

The tridiagonal matrix L1 = L1(Γ) associated to Γ is defined by

L1 :=



0 b0
c1 a1 b1

c2 a2 b2
. . .

ci ai bi
. . .

cD−1 aD−1 bD−1

cD aD


,

and θ ∈ R is an eigenvalue of Γ if θ is an eigenvalue of L1(Γ) ([12, p.129]). Note that any
distance-regular graph Γ with diameter D = DΓ has exactly D+1 distinct eigenvalues ([12, p.128]).
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Moreover, if θ is an eigenvalue of Γ, then (u0, u1, . . . , uD)T is called the standard sequence of Γ
associated with θ, which is a right eigenvector of L1(Γ) associated with eigenvalue θ, and the
multiplicity m(θ) of θ is given by

m(θ) =
|V (Γ)|∑D
i=0 kiu

2
i (θ)

. (21)

This equation is known as Biggs’ formula ([10, Theorem 21.4]). Note that in view of Equations (10)
and (11) it follows by this last formula that the multiplicity of eigenvalue θi of Γ is equal to the
Christoffel number mi of L1(Γ).

3 Graphical Sequences

In this section, we define graphical sequences and tridiagonal sequences. Note that these are similar
(but not identical) to the ones presented in [3]. The definition for these sequences is motivated by
the sequences GΓ and TΓ associated to Γ a distance-regular graph that were presented in the last
section.

For integers κ ≥ 3 and λ ≥ 0 with λ ≤ κ− 2, define

Vκ,λ := {(γ, α, β) ∈ N3
0 : β, γ ≥ 1, γ + α+ β = κ and α ≥ max{λ+ 1− β, λ+ 1− γ}}.

Definition 3.1 With κ, λ and Vκ,λ as just defined above, a sequence G =
(

(γi, αi, βi)
)g+1

i=1
of

distinct terms in N3
0 is called a (κ, λ)-graphical sequence if it satisfies the following conditions:

(G0) (γi, αi, βi) ∈ Vκ,λ (1 ≤ i ≤ g),

(G1) (γ1, α1, β1) = (1, λ, κ− λ− 1),

(G2) βi ≥ βi+1 (1 ≤ i ≤ g − 1) and γi ≤ γi+1 (1 ≤ i ≤ g),

(G3) βg+1 = 0 and γg+1 + αg+1 = κ.

Let G =
(

(γi, αi, βi)
)g+1

i=1
be a (κ, λ)-graphical sequence and let ` : {1, . . . , g+ 1} → N be a function

with `(g + 1) = 1. For each 1 ≤ i ≤ g + 1, define s`(i) = s(i) by

s(1) := 1,

s(i) := 1 +
i−1∑
j=1

`(j) (2 ≤ i ≤ g + 1). (22)

Definition 3.2 With G, ` and s as just defined above, the sequence of triples T = T (G, `) :=(
(cm, am, bm)

)s(g+1)

m=1
given by putting, for each 1 ≤ i ≤ g + 1,

(cs(i)+j , as(i)+j , bs(i)+j) = (γi, αi, βi) (0 ≤ j ≤ `(i)− 1)

is called the (κ, λ)-tridiagonal sequence (associated with G and `).
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Given T = T (G, `) as in this last definition, we define the head h = hT , the tail t = tT and the
diameter D = DT of T to be

hT := `(1), (23)
tT := |{hT < i ≤ s(g + 1) : (ci, ai, bi) = (κ− λ− 1, λ, 1)}| , and (24)
DT := s(g + 1), (25)

respectively. Note that h and t satisfy

h ≥ t and, if t ≥ 1 then (cD−t, aD−t, bD−t) = · · · = (cD−1, aD−1, bD−1) = (b1, a1, 1)

(see (16)).

Note that if Γ is a distance-regular graph, with diameter DΓ and TΓ =
(

(cm, am, bm)
)DΓ

m=1
, then,

referring to (13) and (20), it follows that the sequence GΓ is a (b0, a1)-graphical sequence and that
TΓ is the (b0, a1)-tridiagonal sequence T (GΓ, `Γ).

Now, given a (κ, λ)-graphical sequence G, function ` and the (κ, λ)-tridiagonal sequence T =

T (G, `) =
(

(cm, am, bm)
)D
m=1

as in Definitions 3.1 and 3.2, we define the tridiagonal matrix L1(T )
associated to T by

L1(T ) :=



0 κ
c1 a1 b1

c2 a2 b2
. . .

ci ai bi
. . .

cD−1 aD−1 bD−1

cD aD


.

It follows by the results in Section 2.1, that the tridiagonal matrix L1(T ) has exactly D+1 distinct
eigenvalues, κ = θ0 > θ1 > θ2 > · · · > θD, say, which we call the eigenvalues of T and denote by

ET := {θi : 0 ≤ i ≤ D}. (26)

Note that applying formulae (3) and (6) to the matrix L1(T ) we obtain, for each 1 ≤ i ≤ g + 1,

κs(i)+j =
κ

βi

(
βi
γi

)j i−1∏
t=1

(
βt
γt

)`(t)
=
κ b1 · · · bs(i)+j−1

c1c2 · · · cs(i)+j
(j = 0, . . . , `(i)− 1). (27)

We define the Christoffel numbers of T to be the Christoffel numbers associated with L1(T ) (cf.
Section 2.1).

Now, in case L1 = L1(TΓ) for a distance-regular graph Γ then, for any θ, θ′ distinct algebraic
conjugate eigenvalues of Γ, the multiplicities of θ and θ′ are equal ([5, Proposition III.1.5]). Hence
so are the corresponding Christoffel numbers, which implies that

∑D
i=0 κiu

2
i (θ) =

∑D
i=0 κiu

2
i (θ
′)

holds.
Motivated by this fact, we will be interested in (κ, λ)-tridiagonal sequences T that satisfy the
following key property:

10



(AC) Any two eigenvalues of T which are algebraically conjugate (over Q) have the same Christoffel
numbers.

We conclude this section with a useful result concerning graphical sequences. Suppose that G =(
(γi, αi, βi)

)g+1

i=1
is a (κ, λ)-graphical sequence for some integers κ ≥ 3 and 0 ≤ λ ≤ κ − 2, as in

Definition 3.1. For each 1 ≤ i ≤ g we define the i th right and i th left guide point by

Ri = Ri(G) := αi + 2
√
βiγi and Li = Li(G) := αi − 2

√
βiγi (1 ≤ i ≤ g) (28)

respectively. In addition, we put Rmax = Rmax(G) := max{Ri : 1 ≤ i ≤ g}.
Moreover, for each 1 ≤ i ≤ g, we define the i th guide interval to be the open interval

Ii = Ii(G) := (Li,Ri). (29)

The following lemma is a slight extension of Lemma 3.1 in [3]. We provide a proof of it for the sake
of completeness. Note that a sequence r1, . . . , rn of real numbers is called unimodal if there exists
some 1 ≤ t ≤ n satisfying r1 ≤ r2 ≤ · · · ≤ rt and rt ≥ rt+1 ≥ · · · ≥ rn.

Lemma 3.3 Suppose that κ ≥ 3 and λ ≥ 0 are integers with λ ≤ κ−2, and that G =
(

(γi, αi, βi)
)g+1

i=1
is a (κ, λ)-graphical sequence. Then the following hold.

(i) The inequality Ri ≥ R1 holds for all 1 ≤ i ≤ g, with equality holding if and only if (γi, αi, βi) ∈
{(1, λ, κ− λ− 1), (κ− λ− 1, λ, 1)}.

(ii) For any 2 ≤ i ≤ g, if βi ≥ γi then Ri−1 < Ri.

(iii) For any 2 ≤ i ≤ g − 1, if βi ≤ γi then Ri+1 < Ri.

In particular, by (ii) and (iii), it follows that the sequence (Ri)
g
i=1 is unimodal.

Proof: First note that by (G0) and (G1) in Definition 3.1, for each 1 ≤ i, j ≤ g, we have

Ri −Rj = (
√
βj −

√
γj)2 − (

√
βi −

√
γi)2, and (30)

β1 ≥ γi. (31)

Now, to see that (i) holds, note that by (G0),(G2) and (31),
√
β1 − 1 ≥

∣∣√βi −√γi∣∣ holds. Hence
Ri ≥ R1 holds in view of (30) with j = 1. Moreover, equality holds if and only if (γi, αi, βi) =
(γ1, α1, β1) if βi ≥ γi and (γi, αi, βi) = (β1, α1, γ1) if γi ≥ βi.
To complete the proof of the lemma, note that (ii) and (iii) follow from (30) and (G2), since
βi−1 ≥ βi ≥ γi ≥ γi−1 and γi+1 ≥ γi ≥ βi ≥ βi+1 hold for (ii) and (iii), respectively.
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4 A Key Result

In this section we will state without proof a key result (Theorem 4.2) that we will then use to prove
the main result of this paper (Theorem 1.1). We will then give a sketch a proof of this key result
which we will prove in Sections 5 to 9, inclusive.

For w = (wi)ni=1 any sequence, we put

w := {wi : 1 ≤ i ≤ n} , (32)

i.e. the set consisting of all distinct terms in W . To state Theorem 4.2, we will require the following
key definition:

Definition 4.1 Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ− 2. A (κ, λ)-quadruple is a quadruple
(G,∆;L, `) such that

(i) G :=
(
δi := (γi, αi, βi)

)g+1

i=1
is a (κ, λ)-graphical sequence (cf. Definition 3.1),

(ii) ∆ = (δip)τp=1 is a subsequence of G in which (1, λ, κ − λ − 1) ∈ ∆ (i.e., i1 = 1) and
(γg+1, αg+1, βg+1) 6∈ ∆, and
(iii) ` : {1, . . . , g+ 1} → N and L : {1, . . . , g+ 1} \ {i1, . . . , iτ} → N are functions with `(g+ 1) = 1
and L(i) = `(i) for all i ∈ {1, . . . , g + 1} \ {i1, . . . , iτ}.

Theorem 4.2 Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ−2, and let G =
(
δi := (γi, αi, βi)

)g+1

i=1
be

a (κ, λ)-graphical sequence. Suppose that ∆ = (δip)τp=1 is a subsequence of G with (1, λ, κ−λ−1) ∈ ∆
and (γg+1, αg+1, βg+1) 6∈ ∆, and L : {1, . . . , g + 1} \ {i1, . . . , iτ} → N is a function. Suppose ε > 0
is a real number, C := C(κ) > 0 is a constant, and ` : {1, . . . , g+ 1} → N is any function for which
(G,∆;L, `) is a (κ, λ)-quadruple and the associated (κ, λ)-tridiagonal sequence T = T (G, `) satisfies
(i) Property (AC),
(ii) DT ≤ ChT , and
(iii) DT − (hT + tT ) > εhT ,
where hT , tT and DT are as defined in (23)–(25), respectively.
Then, there exist positive constants F := F (κ,G,∆, L) and H := H(κ, λ, ε,G,∆, L) such that if
`(ip) > F holds for all 1 ≤ p ≤ τ , then hT ≤ H holds.

We will now use Theorem 4.2 to prove Theorem 1.1, the main theorem of this paper. To do this,
we will make use of the following result:

Proposition 4.3 Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ−2, and let G =
(
δi := (γi, αi, βi)

)g+1

i=1
be a (κ, λ)-graphical sequence. Suppose ε > 0 is a real number, C := C(κ) > 0 is a constant, and
` : {1, . . . , g + 1} → N is any function with `(g + 1) = 1, such that the associated (κ, λ)-tridiagonal
sequence T = T (G, `) satisfies
(i) Property (AC),

12



(ii) DT ≤ C hT , and
(iii) DT − (hT + tT ) > ε hT .
Then there exists a positive constant H := H(κ, λ, ε,G) such that hT ≤ H holds.

Proof: Suppose that κ, λ, G, ε, C, ` are as in the statement of the proposition. First, we show that
the following statement holds:

(‡) For each i = 0, . . . , g − 1, there exists a subsequence Gi of G with precisely (i + 1)-terms
satisfying (1, λ, κ − λ − 1) 6∈ Gi and (γg+1, αg+1, βg+1) ∈ Gi for which there is a positive
constant Li := Li(κ, λ, ε,G,Gi) such that

`(j) ≤ Li

holds for all (γj , αj , βj) ∈ Gi.

Proof of (‡): We use induction on i. In case i = 0, (‡) holds for the subsequence G0 :=
(

(γg+1, αg+1, βg+1)
)

and constant L0 := 1.

So, assume that (‡) holds for all i = s, with 0 ≤ s ≤ g − 2, i.e. there is a subsequence Gs =(
(γip , αip , βip)

)s+1

p=1
of G with (1, λ, κ− λ− 1) 6∈ Gs and (γg+1, αg+1, βg+1) ∈ Gs for which there is a

positive constant Ls := Ls(κ, λ, ε,G,Gs) > 0 such that `(ip) ≤ Ls holds for all 1 ≤ p ≤ s+ 1.

Let L({i1, . . . , is+1}) denote the set consisting of those functions L : {i1, . . . , is+1} → N satisfying
L(ip) ≤ Ls for all 1 ≤ p ≤ s + 1. Note that the set L({i1, . . . , is+1}) depends only on κ, λ, ε,G
and Gs. Let ∆s denote the subsequence of G obtained by removing the terms in Gs from G. Put
m = m(G,Gs) := min{2 ≤ i ≤ g : (γi, αi, βi) ∈ ∆s}.

Define positive constants F̃s = F̃s(κ, λ, ε,G,Gs) and H̃s = H̃s(κ, λ, ε,G,Gs) by

F̃s := max{F (κ,G,∆s, L) : L ∈ L({i1, . . . , is+1})},
H̃s := max{H(κ, λ, ε,G,∆s, L) : L ∈ L({i1, . . . , is+1})},

where F (κ,G,∆s, L) and H(κ, λ, ε,G,∆s, L) are the constants given by applying Theorem 4.2 to
the (κ, λ)-quadruple (G,∆s;L, `).

Then, by Theorem 4.2, either (a) `(i) > F̃s holds for all (γi, αi, βi) ∈ ∆s, in which case we can
let Gs+1 be the sequence defined by adding the term (γm, αm, βm) to the beginning of Gs and put
Ls+1 := max{Ls, C(κ) H̃s}, or (b) there exists (γn, αn, βn) ∈ ∆s such that `(n) ≤ F̃s holds, in which
case we can let Gs+1 be the sequence defined by inserting the term (γj , αj , βj) with j := max{m,n}
into the sequence Gs (according to its place in G) and put Ls+1 := max{Ls, C(κ) F̃s}. This
completes the proof that statement (‡) holds.

To complete the proof of the proposition, we apply (‡) for i = g − 1. In particular, for this choice

of i, Gg−1 =
(

(γi, αi, βi)
)g+1

i=2
, and constant Lg−1 depends only on κ, λ, ε and G, and hence the set
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L({i1, . . . , ig}) = L({2, . . . , g + 1}) of those functions L : {i1, . . . , ig} → N satisfying L(ip) ≤ Lg−1

for all 1 ≤ p ≤ g depends only on κ, λ, ε and G. Since (G,∆;L, `) is a (κ, λ)-quadruple for the
subsequence ∆ =

(
(γ1, α1, β1) = (1, λ, κ− λ− 1)

)
of G and L any function in L({2, . . . , g + 1}), it

follows by applying Theorem 4.2 to (G,∆;L, `) that there exists a constant

C = C(κ, λ, ε,G) := max{F (κ,G,∆, L), H(κ, λ, ε,G,∆, L) : L ∈ L({2, . . . , g + 1})},

where F (κ,G,∆, L), H(κ, λ, ε,G,∆, L) are the constants given by Theorem 4.2 so that

hT ≤ C

holds. This completes the proof of the proposition.

In order to prove Theorem 1.1, we will also make use of the following result from [2], which
generalizes results of Bannai and Ito [8, 9] and Suzuki [35]:

Theorem 4.4 ([2, Theorem 1.2])
Suppose that k ≥ 3 is a fixed integer. Then there exists a positive number ε0 = ε0(k), depending
only on k, so that there are only finitely many distance-regular graphs with valency k, head hΓ, tail
tΓ, and diameter DΓ that satisfy

DΓ − (hΓ + tΓ) ≤ ε0 hΓ.

Proof of Theorem 1.1: Let k ≥ 3 be a fixed integer. By Theorem 4.4, there exists a constant
ε0 = ε0(k) > 0 (which depends only on k) such that there are only finitely many distance-regular
graphs Γ with valency k, head hΓ, tail tΓ and diameter DΓ that satisfy

DΓ − (hΓ + tΓ) ≤ ε0hΓ.

Now, suppose that Γ is any distance-regular graph with valency k that satisfies

DΓ − (hΓ + tΓ) > ε0hΓ. (33)

Then, by Theorem 2.3 and (33), the (k, a1)-tridiagonal sequence TΓ = T (GΓ, `Γ) (cf. (12)) satisfies
all of conditions (i)–(iii) in Proposition 4.3, where a1 is an intersection number of Γ.

Therefore, for any distance-regular graph Γ with valency k that satisfies (33), it follows that

hΓ ≤ C(k) := max{H(k, a1, ε0(k),G) : 0 ≤ a1 ≤ k − 2, G is a (k, a1)-graphical sequence}

where H(k, a1, ε0(k),G) is the constant given by Proposition 4.3 (note that in the formula for C(k),
taking a maximum is appropriate since the number of integers a1 with 0 ≤ a1 ≤ k− 2 is finite, and
so is the number of (k, a1)-graphical sequences). Theorem 1.1 now follows by applying Corollary 2.4
with the constant C(k).

The strategy that we use to prove Theorem 4.2 (whose proof will be presented in Section 9) is quite
involved, and so we will now provide a brief overview of the proof before continuing.
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Let (G,∆;L, `) be any (κ, λ)-quadruple as in the statement of Theorem 4.2, and put G :=
(

(γi, αi, βi)
)g+1

i=1
and T := T (G, `).

By Lemma 3.3 (i), for each 2 ≤ i ≤ g satisfying (γi, αi, βi) ∈ G \ {(1, λ, κ − λ − 1), (κ − λ −
1, λ, 1), (γg+1, αg+1, βg+1)}, there exists a closed interval I = [Imin, Imax] with Imin < Imax, which
we shall call a “well-placed interval” (see Section 7), such that
(W1) I ⊆ (R1,Rmax);
(W2) If I ∩ Ii 6= ∅ then I ⊆ Ii holds, 1 ≤ i ≤ g;
(W3) I ⊆ Ii
all hold (cf. (28), (29)).

In the first step of the proof of Theorem 4.2, we will approximate the Christoffel numbers of the
eigenvalues of T inside a well-placed interval I. To do this, we define the quantities

c = c(G, I) := min
{
{2 ≤ i ≤ g : Imax < Li} ∪ {g + 1}

}
;

d = d(G, I) := max
{
{2 ≤ i ≤ g : Imax < Li} ∪ {c}

}
;

Gap(I) = GapG,`(I) :=
{ ∑

c≤j≤d `(j) if c ≤ g
0 if c = g + 1,

(cf. (69), (70), (72)) and, for any eigenvalue θ ∈ I of T , we approximate the sum
∑DT

i=0 κiu
2
i (θ)

(see Theorem 8.1) by bounding the following three subsums (cf. (22), (25), (27), (74)):

(1) Head sum:
∑s(a)−2

i=0 κiu
2
i (θ);

(2) Gap sum:
∑s(b+1)

i=s(a)−1 κiu
2
i (θ);

(3) Tail sum:
∑DT

s(b+1)+1 κiu
2
i (θ).

We can use the theory of three-term recurrence relations, to bound the Head sum and the Gap
sum (see Theorem 8.7 and Corollary 8.8). However, for the Tail sum, there may exist some real
numbers near to which we are unable to find good bounds for the Tail sum. Let B denote the set of
these real numbers (cf. (52)). In Theorem 6.2, we show that B is finite and depends only on G,∆
and L. In particular, for each (γi, αi, βi) ∈ G \{(1, λ, κ−λ−1), (κ−λ−1, λ, 1), (γg+1, αg+1, βg+1)},
there always exists a well-placed interval J ⊆ Ii such that J ∩ B = ∅ (cf. Corollary 7.3). Note
that such a well-placed interval J depends only on G,∆ and L. We strengthen the condition on
the interval I by requiring that in addition to (W1)–(W3), it also satisfies I ∩B = ∅. Then for any
such a well-placed interval, we can approximate the Tail sum as long as we require that `(i) > F
holds for all (γi, αi, βi) ∈ ∆, where F is a positive constant depending only on κ,G,∆ and L (cf.
Theorem 8.9).

Now, by Condition (iii) of Theorem 4.2, we can find an element (γi, αi, βi) ∈ G \ {(1, λ, κ − λ −
1), (κ− λ− 1, λ, 1), (γg+1, αg+1, βg+1)} satisfying `(i) > εhT

g , and we can find a well-placed interval

I ⊆ Ii such that I ∩ B = ∅ and Len(I) > εhT
g both hold (cf. (23), (71)).

By the approximation given in Theorem 8.1 and Property (AC), it follows that for any real number
δ > 0, there exist two positive constants C1 = C1(κ, λ, ε, δ,G,∆, L) and C2 = C2(κ, λ, δ) such that
any two eigenvalues θ, η ∈ I of T which are conjugate algebraic numbers must satisfy |θ − η| ≤ δ
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if hT ≥ C1 and Gap(I) ≤ C2hT all hold (cf. Theorem 9.1). In Claim 9.3, we show, by using
interlacing, that the number of eigenvalues in I is at least C3hT , where C3 is a positive constant
depending only on Imax − Imin, ε and G.

Now, we have to consider two cases: either Gap(I) ≤ C2hT or Gap(I) > C2hT . In the first case,
Gap(I) ≤ C2hT , we show by using Theorem 9.1, Claim 9.3 and Theorem 5.5, a result in number
theory, that

lim
hT→∞

|{η : eigenvalues of T that have an algebraic conjugate in I}|
hT

=∞

holds (cf. Proposition 9.2). Since the number of eigenvalues of T is exactly DT + 1 (cf. (26)) and
DT + 1 ≤ (C(κ) + 1)hT holds by condition (ii) of Theorem 4.2, there exists a constant H > 0
depending only on κ, λ, ε,G,∆, L so that hT ≤ H holds, as required.

In the second case, Gap(I) > C2hT , by the unimodality of the sequence (Ri)
g
i=1, we can find another

well-placed interval I ′ := [I ′min, I ′max] which depends only on G,∆, L such that
(1) I ′min > Imax;
(2) I ′ ∩ B = ∅;
(3) Len(I ′) > Gap(I)

g ,
all hold (see Proposition 7.4). So we can repeat the same process with I ′ instead of I. Using the
unimodality of the sequence (Ri)

g
i=1, the condition I ′min > Imax implies that c(G, I) ≤ c(G, I ′),

d(G, I ′) ≤ d(G, I) and Gap(I ′) < Gap(I) all hold. Hence, the second case can be repeated at most
g times so that, finally, the first case must be satisfied, from which Theorem 4.2 again follows.

5 Two Useful Results for Polynomials

In this section, we prove two useful results concerning roots of polynomials. The first one, Theorem
5.1, will be used in Theorem 6.2 to show that the set B (as we introduced in Section 4) is finite.
The second result, Theorem 5.5, analyzes the polynomials having all roots in an interval. It will be
used to bound the number of eigenvalues of a distance-regular graph in the proof of Proposition 9.2.

We denote the degree of any polynomial p(x) by deg(p(x)). The polynomial p(x) = 0 is called the
zero polynomial and, for technical reasons, we define the degree of this polynomial to be −1 (cf.
[25, p.158]). Two polynomials p1(x) and p2(x) are identical if their difference p1(x)− p2(x) is the
zero polynomial. Let R and C be the fields of real and complex numbers, respectively, and let R[x]
denote the ring of polynomials in one variable x with real coefficients.

Theorem 5.1 Let q1(x), q2(x) ∈ R[x] be two monic quadratic polynomials which are not squares
of linear polynomials, and let I ⊆ R be the largest (infinite) interval on which both q1(x) and q2(x)
are non-negative. Suppose Pj(x) ∈ R[x] (1 ≤ j ≤ 4) are such that C := max{deg(Pj(x)) : 1 ≤ j ≤
4} ≥ 0. Put

P (x) := P1(x) + P2(x)
√
q1(x) + P3(x)

√
q2(x) + P4(x)

√
q1(x)q2(x).

Then the equation P (x) = 0 has at most 4(C + 2) roots in I, unless q1(x) is identical to q2(x) and
P2(x)+P3(x), P1(x)+q1(x)P4(x) are the zero polynomials, in which case P (x) = 0 for every x ∈ I.
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Proof: For each i, j ∈ {0, 1}, we define

P (ij)(x) := P1(x) + (−1)iP2(x)
√
q1(x) + (−1)i+jP3(x)

√
q2(x) + (−1)jP4(x)

√
q1(x)q2(x) ,

and put
P ∗(x) := P (00)(x)× P (01)(x)× P (10)(x)× P (11)(x). (34)

Note that

P (00)(x)P (01)(x) =
(
P1(x) + P2(x)

√
q1(x)

)2
− q2(x)

(
P3(x) + P4(x)

√
q1(x)

)2

has the form U(x) + V (x)
√
q1(x) with U(x), V (x) ∈ R[x] satisfying deg(U(x)) ≤ 2C + 4 and

deg(V (x)) ≤ 2C + 2. Similarly,

P (10)(x)P (11)(x) =
(
P1(x)−P2(x)

√
q1(x)

)2
−q2(x)

(
P3(x)−P4(x)

√
q1(x)

)2
= U(x)−V (x)

√
q1(x).

Hence, by (34), P ∗(x) = U(x)2 − V (x)2q1(x) is a real polynomial of degree at most 4C + 8. This
proves the theorem in the non-degenerate case when P ∗(x) is not the zero polynomial.

Assume now that P ∗(x) is the zero polynomial. We need to prove that this happens only if q1(x)
is identical to q2(x) and P2(x) +P3(x), P1(x) + q1(x)P4(x) are the zero polynomials. We first prove
the following.

Claim 5.2 If q1(x)− q2(x) is not the zero polynomial then P ∗(x) is also not the zero polynomial.

Proof of Claim 5.2 We first show that P 2
1 (x) − q1(x)q2(x)P4(x)2 is not the zero polynomial if

at least one of the polynomials P1(x), P4(x) is not the zero polynomial. Take a root γ ∈ C of
q1(x) which is not a root of q2(x). By the condition of the theorem, γ is the root of q1(x)q2(x)
of multiplicity 1. Assume that P 2

1 (x) − q1(x)q2(x)P4(x)2 is the zero polynomial. Then γ is the
root of q1(x)q2(x)P4(x)2 of odd multiplicity but it is either not the root of P1(x)2 or it is its root
of even multiplicity, a contradiction. By the same argument, P2(x)2q1(x)− P3(x)2q2(x) is not the
zero polynomial if at least one of the polynomials P2(x), P3(x) is not the zero polynomial. Since
C := max{deg(Pj(x)) : 1 ≤ j ≤ 4} ≥ 0, we always have either P 2

1 (x) 6= q1(x)q2(x)P4(x)2 (if
P1(x)P4(x) is not the zero polynomial) or P2(x)2q1(x) 6= P3(x)2q2(x) (if P2(x)P3(x) is not the zero
polynomial) for infinitely many x ∈ I.

Suppose P ∗(x) is the zero polynomial. Then one of the functions P (ij)(x), where i, j ∈ {0, 1}, must
be zero identically on x ∈ I. Hence

P1(x) + (−1)iP2(x)
√
q1(x) + (−1)i+jP3(x)

√
q2(x) + (−1)jP4(x)

√
q1(x)q2(x) = 0. (35)

Our aim is to show that this is only possible if all Pj(x), j = 1, 2, 3, 4, are the zero polynomials
which is not the case by the condition of the theorem.

We first claim that
P1(x)P2(x) = q2(x)P3(x)P4(x). (36)
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Indeed, putting first two terms of (35) into the right hand side and squaring we obtain(
P1(x) + (−1)iP2(x)

√
q1(x)

)2
= q2(x)

(
(−1)iP3(x) + P4(x)

√
q1(x)

)2
. (37)

Since q1(x) is not the square of a linear polynomial, by the same argument for roots multiplicity
as above, the function S(x) + T (x)

√
q1(x), where S(x), T (x) ∈ R[x], is zero identically on I if and

only if S(x) and T (x) are the zero polynomials. Therefore, collecting terms for
√
q1(x) in (37) we

obtain (36).

Similarly, putting the first and the third term of (35) to the right hand side, squaring and then
using the same argument for the ring R[x] + R[x]

√
q2(x), we deduce that

P1(x)P3(x) = q1(x)P2(x)P4(x). (38)

Suppose first that P1(x) is the zero polynomial. Then, by (36) and (38), P2(x), P3(x) or P4(x)
is zero identically. If either P2(x) or P3(x) is the zero polynomial then, by (35), all four Pj(x)
must be the zero polynomials, a contradiction. If P4(x) is the zero polynomial then P2(x)

√
q1(x) +

(−1)jP3(x)
√
q2(x) = 0. But this yields P2(x)2q1(x) = P3(x)2q2(x), a contradiction again. By the

same argument, if any of the polynomials P2(x), P3(x), P4(x) is the zero polynomial, then by (36)
and (38) one more polynomial must be a zero polynomial. One then concludes as above that all
four polynomials are the zero polynomials.

Finally, if none of the polynomials Pj(x) is the zero polynomial then multiplying (36) and (38)
gives P1(x)2P2(x)P3(x) = q1(x)q2(x)P2(x)P3(x)P4(x)2. Hence P1(x)2 = q1(x)q2(x)P4(x)2, which is
a contradiction again.

Now, to complete the proof of the theorem, suppose that q1(x) is identical to q2(x). Then P (x) =
P1(x) + q1(x)P4(x) + (P2(x) +P3(x))

√
q1(x) for all x ∈ I. If P1(x) + q1(x)P4(x) and P2(x) +P3(x)

are the zero polynomials then P (x) is zero identically. Otherwise,

P (x)(P1(x)+q1(x)P4(x)− (P2(x)+P3(x))
√
q1(x)) = (P1(x)+q1(x)P4(x))2−q1(x)(P2(x)+P3(x))2

is not the zero polynomial. So P has at most 2C + 4 roots in I, which is better than required.

In the remainder of this section, we will show the second useful result, Theorem 5.5.
For any real number κ ≥ 2, we denote by Pκ the set of all irreducible monic polynomials p(x) ∈ Z[x]
such that all of the roots of p(x) are contained in the closed interval [−κ, κ]. Note Pκ ⊆ Pκ′ if
κ ≤ κ′.

Lemma 5.3 Let κ ≥ 2 be a real number and let n be a positive integer. Then the following holds.
(i) The set consisting of all polynomials p(x) ∈ Pκ of degree at most n is finite.
(ii) Pκ is an infinite set.

Proof: (i) Obviously, any coefficient of each p(x) ∈ Pκ of degree at most n is in [−(2κ)n, (2κ)n], so
Pκ contains at most (2(2κ)n + 1)n+1 of such polynomials. See also [27, Lemma 7.1].
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(ii) Let Pn(1, 0, 1)(x) be the characteristic polynomial of the tridiagonal (n×n)-matrix with zeroes
on the diagonal and ones on the subdiagonals and superdiagonals. Then Pn(1, 0, 1)(x) is a polyno-
mial of degree n and has n distinct roots, 2 cos( iπ

n+1), i = 1, . . . , n ([10, p.11]). Thus, if we factorize
Pn(1, 0, 1)(x) into irreducible factors, say q1(x), . . . , qt(x), then qi(x) 6= qj(x) if 1 ≤ i < j ≤ t and
qi(x) ∈ P2 for all 1 ≤ i ≤ t. (ii) now follows immediately from (i).

In fact, an old result of R. M. Robinson [32] asserts that if J is an interval of length strictly
greater than 4 then there are infinitely many irreducible monic polynomials whose roots all lie in
J . Moreover, none of them has a root of the form 2 cos(πr) with r ∈ Q as those lying in P2.

Now, for any real number ζ > 0, let Iκ,ζ be the set of all closed intervals of length ζ which are
contained in the closed interval [−κ, κ]. For each p ∈ Pκ and I ∈ Iκ,ζ , we define

Υκ(p, I) :=
|{θ ∈ I : p(θ) = 0}| − 1

deg(p(x))
, and (39)

Υκ, ζ := sup {Υκ(p, I) : p ∈ Pκ, I ∈ Iκ,ζ} . (40)

Remark 5.4 Note that Υκ, ζ is positive for all ζ > 0 since by Lemma 5.3 (ii) there exists a
polynomial p(x) ∈ P2 with degree n > 8κ

ζ and so, by the pigeon hole principle, there exists an

interval I ∈ Iκ,ζ of length ζ such that p(x) has at least nζ
4κ roots in I. Even so, we now show that

the limit of Υκ, ζ as ζ tends to ∞ is zero.

Theorem 5.5 Let κ ≥ 2 be a real number. Then

lim
ζ→0

Υκ, ζ = 0.

Proof: Fix κ ≥ 2 and ζ ∈ (0, 1). Let p(x) ∈ Pκ be of degree n, say, and let I ∈ Iκ, ζ . Since p(x) is
irreducible in Z[x], it has n distinct roots α1, . . . , αn ∈ [−κ, κ]. Consider the discriminant ∆(p) of
p given by

∆(p) :=
∏

1≤i<j≤n
(αi − αj)2.

Since p(x) is a monic polynomial with integral coefficients, its discriminant ∆(p) is an integer.
Moreover, ∆(p) is not zero as the roots of p(x) are distinct and ∆(p) > 0, so ∆(p) ≥ 1.

Without loss of generality, assume that {α1, . . . , αt} is the set of roots of p(x) contained in I, for
some 0 ≤ t ≤ n. Let τ = τ(p, I) := t

n .

Claim 5.6 If t ≥ 2 then τ2 ≤ −2 ln (2κ)
ln ζ .

Proof of Claim: We have

1 ≤
∏

1≤i<j≤n
(αi − αj)2
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=

 ∏
1≤i<j≤t

(αi − αj)2

 ∏
1≤i<j≤n and j > t

(αi − αj)2


≤ ζτn(τn−1)(2κ)n(n−1),

since t = τn ≥ 2, |αi − αj | ≤ ζ for 1 ≤ i < j ≤ t and |αi − αj | ≤ 2κ for 1 ≤ i < j ≤ n. Using

τn− 1 ≥ τ(n− 1)/2 and 0 < ζ < 1 we find that 1 ≤ ζ
τnτ(n−1)

2 (2κ)n(n−1), so 1 ≤ ζτ2/22κ. The claim
follows by taking the logarithms of both sides of the last inequality.

Now, let q(x) ∈ Pκ and I ∈ Iκ, ζ be such that

Υκ(q, I) ≥ 1
2

Υκ, ζ > 0.

Such a q(x) exists, since, as remarked before the statement of the theorem, Υκ, ζ is positive. Since
Υκ(q, I) > 0, the polynomial q(x) has at least 2 roots in I. Hence, by Claim 5.6 and (39), we have√

−2 ln (2κ)
ln ζ

≥ |{x ∈ I : q(x) = 0}|
deg(q(x))

>
|{x ∈ I : q(x) = 0}| − 1

deg(q(x))
= Υκ(q, I) ≥ 1

2
Υκ, ζ > 0,

from which the theorem immediately follows.

6 Preliminary Results for the Christoffel Numbers

In this section, we will prove some results which we will use later in Section 8 for the approximation
of Christoffel numbers.

Suppose that G :=
(

(γi, αi, βi)
)g+1

i=1
is a (κ, λ)-graphical sequence, that (G,∆;L, `) is a (κ, λ)-

quadruple as in Definition 4.1, and that ∆ = (δj)τj=1.

Fix i with 0 ≤ i ≤ τ − 1. Let 0 ≤ ji < g be the integer for which

δτ−i = (γg−ji , αg−ji , βg−ji) (41)

holds. We put j−1 := −1, and note that ji − j(i−1) ≥ 1 necessarily holds.

Suppose ji − j(i−1) ≥ 2. Then, for ni := ji − j(i−1) − 1, we define the sequence z(i) = (z(i)
s )nis=1 by

putting
z(i)
s := (γg−j(i−1)−s, αg−j(i−1)−s, βg−j(i−1)−s), s = 1, . . . , ni.

In addition, for N :=
∑

z∈z(i) L(z), we let w(i) = (w(i)
k )Nk=1 be the sequence whose kth term w

(i)
k is

defined to be z(i)
j for the necessarily unique j for which

j−1∑
s=1

L(z(i)
s ) < k ≤

j∑
s=1

L(z(i)
s ) (42)
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holds.

Now, suppose that θ is a real number, and that v0 and v1 are real numbers satisfying (v0, v1) 6= (0, 0).
In addition, let (vj)N+1

j=0 be the sequence that is defined by the recurrence relations

β̃jvj−1 + (α̃j − θ)vj + γ̃jvj+1 = 0 (j = 1, 2, . . . , N) , (43)

where (γ̃j , α̃j , β̃j) denotes the jth term w
(i)
j of the sequence w(i), and N is as above if ji− j(i−1) ≥ 2

and N := 0 else. Then, in view of (43), for ji − j(i−1) ≥ 2 there are polynomials f (i)
t (x), g(i)

t (x) in

Q[x] (of degree s−1 and s−2, respectively) that, for θ ∈ [Rg−ji , κ], satisfy vs = f
(i)
t (θ)v1 +g(i)

t (θ)v0

for each s ≥ 1,

vN =

{
f

(i)
1 (θ)v1 + g

(i)
1 (θ)v0 if ji − j(i−1) ≥ 2

v0 if ji − j(i−1) = 1,
(44)

and

vN+1 =

{
f

(i)
2 (θ)v1 + g

(i)
2 (θ)v0 if ji − j(i−1) ≥ 2

v1 if ji − j(i−1) = 1.
(45)

In addition, in case ji − j(i−1) = 1, we let f (i)
t (x) and g

(i)
t (x) (t = 1, 2) be the polynomials in Q[x]

for which both f
(i)
t (x) − t + 1 and g

(i)
t (x) + t − 2 are the zero polynomials for t = 1, 2. Note that

the degrees of the polynomials f (i)
t (x) and g

(i)
t (x) are as follows:

deg(f (i)
1 (x)) =

{
−1 +

∑
z∈z(i) L(z) if ji − j(i−1) ≥ 2

−1 if ji − j(i−1) = 1,
; (46)

deg(g(i)
1 (x)) =

{
deg(f (i)

1 (x))− 1 if ji − j(i−1) ≥ 2
0 if ji − j(i−1) = 1

; (47)

deg(f (i)
2 (x)) = deg(f (i)

1 (x)) + 1; (48)

deg(g(i)
2 (x)) = deg(f (i)

1 (x)). (49)

Note also that f (i)
t (x) and g(i)

t (x) (t = 1, 2, 0 ≤ i ≤ τ − 1) depend only on the triple (G,∆, L) (and
not on the function `).

We now present the second key definition of this section. For the (κ, λ)-graphical sequence G =(
(γi, αi, βi)

)g+1

i=1
, let xi = xi(θ) and yi = yi(θ) (where |xi| ≥ |yi|) be the roots of the equation

γg−ix
2 + (αg−i − θ)x+ βg−i = 0 (0 ≤ i < g). (50)

Definition 6.1 For any integers κ ≥ 3 and λ ≥ 0 with λ ≤ κ − 2, let (G,∆;L, `) be a (κ, λ)-

quadruple with G =
(

(γi, αi, βi)
)g+1

i=1
and ∆ = (δi)τi=1. With reference to (28), (44), (45) and (50),

for 0 ≤ i ≤ τ − 1 and δτ−i = (γg−ji , αg−ji , βg−ji) ∈ ∆ satisfying βg−ji ≤ γg−ji, and for any real
numbers v0, v1 satisfying (v0, v1) 6= (0, 0) we define the set Bi = Bi(G,∆, L) by

Bi(G,∆, L) := {θ ∈ [Rg−ji(G),Rmax(G)] : Fi(θ) = 0} , (51)

21



where Fi(x) is the polynomial in R[x] given by

Fi(x) :=


∏
ξ∈{xji ,yji}

(
(x− αg+1)(f (i)

1 (x)ξ − f (i)
2 (x)) + γg+1(g(i)

1 (x)ξ − g(i)
2 (x))

)
if i = 0∏

(ξ,χ)∈{xji ,yji}×{xj(i−1)
,yj(i−1)

}

(
(f (i)

1 (x)ξ − f (i)
2 (x))χ+ g

(i)
1 (x)ξ − g(i)

2 (x)
)

if i 6= 0.

With reference to (51), we also define the set B = B(G,∆, L) by

B(G,∆, L) :=
⋃

0≤i≤τ−1 and βg−ji≤γg−ji

Bi(G,∆, L). (52)

Note that since the polynomials f (i)
t (x) and g

(i)
t (x) (t = 1, 2, 0 ≤ i ≤ τ − 1) depend only on the

triple (G,∆, L), the polynomial Fi(x) and the sets Bi and B in the last definition all also depend
only on (G,∆, L). Note that, if Rmax(G) = κ, then Fi(κ) = 0 for all i, 0 ≤ i ≤ τ − 1 (as the
standard eigenvector for κ is the all-one vector and xi = 1 for all 0 ≤ i ≤ τ − 1), and hence in this
case κ ∈ B.

Theorem 6.2 Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2. Suppose that (G,∆;L, `) is a
(κ, λ)-quadruple. Then there exists a constant C = C(G,∆, L) > 0 such that

|B| ≤ C

holds, for B = B(G,∆, L) as defined in Definition 6.1.

Proof: Let (G,∆;L, `) be a (κ, λ)-quadruple, put G =
(

(γi, αi, βi)
)g+1

i=1
and let T = T (G, `)

be the associated (κ, λ)-tridiagonal sequence. In addition, put ∆ = (δj)τj=1 and let δτ−i =
(γg−ji , αg−ji , βg−ji) ∈ ∆ with βg−ji ≤ γg−ji be as defined in (41).

To prove the theorem, we will use Theorem 5.1 to bound |Bi| by some constant depending only on
G, ∆ and L for each 0 ≤ i ≤ τ − 1. To do this, we first define polynomials qs(x), s = 1, 2, and
Pj(x), 1 ≤ j ≤ 4 as in the statement of that theorem, breaking this definition into cases depending
on i:

(a) i = 0: Let qs(x) = (x− αg−ji)2 − 4βg−jiγg−ji (s = 1, 2). For each ξ ∈ {xji , yji}, put

P1(x) :=
(x− αg−ji)((x− αg+1)f (i)

1 + γg+1g
(i)
1 )

2γg−ji
− (x− αg+1)f (i)

2 − γg+1g
(i)
2 ,

P ξ2 (x) := (−1)δξ,yji

(
(x− αg+1)f (i)

1 + γg+1g
(i)
1

2γg−ji

)
,

P3(x) = P4(x) = 0 ,

where δξ,yji is the Kronecker delta function, and let P2(x) = P ξ2 (x). Then, for this specific choice
of polynomials, the polynomial P (x) = P ξ(x) in Theorem 5.1 becomes

P (x) = (x− αg+1)(f (i)
1 (x)ξ − f (i)

2 (x)) + γg+1(g(i)
1 (x)ξ − g(i)

2 (x)),
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which is precisely the factor that appears in the definition of the polynomial F0(x) in Definition 6.1.

Note that if P1(x) and P2(x) are the zero polynomials, then (x− αg+1)f (i)
s + γg+1g

(i)
s are also the

zero polynomials for s = 1, 2. This contradicts (46)–(49). Hence max{deg(Pj(x)) : 1 ≤ j ≤ 4} ≥ 0.

(b) i ≥ 1: Let q1(x) = (x− αg−ji)2 − 4βg−jiγg−ji and q2(x) = (x− αg−j(i−1)
)2 − 4βg−j(i−1)

γg−j(i−1)
.

Note that as βg−j(i−1)
≤ βg−ji ≤ γg−ji ≤ γg−j(i−1)

holds, q1(y) 6= q2(y) for some y ∈ R. For
each (ξ, χ) ∈ {xji , yji} × {xj(i−1)

, yj(i−1)
}, let Ps(x) ∈ Q[x], 1 ≤ s ≤ 4, be polynomials such that

P (x) := (f (i)
1 (x)ξ − f (i)

2 (x))χ + g
(i)
1 (x)ξ − g(i)

2 (x), i.e. the factor appearing in the definition of the
polynomial Fi(x) in Definition 6.1, i ≥ 1. Note that if Ps(x) = 0 (1 ≤ s ≤ 4) are all the zero polyno-
mials, then so are the polynomials f (i)

t (x) and g(i)
t (x), t = 1, 2. Thus vN (θ) = vN+1(θ) = 0 hold for

any real number θ, which is impossible as (v0, v1) 6= (0, 0). Hence max{deg(Ps(x)) : 1 ≤ s ≤ 4} ≥ 0.

With these definitions in hand we can now apply Theorem 5.1 simultaneously to cases (a) and (b).
(Clearly, q1(x) and q2(x) are not squares of linear polynomials.) In particular, in view of (46)–(49),

|Bi| ≤

 8
(

4 + deg(f (i)
1 (x))

)
if i = 0

16
(

4 + deg(f (i)
1 (x))

)
if i 6= 0

holds, from which the proof of the theorem now follows by taking

C(G,∆, L) := 16 |G|

3 +
∑

(γi,αi,βi)∈G\∆

L(i)

 .

Now, for the (κ, λ)-quadruple (G,∆;L, `), let T = T (G, `) be the associated tridiagonal sequence.
Let θ be a real number. Then, for each 0 ≤ i < g satisfying θ > Rg−i, there exist complex numbers

ν
(i)
1 (θ) and ν

(i)
2 (θ) such that the terms in the standard sequence

(
uj = uj(θ)

)DT
j=0

satisfy

us(g−i+1)−j(θ) = ν
(i)
1 (θ)xji (θ) + ν

(i)
2 (θ)yji (θ) (0 ≤ j ≤ `(g − i) + 1), (53)

where s(g− i+1), xi(θ) and yi(θ) are as defined in (22) and (50). Note that xi(θ)−yi(θ) 6= 0 holds,
and that (ν(i)

1 (θ), ν(i)
2 (θ)) 6= (0, 0) holds as (u0, u1) 6= (0, 0). Taking j = 0, 1 in (53) we obtain:

ν
(i)
1 (θ) =

(
−yi(θ)

xi(θ)− yi(θ)

)
us(g−i+1)(θ) +

(
1

xi(θ)− yi(θ)

)
us(g−i+1)−1(θ); (54)

ν
(i)
2 (θ) =

(
xi(θ)

xi(θ)− yi(θ)

)
us(g−i+1)(θ) +

(
−1

xi(θ)− yi(θ)

)
us(g−i+1)−1(θ). (55)

In particular, in view of (44), (45) and (53), for each δτ−i = (γg−ji , αg−ji , βg−ji) ∈ ∆, there exist
polynomials f (i)

t = f
(i)
t (x), g(i)

t = g
(i)
t (x) (t = 1, 2) in Q[x] such that

us(g−ji+1)(θ) =

{
f

(i)
1 (θ)us(g−j(i−1))−1(θ) + g

(i)
1 (θ)us(g−j(i−1))(θ) if i 6= 0

f
(i)
1 (θ)uD−1(θ) + g

(i)
1 (θ)uD(θ) if i = 0

(56)
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and

us(g−ji+1)−1(θ) =

{
f

(i)
2 (θ)us(g−j(i−1))−1(θ) + g

(i)
2 (θ)us(g−j(i−1))(θ) if i 6= 0

f
(i)
2 (θ)uD−1(θ) + g

(i)
2 (θ)uD(θ) if i = 0

(57)

hold, where f (i)
t (x)− t+ 1 and g

(i)
t (x) + t− 2 are the zero polynomials if ji − j(i−1) = 1.

The last theorem of this section will play an important role later on in obtaining an upper bound
for the Christoffel numbers of any eigenvalue of T (G, `) within some closed interval not intersecting
B. For any non-empty closed real interval I, we define Imin and Imax to be the real numbers for
which I = [Imin, Imax] holds.

Theorem 6.3 Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2. Suppose that (G,∆;L, `) is a

(κ, λ)-quadruple and let G =
(

(γi, αi, βi)
)g+1

i=1
. Suppose that I is a non-empty, closed subinterval of

(R1,Rmax) such that
I ∩

(
B ∪ {Ri : 1 ≤ i ≤ g}

)
= ∅ and 2 ≤ b < g (58)

both hold, where b = b(G, I) := max{2 ≤ i ≤ g : Imax < Ri}. Then for each (γg−i, αg−i, βg−i) ∈ ∆
with b + 1 ≤ g − i ≤ g, there exist positive constants Ci = Ci(κ,G,∆, L, I) ≥ 1 and Mi =
Mi(κ,G,∆, L, I) > 1 such that, if `(g − j) > Ci hold for all j < i with (γg−j , αg−j , βg−j) ∈ ∆, then∣∣∣∣∣ν(i)

1 (θ)

ν
(i)
2 (θ)

∣∣∣∣∣ > Mi

(
yi(θ)
xi(θ)

)Ci
(59)

holds for any real number θ ∈ I, where Ri, ∆, xi(θ), yi(θ), B = B(G,∆, L) and ν
(i)
j (θ) (j = 1, 2)

are as defined in (28), (32), (50), (52) and (53), respectively.

Proof: Let T = T (G, `) be the (κ, λ)-tridiagonal sequence associated to (G,∆;L, `), let D := DT

and let ∆ = (δi)τi=1. Note that for each 0 ≤ j < g − b, 0 < yj(θ)
xj(θ)

< 1 holds for any θ ∈ I, and also

that yj(θ)
xj(θ)

is a non-zero continuous function (in θ) on the closed interval I. Hence, there exists a
constant 0 < P = P (G, I) < 1 such that

yj(θ)
xj(θ)

=
θ − αg−j −

√
(θ − αg−j)2 − 4βg−jγg−j

θ − αg−j +
√

(θ − αg−j)2 − 4βg−jγg−j
≤ P < 1 (60)

holds for any 0 ≤ j < g − b and for any θ ∈ I. Note also that for each 0 ≤ j < g − b, βg−j ≤ γg−j
holds by Lemma 3.3.

Now, for each δτ−s ∈ ∆, let
δτ−s := (γg−js , αg−js , βg−js)

for some 0 ≤ js < g. We prove the theorem by induction on 0 ≤ s ≤ s, where

s := max{i : δτ−i ∈ ∆ and Rg−ji < Imin}.
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First, suppose s = 0. Let δτ = (γg−j0 , αg−j0 , βg−j0) ∈ ∆ for some 0 ≤ j0 ≤ g − b− 1.
By (9), γg+1uD−1(θ) + (αg+1− θ)uD(θ) = 0 and uD(θ) 6= 0 for any θ ∈ I. By (54)–(57), there exist
polynomials f (0)

t (x), g(0)
t (x) ∈ Q[x] (t = 1, 2) such that

ν
(j0)
1 (θ) =

(
(θ − αg+1)(−f (0)

1 (θ)yj0(θ) + f
(0)
2 (θ)) + γg+1(−g(0)

1 (θ)yj0(θ) + g
(0)
2 (θ))

γg+1(xj0(θ)− yj0(θ))

)
uD(θ) and

ν
(j0)
2 (θ) =

(
(θ − αg+1)(f (0)

1 (θ)xj0(θ)− f (0)
2 (θ)) + γg+1(g(0)

1 (θ)xj0(θ)− g(0)
2 (θ))

γg+1(xj0(θ)− yj0(θ))

)
uD(θ)

both hold for all θ ∈ I. It follows by (58) and uD(θ) 6= 0 that ν(j0)
t (θ) 6= 0 (t = 1, 2) for all θ ∈ I.

Since the function ν
(j0)
1 (θ)

ν
(j0)
2 (θ)

is a non-zero continuous function on the closed interval I, by (60) there

exist constants Nj0 := Nj0(κ,G,∆, L, I) > 0 and Cj0 := Cj0(κ,G,∆, L, I) ≥ 1 so that∣∣∣∣∣ν(j0)
1 (θ)

ν
(j0)
2 (θ)

∣∣∣∣∣ ≥ Nj0 > PCj0−1 ≥ 1
P

(
yj0(θ)
xj0(θ)

)Cj0
(61)

holds for any θ ∈ I. Hence there exist constants Cj0 = Cj0(κ,G,∆, L, I) ≥ 1 and Mj0 =
Mj0(κ,G,∆, L, I) := 1/P such that (59) holds for all θ ∈ I. This completes the proof of the
base case.

Now, suppose 0 < s ≤ s, and assume that the theorem holds for all δτ−j ∈ ∆ with 0 ≤ j < s. Let

x := xj(s−1)
(θ), y := yj(s−1)

(θ), νt := ν
(j(s−1))
t (θ) (t = 1, 2) and ` := `(g− j(s−1)). In view of (53) and

(56) and (57), there exist polynomials f (s)
t (x) and g(s)

t (x) (t = 1, 2) such that, putting f1 := f
(s)
1 (θ),

f2 := f
(s)
2 (θ), g1 := g

(s)
1 (θ) and g2 := g

(s)
2 (θ),

us(g−js+1) = f1us(g−j(s−1))−1 + g1us(g−j(s−1)) = (f1x+ g1)ν1x
` + (f1y + g1)ν2y

`; (62)

us(g−js+1)−1 = f2us(g−j(s−1))−1 + g2us(g−j(s−1)) = (f2x+ g2)ν1x
` + (f2y + g2)ν2y

` (63)

both hold for all θ ∈ I. Let x
′

:= xjs(θ) and y
′

:= yjs(θ), and define Mjs = Mjs(κ,G,∆, L, I) by

Mjs(κ,G,∆, L, I) := max

{
Mj(s−1)

, 2

∣∣∣∣∣ (f1y
′ − f2)y + g1y

′ − g2

(f1y
′ − f2)x+ g1y

′ − g2

∣∣∣∣∣ , 2

∣∣∣∣∣ (f1x
′ − f2)y + g1x

′ − g2

(f1x
′ − f2)x+ g1x

′ − g2

∣∣∣∣∣ : θ ∈ I

}
.

(64)
By the induction hypothesis, if `(g − jt) > Cj(s−1)

holds for all 0 ≤ t < s − 1, then (59) holds for
the case i = j(s−1). Moreover, there exists an integer Ejs := Ejs(κ,G,∆, L, I) ≥ 1 so that∣∣∣∣ν1

ν2

∣∣∣∣ (xy
)Ejs

> Mjs (65)

holds for any θ ∈ I. Now take C
′
js

(κ,G,∆, L, I) := max{Ejs , Cj(s−1)
} and suppose that `(g −

jt) > C
′
js

holds for all 0 ≤ t < s. If ν(js)
1 (η) = 0 holds for some η ∈ I, then us(g−js+1)−1(η) =

us(g−js+1)(η)yjs(η) holds and so, as η 6∈ B,

ν̄1x̄
`
(

(f̄1ȳ
′ − f̄2)x̄+ ḡ1ȳ

′ − ḡ2

)
= ν̄2ȳ

`
(

(−f̄1ȳ
′
+ f̄2)ȳ − ḡ1ȳ

′
+ ḡ2

)
and(

(f̄1ȳ
′ − f̄2)x̄+ ḡ1ȳ

′ − ḡ2

) (
(−f̄1ȳ

′
+ f̄2)ȳ − ḡ1ȳ

′
+ ḡ2

)
6= 0
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both hold, where ν̄t = ν
(j(s−1))
t (η), f̄t = f

(s)
t (η), ḡt = g

(s)
t (η) (t = 1, 2), x̄ = xj(s−1)

(η), x̄
′

= xjs(η),
ȳ = yj(s−1)

(η), and ȳ
′

= yj(s−1)
(η). This contradicts (64) and (65) as

Mjs <

∣∣∣∣ ν̄1

ν̄2

∣∣∣∣ ( x̄ȳ
)Ejs

≤
∣∣∣∣ ν̄1

ν̄2

∣∣∣∣ ( x̄ȳ
)`

=

∣∣∣∣∣ (f̄1ȳ
′ − f̄2)ȳ + ḡ1ȳ

′ − ḡ2

(f̄1ȳ
′ − f̄2)x̄+ ḡ1ȳ

′ − ḡ2

∣∣∣∣∣ .
Similarly, it follows that ν(js)

t (θ) 6= 0 (t = 1, 2) must hold for all θ ∈ I. Moreover, by (53), (62) and
(64), there exists a constant Njs := Njs(κ,G,∆, L, I) > 0 such that∣∣∣∣∣ν(js)

1 (θ)

ν
(js)
2 (θ)

∣∣∣∣∣ =

∣∣∣∣∣∣
ν1x

`
(

(−f1y
′
+ f2)x− g1y

′
+ g2

)
+ ν2y

`
(

(−f1y
′
+ f2)y − g1y

′
+ g2

)
ν1x`

(
(f1x

′ − f2)x+ g1x
′ − g2

)
+ ν2y`

(
(f1x

′ − f2)y + g1x
′ − g2

)
∣∣∣∣∣∣

≥
Mjs

∣∣∣(f1y
′ − f2)x+ g1y

′ − g2

∣∣∣− ∣∣∣(f1y
′ − f2)y + g1y

′ − g2

∣∣∣
Mjs

∣∣∣(f1x
′ − f2)x+ g1x

′ − g2

∣∣∣+
∣∣∣(f1x

′ − f2)y + g1x
′ − g2

∣∣∣
≥

∣∣∣(f1y
′ − f2)y + g1y

′ − g2

∣∣∣
Mjs

∣∣∣(f1x
′ − f2)x+ g1x

′ − g2

∣∣∣+
∣∣∣(f1x

′ − f2)y + g1x
′ − g2

∣∣∣
≥ Njs (66)

holds for any θ ∈ I. This implies that there exists a positive constant C
′′
js

= C
′′
js

(κ,G,∆, L, I) ≥ 1

such that Njs > MjsP
C
′′
js holds. Hence by taking Cjs = Cjs(κ,G,∆, L, I) := max{C ′js , C

′′
js
}, it

follows that ∣∣∣∣∣ν(js)
1 (θ)

ν
(js)
2 (θ)

∣∣∣∣∣ ≥ Njs > MjsP
Cjs ≥Mjs

(
yjs(θ)
xjs(θ)

)Cjs
holds for all θ ∈ I. By applying the induction hypothesis, it follows that the desired result holds for
each (γg−js , αg−js , βg−js) ∈ ∆ satisfying 0 ≤ js < g− b. This completes the proof of the theorem.

7 Well-Placed Intervals

In this section, we define the concept of a well-placed interval with respect to a graphical sequence,
and derive some simple properties of such intervals that will be used later on. Note that our
definition of a well-placed interval is similar (but not identical) to the one presented in [3].

Suppose that G =
(

(γi, αi, βi)
)g+1

i=1
is a (κ, λ)-graphical sequence, where κ ≥ 3 and 0 ≤ λ ≤ κ − 2

are integers.

For any closed subinterval I = [Imin, Imax] of (R1,Rmax) with positive length, define integers
a = a(G, I), b = b(G, I), c = c(G, I) and d = d(G, I) (that depend only on G and I) by

a(G, I) := min{2 ≤ i ≤ g : Imax < Ri}, (67)
b(G, I) := max{2 ≤ i ≤ g : Imax < Ri}, (68)

26



c(G, I) := min
{
{2 ≤ i ≤ g : Imax < Li} ∪ {g + 1}

}
, (69)

d(G, I) := max
{
{2 ≤ i ≤ g : Imax < Li} ∪ {c}

}
. (70)

The interval I is called a well-placed interval with respect to G if it satisfies the following conditions:

(W1) I is a closed subinterval of the open interval (R1,Rmax) with positive length;

(W2) If I ∩ Ij 6= ∅ then I ⊆ Ij holds, 1 ≤ j ≤ g;

(W3) I ⊆ Ia, where a := a(G, I).

From now on, we will denote well-placed intervals using calligraphic script (e.g. I instead of I) to
help the reader follow the text.

In the rest of the section, we will derive some properties of well-placed intervals. We start with
recording some simple properties of the numbers a, b, c, d.

Lemma 7.1 Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2, and let G =
(

(γi, αi, βi)
)g+1

i=1
be a

(κ, λ)-graphical sequence. Let I = [Imin, Imax] be a well-placed interval with respect to G. For the
numbers a, b, c, d as defined in (67)–(70), the following hold:
(i) 2 ≤ a ≤ b ≤ g.
(ii) c ≤ d.
(iii) If c ≤ g, then 2 ≤ a < c ≤ d ≤ b ≤ g holds.
(iv) {1 ≤ i ≤ g : 1 ≤ i < a or b < i ≤ g} ⊆ {1 ≤ i ≤ g : Ri < Imin}.
(v) If c ≤ g, then {1 ≤ i ≤ g : a ≤ i < c or d < i ≤ b} ⊆ {1 ≤ i ≤ g : I ⊆ Ii} holds.
(vi) If c = g + 1, then {1 ≤ i ≤ g : a ≤ i ≤ b} = {1 ≤ i ≤ g : I ⊆ Ii} holds.

Proof: (i)–(iii) are simple consequences of the definitions of well-placed intervals and the numbers
a, b, c and d.

(iv)–(vi) are direct consequences of the following inequalities, which follow in view of the fact that
the sequence (Ri)

g
i=1 is unimodal by Lemma 3.3:

max{Ri : 1 ≤ i < a or b < i ≤ g} < Imin < Imax < min{Ri : a ≤ i ≤ b}

and
max{Li : 1 ≤ i < min{c, g + 1} or min{d, g + 1} < i ≤ g} < Imin.

We now present a result that ensures the existence of well-placed intervals.

Proposition 7.2 Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ− 2, and let G =
(

(γi, αi, βi)
)g+1

i=1
be

a (κ, λ)-graphical sequence.
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(i) For each (γi, αi, βi) ∈ G \ {(1, λ, κ − λ − 1), (κ − λ − 1, λ, 1), (γg+1, αg+1, βg+1)} and for any
closed subinterval I ⊆ (R1,Ri) with positive length, there exists a well-placed interval Ji ⊆ I
with respect to G (cf. (28)).

(ii) Let I be a well-placed interval with respect to G. Then any closed interval J ⊆ I with
positive length is also a well-placed interval with respect to G. In particular, a(G,J ) = a(G, I),
b(G,J ) = b(G, I), c(G,J ) = c(G, I), d(G,J ) = d(G, I) must all hold (cf. (67)–(70)).

Proof: (i): Let (γi, αi, βi) ∈ G \ {(1, λ, κ− λ− 1), (κ− λ− 1, λ, 1), (γg+1, αg+1, βg+1)} and suppose
that I = [Imin, Imax] ⊆ (R1,Ri) is a subinterval with positive length. Define

Mi := max{Imin, y : y ∈ {Rj , Lj : 1 ≤ j ≤ g} and Imin ≤ y < Imax}.

Then Imin ≤Mi < Imax, and the closed interval

Ji :=
[
Imax + 2 Mi

3
,

2 Imax + Mi

3

]
is a well-placed interval with respect to G satisfying Ji ⊆ I.
(ii): This follows immediately from the definition of well-placed intervals.

Now, suppose that ` : {1, . . . , g+1} → N is a function with `(g+1) = 1. For I a well-placed interval
with respect to G, we define C = CG,I , Len(I) = LenG,`(I) and Gap(I) = GapG,`(I) as follows :

CG,I :=
{
{1 ≤ i ≤ g : a ≤ i < c or d < i ≤ b} if c ≤ g
{1 ≤ i ≤ g : a ≤ i ≤ b} if c = g + 1

,

LenG,`(I) :=
∑
j∈C

`(j) , (71)

GapG,`(I) :=
{ ∑

c≤j≤d `(j) if c ≤ g
0 if c = g + 1

. (72)

Using Proposition 7.2, we now show that for any (κ, λ)-graphical sequence G, there is a certain
family of well-placed intervals with respect to G each of whose members avoid the set B(G,∆, L)
as defined in Definition 6.1.

Corollary 7.3 Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2. Suppose that (G,∆;L, `) is a

(κ, λ)-quadruple and let G =
(
δi := (γi, αi, βi)

)g+1

i=1
. Then for any closed subinterval I ⊆ (R1,Ri)

with positive length, there exists a well-placed interval Ji in I such that Ji ∩B = ∅ holds (cf. (28),
(32) and (52)).
In particular, Len(Ji) ≥ `(i) also holds.

Proof: Suppose that (γi, αi, βi) and I are as in the statement of the corollary. By Proposition 7.2
(i), there exists a well-placed interval I ⊆ I with respect to G. By Theorem 6.2, the set B is finite.
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Hence, by Proposition 7.2 (ii), we may take any closed subinterval Ji of I \ B with positive length
to give the desired well-placed interval.

We conclude this section by showing that, in addition, well-placed intervals satisfying certain other
properties also exist.

Proposition 7.4 Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2. Let G =
(

(γi, αi, βi)
)g+1

i=1
be

a (κ, λ)-graphical sequence and ` : {1, . . . , g + 1} → N is a function with `(g + 1) = 1. Suppose
that I is a well-placed interval with respect to G such that Gap(I) 6= 0 holds. Then there exists a
well-placed interval J such that
(i) Jmin > Imax,
(ii) Gap(J ) < Gap(I) and
(iii) Len(J ) > Gap(I)

g
all hold, where Len(J ) := LenG,`(J ) and Gap(I) := GapG,`(I) are as defined in (71) and (72),
respectively.

Proof: As the sequence (Ri)
g
i=1 is unimodal by Lemma 3.3 and since Gap(I) 6= 0, there exists an

integer j with c ≤ j ≤ d such that `(j) > Gap(I)
g and Rj > Imax both hold, where c = c(G, I)

and d = d(G, I) are as defined in (69) and (70). Hence, by Proposition 7.2, there exists such a
well-placed interval J ⊆ (Imax,Rj) ⊆ Ij as Len(J ) ≥ `(j) > Gap(I)

g . The result now follows.

8 Christoffel Numbers

In this section, we prove a result that will allow us to bound the Christoffel numbers of the (κ, λ)-
tridiagonal sequence associated to a (κ, λ)-quadruple. We will begin by stating the main theorem
of this section, whose proof will be split into several steps. To state this result, we require some
further definitions.

Let G =
(

(γi, αi, βi)
)g+1

i=1
be a (κ, λ)-graphical sequence for some integers κ ≥ 3 and λ ≥ 0 with

λ ≤ κ− 2. Let x be a real number. For each (γi, αi, βi) ∈ G \{(γg+1, αg+1, βg+1)}, define ρi = ρi(x)
and σi = σi(x) to be the roots of the (auxiliary) equation

βiz
2 + (αi − x)z + γi = 0 , (73)

which, without loss of generality, we assume to satisfy |ρi| ≥ |σi| for all 1 ≤ i ≤ g.

Theorem 8.1 Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2. Suppose that (G,∆;L, `) is a

(κ, λ)-quadruple and let G =
(

(γi, αi, βi)
)g+1

i=1
. Suppose that I is a well-placed interval with respect

to G satisfying I ∩ B(G,∆, L) = ∅, with B(G,∆, L) as defined in Definition 6.1. Then there exist
positive constants F := F (κ,G,∆, L, I) , C1 := C1(κ,G, I) and C2 := C2(κ,G,∆, L, I) so that if
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`(i) > F holds for all (γi, αi, βi) ∈ ∆ then, for any θ ∈ I, the following holds :

C1

(
1

9κ4

)Gap(I)

Len(I)
a−1∏
i=1

((
βi
γi

)
ρ2
i

)`(i)
≤

D∑
i=0

κiu
2
i

≤ C2(9κ4)Gap(I) Len(I)
a−1∏
i=1

((
βi
γi

)
ρ2
i

)`(i)
,

where κi and ui := ui(θ) are as defined in (6) and (7) for the matrix L1(T (G, `)), and D := DT (G,`),
a := a(G, I), Len(I) := LenG,`(I), Gap(I) := GapG,`(I) and ρi := ρi(θ) are as defined in (25), (67),
(71), (72) and (73), respectively.

To prove Theorem 8.1, we will divide the sum
∑D

i=0 κiu
2
i into three parts: The Head sum

∑s(a)−2
i=0 κiu

2
i ,

the Gap sum
∑s(b+1)

i=s(a)−1 κiu
2
i , and the Tail sum

∑D
i=s(b+1)+1 κiu

2
i . In particular, in Section 8.1 we

will prove a preliminary result concerning three-term recurrence relations and, for completeness,
recall some additional results on such recursions from previous papers. We will then use these
results in Section 8.2 to derive bounds for the Head and the Gap sums (as well as to prove some
results in Section 9). Then, in Section 8.3, we will derive an upper bound for the Tail sum which,
together with the previous bounds, will be used to prove Theorem 8.1.

8.1 Three-Term Recurrence Relations

Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ− 2. Suppose that T = T (G, `) is a (κ, λ)-tridiagonal

sequence and let G =
(

(γi, αi, βi)
)g+1

i=1
. Let x be a real number, and let ρi := ρi(x) and σi := σi(x)

be as defined in (73), noting that without loss of generality we are assuming |ρi| ≥ |σi| for all
1 ≤ i ≤ g. If x 6∈ {Ri, Li : 1 ≤ i ≤ g}, with Ri and Li as defined in (28), then the roots ρi and σi
are distinct, and so, by standard theory of recurrence relations, it follows that

us(i)−1+j = ω
(i)
1 ρji + ω

(i)
2 σji (0 ≤ j ≤ `(i) + 1) (74)

holds for some complex numbers ω(i)
1 := ω

(i)
1 (x) and ω

(i)
2 := ω

(i)
2 (x), where ui = ui(x) are the

numbers associated to the matrix L1(T ) given by (7) and s(i) is defined in (22). In this situation,
note also that (1) if |x − αi| > 2

√
βiγi holds then the roots ρi and σi are real numbers with

|ρi| >
√

γi
βi
> |σi|, and ω(i)

1 , ω
(i)
2 are real, and (2) if |x−αi| < 2

√
βiγi holds then the roots ρi and σi

are complex numbers with σi = ρi and |ρi| = |σi| =
√

γi
βi

, and ω
(i)
1 , ω(i)

2 are complex numbers with

ω
(i)
2 = ω

(i)
1 .

We now prove a result that is analogous with the result [1, Proposition 3.1] that was proven to
hold for distance-regular graphs.

Proposition 8.2

Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2. Let G =
(

(γi, αi, βi)
)g+1

i=1
be a (κ, λ)-graphical
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sequence, ` : {1, . . . , g + 1} → N be a function with `(g + 1) = 1, and T = T (G, `) be the (κ, λ)-
tridiagonal sequence associated to G and `. Suppose that I is a well-placed interval with respect to
G. Then, for all θ ∈ I the following hold (cf. (67), (74)):
(i) 0 < σi(θ) < ρi(θ) < 1, for all 1 ≤ i ≤ a− 1.
(ii) us(i)−1(θ) >

∏i−1
j=1 ρj(θ)

`(j), for all 2 ≤ i ≤ a.

(iii) −ω(i)
1 (θ) < ω

(i)
2 (θ) < 0 < ω

(i)
1 (θ), for all 1 ≤ i ≤ a.

Proof: Suppose θ ∈ I, and put ρi := ρi(θ), σi := σi(θ), (1 ≤ i ≤ g), uj := uj(θ) (1 ≤ j ≤ DT ) and
ω

(i)
j := ω

(i)
j (θ) (j = 1, 2) as in (74).

(i): Since θ > Ri holds for all 1 ≤ i < a by (67), 0 < σi < ρi holds for all 1 ≤ i < a. By (G0) in
Definition 3.1 and by Lemma 3.3, 0 < θ < Rmax = max{κ − (

√
βi −

√
γi)2 : 1 ≤ i ≤ g} ≤ κ and

βi > γi (1 ≤ i < a) both hold. Hence

2βi − (θ − αi) = (κ− θ) + (βi − γi) > 0 and
(2βi − (θ − αi))2 − ((θ − αi)2 − 4βiγi) = 4βi(κ− θ) > 0

follow. Thus, (i) holds by (73) and the fact that ρi = θ−αi+
√

(θ−αi)2−4βiγi
2βi

holds.

To prove that (ii) and (iii) hold, we will use the following claim.

Claim 8.3 (a) ρi+1 < ρi (1 ≤ i ≤ a− 1).
(b) us(i) > ρi us(i)−1 (1 ≤ i ≤ a).

(c) ω(i)
1 > us(i)−1 (1 ≤ i ≤ a).

Proof of Claim 8.3: In view of Proposition 8.2 (i) and βjρ2
j + (αj − θ)ρj + γj = 0 (1 ≤ j ≤ g), it

follows that

(βi − 1)ρ2
i + (αi + 1− θ)ρi + γi = ρi(1− ρi) > 0 and

βiρ
2
i + (αi − 1− θ)ρi + (γi + 1) = 1− ρi > 0

for all 1 ≤ i ≤ a− 1. Hence, by (G2) in Definition 3.1, statement (a) in the claim holds.

We now prove statements (b) and (c) by using induction on i. Suppose i = 1. By

β1

(
θ

κ

)2

+ (λ− θ)
(
θ

κ

)
+ 1 =

(
1− θ

κ

)(
1 + (1 + λ)

(
θ

κ

))
> 0 ,

ρ1u0 = ρ1 <
θ
κ = u1 hold. Thus, by Proposition 8.2 (i) and ρ1u0 = ρ1(ω(1)

1 + ω
(1)
2 ) < ω

(1)
1 ρ1 +

ω
(1)
2 σ1 = u1, (b) and (c) hold for i = 1.

Now let 2 ≤ i < a, and suppose that (b) and (c) hold for all 2 ≤ j ≤ i. By the induction
hypothesis, it follows us(i+1) − ρius(i+1)−1 = ω

(i)
2 σ

`(i)
i (σi − ρi) > 0 by (i) of the proposition, and
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us(i+1) > ρius(i+1)−1 > ρi+1us(i+1)−1 by statement (a) of the claim. Thus, by (74), (b) and (c) hold
for all 1 ≤ i ≤ a, which completes the proof of the claim.

(ii): We prove this using induction on i. Suppose i = 2. Then by applying (b) and (c) of Claim 8.3
and statement (i) (with i = 1),

us(2)−1 − ρ
`(1)
1 = ρ

`(1)
1 (ω(1)

1 − 1) + ω
(1)
2 σ

`(1)
1 > ρ1(ω(1)

1 − 1)(ρ`(1)−1
1 − σ`(1)−1

1 ) > 0.

Therefore (ii) holds for i = 2.

Now let 2 ≤ i < a, and suppose that (ii) holds for all 2 ≤ j ≤ i. Using (i) and Claim 8.3 (c), it
follows that

us(i+1)−1 − us(i)−1ρ
`(i)
i = ω

(i)
2 (σ`(i)i − ρ`(i)i ) > 0

holds. Hence, by induction, us(i+1)−1 >
∏i
j=1 ρ

`(j)
j .

(iii): Using (ii) and Claim 8.3 (c), it follows 0 < us(i)−1 = ω
(i)
1 + ω

(i)
2 < ω

(i)
1 for all 1 ≤ i ≤ a. Now,

(iii) follows immediately.

We now recall a result that was originally stated using different terminology in [2] and [8].

Lemma 8.4 (cf. [2, Lemma 5.1], [8, Proposition 7])

Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2. Let G =
(

(γi, αi, βi)
)g+1

i=1
be a (κ, λ)-graphical

sequence, ` : {1, . . . , g + 1} → N be a function with `(g + 1) = 1, and T := T (G, `) be the (κ, λ)-
tridiagonal sequence associated to G and ` with diameter DT (cf. (25)). Let θ be any real number
with |θ| ≤ κ. Then for each i = 1, . . . , DT − 1,
(i)

1
3κ

max{|ui(θ)|, |ui+1(θ)|} ≤ max{|ui−1(θ)|, |ui(θ)|} ≤ 3κmax{|ui(θ)|, |ui+1(θ)|}

and
(ii)(

1
9κ4

)
max{κi−1u

2
i−1(θ), κiu2

i (θ)} ≤ max{κiu2
i (θ), κi+1u

2
i+1(θ)} ≤ 9κ4 max{κi−1u

2
i−1(θ), κiu2

i (θ)}

hold, where κi and ui(θ) are as defined in (6) and (7) for the matrix L1(T ).

Proof: (i): Since |θ| ≤ κ and 0 < βi, γi < κ (1 ≤ i ≤ g) hold, it follows by (9) that

|ui+1(θ)| =
∣∣∣∣(θ − αiβi

)
ui(θ)−

(
γi
βi

)
ui−1(θ)

∣∣∣∣ ≤ 2κ |ui(θ)|+κ |ui−1(θ)| ≤ 3κ max{|ui−1(θ)|, |ui(θ)|}

and

|ui−1(θ)| =
∣∣∣∣(θ − αiγi

)
ui(θ)−

(
βi
γi

)
ui+1(θ)

∣∣∣∣ ≤ 2κ |ui(θ)|+κ |ui+1(θ)| ≤ 3κ max{|ui(θ)|, |ui+1(θ)|}

all hold. Statement (i) now follows immediately.
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(ii): Since 1
κκi+1 ≤ κi ≤ κκi−1, i = 1, . . . , DT −1, holds by (27), statement (ii) follows immediately

from (i).

For completeness, we now recall two results from [2].

Corollary 8.5 ([2, Corollary 4.2])
Suppose N ≥ 2 is an integer, and α ≥ 0, β > 0, γ > 0, x0 and x1 are real numbers satisfying
(x0, x1) 6= (0, 0). Let ε be a real number with 0 < ε < 2

√
βγ. Then there exist positive real numbers

Cs := Cs(β, γ, ε), s = 1, 2, 3, 4 such that for every real number θ with |θ − α| ≤ 2
√
βγ − ε, and for

all real numbers x2, . . . , xN satisfying γxi−1 + (α− θ)xi + βxi+1 = 0 (i = 1, . . . , N − 1), we have

C1 max
{
x2

0,

(
β

γ

)
x2

1

}
≤ max

{(
β

γ

)i−1

x2
i−1,

(
β

γ

)i
x2
i

}
≤ C2 max

{
x2

0,

(
β

γ

)
x2

1

}
for i = 1, 2, . . . , N , and

C3N max
{
x2

0,

(
β

γ

)
x2

1

}
≤

N∑
i=0

(
β

γ

)i
x2
i ≤ C4N max

{
x2

0,

(
β

γ

)
x2

1

}
.

Proposition 8.6 ([2, Proposition 4.3])
Suppose N ≥ 2 is an integer, and α ≥ 0, β > 0, γ > 0, x0 and x1 are real numbers sat-
isfying (x0, x1) 6= (0, 0). Let κ, ε and ε′ be positive real numbers. Then there exist constants
C1 = C1(κ, α, β, γ, ε) > 0 and C2 = C2(β, γ, ε) > 1 such that, for every real number θ with
|θ − α| ≥ 2

√
βγ + ε, |θ| ≤ κ, and

|x1 − x0σ| > ε′ max

{
|x0|,

√
β

γ
|x1|

}

(with ρ = ρ(θ) and σ = σ(θ) the roots of βx2 + (α − θ)x + γ = 0 with |ρ| ≥ |σ|), and for all real
numbers x2, . . . , xN satisfying γxi−1 + (α− θ)xi + βxi+1 = 0 (i = 1, . . . , N − 1), we have

N∑
i=0

(
β

γ

)i
x2
i ≤ C1

((
β

γ

)
ρ2

)N
max

{
x2

0,

(
β

γ

)
x2

1

}
and, for all n ≤ N ,

x2
n ≤ C2 ρ

2n max
{
x2

0,

(
β

γ

)
x2

1

}
.

8.2 Bounding Head and Gap Sums

In this subsection, we obtain bounds for Head sum
∑s(a)−2

i=0 κiu
2
i and Gap sum

∑s(b+1)
i=s(a)−1 κiu

2
i . In

more detail, we prove the following:
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Theorem 8.7 Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2. Let G =
(

(γi, αi, βi)
)g+1

i=1
be a

(κ, λ)-graphical sequence, ` : {1, . . . , g + 1} → N be a function with `(g + 1) = 1, and T := T (G, `)
be the (κ, λ)-tridiagonal sequence associated to G and `. Suppose that I is a well-placed interval
with respect to G. Then there exist positive constants Ci := Ci(κ,G, I) (1 ≤ i ≤ 11) such that for
any element θ in I, the following all hold:

(i)
∑s(a)−2

i=0 κiu
2
i ≤ C1

∏a−1
i=1

((
βi
γi

)
ρ2
i

)`(i)
.

(ii)
∏a−1
i=1 ρ

2`(i)
i < max

{
u2
s(a)−1,

(
βa

γa

)
u2
s(a)

}
≤ C2

∏a−1
i=1 ρ

2`(i)
i .

(iii) Let ĉ := min{c, b + 1}. Then

C3

(bc−1∑
i=a

`(i)

)
a−1∏
j=1

((
βj
γj

)
ρ2
j

)`(j)
≤

s(bc)∑
i=s(a)−1

κiu
2
i ≤ C4

(bc−1∑
i=a

`(i)

)
a−1∏
j=1

((
βj
γj

)
ρ2
j

)`(j)
.

(iv) Let ĉ := min{c, b + 1}. Then

C5

a−1∏
i=1

ρ
2`(i)
i ≤ max

{
u2
s(bc)−1,

(
βbc−1

γbc−1

)
u2
s(bc)
}bc−1∏
i=a

(
βi
γi

)`(i)
≤ C6

a−1∏
i=1

ρ
2`(i)
i .

(v) If c ≤ g, then
∑s(d+1)

i=s(c) κiu
2
i < C7

(
9κ4
)Gap(I)∏a−1

i=1

((
βi
γi

)
ρ2
i

)`(i)
.

(vi) If c ≤ g and d < b both hold, then

C8

(
1

9κ4

)Gap(I)
(

b∑
i=d+1

`(i)

)
a−1∏
j=1

((
βj
γj

)
ρ2
j

)`(j)

≤
s(b+1)∑

i=s(d+1)−1

κiu
2
i ≤ C9(9κ4)Gap(I)

(
b∑

i=d+1

`(i)

)
a−1∏
j=1

((
βj
γj

)
ρ2
j

)`(j)
.

(vii) If c ≤ g, then

C10

(
1

9κ4

)Gap(I) a−1∏
i=1

((
βi
γi

)
ρ2
i

)`(i)
≤ κs(b+1) max

{
u2
s(b+1)−1,

(
βb

γb

)
u2
s(b+1)

}

≤ C11(9κ4)Gap(I)
a−1∏
i=1

((
βi
γi

)
ρ2
i

)`(i)
,

where κi and ui := ui(θ) are as defined in (6) and (7) relative to the matrix L1(T ), and s(i),
a, b, c, d, Gap(I) := GapG,`(I) and ρi := ρi(θ) are as defined in (22), (67)–(70), (72) and (73),
respectively.
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Proof: Suppose that G, `, T , I and θ are as in the statement of the theorem.

(i) and (ii): In order to apply Proposition 8.6, we first prove that there are positive constants
ε1 := ε1(G, I) and ε2 := ε2(G, I) such that, for all 1 ≤ i ≤ a− 1,
(a) |θ − αi| ≥ 2

√
βiγi + ε1, and

(b) |us(i) − σius(i)−1| > ε2 max
{
|us(i)−1|,

√
βi
γi
|us(i)|

}
both hold.

For statement (a), we can take ε1 = ε1(G, I) := min{Imin− (αi + 2
√
βiγi) : 1 ≤ i ≤ a− 1}, in view

of (67) and (W2).

By (67) and (73), inequalities M1 ≥ ρi > 0 and ρi−σi√
βi/γi

≥ M2 > 0 all hold for any θ ∈ I and for

any 1 ≤ i ≤ a− 1, where

M1 = M1(G, I) := max

{
(Imax − αi) +

√
(Imax − αi)2 − 4βiγi
2βi

: 1 ≤ i ≤ a− 1

}
and

M2 = M2(G, I) := min

{√
γi
√

(Imin − αi)2 − 4βiγi
βi
√
βi

: 1 ≤ i ≤ a− 1

}
.

By (i) and (iii) of Proposition 8.2,

|us(i) − σius(i)−1|

max
{
|us(i)−1|,

√
βi
γi
|us(i)|

} =

∣∣∣∣∣ ω
(i)
1

ω
(i)
1 ρi + ω

(i)
2 σi

∣∣∣∣∣ |ρi − σi|√
βi
γi

>
1
|ρi|
|ρi − σi|√

βi
γi

≥ M2

M1
> 0

holds, and hence (b) holds for ε2 = ε2(G, I) = M2
M1

.
Now by Proposition 8.6, there exist constants M3 = M3(κ,G, I) > 1 and M4 = M4(κ,G, I) > 0
such that for all 1 ≤ i ≤ a− 1,

max
{
u2
s(i+1)−1,

(
βi+1

γi+1

)
u2
s(i+1)

}
≤M3 ρ

2`(i)
i max

{
u2
s(i)−1,

(
βi
γi

)
u2
s(i)

}
(75)

and
`(i)+1∑
j=0

κs(i)−1+ju
2
s(i)−1+j ≤M4 κs(i)−1

((
βi
γi

)
ρ2
i

)`(i)
max

{
u2
s(i)−1,

(
βi
γi

)
u2
s(i)

}
(76)

both hold. By applying (75) inductively and also using (76), it follows that, for each 1 ≤ i ≤ a− 1,

max
{
u2
s(i+1)−1,

(
βi+1

γi+1

)
u2
s(i+1)

}
≤ M i

3

i∏
j=1

ρ
2`(j)
j max

{
u2

0,

(
β1

γ1

)
u2

1

}
< κM i

3

i∏
j=1

ρ
2`(j)
j and

`(i)+1∑
j=0

κs(i)−1+ju
2
s(i)−1+j ≤ κ2M4M

i−1
3

i∏
j=1

((
βj
γj

)
ρ2
j

)`(j)
≤ κ2 M4M

a−2
3

a−1∏
j=1

((
βj
γj

)
ρ2
j

)`(j)
all hold. Statements (i) and (ii) now follow by taking

C1 := (a− 1)κ2M4M
a−2
3 , C2 := κMa−1

3
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and noting that u2
s(a)−1 >

∏a−1
j=1 ρ

2`(j)
j holds by Proposition 8.2 (ii).

(iii): By Lemma 7.1, I ⊆ Ii holds for each a ≤ i ≤ ĉ − 1. Let ε = ε(G, I) := min{|αi + 2
√
βiγi −

Imax|, |Imin− (αi− 2
√
βiγi)| : a ≤ i ≤ ĉ− 1}. Then |θ−αi| ≤ 2

√
βiγi− ε and 0 < ε < 2

√
βiγi both

hold for all a ≤ i ≤ ĉ− 1. Hence by Corollary 8.5, there exist constants Mj := Mj(G, I) > 0 (5 ≤
j ≤ 8) such that, for any a ≤ i ≤ ĉ− 1,

M5 max
{
u2
s(i)−1,

(
βi
γi

)
u2
s(i)

}
≤
(
βi
γi

)`(i)
max

{
u2
s(i+1)−1,

(
βi
γi

)
u2
s(i+1)

}
≤M6 max

{
u2
s(i)−1,

(
βi
γi

)
u2
s(i)

}
(77)

and

M7 `(i) max
{
u2
s(i)−1,

(
βi
γi

)
u2
s(i)

}
≤

`(i)+1∑
j=0

(
βi
γi

)j
u2
s(i)−1+j ≤M8 `(i) max

{
u2
s(i)−1,

(
βi
γi

)
u2
s(i)

}
(78)

both hold. Note that for each 1 ≤ i ≤ g, the following hold for all 0 ≤ j ≤ `(i) + 1:

1
κ

(
βi
γi

)j i−1∏
m=1

(
βm
γm

)`(m)

≤ κs(i)−1+j ≤ κ
(
βi
γi

)j i−1∏
m=1

(
βm
γm

)`(m)

. (79)

Hence, by applying (79) to (78) and by using (77) and statement (ii) of the theorem, it follows
that, for each a ≤ i ≤ ĉ− 1, there exists a constant M9 := M9(κ,G, I) > 0 such that

`(i)+1∑
j=0

κs(i)−1+ju
2
s(i)−1+j ≤ κ M8 `(i)

i−1∏
j=1

(
βj
γj

)`(j)
max

{
u2
s(i)−1,

(
βi
γi

)
u2
s(i)

}

≤ κM8M
i−a
6 `(i)

a−1∏
j=1

(
βj
γj

)`(j)
max

{
u2
s(a)−1,

(
βa

γa

)
u2
s(a)

}

≤ κmax{1,Mbc
6}M8M9 `(i)

a−1∏
j=1

((
βj
γj

)
ρ2
j

)`(j)
holds and, similarly,

`(i)+1∑
j=0

κs(i)−1+ju
2
s(i)−1+j ≥

M7

κ
min{1,Mbc

5} `(i)
a−1∏
j=1

((
βj
γj

)
ρ2
j

)`(j)
.

Hence (iii) follows by taking

C3(κ,G, I) :=
M7

3κ
min{1,Mbc

5}, C4(κ,G, I) := κmax{1,Mbc
6}M8M9,

in light of that fact that each element κs(i)−1+ju
2
s(i)−1+j appears in the sum

∑bc−1
i=a

∑`(i)+1
m=0 κs(i)−1+mu

2
s(i)−1+m

at most three times.
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(iv): This follows from (77) and statement (ii) of the theorem.

(v): By Lemma 8.4 (ii), statement (iv) of the theorem, (72) and (79), there exists a constant
C7 = C7(κ,G, I) > 0 so that

s(d+1)∑
i=s(c)

κiu
2
i < 2

(
9κ4
)s(d+1)−s(c)+1 max{κs(c)−1u

2
s(c)−1, κs(c)u

2
s(c)}

≤ C7

(
9κ4
)Gap(I)

a−1∏
i=1

((
βi
γi

)
ρ2
i

)`(i)
holds. (v) follows immediately.

(vi) and (vii): Using the same proof as for statement (iii), it can be seen that if d < b then (77)
and (78) both hold for all d + 1 ≤ i ≤ b.
By (77)–(79), Lemma 8.4 (ii) and statement (iv) of the theorem, there exist constants Mj =
Mj(κ,G, I) > 0 (10 ≤ j ≤ 15) such that

κs(b+1) max
{
u2
s(b+1)−1,

(
βb

γb

)
u2
s(b+1)

}
≤ M10 κs(d+1) max

{
u2
s(d+1)−1,

(
βd

γd

)
u2
s(d+1)

}
≤ M11 κs(c) (9κ4)Gap(I) max

{
u2
s(c)−1,

(
βc−1

γc−1

)
u2
s(c)

}
≤ M12 (9κ4)Gap(I)

a−1∏
j=1

((
βi
γi

)
ρ2
i

)`i
holds, and moreover, if d < b then for each d + 1 ≤ i ≤ b,

`(i)+1∑
j=0

κs(i)−1+ju
2
s(i)−1+j ≤ M13 `(i) (9κ4)Gap(I)

c−1∏
j=1

(
βj
γj

)`(j)
max

{
u2
s(c)−1,

(
βc

γc

)
u2
s(c)

}

≤ M14 `(i) (9κ4)Gap(I)
a−1∏
j=1

((
βj
γj

)
ρ2
j

)`(j)
and

`(i)+1∑
j=0

κs(i)−1+ju
2
s(i)−1+j ≥M15 `(i)

(
1

9κ4

)Gap(I) a−1∏
j=1

((
βj
γj

)
ρ2
j

)`(j)
all hold. By taking C8(κ,G, I) := M15

3 , C9(κ,G, I) := M14 and C11(κ,G, I) := M12, it can be
seen that the inequalities in (vi) and (vii) involving these constants all hold. It can also be seen
in a similar fashion that there exists a constant C10 = C10(κ,G, I) > 0 such that the left-hand
inequality in (vii) holds.

By using the previous theorem, we now obtain bounds for Gap sum
∑s(b+1)

i=s(a)−1 κiu
2
i .
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Corollary 8.8 Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2. Let G =
(

(γi, αi, βi)
)g+1

i=1
be a

(κ, λ)-graphical sequence, ` : {1, . . . , g + 1} → N be a function with `(g + 1) = 1, and T := T (G, `)
be the (κ, λ)-tridiagonal sequence associated to G and `. Suppose that I is a well-placed interval
with respect to G. Then there exist positive constants C := C(κ,G, I) and C ′ := C ′(κ,G, I) such
that for any element θ in I,

C

(
1

9κ4

)Gap(I)

Len(I)
a−1∏
i=1

((
βi
γi

)
ρ2
i

)`(i)
≤

s(b+1)∑
i=s(a)−1

κiu
2
i

≤ C ′(9κ4)Gap(I) Len(I)
a−1∏
i=1

((
βi
γi

)
ρ2
i

)`(i)
,

where κi and ui := ui(θ) are as defined in (6) and (7) for the matrix L1(T (G, `)), and s(i),
a := a(G, I), b := b(G, I), Len(I) := LenG,`(I), Gap(I) := GapG,`(I) and ρi := ρi(θ) are as defined
in (22), (67), (68), (71)-(73), respectively.

Proof: Constants Ci (i = 3, 4, 7, 8, 9) in this proof are the constants in Theorem 8.7. Note that
Len(I) ≥ 1 and

(
9κ4
)Gap(I) ≥ 1. We break the proof into three cases:

(1) c = g+ 1: By (71) and (72), Len(I) =
∑b

i=a `(i) ≥ 1 and Gap(I) = 0. By applying Theorem 8.7
(iii) with ĉ = b + 1, Corollary 8.8 holds for C := C3 and C ′ := C4.

(2) c ≤ g and d = b: Then Len(I) =
∑c−1

i=a `(i) ≥ 1, and by applying Theorem 8.7 (iii) and (v) for
ĉ = c, the result follows for C := C3 and C ′ := C4 + C7 as

C3

(
1

9κ4

)Gap(I)

Len(I)
a−1∏
i=1

((
βi
γi

)
ρ2
i

)`(i)
≤ C3Len(I)

a−1∏
i=1

((
βi
γi

)
ρ2
i

)`(i)

≤
s(c)∑

i=s(a)−1

κiu
2
i

≤ C4Len(I)
a−1∏
i=1

((
βi
γi

)
ρ2
i

)`(i)
≤ C4(9κ4)Gap(I) Len(I)

a−1∏
i=1

((
βi
γi

)
ρ2
i

)`(i)
and

s(b+1)∑
i=s(c)

κiu
2
i < C7(9κ4)Gap(I)

a−1∏
i=1

((
βi
γi

)
ρ2
i

)`(i)
≤ C7(9κ4)Gap(I) Len(I)

a−1∏
i=1

((
βi
γi

)
ρ2
i

)`(i)
all hold.

(3) c < g and d < b: In this case, Len(I) =
∑c−1

i=a `(i) +
∑b

i=d+1 `(i) and by Theorem 8.7 (iii), (v)
and (vi), the following all hold:

min{C3, C8}
(

1
9κ4

)Gap(I) c−1∑
i=a

`(i)
a−1∏
i=1

((
βi
γi

)
ρ2
i

)`(i)
≤ C3

c−1∑
i=a

`(i)
a−1∏
i=1

((
βi
γi

)
ρ2
i

)`(i)
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≤
s(c)∑

i=s(a)−1

κiu
2
i

≤ C4

c−1∑
i=a

`(i)
a−1∏
i=1

((
βi
γi

)
ρ2
i

)`(i)
≤ max{C4, C7, C9}(9κ4)Gap(I) Len(I)

a−1∏
i=1

((
βi
γi

)
ρ2
i

)`(i)
,

s(d+1)∑
i=s(c)

κiu
2
i ≤ C7(9κ4)Gap(I)

a−1∏
i=1

((
βi
γi

)
ρ2
i

)`(i)
≤ max{C4, C7, C9}(9κ4)Gap(I) Len(I)

a−1∏
i=1

((
βi
γi

)
ρ2
i

)`(i)

and

min{C3, C8}
(

1
9κ4

)Gap(I) b∑
i=d+1

`(i)
a−1∏
i=1

((
βi
γi

)
ρ2
i

)`(i)
≤

s(b+1)∑
i=s(d+1)−1

κiu
2
i

≤ C9(9κ4)Gap(I)
b∑

i=d+1

`(i)
a−1∏
i=1

((
βi
γi

)
ρ2
i

)`(i)
≤ max{C4, C7, C9}(9κ4)Gap(I)Len(I)

a−1∏
i=1

((
βi
γi

)
ρ2
i

)`(i)
.

Hence, the result now follows by taking

C :=
min{C3, C8}

2
, C ′ := 3 max{C4, C7, C9},

in light of the fact s(c) ≤ s(d + 1)− 1. The corollary now follows.

8.3 Bounding Tail Sum

In this section, we obtain an upper bound for the Tail sum
∑D

i=s(b+1)+1 κiu
2
i . Namely:

Theorem 8.9 Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ − 2. Suppose that (G,∆;L, `) is a

(κ, λ)-quadruple and let G =
(

(γi, αi, βi)
)g+1

i=1
. Suppose that I is a well-placed interval with respect

to G satisfying I ∩ B = ∅ and b < g (cf. (52) and (68)). Then there exist positive constants
F := F (κ,G,∆, L, I) and C := C(κ,G,∆, L, I) so that if `(i) > F holds for all (γi, αi, βi) ∈ ∆
with b < i ≤ g then, for any θ ∈ I,

D∑
i=s(b+1)+1

κiu
2
i ≤ C(9κ4)Gap(I)

a−1∏
i=1

((
βi
γi

)
ρ2
i

)`(i)
holds, where κi and ui := ui(θ) are as defined in (6) and (7) for the matrix L1(T (G, `)), and s(i),
D := DT (G,`), a := a(G, I), Gap(I) := GapG,`(I) and ρi := ρi(θ) are as defined in (22), (25), (67),
(72) and (73), respectively.
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Proof: Suppose (G,∆;L, `) and I are as in the statement of the theorem. By Theorem 6.3, for each
0 ≤ i ≤ g − b − 1 satisfying (γg−i, αg−i, βg−i) ∈ ∆ there exist constants Ci = Ci(κ,G,∆, L, I) ≥ 1
and Mi = Mi(κ,G,∆, L, I) > 1 such that if `(g − j) > Ci holds for all (γg−j , αg−j , βg−j) ∈ ∆ with
j < i, then (59) holds for all θ ∈ I. Now put

F = F (κ,G,∆, L, I) := max{Ci(κ,G,∆, L, I) : 0 ≤ i ≤ g − b− 1 and (γg−i, αg−i, βg−i) ∈ ∆};
M = M(κ,G,∆, L, I) := min{Mi(κ,G,∆, L, I) : 0 ≤ i ≤ g − b− 1 and (γg−i, αg−i, βg−i) ∈ ∆}.

(†) Suppose that if {(γg−i, αg−i, βg−i) ∈ ∆ : 0 ≤ i ≤ g − b− 1} 6= ∅ then `(g − i) > F holds for
all (γg−i, αg−i, βg−i) ∈ ∆ with 0 ≤ i ≤ g − b− 1.

Let θ ∈ I. We will use the following:

Claim 8.10 There exist constants C1 = C1(G, I) > 0 and Cm = Cm(κ,G,∆, L, I) > 0 (m = 2, 3)
such that, for all 0 ≤ i ≤ g − b− 1, the following hold:
(a)

|us(g−i+1)−j | ≤ C1 max{|us(g−i+1)−1|, |us(g−i+1)|} x
j
i (0 ≤ j ≤ `(g − i) + 1).

(b)
max{|us(g−i)−1|, |us(g−i)|} > C2 max{|us(g−i+1)−1|, |us(g−i+1)|} x

`(g−i)
i .

(c)
g−b−1∏
j=0

xj
2`(g−j) max{u2

D−1, u
2
D} < C3 max{u2

s(b+1)−1, u
2
s(b+1)},

where xj is defined in (50).

Proof of Claim 8.10: Let 0 ≤ i ≤ g − b − 1. By (50) and Lemma 7.1 (iv), xi > yi > 0. Let
ν

(i)
j = ν

(i)
j (θ) (j = 1, 2) be as defined in (53).

(a): First suppose that ν(i)
1 ν

(i)
2 > 0 holds. Then for all 0 ≤ j ≤ `(g − i) + 1, (a) follows since

|us(g−i+1)−j | = |ν
(i)
1 |x

j
i + |ν(i)

2 | y
j
i < (|ν(i)

1 |+ |ν
(i)
2 |)x

j
i = |us(g−i+1)|x

j
i .

Now suppose ν(i)
1 ν

(i)
2 < 0. By (54) and (55),

max{|ν(i)
1 |, |ν

(i)
2 |} ≤ 2 max

{
1

xi − yi
,

xi
xi − yi

}
max{|us(g−i+1)−1|, |us(g−i+1)|}

≤ C1 max{|us(g−i+1)−1|, |us(g−i+1)|} (80)

holds, where

C1 = C1(G, I) := 2 max

{
Imax − αm√

(Imin − αm)2 − 4βmγm
,

γm√
(Imin − αm)2 − 4βmγm

: 0 ≤ m ≤ g − b− 1

}
.

Since |us(g−i+1)−j | ≤ max{|ν(i)
1 |, |ν

(i)
2 |}x

j
i holds by ν(i)

1 ν
(i)
2 < 0 and xi > yi > 0, (a) follows by (80).
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(b): Suppose (γg−i, αg−i, βg−i) ∈ G \ ∆. Then `(g − i) = L(g − i) and, by Lemma 8.4 (i) and
0 < xi <

Imax−αg−i
γg−i

, it follows that

max{|us(g−i)−1|, |us(g−i)|} ≥
(

1
3κxi

)`(g−i)
max{|us(g−i+1)−1|, |us(g−i+1)|}x

`(g−i)
i

≥
(

γg−i
3κ(Imax − αg−i)

)L(g−i)
max{|us(g−i+1)−1|, |us(g−i+1)|}x

`(g−i)
i ,

and thus (b) follows by taking C2 = C2(κ,G,∆, L, I), where

C2 := min

{(
γg−m

3κ(Imax − αg−m)

)L(g−m)

: 0 ≤ m ≤ g − b− 1 and (γg−m, αg−m, βg−m) ∈ G \∆

}
.

Now suppose (γg−i, αg−i, βg−i) ∈ ∆. By Theorem 6.3 with (†),

max{|us(g−i+1)−1|, |us(g−i+1)|} ≤ max{1, xi}(|ν(i)
1 |+ |ν

(i)
2 |)

<

(
1 +

1
M

(
xi
yi

)F)
(1 + xi) |ν(i)

1 |

<

(
1 +

1
M

(
(Imax − αg−i)2

βg−iγg−i

)F)(
1 +
Imax − αg−i

γg−i

)
|ν(i)

1 |(81)

and

max{|us(g−i)−1|, |us(g−i)|} ≥ |ν(i)
1 x

`(g−i)
i | − |ν(i)

2 y
`(g−i)
i |

> |ν(i)
1 |x

`(g−i)
i

(
1− 1

M

(
xi
yi

)F ( yi
xi

)`(g−i))

>

(
1− 1

M

)
|ν(i)

1 |x
`(g−i)
i (82)

all hold. By (81) and (82), statement (b) now follows by taking C2 = C2(κ,G,∆, L, I), where

C2 :=
1− 1

M

max
{(

1 + 1
M

(
(Imax−αg−m)2

βg−mγg−m

)F)(
1 + Imax−αg−m

γg−m

)
: 0 ≤ m ≤ g − b− 1 and (γg−m, αg−m, βg−m) ∈ ∆

} .

(c): This follows by applying (b) inductively on i for 0 ≤ i ≤ g − b− 1.

Let 0 ≤ i ≤ g−b− 1. By (a) and (c) of the claim,
(
γg−i
βg−i

)
x2
i > 1 and Theorem 8.7 (vii), there exist

constants Mj = Mj(κ,G, I) > 0 (j = 1, 2) and Mj = Mj(κ,G,∆, L, I) > 0 (j = 3, 4) such that

`(g−i)−1∑
j=0

κs(g−i+1)−ju
2
s(g−i+1)−j

< κκD

i−1∏
j=0

(
γg−j
βg−j

)`(g−j) `(g−i)−1∑
m=0

(
γg−i
βg−i

)m
u2
s(g−i+1)−m
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≤ M1κD

i−1∏
j=0

(
γg−j
βg−j

)`(g−j)
max{u2

s(g−i+1)−1, u
2
s(g−i+1)}

`(g−i)−1∑
m=0

(
γg−i
βg−i

)m
x2m
i

≤ M2κD max{u2
D−1, u

2
D}

i∏
j=0

((
γg−j
βg−j

)
x2
j

)`(g−j)

≤ M2κD max{u2
D−1, u

2
D}

g−b−1∏
j=0

((
γg−j
βg−j

)
x2
j

)`(g−j)
≤ M3κs(b+1) max{u2

s(b+1)−1, u
2
s(b+1)}

≤ M4(9κ4)Gap(I)
a−1∏
j=1

((
βj
γj

)
ρ2
j

)`(j)
(83)

holds. From (83) and

D∑
j=s(b+1)+1

κju
2
j =

g−b−1∑
i=0

`(g−i)−1∑
j=0

κs(g−i+1)−ju
2
s(g−i+1)−j ,

Theorem 8.9 now follows by taking C(κ,G,∆, L, I) := (g − b)M4.

With these results in hand, we can now prove the main theorem of this section:

Proof of Theorem 8.1: Theorem 8.1 follows immediately by Theorem 8.7 (i), Corollary 8.8 and
Theorem 8.9.

9 Distribution of Eigenvalues and Proof of Theorem 4.2

In this section we prove Theorem 4.2 and thus complete the proof of the Bannai-Ito conjecture. To
do this we will first prove two results concerning the distribution of the eigenvalues of a graphical
sequence in a well-placed interval with respect to this sequence, using the results from the last four
sections.

Theorem 9.1 Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ−2, and let G =
(
δi := (γi, αi, βi)

)g+1

i=1
be

a (κ, λ)-graphical sequence. Suppose that ∆ = (δip)τp=1 is a subsequence of G with (1, λ, κ−λ−1) ∈ ∆
and (γg+1, αg+1, βg+1) 6∈ ∆, L : {1, . . . , g + 1} \ {i1, . . . , iτ} → N is a function, and I is a well-
placed interval with respect to G satisfying I ∩ B(G,∆, L) = ∅ (cf. (52)). Suppose that ε > 0 is a
real number, C := C(κ) > 0 is a constant, and ` : {1, . . . , g + 1} → N is any function for which
(G,∆;L, `) is a (κ, λ)-quadruple and the associated (κ, λ)-tridiagonal sequence T = T (G, `) satisfies
(i) Property (AC),
(ii) DT ≤ ChT , and
(iii) Len(I) ≥ εhT ,
where hT , DT and Len(I) := LenG,`(I) are as defined in (23), (25) and (71), respectively.
Then for any real number δ > 0, there exist positive constants F := F (κ,G,∆, L, I), C1 :=
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C1(κ, λ, ε, δ,G,∆, L, I) and C2 := C2(κ, λ, δ) such that if `(ip) > F holds for all 1 ≤ p ≤ τ and if
there exist two conjugate algebraic numbers θ and η in ET ∩ I satisfying |θ − η| > δ then

either hT < C1 or Gap(I) > C2hT

holds, where ET and Gap(I) := GapG,`(I) are as defined in (26) and (72), respectively.

Proof: Suppose that κ, λ, ε, C, G, ∆, L, I, ` and T are as in the statement of the theorem, and
put h := hT and D := DT . Let δ be any positive real number, and let θ and η be two conjugate
algebraic numbers in ET ∩I satisfying |θ− η| > δ. Without loss of generality, we assume η− θ > δ.

By applying Theorem 8.1 and the conditions ε h ≤ Len(I) < D ≤ C h given by (ii) and (iii) in
the statement of the theorem, it follows that there exist positive constants F := F (κ,G,∆, L, I),
M1 := M1(κ,G, I) and M2 := M2(κ,G,∆, L, I) so that if `(ip) > F holds for all 1 ≤ p ≤ τ then

ε hM1

(
1

9κ4

)Gap(I) a−1∏
i=1

((
βi
γi

)
ρ2
i (x)

)`(i)
≤

D∑
i=0

κiu
2
i (x) ≤ hM2C(9κ4)Gap(I)

a−1∏
i=1

((
βi
γi

)
ρ2
i (x)

)`(i)
(84)

holds for any x ∈ I, where κi and ui := ui(x) are as defined in (6) and (7) for the matrix L1(T ),
and a, ρi(x) are as defined in (67) and (73), respectively.
By Proposition 8.2 (i) and η > θ, it follows that

0 < ρi(θ) < ρi(η) < 1 (i = 1, . . . , a− 1), (85)

and moreover, by (85) and η − θ > δ,

ρ1(η) > ρ1(θ) +
δ

2(κ− λ− 1)
>

(
1 +

δ

2(κ− λ− 1)

)
ρ1(θ). (86)

By applying (85) and (86) to (84), it follows that

D∑
i=0

κiu
2
i (η) ≥ ε hM1

(
1

9κ4

)Gap(I) a−1∏
i=1

((
βi
γi

)
ρ2
i (η)

)`(i)
> ε hM1

(
1

9κ4

)Gap(I)(
1 +

δ

2(κ− λ− 1)

)2h a−1∏
i=1

((
βi
γi

)
ρ2
i (θ)

)`(i)

≥ εM1

M2C

(
1

9κ4

)2Gap(I)(
1 +

δ

2(κ− λ− 1)

)2h D∑
i=0

κiu
2
i (θ). (87)

Since θ and η are algebraic conjugates,
∑D

i=0 κiu
2
i (η) =

∑D
i=0 κiu

2
i (θ) > 0 holds by Property (AC).

Hence, by (87),

ln
(

1 +
δ

2(κ− λ− 1)

)2

<
ln
(
M2C
εM1

)
h

+
Gap(I)

h
ln(9κ4)2. (88)

Now, put

C1 :=
ln
(
M2C
εM1

)
ln
(

1 + δ
2(κ−λ−1)

) and C2 :=
ln
(

1 + δ
2(κ−λ−1)

)
2 ln(9κ4)

.
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If 0 < M2C
εM1

≤ 1 then Gap(I) > C2h holds as Gap(I)

h >
ln
“

1+ δ
2(κ−λ−1)

”
ln(9κ4)

>
ln
“

1+ δ
2(κ−λ−1)

”
2 ln(9κ4)

by (88).

Moreover, if M2C
εM1

> 1 and Gap(I) ≤ C2h, then h <
ln
“
M2C
εM1

”
ln
“

1+ δ
2(κ−λ−1)

” holds by (88). Therefore

Theorem 9.1 now follows for this choice of C1 and C2.

Proposition 9.2 Let κ ≥ 3 and λ ≥ 0 be integers with λ ≤ κ−2, and let G =
(
δi := (γi, αi, βi)

)g+1

i=1
be a (κ, λ)-graphical sequence. Suppose that ∆ = (δip)τp=1 is a subsequence of G with (1, λ, κ−λ−1) ∈
∆ and (γg+1, αg+1, βg+1) 6∈ ∆, L : {1, . . . , g + 1} \ {i1, . . . , iτ} → N is a function, and I is a well-
placed interval with respect to G satisfying I ∩ B(G,∆, L) = ∅ (cf. (52)). Suppose that ε > 0 is a
real number, C := C(κ) > 0 is a constant, and ` : {1, . . . , g + 1} → N is any function for which
(G,∆;L, `) is a (κ, λ)-quadruple and the associated (κ, λ)-tridiagonal sequence T = T (G, `) satisfies
(i) Property (AC),
(ii) DT ≤ ChT , and
(iii) Len(I) ≥ εhT ,
where hT , DT and Len(I) := LenG,`(I) are as defined in (23), (25) and (71), respectively.
Then for any real number µ > 0, there exist positive constants F := F (κ,G,∆, L, I), G :=
G(κ, λ, ε, µ,G, I) and H := H(κ, λ, ε, µ,G,∆, L, I) such that if `(ip) > F holds for all 1 ≤ p ≤ τ ,
and hT ≥ H and Gap(I) ≤ G hT also hold, then the number of eigenvalues of T that have an
algebraic conjugate in I is at least µh, where Gap(I) := GapG,`(I) is as defined in (72).

Proof: Suppose that κ, λ, ε, C, G, ∆, L, I, ` and T are as in the statement of the proposition, and
put h := hT and D := DT . Let µ be any positive real number.
In view of Theorem 5.5, there exists a constant M1 := M1(κ, ε, µ,G, I) > 0 such that for any
positive real number ζ satisfying ζ < M1,

Υκ,ζ ≤
1

2 + 48πκµg
ε|I|

(89)

holds (cf. (40)). Put

ζ0 = ζ0(κ, ε, µ,G, I) := min
{
|I|, M1

2

}
and Υ := Υκ,ζ0 . (90)

Then by (89) and (90),

Υ ≤ 1
2 + 48πκµg

ε|I|
<

1
2
. (91)

By Lemma 5.3 (i) and Remark 5.4, there exists a constant M2 := M2(κ, ε, µ,G, I) > 0 such that∣∣∣∣{p(x) ∈ Pκ : deg(p(x)) ≤ 1
Υ

}∣∣∣∣ ≤M2

holds, and therefore ∣∣∣∣{x ∈ I ∩ ET : deg(x) ≤ 1
Υ

}∣∣∣∣ ≤ M2

Υ
, (92)

where deg(x) is the degree of the minimal polynomial of an algebraic number x (cf. (26)).
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Now, let F := F (κ,G,∆, L, I), C1 := C1(κ, λ, ε, µ,G,∆, L, I) and C2 := C2(κ, λ, ε, µ,G, I) be the
positive constants given by Theorem 9.1 by taking δ := ζ0

2 , and put

H := max
{

6κπg
ε|I|

,
24κπgM2

εΥ|I|
, C1

}
and G := C2.

We now show that for this choice of F , H and G, the proposition holds. To this end, let θ be any
element in ET ∩ I satisfying deg(θ) > 1

Υ , and let p θ(x) ∈ Pκ be a minimal polynomial of θ. Then
by Theorem 9.1, all roots of pθ(x) must lie in the closed interval [θ − ζ0

2 , θ + ζ0
2 ]. Hence, by (39),

(40) and deg(θ) = deg(pθ) > 1
Υ ,

|{x ∈ I : p θ(x) = 0}| ≤
∣∣∣∣{x ∈ [θ − ζ0

2
, θ +

ζ0

2

]
: p θ(x) = 0

}∣∣∣∣ ≤ Υ deg(pθ) + 1 < 2 Υ deg(p θ).

(93)
Now, we prove the following claim.

Claim 9.3 The number of eigenvalues of T in I is at least
(

ε|I|
12κπg

)
h.

Proof of Claim 9.3 : As h ≥ H and |I| < κ (by (W1)), h ≥ 6κπg
ε|I| >

1
ε holds. Hence, as Len(I) ≥

εh > 1 (by statement (iii) of the proposition), there exists m ∈ {2, . . . , g} so that `(m) > εh
g and

I ⊆ Im hold, where Im is the m th guide interval. Put (γ, α, β) := (γm, αm, βm), ` := `(m) and
e :=

∣∣∣{j ∈ {1, . . . , `} : α+ 2
√
βγ cos

(
jπ
`+1

)
∈ I}

∣∣∣. Note that I ⊆ Im and α+2
√
βγ cos

(
jπ
`+1

)
∈ Im,

for all 1 ≤ j ≤ `. Since(
α+ 2

√
βγ cos

(
(j − 1)π
`+ 1

))
−
(
α+ 2

√
βγ cos

(
jπ

`+ 1

))
≤ 2π

√
βγ

`+ 1
≤ κπ

`+ 1

holds for all 2 ≤ j ≤ `, it follows by ` > εh
g and h ≥ 6κπg

ε|I| that e ≥ b (`+1)|I|
κπ c > b εh|I|κπg c ≥

εh|I|
2κπg ≥ 3.

Hence by Lemma 2.2 (ii), there exists an eigenvalue θ ∈ ET ∩ I and, moreover,

|ET ∩ I| ≥
⌊e

3

⌋
>
e

6
>

εh|I|
12κπg

holds. Claim 9.3 now follows immediately.

By applying Claim 9.3, (92) and h ≥ 24κπgM2

εΥ|I| (by h ≥ H), it follows that∣∣∣∣{x ∈ ET ∩ I : deg(x) >
1
Υ
}
∣∣∣∣ ≥ ε|I|h

12κπg
−
∣∣∣∣{x ∈ ET ∩ I : deg(x) ≤ 1

Υ
}
∣∣∣∣ ≥ ε|I|h

24κπg
. (94)

Now, for each integer i > 1
Υ , let ∆i be the set of those elements in ET ∩ ([−κ, κ] \ I) of degree i

that have an algebraic conjugate which is contained in I, and let Θi be the set of those elements in
ET ∩ I that have degree i. Then by (91) and (93), each element in Θi has an algebraic conjugate
in [−κ, κ] \ I. This implies that ∆i is a non-empty set if and only if Θi is a non-empty set. Hence,
for each integer i > 1

Υ satisfying Θi 6= ∅, the number of elements in the set

Λi := {(θ, η) ∈ Θi ×∆i : θ and η are conjugate algebraic numbers}

45



is bounded above and below as follows:

(1− 2 Υ) i |Θi| < |Λi| < 2 iΥ |∆i| . (95)

Hence, by (91), (94) and (95), the inequality

(1− 2 Υ)ε|I| h
24κπg

≤ (1− 2 Υ)
∑

i> 1
Υ
, Θi 6=∅

|Θi| < 2 Υ
∑

i> 1
Υ
, ∆i 6=∅

|∆i| (96)

holds, and therefore by (91) and (96), it follows that∑
i> 1

Υ
,∆i 6=∅

|∆i| >
(1− 2 Υ)ε|I| h

48κπgΥ
≥ µ h (97)

holds. Since the number of eigenvalues of T which have an algebraic conjugate in I is at least∑
i> 1

Υ
,∆i 6=∅ |∆i|, the proposition now follows immediately by (97).

Proof of Theorem 4.2: Suppose that κ, λ, ε, C, G, ∆, L, ` and T are as in the statement of the
theorem, and put h := hT , t := tT , D := DT , Len := LenG,` and Gap := GapG,` (cf. (71), (72)).
By statement (iii) of the theorem and Lemma 3.3 (i), there exists an integer s0 ∈ {2, . . . , g} such
that Rs0 > R1 and `(s0) >

(
ε
g

)
h (cf. (28)). On the other hand, by Corollary 7.3, there exists a

well-placed interval J0 in the s0 th guide interval Is0 = (Ls0 ,Rs0) (relative to G) such that J0∩B = ∅
and Len(J0) >

(
ε
g

)
h both hold as Len(J0) ≥ `(s0) (cf. (29), (52)). It follows by Proposition 9.2 for

(ε, µ) :=
(
ε
g , C(κ) + 2

)
that there exist positive constants F0 := F0(κ,G,∆, L), G0 := G0(κ, λ, ε,G)

and H0 := H0(κ, λ, ε,G,∆, L) such that if `(i) > F0 holds for all (γi, αi, βi) ∈ ∆ then

either h < H0 or Gap(J0) > G0h holds,

as T has exactly D + 1 distinct eigenvalues (cf. (26)) and D ≤ C h holds by statement (ii) of the
theorem.

Now, if h < H0, then the theorem follows by taking H := H0 and F := F0.

Otherwise, h ≥ H0 and Gap(J0) > G0h both hold, so by Corollary 7.3 and Proposition 7.4 for
I := J0, there exists an integer s1, c(G,J0) ≤ s1 ≤ d(G,J0), and a well-placed interval J1 in the
s1 th guide interval Is1 such that

Len(J1) >
Gap(J0)

g
>

(
G0

g

)
h.

By applying Proposition 9.2 again for (ε, µ) := (G0
g , C(κ) + 2), there exist positive constants F1 :=

F1(κ,G,∆, L), G1 := G1(κ, λ, ε,G) and H1 := H1(κ, λ, ε,G,∆, L) such that if `(i) > F1 holds for all
(γi, αi, βi) ∈ ∆ then

either h < H1 or Gap(J1) > G1h holds.

Since (Ri)
g
i=1 is a finite unimodal sequence by Lemma 3.3, it follows by iteratively repeating this

argument (if necessary) that there exist an integer m, 1 ≤ m ≤ g, and positive constants Fj :=
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Fj(κ,G,∆, L) and Hj := Hj(κ, λ, ε,G,∆, L) (0 ≤ j ≤ m) given by Proposition 9.2 such that if
`(i) > max{Fj : 0 ≤ j ≤ m} holds for all (γi, αi, βi) ∈ ∆ then

max{Hj : 0 ≤ j ≤ m− 1} ≤ h < Hm

holds. Theorem 4.2 now follows by taking

H := max{Hj : 0 ≤ j ≤ m} and F := max{Fj : 0 ≤ j ≤ m }.

10 Distance-Regular Graphs of Order (s, t)

In this section, we shall use our main result to show that, for fixed integer t > 1, there are only
finitely many distance-regular graphs of order (s, t) whose smallest eigenvalue is different from
−t− 1. We begin by recalling the relevant definitions and some previous results.

Let Γ be a distance-regular graph. For any vertex x, the local graph of a vertex x is the subgraph
of Γ induced by Γ1(x). For an integer s ≥ 1, a clique of size s (or, s-clique) is a set of s vertices
which are pairwise adjacent. Following H. Suzuki (see [34]), we say that a distance-regular graph Γ
is of order (s, t) for some positive integers s, t, if the local graph of any vertex is the disjoint union
of t + 1 cliques of size s. In particular, a non-complete distance-regular graph with valency k ≥ 3
and c2 = 1 is of order (s, t) with s = a1 + 1 and t = k

a1+1 .

Note that the Hamming graph H(n, q) is a distance-regular graph of order (n−1, q−1). Hence, for
fixed positive integer t, there are infinitely many distance-regular graphs of order (s, t) where s is
a positive integer. In addition, B. Mohar and J. Shawe-Taylor [30] (see also [12, Theorem 4.2.16])
showed that any distance-regular graph of order (s, 1) with s > 1 is isomorphic to the line graph of
a Moore graph or the point graph of some generalized 2D-gon of order (s, 1), where D ∈ {3, 4, 6}.
Since the point graph of a generalized 2D-gon of order (s, 1) is exactly the same as the flag graph
of a regular generalized D-gon of order (s, s), there are infinitely many distance-regular graphs of
order (s, 1) with s > 1.

The following proposition is well-known; we include its proof for completeness.

Proposition 10.1 For s, t positive integers, let Γ be a distance-regular graph of order (s, t) with
diameter D ≥ 2. Then the smallest eigenvalue θD of Γ satisfies θD ≥ −t − 1. Moreover, if s > t,
then θD = −t− 1 holds.

Proof: Let C be the set of (s + 1)-cliques in Γ. Let M be the vertex-clique of size s + 1 incidence
matrix, that is, M is the (|V (Γ)| × |C|)-matrix such that the (x,C)-entry of M is 1 if x ∈ C
and 0 otherwise. Then MMT = A + (t + 1)I, where MT is the transpose of M . As MMT

is positive semidefinite, it follows that all the eigenvalues of Γ are at least −t − 1. Note that
|C|(s+ 1) = |V (Γ)|(t+ 1) so that if s > t then |C| < |V (Γ)|, and, as the rank of M is at most |C|,
it follows that A+ (t+ 1)I is singular. This shows that A has −t− 1 as its smallest eigenvalue.
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Corollary 10.2 Let t ≥ 1 be an integer. Then there are only finitely many distance-regular graphs
of order (s, t) with s ≥ 1 and st 6= 1 which have smallest eigenvalue not equal to −t− 1.

Proof: Let t ≥ 1. If Γ is a distance-regular graph of order (s, t) such that its smallest eigenvalue is
different from −t− 1, then s ≤ t holds by Proposition 10.1. As the valency of Γ equals s(t+ 1) ≤
t(t+ 1), the corollary follows by Theorem 1.1 as long as s(t+ 1) 6= 2.

Remark 10.3 Not much is known concerning distance-regular graphs of order (s, t) with t ≥ 2.
The distance-regular graphs of order (1, 2) and (2, 2) were classified by N. L. Biggs, A. G. Boshier
and J. Shawe-Taylor [11] and by A. Hiraki, K. Nomura and H. Suzuki [23], respectively. In [38],
N. Yamazaki presented some strong results concerning distance-regular graphs of order (s, 2) with
s > 2. However, it is not known whether there are infinitely distance-regular graphs of order (s, 2)
with s ≥ 2 and c2 = 1.

11 Concluding Remarks

In Section 1, we mentioned that Sims’ conjecture on permutation groups could be used to prove
that there are only finitely many finite, connected distance-transitive graphs of fixed valency greater
than two. We conclude by recalling and discussing a combinatorial version of Sims’ conjecture that
is related to the Bannai-Ito conjecture.

To state this conjecture, we first recall the definition of association schemes (as defined by E. Ban-
nai and T. Ito [5]). An association scheme (X,R) is a finite set X together with a collection
R = {R0, R1, . . . , Rr} of non-empty binary relations on X satisfying the following conditions:
(i) R is a partition of X ×X;
(ii) R0 = {(x, x) : x ∈ X};
(iii) for each Ri ∈ R, there exists i′ such that Ri′ = {(y, x) : (x, y) ∈ Ri};
(iv) for any 0 ≤ i, j, h ≤ r and for any (x, y) ∈ Rh, the number |{z ∈ X : (x, z) ∈ Ri and (z, y) ∈ Rj}|
is a constant phij which depends only on i, j, h not on the choice of (x, y).

Note that an association scheme in this sense is also called a homogeneous coherent configuration
(see [22]). Also, an association scheme (X,R) is called primitive if any non-trivial relation Ri (i 6= 0)
induces a directed connected graph on the vertex set X.

Let (X,R) be a primitive association scheme. Then each non-trivial relation Ri ∈ R (i 6= 0) induces
a directed, connected, regular graph of valency ki := p0

ii′ . L. Pyber [31, p.207] and M. Hirasaka [24,
p.105] attribute the following conjecture to L. Babai.

Conjecture 11.1 (Babai’s Conjecture)
There exists an integral function f such that for any primitive association scheme (X, {R0, R1, . . . , Rr}),

kmax ≤ f(kmin)

holds, where kmax := max{ki : 1 ≤ i ≤ r} and kmin := min{ki : 1 ≤ i ≤ r}.
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For a primitive permutation group G on a finite set Ω, the orbits Ri of the induced action of G on
Ω×Ω determine a primitive association scheme, denoted by AS(G). Sims’ conjecture follows from
Conjecture 11.1 by considering the association scheme AS(G) for a primitive permutation group
G. Note also that the cyclotomic schemes (for a definition see [24, p.106]) provide examples of
primitive association schemes with fixed smallest non-trivial valency and an unbounded number of
classes. Therefore, in Conjecture 11.1 we cannot expect to provide a bound for r in terms of kmin.

The main theorem of this paper, Theorem 1.1, implies that Conjecture 11.1 is true for primitive
distance-regular graphs with diameter D as the sequence (ki)1≤i≤D is unimodal by [12, Proposition
5.1.1 (i)] and ki ≥

√
k holds for all i ≥ 1 by [12, Proposition 5.6.1].

One could also ask whether there exists an integral function f such that for any primitive commu-
tative association scheme (X, {R0, R1, ..., Rr}) with multiplicities mi (i = 0, 1, . . . , r) with m0 = 1,

mmax ≤ f(mmin)

holds, where mmax := max{mi : 1 ≤ i ≤ r} and mmin := min{mi : 1 ≤ i ≤ r}. Such a function is
not known to exist even for the class of Q-polynomial association schemes (for a definition see [12,
p.58]), although the dual statement of Theorem 1.1 has been shown to be true by W. J. Martin and
J. S. Williford [29]. In particular, they showed that for any m1 > 2, there are only finitely many
Q-polynomial association schemes with the property that the first idempotent in a Q-polynomial
ordering has rank m1.
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