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Tree-equivalence theorems

This section uses the terminology and notation in “A fundamental obstruction to

constructing phylogenetic networks” by K. T. Huber, L. van Iersel, V. Moulton, and

T. Wu. We shall prove that the networks N1 and N2 both display the same set of

phylogenetic trees (see Theorem 2 below). We also prove that this is the case for networks

H1 and H2 (see Theorem 6 below).

We assume again that X is a finite non-empty set, that n is a positive integer and

that i ∈ {1, 2}. We begin by presenting some definitions. Following van Iersel et al. (2010),

we say that a phylogenetic tree T on X is displayed by a phylogenetic network N on X if

there exists a subdigraph T ′ of N so that T can be obtained from T ′ by suppressing all

degenerate vertices. The set of all phylogenetic trees on X displayed by a phylogenetic

network N on X is denoted by T (N ). We say that two phylogenetic networks N and N ′

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of East Anglia digital repository

https://core.ac.uk/display/29108928?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


on X are tree-equivalent if for every tree T ∈ T (N ) there exists a tree T ′ ∈ T (N ′) such

that T and T ′ are equivalent and vice versa. Note that some examples of tree-equivalent

networks that are not equivalent are presented by Willson (2011).

To show that N1 and N2 are tree-equivalent we shall use the following result

concerning binary sequences. We say that a subset A of {1, 2, . . . , n} is dominated by a

sequence w ∈ Bn if A ⊆ supp(w) holds. More generally, if A1, . . . Ak are subsets of

{1, 2, . . . , n} and there exist sequences wj ∈ Bn, 1 ≤ j ≤ k, such that, for all 1 ≤ j ≤ k, Aj

is dominated by wj then we say that the list (A1, . . . , Ak) is dominated by the list

(w1, . . . , wk) or that (w1, . . . , wk) dominates (A1, . . . , Ak). Now, suppose X has size at least

two. For convenience, we denote any partition {A1, . . . , Ak}, k ≥ 2, of X into k pairwise

disjoint sets by A1|A2| . . . |Ak, where the order in which we list the sets Aj, 2 ≤ j ≤ k, is

not important.

Lemma 1. Suppose that n ≥ 3 and that A1| . . . |Ak is a partition of {1, . . . , n}, k ≥ 2.

Then, there exist distinct sequences w1, . . . , wk in Bin such that (A1, . . . , Ak) is dominated

by (w1, . . . , wk).

Proof. Since the proof for i = 2 is similar, we restrict our attention to showing that the

lemma holds for i = 1. We proceed by induction on n. Suppose first that n = 3. If k = 2

then, by symmetry, we may assume that the partition of Y = {1, 2, 3} under consideration

is {1, 2}|{3}. Clearly, the list ({1, 2}, {3}) is dominated by (111, 001), all of whose

sequences are distinct. If k = 3, then the sole partition of Y is {1}|{2}|{3} and

({1}, {2}, {3}) is dominated by (100, 010, 001), all of whose sequences are again distinct.

Now assume that n > 3, and that the result holds for n− 1. Fix an arbitrary

partition π = A1| . . . |Ak of {1, . . . , n} where k ≥ 2. By relabeling the elements of π if

necessary, we may assume that n ∈ Ak. Consider the map κ : B1
n−1 → B1

n that maps each

sequence w in B1
n−1 to the sequence in B1

n obtained from w by appending “0” to the right,



that is, [κ(w)]j = [w]j for 1 ≤ j ≤ n− 1 and [κ(w)]n = 0. Note that if a set A (as a subset

of {1, . . . , n− 1}) is dominated by a sequence w in B1
n−1, then A (as a subset of {1, . . . , n})

is also dominated by κ(w).

The remainder of the proof consists of two cases that depend on the cardinality of

Ak:

Case (i): Suppose |Ak| = 1. Then Ak = {n}. Assume first that k = 2. Then

π = {1, . . . , n− 1}|{n}. Let w1 ∈ B1
n with {1, . . . , n− 1} ⊆ supp(w1) holding. Then

({1, . . . , n− 1}, {n}) is dominated by (w1, wn,n).

Now assume that k ≥ 3. Then π = A1| . . . |Ak−1|{n}. Since = A1| . . . |Ak−1 is a

partition of {1, . . . , n− 1} the induction assumption implies that there exist distinct

sequences in w′j ∈ B1
n−1, 1 ≤ j ≤ k − 1, such that (w′1, . . . , w

′
k−1) dominates (A1, . . . , Ak−1).

Since κ(w′j) 6= κ(w′l) for all j, l ∈ {1, . . . , k − 1} distinct and κ(w′j) 6= wn,n for all

j ∈ {1, . . . , k − 1} it follows that (κ(w′1), . . . , κ(w′k−1), wn,n) dominates (A1, . . . , Ak−1, {n}).

Case (ii): Suppose |Ak| ≥ 2. Then π′ = A1| . . . |Ak−1|Ak − {n} is a partition of

{1, . . . , n− 1}. By induction assumption, there exist distinct sequences w′j ∈ B1
n−1,

1 ≤ j ≤ k, such that (A1, . . . , Ak − {n}) is dominated by (w′1, . . . , w
′
k). Since |Ak| < n there

exists a sequence w ∈ B1
n that dominates Ak. In particular, n ∈ Ak implies [w]n = 1.

Hence, for all 1 ≤ i ≤ k, the sequences κ(w′i) and w are distinct. Thus,

(κ(w′1), . . . , κ(w′k−1), w) dominates (A1, . . . , Ak).

Theorem 2. The networks N1 and N2 are tree-equivalent.

Proof. We shall show that for any tree T1 ∈ T (N1) there exists a tree T2 ∈ T (N2) such

that T1 and T2 are equivalent. The claimed equivalence then follows by symmetry.

Let T1 ∈ T (N1). Note that if T1 is the star tree on X then T1 is clearly displayed

by N2. Thus, we may assume that T1 is not the star tree on X. Let T ′1 = (V ′1 , E
′
1) be the

tree with leaf set X obtained from D1 by deleting a set of arcs and removing the resulting



isolated vertices such that T ′1 is a subdivision of T1. Put {w1
1, . . . , w

1
l } = V ′1 ∩ B1

n and note

that l ≥ 2 as T1 is not the star tree on X. For all 1 ≤ j ≤ l, let Aj ⊆ X comprise of all

leaves x ∈ X for which the path in T ′1 from the root ρ(T ′1) of T ′1 to x contains w1
j . Clearly,

A1| . . . |Al is a partition of X. By Lemma 1 it follows that there exist l distinct sequences

w2
1, . . . , w

2
l in B2

n such that, for all 1 ≤ j ≤ l, Aj is dominated by w2
j . Let T ′2 = (V ′2 , E

′
2) be

the tree with leaf set X, vertex set V ′2 = {ρ2, w2
1, . . . , w

2
l } ∪X ∪ Y where ρ2 is the root of

D2 and arc set E ′2 comprising (i) for all 1 ≤ j ≤ l of the arc (ρ2, w
2
j ), (ii) for all 1 ≤ j ≤ n

of the arcs (yj, xj), and (iii) for all 1 ≤ t ≤ n and all 1 ≤ j ≤ n of the arcs (w2
j , yt) precisely

if xt ∈ Aj. Since Aj ⊆ supp(w2
j ) holds for 1 ≤ j ≤ l, it is easy to see that T ′2 can be

obtained from D2 by deleting a set of arcs and removing all resulting isolated vertices.

Now, let κ : V ′1 → V ′2 denote the map that maps, for all 1 ≤ j ≤ l, w1
j to w2

j and is

the identity on V ′1 − {w1
1, . . . , w

1
l }. Since for all 1 ≤ j ≤ l and all 1 ≤ t ≤ n, we have that

(w1
j , yt) ∈ E ′1 if and only if xt ∈ Aj if and only if (w2

j , yt) ∈ E ′2 it follows that κ induces an

isomorphism between the trees T ′1 and T ′2 that is the identity on X. Consequently the

phylogenetic tree on X obtained from T ′2 by suppressing all degenerate vertices is contained

in T (N2) and equivalent with T1.

To prove that H1 and H2 are tree-equivalent, we require some further definitions

and results. Ideally, we would have liked to deduce this fact from the previous theorem,

but we have not been able to find such a proof. Suppose that G is a rooted DAG and v is a

vertex of G. We denote the set of leaves of G for which v is an ancestor by LG(v) and

simply write L(v) if the graph we are referring to is clear from the context. In addition, if

u is a vertex of G such that u is an ancestor of v then we write v �G u (we also write

v ≺G u if v 6= u) where we will omit the subscript if the rooted DAG we are referring to is

clear form the context. Note that �G is a partial ordering on V (G).

Lemma 3. If A ⊆ An is a complete set such that the tree P [A] is binary and



L(P [A]) ⊆ Bin then P [A] is displayed by Pn|Bin.

Proof. Since the proof for i = 2 is similar, we restrict our attention to showing that the

lemma holds for i = 1. Let A ⊆ An denote a complete set such that the tree P [A] is binary

and L(P [A]) ⊆ Bin. We perform induction on m = |L(P [A])|. That the lemma holds in case

m ∈ {1, 2} is straightforward to verify. So assume that m > 2 and that the lemma holds for

all subsets A′ ⊆ An with |L(P [A′])| < m that satisfy the assumptions of the lemma.

Let w1, w2 ∈ A denote two distinct sequences that share a common parent w in

P [A], let w′ denote the parent of w in P [A], and let w3 ∈ A be a sequence contained in

L(w′) but not in L(w). Then w is not a prefix of w3. Put A′ = A− {w1, w}. Then A′ is a

complete subset of An, the tree P [A′] is binary, L(P [A′]) ⊆ B1
n, and |L(P [A′])| = m− 1.

By induction hypothesis, it follows that P [A′] is displayed by Pn|B1n . Let w̃ ∈ An denote

the common prefix of w1 and w2 of maximal length. Then w is a prefix of w̃. Moreover,

since w is not a prefix of w3, w̃ is not a prefix of w3.

Since P [A′] is displayed by Pn|B1n , there exists a tree T ′ with leaf set L(P [A′])

obtained from Pn|B1n via a series of vertex and arc deletions so that when also suppressing

all degenerate vertices in T ′, we obtain a phylogenetic tree that is equivalent to P [A′]. Let

u be the lowest non-degenerate vertex in T ′ such that w1 ∈ L(u), that is, u � v holds for

all non-degenerate interior vertices v in T ′ with w1 ∈ L(v). Note that, by construction, u is

a common prefix of w1 and w3. Consequently, u is a degenerate vertex in T ′ with

w1 ≺ w̃ ≺ u. Let T be the tree obtained from T ′ by adding the path in Pn|B1n from w̃ to w2.

Note that T can be obtained from Pn|B1n via a series of vertex and arc deletions. Moreover,

when suppressing all degenerate vertices in T , we obtain a phylogenetic tree that is

equivalent to P [A]. Therefore, P [A] is also displayed by Pn|B1n . This completes the

induction step and hence the proof of the lemma.

We now present some results which will help us ensure that the tree used to replace



the “top layer” vertices in obtaining D1,2 from D1,1 is mapped correctly into the tree used

to replace the same layer of vertices in obtaining D2,2 from D2,1.

Let Cn denote the phylogenetic tree on X obtained from the rooted caterpillar C1n

by relabeling each of its leaves j by the corresponding element xj ∈ X. In addition, let

T1 ∈ T (H1) be such that T1 and Cn are not equivalent and let T1 denote the tree obtained

from D1,3 by deleting a set of arcs and removing all resulting isolated vertices such that T1

is a subdivision of T1. Put

W = {w1
1, . . . , w

1
m} := V (T1) ∩ B1

n.

Then m ≥ 2 must hold. Indeed, assume for contradiction that m = 1. Let w denote the

unique vertex in W . Then supp(w) = {1, . . . , n} as T1 has leaf set X. Let Zw denote the

rooted tree associated to w that was obtained from the tree Cw in the construction of the

graph D2,3. Attaching to each leaf l in Zw the directed path from l to the unique element

xl ∈ X below l results in a phylogenetic tree Z ′w on X that is equivalent with T1. Since

X = L(Cn), the construction of Zw implies that Z ′w and Cn are also equivalent. Thus, T1

and Cn must be equivalent which is impossible. Consequently, m ≥ 2 must hold as required.

Let T ′1 denote the tree obtained by suppressing all degenerate vertices in the

restriction T1|V (T1)∩An Then L(T ′1) = W and T ′1 is equivalent with Pn|W . Now, for each

vertex v in T ′1, let

I(v) := {1 ≤ j ≤ n : xj is below v in T1}.

Furthermore, for each vertex v in T ′1 that is not a leaf, denote by l(v) that one of its two

children for which the smallest element contained in I(l(v)) is smaller than that of I(r(v)),

where r(v) denotes the other child of v. Clearly, l(v) (and therefore also r(v)) are uniquely

determined and we call l(v) and r(v) the left child and right child of v, respectively.

Let u1, . . . , uq ∈ V (T ′1), q ≥ 1, denote a sequence of non-leaf vertices of T ′1 defined as



follows. Put u1 = ρ(T ′1) and, for all 1 ≤ j ≤ t, assume that uj has already been defined. If

both children of ut are leaves of T ′1 or |I(l(ut))| > 1 holds then we stop and put q = t.

Otherwise we put ut+1 = r(ut) and continue as before with t replaced by t+ 1. Note that in

the case that both children of uq are leaves of T ′1 either |I(l(uq))| > 1 or |I(l(uq))| = 1 might

hold. Also note that since T ′1 is a finite tree there are only finitely many such vertices ut.

Lemma 4. (i) We have j ∈ I(uj) for all j ∈ {1, . . . , q}. Moreover, j is the smallest

element in I(uj).

(ii) |I(uq)| > 1.

(iii) For all j ∈ {1, . . . , q}, the length l(uj) of uj is at least j − 1.

(iv) the q-th letter [l(uq)]q of the left child l(uq) of uq is 1.

Proof. (i) The recursive nature of the definition of the vertices uj combined with the

definition of the set I(l(uj)) implies that j ∈ I(l(uj)) holds for all 1 ≤ j ≤ q. That j is the

smallest element in I(l(uj)) is clear.

(ii) It suffices to consider the case that the construction of the list u1, . . . , uq

terminated by finding that both children of uq are leaves of T ′1. We claim that |I(l(uq))| > 1

must hold. Assume for contradiction that |I(l(uq))| = 1 and that both children of uq are

leaves of T ′1. Using the ordering of the elements of W induced by their indices, we obtain

that T ′1 must be equivalent with CW . Since the leaf set of T is X it follows that T1 and Cn

are equivalent; a contradiction.

(iii) This follows from the fact that for all 1 ≤ j ≤ q − 1, the maximal precursor of

uj+1 in V (T ′1) is uj and u1 is the empty sequence as u1 is the root of T ′1 and so has length

zero.

(iv) This follows from Lemma 4(i) as it implies that q ∈ supp(l(uq)).



We next present a technical result that lies at the heart of the proof that H1 and H2

are tree-equivalent. To establish it note that the termination criterion for the list of the

vertices u1, . . . , uq implies that {j} = I(l(uj)) holds for all j ∈ {1, . . . , q − 1}. Hence, l(uj)

is a leaf of T ′1 for all such j. Without loss of generality we may assume for the remainder

that w1
j = l(uj) holds for all j ∈ {1, . . . , q − 1}.

Theorem 5. Setting A = V (T ′1), there exists a map τ : A → An such that the following

holds

(i) τ(w1
j ) ∈ B2

n, for all j ∈ {1, . . . ,m}.

(ii) The trees T ′2 := P [τ(A)] and T ′1 are isomorphic and the underlying bijection maps, for

all j ∈ {1, . . . ,m}, the sequence w1
j to τ(w1

j ).

Proof. Put “≺” = “≺T”. Note first that in view of Assertions (i) and (ii) in Lemma 4 we

may choose some s ∈ I(l(uq)) such that s > q. Let t ∈ I(r(uq)) denote the smallest element

in I(r(uq)). Then t > q must hold too. We establish the theorem by distinguishing between

the cases that (a) [r(uq)]q = 0 and that (b) [r(uq)]q = 1.

Case (a): Set

τ : A → An : v 7→

 ψt(v) if v � l(uq)

ψs(v) otherwise.

Then since τ(w1
j ) and w1

j differ in precisely one letter and w1
j ∈ B1

n holds for all 1 ≤ j ≤ m,

we must have τ(w1
j ) ∈ B2

n, for all j ∈ {1, . . . ,m}. Thus, (i) holds in this case.

To see (ii) for this case, we show first that τ preserves the precursor relationships

between the sequences in A. Put differently, we show that for any two distinct sequences

w,w′ ∈ A we have that if w is a precursor of w′ in A then τ(w) is a precursor of τ(w′) in

τ(A). Our arguments are based on a detailed case analysis. Observe first that Lemma 4(i)

and (iii) imply that l(uq) = q − 1. Combined with the choice of s and t it follows for all



1 ≤ j ≤ q that l(uj) ≤ l(uq) = q − 1 < z for z ∈ {t, s}. This yields, τ(uj) = ψs(uj) = uj for

all such j. Let w and w′ denote two distinct sequences in A. If w = uj and w′ = uj+1 for

some 1 ≤ j ≤ q − 1 then w is the maximal precursor of w′ in A. Hence, τ(w) = uj is the

maximal precursor of τ(w′) = uj+1 in τ(A). If there exists some 1 ≤ j ≤ q − 1 such that

w = uj and w′ = w1
j then w is the maximal precursor of w′ in A. Hence, τ(w) = w is the

maximal precursor of τ(w′) = w2
j in τ(A). Now assume that w and w′ are such that neither

one of the above two cases applies. Then either (α) w � l(uq) and w′ � r(uq), or (β)

w,w′ � l(uq), or (γ) w,w′ � r(uq) holds.

If Case (α) holds, we claim that neither w is precursor of w′ nor w′ is a precursor of

w. Indeed, since t > q and l(uq) is a precursor of w, we have

[τ(w)]q = [ψt(w)]q = [w]q = [l(uq)]q = 1 and since r(uq) is a precursor of w′, we also have

[τ(w′)]q = [ψs(w)]q = [w′]q = [r(uq)]q = 0. Hence, neither w is a precursor of w′ nor w′ is a

precursor of w, as claimed. If either Case (β) or Case (γ) holds then it is straightforward to

see that w is a precursor of w′ if and only if τ(w) is a precursor of τ(w′). Since τ(uq) is the

common precursor of {τ(l(uq)), τ(r(uq))} in τ(A) of maximal length, it follows that τ

preserves the precursor relationships between the elements in A, as required. Setting

T ′2 = P [τ(A)] implies (ii) in this case.

Case (b): For 1 ≤ j ≤ q − 1, let w2
j be the sequence in B2

n with supp(w2
j ) = {j, n}. For all

1 ≤ j ≤ q, put u′j = 0j−1. Note that u′1 is the empty sequence in B0. Let α denote the

precursor of uq−1 of length l(α) = q − 1 which exists by Lemma 4(iii). If l(α) ≥ 1 then put

supp(α) = {α1, . . . , αr} where r = | supp(α)|. Also, put κ = 1 if | supp(α)| is odd and 0 if

| supp(α)| is even or supp(α) = ∅. Let ϕ : A → A denote the map defined by setting, for all

v ∈ A, ϕ(v) = ψα1 ◦ ψα2 ◦ · · · ◦ ψαr(v) if supp(α) 6= ∅ and ϕ(v) = v otherwise. Note that for

all v ∈ A with v � uq holding, we have supp(ϕ(v)) ∩ {1, . . . , q − 1} = ∅ as α is also a

precursor of ϕ(v) and so [ϕ(v)]j = 0 holds for all 1 ≤ j ≤ r. Let τ : A → An denote the



map

τ : A → An : v 7→



w2
j if v = w1

j for some 1 ≤ j ≤ q − 1,

u′j if v = uj for some 1 ≤ j ≤ q,

ϕ ◦ ψt(v) if κ = 0 and v � l(uq),

ϕ ◦ ψq(v) if κ = 0 and v � r(uq),

ϕ(v) if κ = 1 and v � l(uq), and

ϕ ◦ ψq ◦ ψs(v) if κ = 1 and v � r(uq),

and for all q ≤ j ≤ m, put w2
j = τ(w1

j ). Then w2
j ∈ B2

n clearly holds for all 1 ≤ j ≤ q − 1

and w2
j ∈ B2

n holds for all q ≤ j ≤ m because w1
j ∈ B1

n and τ “flips” an odd number of

positions in w1
j . Thus (i) holds in this case, too.

To see (ii), we next show that τ preserves the precursor relationships in A (in the

same sense as in the case that [r(uq)]q = 0). Note that, by construction, the maximal

precursor of w1
j in A is u′j for all 1 ≤ j ≤ q − 1 and the maximal precursor of u′j+1 in A is

u′j, for all 1 ≤ j ≤ q− 1. Let w and w′ denote two distinct sequences in A. If w � l(uq) and

w′ � r(uq) then [τ(w)]q = 1 and [τ(w′)]q = 0. Hence, neither τ(w) is precursor of τ(w)′ nor

τ(w)′ is a precursor of τ(w). Setting T ′2 = P [τ(A)] and using similar arguments as in the

corresponding analysis for Case (a) implies that (ii) also holds in this case.

Theorem 6. The networks H1 and H2 are tree-equivalent.

Proof. Let T1 ∈ T (H1). We show that T1 is also displayed by H1, from which the theorem

immediately follows by symmetry. We consider the cases (i) T1 and Cn are equivalent, and

(ii) they are not.

Case (i): Assume first that n is even. Then 1n ∈ B2
n and so, by the construction of the

graph D2,3, the tree Cn is displayed by H2. Since T1 and Cn are assumed to be equivalent, it

follows that T1 is displayed by H2, as required.



So, suppose n is odd. Then the sequences w̃, w ∈ Bn with supp(w̃) = {1, n} and

supp(w) = {2, 3, . . . , n} are clearly contained in B2
n. Let Zw and Zw̃ denote the rooted trees

associated to w and w̃, respectively, in the construction of the graph D2,3. We now

construct a phylogenetic tree T on X from Zw and Zw̃.

First construct C1n by joining the roots of Zw and Zw̃ respectively to the common

precursor of {w, w̃} in B2
n of maximal length and then deleting the arc (w̃, n). Next

transform C1n into a phylogenetic tree on X by attaching to each leaf l of C1n the directed

path from l to the unique leaf in H2 below l and then suppressing all degenerate vertices.

The resulting tree is T .

Now, since by construction T is equivalent with Cn and, by assumption, Cn is

equivalent with T1 it follows that T1 is displayed by H2, as required.

Case (ii): Let τ and T ′2 be as specified in Theorem 5. Note that T ′2 is a binary phylogenetic

tree on {τ(w1
1), . . . , τ(w1

m)}. For all 1 ≤ j ≤ m, put Aj = I(w1
j ) and let T (Aj) be the tree

obtained from the rooted caterpillar CAj
by replacing each of its leaves l with the

corresponding element xl in X.

Now, let T2 be the phylogenetic tree on X obtained by replacing each leaf τ(w1
j ) of

T ′2 with T (Aj). Since T ′2 is a binary tree with V (T ′2) ⊆ An and L(T ′2) ⊆ B2
n, Lemma 3

implies that T ′2 is displayed by Pn|B2n . Since T2 can also be obtained from D2 by deleting a

set of arcs and removing resulting isolated vertices, it follows that T2 is displayed by H2.

Since T1 can be obtained from T ′1 by replacing each of its leaves w1
j with T (Aj), it follows

that T1 and T2 must be equivalent. Hence, T1 is displayed by H2, as required.
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Additional Figures
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Figure 1: The four evolutionary trees displayed by both networks (i) and (ii) in Fig. 1 of
the main text.
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Figure 2: An illustration of obtaining a trinet from a network. (i) The network N on
X = {a, b, c, d} pictured in Fig. 2(i) of the main text. (ii) The network N with the paths
from the root to leaves a, c, d highlighted in bold. (iii) The network on {a, c, d} formed
by the edges of the highlighted paths in (ii), where degenerate vertices are represented by
unfilled circles. (iv) The trinet on Y induced by N , which is obtained from network (iii) by
suppressing all degenerate vertices.
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Figure 3: The four trinets induced by both networks (i) and (ii) in Fig. 2 of the main text.


