
Fishing for Minimum Evolution Trees with Neighbor-Nets

Sarah Bastkowskia,∗, Andreas Spillnerb, Vincent Moultona

aSchool of Computing Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
bDepartment of Mathematics and Computer Science, University of Greifswald, Germany

Abstract

In evolutionary biology, biologists commonly use a phylogenetic tree to represent the evolutionary history
of some set of species. A common approach taken to construct such a tree is to search through the space
of all possible phylogenetic trees on the set so as to find one that optimizes some score function, such as
the minimum evolution criterion. However, this is hampered by the fact that the space of phylogenetic
trees is extremely large in general. Interestingly, an alternative approach, which has received somewhat less
attention in the literature, is to instead search for trees within some set of bipartitions or splits of the set of
species in question. Here we consider the problem of searching through a set of splits that is circular. Such
sets can, for example, be generated by the NeighborNet algorithm for constructing phylogenetic networks.
More specifically, we present an O(n4) time algorithm for finding an optimal minimum evolution tree in a
circular set of splits on a set of species of size n. In addition, using simulations, we compare the performance
of this algorithm when applied to NeighborNet output with that of FastME, a leading method for searching
for minimum evolution trees in tree space. We find that, even though a circular set of splits represents
just a tiny fraction of the total number of possible splits of a set, the trees obtained from circular sets
compare quite favorably with those obtained with FastME, suggesting that the approach could warrant
further investigation.

Keywords: Algorithms, Phylogenetics, Minimum Evolution, Dynamic Programming, Phylogenetic
Network, Circular Split System

1. Introduction

A phylogenetic tree on a given set of species X is a connected, acyclic graph such that its leaf set is X
and all its non-leaf vertices have degree at least three [24]. Such trees are used by biologists to represent
the evolutionary history of the species in X. An important problem in phylogenetics is to construct such
trees, and various methods have been developed for this purpose [18]. A common approach to tackling this
problem is to search through the space of phylogenetic trees, trying to find a tree (or trees) that optimize
some score such as the minimum evolution criterion [23]. However, a straight-forward exhaustive search is
hampered by the fact that the space of phylogenetic trees on X grows exponentially in n = |X|. Moreover,
it has been shown that finding an optimal tree is NP-hard for many of the popular optimization criteria (see
e.g. [6, 8]).

Interestingly, there is an alternative approach to searching through tree space, which was studied quite
early on in the development of phylogenetics (see e.g. [10, 21]), and more recently in [3], but that has received
somewhat less attention in the literature. In particular, instead of searching through the set of all possible
trees on the set X, we look for trees within a collection of bipartitions or splits of X. The rationale behind
this approach is that any phylogenetic tree induces a set of splits of X in which every split corresponds to
a branch of the tree, and that this set of splits uniquely determines the tree (cf. [24]). Intriguingly, in [4]
a dynamic programming framework is developed to search for trees in a given collection of splits of X, also
called a split system. Although still requiring exponential time in general, this approach has the advantage

∗Corresponding author. Tel.: +44-7407385089
Email addresses: s.bastkowski@uea.ac.uk (Sarah Bastkowski), andreas.spillner@uni-greifswald.de (Andreas

Spillner), vincent.moulton@cmp.uea.ac.uk (Vincent Moulton)

Preprint submitted to Elsevier October 8, 2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of East Anglia digital repository

https://core.ac.uk/display/29108587?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

that it can yield polynomial time algorithms when restricted to split systems having size that is polynomial
in n = |X|. It is therefore of interest to develop efficient algorithms to search for trees in special classes of
split systems, as well as ways to generate split systems which capture salient information.

(1)

(2)

(3)

(34)
(35)
(31)
(32)

(33)
(29)

(30)

(8)

(4)(5)(6)(7)

(9)
(10)

(14)

(13)
(12)
(11)

(25)
(24)
(27)

(26)

(23)

(19)

(17)
(16)

(15)
(18) (22) (20)

(21)

(28)

Figure 1: A phylogenetic network generated with the NeighborNet
algorithm displaying a circular split system for 35 tomato-infecting
begomoviruses [22]. The group of three bold gray branches, for
example, represents the split of X = {1, 2, . . . , 35} into the subsets
A = {4, 5, 6, 7, 8} and B = X −A.

In this vein, here we develop an algorithm for
searching for a tree that locally optimizes the min-
imum evolution criterion by searching in a circular
split system. This is a special type of split system
that can be generated, for example, by the Neigh-
borNet algorithm [5] for constructing phylogenetic
networks (see Figure 1 for an example). In partic-
ular, we show that for a circular split system there
is an O(n4) time algorithm for computing an op-
timal minimum evolution tree, which improves on
the run time of O(n7) for the more general mini-
mum evolution algorithm presented by Bryant in
[4, Section 5.5]. We also present some simula-
tions which indicate that minimum evolution trees
in circular split systems generated by Neighbor-
Net can compare favorably with those obtained
by searching through the whole of tree space.

Before continuing, we note that, in view of the
fact that split systems are often displayed by phy-
logenetic networks such as the one in Figure 1,
it might appear that the problem of searching for
trees in split systems is closely related to the prob-
lem of finding optimal subtrees in phylogenetic
networks. While some recent results on this lat-
ter problem can be found in [16, 17], it is, in fact,
quite different from the problem we study here
since, for example, the minimum evolution tree in a circular split system generated by NeighborNet is not
necessarily a subtree of the network used to display this split system.

The structure of the rest of this paper is as follows. After recalling some background material on the
minimum evolution problem in the next section, in Section 3, we recall Bryant’s dynamic programming
algorithm for finding minimum evolution trees in a split system. We then describe our new algorithm in
Section 4 and, in the following section, we present a short investigation into how the minimum evolution trees
within split systems generated by NeighborNet and some related methods compare with those generated by
FastME [11], one of the leading programs for finding minimum evolution trees by searching through tree
space. We conclude with a discussion of some possible future directions in Section 6.

2. The Minimum Evolution Problem

We begin by recalling some relevant terminology and notation (cf. also [24]). Let X be a finite, non-
empty set, usually corresponding to some set of species or taxa. A phylogenetic tree (on X) is a connected,
acyclic graph T = (V,E) with leaf set X. Any non-leaf vertex of T is called an internal vertex of T , a
branch incident to a leaf is called an external branch of T and a branch whose endpoints are both internal
vertices is called an internal branch of T . In this paper, we consider only binary phylogenetic trees, that is,
trees in which every interior vertex is incident to precisely three branches. Often the branches e ∈ E of a
phylogenetic tree T = (V,E) are assigned a real number ω(e) known as the branch’s length. The sum of the
lengths of all branches in a phylogenetic tree T is called the length of T and denoted by `ω(T). In addition,
we denote the total length of the branches on the path connecting any two leaves x and y of T by `ω(x, y).

When constructing phylogenetic trees, biologists often begin by computing a distance matrix D on X
(estimated from, for example, molecular sequences) [18, ch. 4], that is, a symmetric matrix D indexed by
the set X which assigns the distance D(x, y) between x and y to any pair x, y of elements in X and which
is zero on the diagonal. Given such a matrix D and a phylogenetic tree T = (V,E) on X, various ways have

2

e

(a) X1

X2

X3

X4

(b)

e

X1

X2

xu w

v1

v2 v4

v3

u

v1

v2

Figure 2: Schematic representation of the situation around (a) an internal branch e and (b) an external branch e of a phylogenetic
tree referred to in the context of Formulae (1) and (2).

been proposed to assign branch lengths ωD(e) to each e ∈ E (see e.g. [6]). Here, we focus on the so-called
Ordinary Least Squares (OLS) branch length estimates that result from minimizing the quantity∑

x,y∈X,x 6=y

(
`ωD

(x, y)−D(x, y)
)2

and that can be computed using the following formulae (cf. [4, p. 136], [23]). Specifically, for an internal
branch e = {u,w}, letting vi, 1 ≤ i ≤ 4, denote the four vertices in V − {u,w} that are adjacent to u or w
(cf. Figure 2(a)), we define the subset Xi ⊆ X consisting of those x ∈ X for which the unique path from u
to x in T contains vertex vi. Then we have

ωD(e) =
1

4(n1 + n2)(n3 + n4)

(
(
n

n4
+

n

n3
+

n

n2
+

n

n1
− 4)P0 (1)

+
n1 + n2

n1n2
((2n2 − n)P1 + (2n1 − n)P2)

+
n3 + n4

n3n4
((2n4 − n)P3 + (2n3 − n)P4)

)
= ωD(X1, X2, X3, X4),

where P0 =
∑

x∈X1∪X2,y∈X−(X1∪X2)D(x, y), ni = |Xi| and Pi =
∑

x∈Xi,y∈X−Xi
D(x, y), 1 ≤ i ≤ 4. Simi-

larly, for every external branch e (cf. Figure 2(b)) we have

ωD(e) =
1

4(n1n2)

(
(1 + n1 + n2)P0 − (1 + n1 − n2)P1 − (1− n1 + n2)P2

)
= ωD(X1, X2). (2)

Note that in both of these formulae ωD(e) only depends on the subsets of X that form the leaf sets of the
subtrees incident to the endpoints of e and not on the internal structure of these subtrees.

Now, given T and D as above, the Minimum Evolution (ME) score σD(T) is defined to be `ωD
(T). Note

that, given T and D, it is possible to compute σD(T) for given D and T in O(n2) time [4, p. 137] using the
formulae above. The Minimum Evolution problem is, for a given distance matrix D, to find a phylogenetic
tree T on X with smallest score σD(T). Note that, even though we are not aware of an NP-hardness proof
for precisely this problem in the literature, many related problems are known to be NP-hard (see e.g. [7, 13]).

3. Bryant’s Algorithm

In the following, we denote the split of X into two non-empty subsets A and B by A|B (= B|A) and
the set of all possible splits of X by Σ(X). Any subset Σ ⊆ Σ(X) is called a split system on X. As
mentioned in the introduction, we are interested in the problem of searching for trees in split systems. More
specifically, given a distance matrix D and a split system Σ on X, the restricted ME-problem requires us to
find the minimum σ(D,Σ) of σD(T) over all binary phylogenetic trees T on X with ΣT ⊆ Σ, where ΣT is
the split system consisting of the splits associated to the branches of T . Any phylogenetic tree T on X with
ΣT ⊆ Σ and σD(T) = σ(D,Σ) is called a restricted ME-tree for D and Σ. Note that the original ME-problem
corresponds to the restricted version with Σ = Σ(X). In [4] Bryant presented an algorithm for solving the
restricted ME-problem with run time O(n2k+ nk3), where n = |X| and k = |Σ|. In this section, we present

3

xne
e′

e′′

xi

xk

xk+1

xj

(b)

x∗e
e′

e′′

(a)

Figure 3: (a) The overall structure of a phylogenetic tree T ∈ T (S, S′, S′′) for some relevant triple (S = Se, S′ = Se′ , S
′′ = Se′′)

of splits. (b) In case the split system Σ is circular, we can use the special structure of Σ to pin down the relevant triples:
Se = Si,j , Se′ = Si,k and Se′′ = Sk+1,j for some 1 ≤ i ≤ k < j < n.

a self-contained version of this algorithm, also describing it in such a way that it can be easily adapted to
our specific needs in the next section.

As above, let D denote the given distance matrix on X and Σ ⊆ Σ(X) denote the given split system. In
addition, the split induced by a branch e in a phylogenetic tree is denoted by Se. For any split S = A|B
of X and any x ∈ X, we denote by S(x) that set, A or B, that contains x and by S(x) the other set. To
be able to apply and evaluate the Formulae (1) and (2) in constant time in the course of the algorithm, we
compute, as a preprocessing step, for every split S = A|B ∈ Σ, the cardinalities |A| and |B| as well as the
value PS =

∑
x∈A,y∈B D(x, y). This preprocessing can clearly be done in O(n2k) time. Moreover, we store

the splits in Σ in a suitable data structure D (e.g. in a multidimensional dictionary [14]) that allows to check
in O(n) time whether a given split is contained in Σ.

Bryant’s algorithm uses a dynamic programming scheme to compute σ(D,Σ) [9, ch. 15]. Each subproblem
arising in this scheme corresponds to a particular triple (S = Se, S

′ = Se′ , S
′′ = Se′′) of splits that correspond

to edges e, e′ and e′′ in the resulting phylogenetic tree as indicated in Figure 3(a). To describe this more
precisely, we introduce some further notation. Fix an arbitrary element x∗ ∈ X. We call an ordered triple
(S, S′, S′′) of splits S, S′, S′′ ∈ Σ relevant if S′(x∗) ∪ S′′(x∗) = S(x∗) and S′(x∗) ∩ S′′(x∗) = ∅ hold, and
denote the set of relevant triples of splits in Σ by rel(Σ). In addition, for any (S, S′, S′′) ∈ rel(Σ), we let
T (S, S′, S′′) denote the set of binary phylogenetic trees T on X with {S, S′, S′′} ⊆ ΣT ⊆ Σ and define

σD(S, S′, S′′) = min
T=(V,E)∈T (S,S′,S′′)

 ∑
f∈E,Sf (x∗)(S(x∗)

ωD(f)

 . (3)

Note that, as indicated in Figure 3(a), only the lengths of the branches in the bold part of any tree T ∈
T (S, S′, S′′) are taken into account in the sum in Formula (3).

In view of the structure of the trees in T (S, S′, S′′) for any (S, S′, S′′) ∈ rel(Σ), it is not hard to derive
the following recursive formula for σD(S, S′, S′′):

σD(S, S′, S′′) = α(S, S′, S′′) + β(S, S′, S′′) with

α(S, S′, S′′) =

ωD(S(x∗), S′′(x∗)) if |S′(x∗)| = 1

min
(S′,S1,S2)∈rel(Σ)

(
σD(S′, S1, S2) + ωD(S1(x∗), S2(x∗), S′′(x∗), S(x∗))

)
otherwise,

β(S, S′, S′′) =

ωD(S(x∗), S′(x∗)) if |S′′(x∗)| = 1

min
(S′′,S1,S2)∈rel(Σ)

(
σD(S′′, S1, S2) + ωD(S1(x∗), S2(x∗), S′(x∗), S(x∗))

)
otherwise,

where, in case the minimum is taken over the empty set, we assume that the value +∞ is obtained.
Note that the formulae for α(S, S′, S′′) and β(S, S′, S′′) only involve (i) values ωD(·) which can be

computed in constant time in view of the preprocessing mentioned above and (ii) values σD(S′, ·, ·) and

4

σD(S′′, ·, ·) for which, by definition, |S′(x∗)| < |S(x∗)| and |S′′(x∗)| < |S(x∗)| hold. Also note that the
number of relevant triples of the form (S′, S1, S2) and (S′′, S1, S2), respectively, is in O(k) and that, given S′

and S1 (or, similarly, S′′ and S1), with the help of the data structure D we can check in O(n) time whether
there exists a suitable split S2 ∈ Σ to form a relevant triple (S′, S1, S2) (or (S′′, S1, S2)). Hence, within the
dynamic programming scheme each value σD(S, S′, S′′) can be computed in O(nk) time. Since there are
O(k2) triples in rel(Σ), the overall run time is therefore in O(nk3).

To conclude the description of the algorithm, note that, for any (S, S′, S′′) ∈ rel(Σ) and any T ∈
T (S, S′, S′′), the sum in Formula (3) does never include the length of the branch e∗ of T that is incident
to x∗ and corresponds to the split S∗ = Se∗ = {x∗}|X − {x∗}. Therefore, to obtain the minimum of the
total length of the resulting tree, in the last step we compute

σ(D,Σ) = min
(S∗,S1,S2)∈rel(Σ)

(
σD(S∗, S1, S2) + ωD(S1(x∗), S2(x∗))

)
,

which can clearly be done in O(nk) time. So, the overall run time is indeed in O(nk3) and, by tracing
back the computation of σ(D,Σ) through the dynamic programming scheme, we can easily obtain a restricted
ME-tree for D and Σ in case σ(D,Σ) 6= +∞. Otherwise there is no binary phylogenetic tree T on X with
ΣT ⊆ Σ.

4. Computing ME-trees in Circular Split Systems

We now focus on the restricted ME-problem for a circular split system. This is a special type of split
system that can be generated, for example, from a distance matrix D using the NeighborNet algorithm [5].
More specifically, a split system Σ ⊆ Σ(X) is circular [1] if there exists an ordering x1, x2, . . . , xn of the
elements in X such that, for every split A|B ∈ Σ, there exist 1 ≤ i ≤ j < n with A = {xi, xi+1, . . . , xj}
or B = {xi, xi+1, . . . , xj}. If such an ordering of X exists it can be computed in O(nk) time, k = |Σ|, [12]
and we will then also say that Σ fits on that ordering. Note that the maximum possible number of splits in
a circular split system Σ on X is

(
n
2

)
[2]. Thus, Bryant’s algorithm runs in O(n7) time on a circular split

system. We now show how this can be improved to O(n4).
Assume that Σ is a circular split system and let x1, x2, . . . , xn be an ordering of X onto which Σ fits. We

put x∗ = xn and, for any 1 ≤ i ≤ j < n, we define the split Si,j = {xi, xi+1, . . . , xj}|X − {xi, xi+1, . . . , xj}.
Note that Σ ⊆ {Si,j : 1 ≤ i ≤ j < n} holds, that is, every split in Σ corresponds to a unique pair of indices i
and j. As an immediate consequence it follows that the preprocessing outlined above can be done in O(n2)
time (for computing the values PS see e.g. [20] for an O(n2) time algorithm in a more general context).

The key observation, however, is that every relevant triple (S, S′, S′′) ∈ rel(Σ) must be such that S = Si,j

and either S′ = Si,k and S′′ = Sk+1,j or S′ = Sk+1,j and S′′ = Si,k for some 1 ≤ i ≤ k < j < n (cf.
Figure 3(b)). Hence, for any splits S′, S′′ ∈ Σ, there are only O(n) triples (S′, S1, S2) and (S′′, S1, S2) in
rel(Σ). Moreover, for the data structure D we can simply use a two-dimensional array in which we mark the
presence/absence of the split Si,j in Σ for each pair 1 ≤ i ≤ j < n. Then, we can easily check whether a
split is contained in Σ in constant time. As a consequence, within the dynamic programming scheme each
value σD(S, S′, S′′) can be computed much faster, namely in O(n) time. Together with the fact that there
are only O(n3) triples in rel(Σ), this implies that the overall run time is O(n4).

5. Simulations

To measure the computational performance of the algorithm we tested it on simulated data sets and
compared it with FastME [11], one of the leading methods to construct an approximation of an ME tree.
Note that FastME performs a local search in tree space using a neighborhood based on certain types of tree
edit operations. In FastME we chose the NeighborJoining-tree option as the start topology for the local
search together with nearest neighbor interchange (NNI) tree edit operations, and ordinary least squares
(OLS) for searching the neighborhood of a tree.

In our experiments, we considered sets X with n = 25, 50, 100, 200, 400 and 800 taxa and generated
100 treelike as well as 100 random, non-treelike distance matrices on each of them. To simulate treelike
matrices, we followed the procedure described in [15]. In particular, we evolved molecular sequences of
length 1000 along a tree (with probability r of recombination set to 0), and computed a distance matrix

5

10

20

30

40

50

60

70

80

90

100

25 50 100 200 400 800 25 50 100 200 400 800
Taxa

Treelike Non-Treelike

Figure 4: The bar chart shows the number of distance matrices
(out of 100) for which the ME score of the phylogenetic tree
produced for NNet was equal (light gray), smaller (dark gray)
or larger (white) than the ME score of the tree produced by
FastME.

Taxa NNet FastME TSP Random

Treelike

25 0.925 0.925 0.931 1.234

50 1.689 1.689 1.701 2.574

100 3.063 3.063 3.084 5.493

200 5.532 5.532 5.574 11.63

400 9.720 9.720 9.786 24.32

800 16.56 16.56 16.66 51.20

Non-Treelike

25 2.923 2.940 3.083 4.787

50 4.844 5.177 5.367 9.332

100 8.439 9.108 9.862 18.60

200 15.09 16.33 18.57 36.92

400 27.61 29.79 35.32 73.65

800 51.28 55.07 67.42 147.6

Figure 5: The average ME scores of the trees obtained
with NNet, FastME, TSP and random orderings for tree-
like and non-treelike input data.

from the resulting alignment using the so-called Kimura 2 parameter model. To simulate random distance
matrices we created symmetric matrices with zero’s on the diagonal and random values between 0 and 1 in
the remaining entries.

To generate circular split systems we tried various approaches. In particular, for each distance matrix we
used NeighborNet (NNet) as well as its Traveling Salesman variant (TSP) [19] and, for comparison purposes,
we also generated random orderings of X. Once an ordering of X was obtained, we computed a restricted
ME-tree for the circular split system consisting of all possible splits that fit on the ordering, as described in
Section 4.

In Figure 4 we present the results of our experiments using NNet to construct the ordering of X. Our
results indicate that NNet seems to be capturing relevant splits for both treelike and for non-treelike data.
For the tree-like data, FastME appears to perform somewhat better for larger numbers of taxa, but this
trend is reversed for the non-treelike data. We also found that random orderings and orderings produced by
TSP tended to be a lot worse than those produced by NNet, especially for larger numbers of taxa (not shown
in Figure 4). The average ME scores of the trees generated using NNet, FastME, TSP and random orderings
are shown in Figure 5. Interestingly, for treelike data, the average scores of trees generated using NNet and
FastME coincide on the first 4 digits. In contrast, for non-treelike data, there is a noticeable difference in
the average scores for these two methods.

6. Discussion

We have presented an efficient algorithm for finding a restricted ME tree in a circular split system which
improves on the run time of a more general algorithm presented in [4]. We have also seen that the restricted
ME trees obtained in split systems generated by NeighborNet compare favorably with the ones produced
by FastME. This is of some interest since the split systems generated by NeighborNet only represent a tiny
fraction of the total number of all possible splits (

(
n
2

)
vs. 2n−1 − 1 on a set of size n). In addition, our

computational experiments indicate that NeighborNet produces an ordering that is better at capturing splits
relevant to building ME trees compared with other methods (such as the TSP ordering [19]). It could be of
interest to better understand why this is the case and to see if there may be other ways to generate even
better orderings.

In phylogenetics there are criteria other than ME that are commonly used to construct phylogenetic
trees. For example, the Balanced Minimum Evolution (BME) criterion is also used for constructing trees
from distances (cf. [6]). It would be interesting to know whether or not a restricted BME tree can be
efficiently constructed for a circular split system, and whether a similar type of approach might work for
other criteria such as likelihood [8]. In this regards, it might be useful to also consider searching in different

6

types of split systems (such as weakly compatible split systems [2]), and also to consider different ways to
generate such split systems.

Finally, note that in this paper we have only considered unrooted trees, and so it could be of interest
to develop restricted approaches for rooted trees. In this case it would be appropriate to consider special
classes of cluster systems rather than split systems (cf. [3]).

Acknowledgments

We would like to thank the three reviewers for their helpful comments.

[1] H.-J. Bandelt and A. Dress. A canonical decomposition theory for metrics on a finite set. Advances in
Mathematics, 92:47–105, 1992.

[2] H.-J. Bandelt and A. Dress. Split decomposition: A new and useful approach to phylogenetic analysis
of distance data. Molecular Phylogenetics and Evolution, 1:242–252, 1992.

[3] D. Bryant. Hunting for trees in binary character sets: Efficient algorithms for extraction, enumeration
and optimization. Journal of Computational Biology, 3:275–288, 1996.

[4] D. Bryant. Building trees, hunting for trees and comparing trees. PhD thesis, University of Canterbury,
NZ, 1997.

[5] D. Bryant and V. Moulton. Neighbor-net: An agglomerative method for the construction of phylogenetic
networks. Molecular Biology and Evolution, 21:255–265, 2004.

[6] D. Catanzaro. The minimum evolution problem: Overview and classification. Networks, 53:112–125,
2009.

[7] D. Catanzaro. Estimating phylogenies from molecular data. In R. Bruni (ed.), Mathematical approaches
to polymer sequence analysis and related problems, Springer, New York, 149–176, 2011.

[8] B. Chor and T. Tuller. Finding a maximum likelihood tree is hard. Journal of the ACM, 53:722–744,
2006.

[9] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to algorithms. MIT Press, Cambridge,
MA, 2009.

[10] W. Day and D. Sankoff. Computational complexity of inferring phylogenies by compatibility. Systematic
Biology, 35:224–229, 1986.

[11] R. Desper and O. Gascuel. Fast and accurate phylogeny reconstruction algorithms based on the
minimum-evolution principle. Journal of Computational Biology, 9:687–705, 2002.

[12] A. Dress and D. Huson. Constructing split graphs. IEEE Transactions on Computational Biology and
Bioinformatics, 1:109–115, 2004.

[13] M. Farach, S. Kannan, and T. Warnow. A robust model for finding optimal evolutionary trees. Algo-
rithmica, 13:155–179, 1995.

[14] T. Gonzalez. Simple algorithms for the on-line multidimensional dictionary and related problems.
Algorithmica, 28:255–267, 2000.

[15] B. Holland, K. Huber, A. Dress, and V. Moulton. Delta plots: A tool for analyzing phylogenetic distance
data. Molecular Biology and Evolution, 19:2051–2059, 2002.

[16] L. van Iersel, C. Semple, and M. Steel. Locating a tree in a phylogenetic network. Information Processing
Letters, 110:1037–1043, 2010.

[17] I. Kanj, L. Nakhleh, C. Than, and G. Xia. Seeing the trees and their branches in the network is hard.
Theoretical Computer Science, 401:153–164, 2008.

7

[18] P. Lemey, M. Salemi, and A. Vandamme. The phylogenetic handbook: a practical approach to phyloge-
netic analysis and hypothesis testing. Cambridge University Press, Cambridge, UK, 2009.

[19] D. Levy and L. Pachter. The neighbor-net algorithm. Advances in Applied Mathemathics, 47:240–258,
2007.

[20] V. Moulton and A. Spillner. Optimal algorithms for computing edge weights in planar split networks.
Journal of Applied Mathematics and Computing, 39:1–13, 2012.

[21] D. Penny and M. Hendy. TurboTree: A fast algorithm for minimal trees. Computer Applications in the
Biosciences, 3:183–187, 1987.

[22] H. Prasanna and M. Rai. Detection and frequency of recombination in tomato-infecting begomoviruses
of South and Southeast Asia. Virology Journal, 4:111, 2007.

[23] A. Rzhetsky and M. Nei. Theoretical foundation of the minimum-evolution method of phylogenetic
inference. Molecular Biology and Evolution, 10:1073–1095, 1993.

[24] C. Semple and M. Steel. Phylogenetics. Oxford University Press, Oxford, UK, 2003.

8

