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A B S T R A C T

This thesis seeks to shed light on the intricate relationships holding
between the various explanatory frameworks currently used within
cognitive science. The driving question of this philosophical inves-
tigation concerns the nature and structure of cognitive explanation.
More specifically, I attempt to clarify whether the sort of scientific
explanations proposed for various cognitive phenomena at different
levels of analysis or abstraction differ in significant ways from the
explanations offered in other areas of scientific inquiry, such as biol-
ogy, chemistry, or even physics. Thus, what I will call the problem of
cognitive explanation, asks whether there is a distinctive feature that
characterises cognitive explanations and distinguishes them from the
explanatory schemas utilised in other scientific domains.

I argue that the explanatory pluralism encountered within the daily
practice of cognitive scientists has an essential normative dimension.
The task of this thesis is to demonstrate that pluralism is an appro-
priate standard for the general explanatory project associated with
cognitive science, which further implies defending and promoting
the development of multiple explanatory schemas in the empirical
study of cognitive phenomena.

2



C O N T E N T S

1 introduction 6

1.1 The problem 6

1.2 Explanatory vs. ontological concerns 7

1.3 Plan and argument of the thesis 9

1.4 Scope and focus 14

2 lessons from philosophical theories of expla-
nation 17

2.1 Introduction 17

2.2 Traditional accounts of scientific explanation 20

2.2.1 Hempel’s model of scientific explanation 21

2.2.2 Statistical explanations 25

2.2.3 Causal explanations 28

2.2.4 Philosophical models of scientific explanation:
insights and issues 33

2.3 Introducing the problem of cognitive explanation 35

2.3.1 A bit of history 37

2.3.2 Explanatory paradigms in cognitive science 40

2.3.3 Two challenges for cognitive explanation 43

2.4 Outline of the strategy 44

3 the mechanistic account of explanation 47

3.1 Introduction 47

3.2 Mechanisms and mechanistic explanations 49

3.2.1 Advantages of the mechanistic conception of ex-
planation 51

3.2.2 Mechanistic explanatory relevance 52

3.3 The limits of mechanism 55

3.3.1 Ontic mechanistic explanations 55

3.3.2 Epistemic mechanistic explanation 58

3.4 Non-mechanistic models revisited 61

3.4.1 The Difference-of-Gaussians Model of Visual Spa-
tial Receptive Field Organization 61

3.4.2 Mathematical models and explanatory structure 64

3.5 Mechanisms and more 68

3.5.1 Final objections and replies 68

3.5.2 Lessons from mechanism 72

4 classical computational explanations 75

4.1 Introduction 75

4.1.1 Classical computationalism: an overview 75

4.1.2 Outline of the argument 78

4.2 The puzzle of computational individuation 79

3



Contents

4.2.1 The semantic view of computational individua-
tion 80

4.2.2 The internalist view of computational individu-
ation 88

4.2.3 Computational modelling in practice 93

4.3 The puzzle of computational explanation 97

4.3.1 Computational explanations on the semantic view 98

4.3.2 Cognitive interpretations as gloss 102

4.3.3 The structure of classical computationalist ex-
planations 105

4.4 Concluding remarks 106

5 the mechanistic view of computational expla-
nation 109

5.1 Introduction 109

5.1.1 A motivational strategy for the mechanistic view 109

5.1.2 Aims and outline of the argument 110

5.2 Computing mechanisms 111

5.2.1 Abstract computation 112

5.2.2 The varieties of concrete computation 113

5.3 The functional view of computational individuation 121

5.4 The mechanistic view of computational explanation 126

5.4.1 Computational explanations as a class of mech-
anistic explanations 127

5.4.2 Four entailments of the mechanistic picture 129

5.5 Mechanisms vs. computational explanations 132

5.5.1 Individuation versus explanation 132

5.5.2 The limits of biological plausibility 135

5.5.3 The case of canonical neural computations 139

5.5.4 The relative autonomy of computational mod-
els of cognitive capacities 142

5.6 Classical computationalism, mechanism or both? 145

6 connectionist approaches to cognition 149

6.1 Introduction 149

6.2 The main tenets of connectionism 151

6.2.1 Basic features of connectionist networks 151

6.2.2 The individuation of connectionist computations 154

6.2.3 The representationalist problem 161

6.2.4 Representational schemes and connectionist ex-
planations 169

6.3 Connectionism from a practice-based perspective 172

6.3.1 Connectionist models of linguistic inflection 173

6.3.2 Connectionist models of word recognition 177

6.3.3 The allure of the connectionist approach 179

6.4 Connectionism: limits and perspectives 183

6.4.1 Outcomes of the arguments 184

6.4.2 Connectionist explanations 185

4



Contents

7 a pluralist account of cognitive explanation 191

7.1 Introduction 191

7.2 Arguments and consequences 192

7.2.1 Classical models of scientific explanation: In-
sights and Issues 193

7.2.2 The mechanistic view of cognitive explanation 194

7.2.3 Classical computationalist explanations 199

7.2.4 The mechanistic view of computational expla-
nations 204

7.2.5 Connectionist explanations 208

7.3 Cognitive explanations 212

7.3.1 A pluralist view of cognitive explanation 213

7.3.2 Explanatory pluralism, unification, and realism 219

7.4 Explanatory pluralism beyond cognitive science 223

5



1
I N T R O D U C T I O N

1.1 the problem

This thesis seeks to shed light on the intricate relationships holding
between the various explanatory frameworks currently used within
cognitive science. The driving question of this philosophical inves-
tigation concerns the nature and structure of cognitive explanation.
More specifically, I attempt to clarify whether the sort of scientific
explanations proposed for various cognitive phenomena at different
levels of analysis or abstraction differ in significant ways from the
explanations offered in other areas of scientific inquiry, such as biol-
ogy, chemistry, or even physics. Thus, what I will call the problem of
cognitive explanation, asks whether there is a distinctive feature that
characterises cognitive explanations and distinguishes them from the
explanatory schemas utilised in other scientific domains.

The philosophical project of analysing the notion of cognitive ex-
planation confronts two important challenges. The current landscape
of cognitive science displays a multiplicity of theoretical and experi-
mental frameworks developed in order to deal with a wide variety of
cognitive problems. A philosophical account which attempts to make
sense of the actual situation in scientific practice needs to acknowl-
edge this variety and develop the critical tools for evaluating the
strengths and limitations of each available approach. In other words,
an appropriate philosophical treatment of the problem of cognitive
explanation should reflect the diversity of the explanatory schemas
utilised by practicing cognitive scientists. Beside satisfying this de-
scriptive adequacy requirement, a philosophical account of cognitive
explanation should also say what distinguishes cognitive explanation
from other scientific achievements obtained in the investigation of
cognitive phenomena. Thus, the second type of challenge facing this
project can be characterised as a search for the common features of
cognitive explanations.

This thesis attempts to show that the explanatory pluralism encoun-
tered within the daily practice of cognitive scientists has an essential
normative dimension: the task is to demonstrate that pluralism is an
appropriate standard for the general explanatory project associated
with cognitive science, which further implies defending and promot-
ing the development of multiple explanatory schemas in the empiri-
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1.2 explanatory vs . ontological concerns

cal study of cognitive phenomena. The difficulty of this task derives
in part from the fact that the two challenges sketched above seem to
pull the account in two opposing directions. On the one hand, there
is the requirement to recognise the de facto plurality of explanatory
strategies used in the study of cognitive phenomena. On the other
hand, there is the strong intuition that there must be something dis-
tinctive about (good) scientific explanations of cognitive phenomena.

An apparently easy way to solve this tension would be to claim
that this form of pluralism is merely a faithful representation of the
state of art in a very young and immature science. That is, one is
encouraged to tolerate explanatory pluralism at present because it
is a way of progressing towards a more stable and mature cognitive
science, within which one would be able to identify the dominant and
correct notion of cognitive explanation. Instead, I propose a different
way to solve the tension created by the descriptive adequacy and
normative challenges by putting forward a substantive argument in
support of the normative character of explanatory pluralism.

1.2 explanatory vs . ontological concerns

The project of analysing the structure of cognitive explanation differs
in significant respects from another type of concern that has been tra-
ditionally at the forefront of the field of philosophy of mind, namely
the metaphysical or ontological concern with the kind of ‘stuff’ the
mind must be made of. Opposing very general positions ranging
from materialism (the view that all that exists is matter) to one or
another form of dualism (the view that mental things exist over and
above material things), traditional ontological debates focus on highly
abstract questions which seem to be only loosely connected to the ac-
tual scientific practices of cognitive scientists. The strategy advocated
in this thesis attempts to show how specific ontological commitments
arise and become established as essential ingredients in the epistemic
activities of practising scientists. This perspective also promises to
elucidate the roles that ontological principles/commitments play in
the construction and refinement of scientific explanations of cognitive
phenomena.

By considering ontological questions within a broadly methodolog-
ical framework, one is in a better position to say how such considera-
tions actually guide and constrain particular scientific activities which
aim to advance our understanding of cognitive phenomena. That is, a
methodological approach allows one to show that, in order to engage
in a specific epistemic activity, one must assume the truth of some
particular metaphysical or ontological principles. These principles
can be taken to guarantee the intelligibility and performability of the
scientific practices encountered in an area of empirical inquiry such
as cognitive science. However, unlike more traditional philosophi-
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1.2 explanatory vs . ontological concerns

cal treatments of these issues, the proposed account does not entail
that ontological principles are universal or necessarily true in some
absolute sense. Rather than seeking to establish their precise modal
strength, the account acknowledges that there are different metaphys-
ical principles which intervene in certain scientific activities such as
measurement, prediction, confirmation, and explanation.

More specifically, these investigations aim to pin down the roles
played by specific ontological principles in the practice of construct-
ing adequate potential explanations of particular cognitive phenom-
ena. As will be shown in the following chapters, different philosophi-
cal models of cognitive explanation identify different ontological prin-
ciples that partly determine what counts as a good explanation of a
given cognitive phenomenon. Some of these models highlight very
specific ontological commitments such as the existence of particular
neurobiological mechanisms and their component entities, while oth-
ers appeal to general principles such as the principle of discreteness,
transitivity, single value, causality, and the principle uniform conse-
quence, among others.

One important advantage of locating meaningful ontological ques-
tions in a methodological setting in which one focuses on the various
explanatory schemas used in cognitive science is that this strategy
avoids some of the pitfalls of traditional metaphysical debates con-
cerning the nature of the mind. On the one hand, positions such as
materialism (physicalism), dualism or hybrid versions of non-reductive
physicalism or anomalous materialism risk, because of their general-
ity, remaining utterly uninstructive when it comes to the evaluation of
specific hypotheses concerning the structure and nature of cognitive
capacities. None of these positions seems to be adequately equipped
to settle questions about the actual structure and organisation of par-
ticular cognitive capacities, such as whether conceptual structures im-
pact object recognition or the early visual system provides sufficiently
well-structured information to guide the recognition task, whether
language acquisition is a generalised statistical process or is governed
by a set of innate rules, and so on. On the other hand, the prioriti-
sation of ontological debates in the cognitive domain has tended to
distort the dynamics and aims of cognitive scientific research by en-
couraging the petrification of some of the concepts used to account
for different cognitive phenomena at certain levels of analysis or ab-
straction. The danger of this latter tendency is that it rules out, on
purely a priori grounds, certain research strategies and explanatory
schemas as being inappropriate for the study of cognitive phenom-
ena.

Thus, rather than seeking to defend and refine any of these general
positions, I propose to look at ontological principles as scientifically
operative in that they contribute to the construction of better scien-
tific explanations which in turn advance our understanding of real-
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1.3 plan and argument of the thesis

ity. The insights made available by this perspective are compatible
with a moderate form of scientific realism (cf. Dupré 1993; Chang
2009, 2012). The operational notion of reality (or external world) in-
volved in this conception does not imply that our theories give us a
direct representation of the external world. In fact, by focusing on
the various explanatory schemas used in different branches of cog-
nitive science, one is better placed to appreciate that the limitations
of our understanding of cognitive phenomena are partly due to the
complexity of the external world and its resistance to conforming to
our well-behaved categories.

1.3 plan and argument of the thesis

As outlined above, the principal aim of the following investigations
is to offer a substantial account of the notion of cognitive explanation
which successfully balances the diversity of explanatory frameworks
currently used in the study of cognition and the need of a more pre-
cise characterisation of the notion of explanatory value itself. That is,
an account which is both descriptively adequate with respect to the
multiplicity of explanatory schemas used in cognitive science, and
normative in the sense of providing a way of evaluating the relative
explanatory power/value of the various accounts proposed in this
domain of empirical inquiry. The argument strategy adopted for this
purpose combines two distinct, yet interrelated, perspectives. First, I
analyse the general principles and assumptions that underlie a series
of important philosophical accounts of the notion of cognitive expla-
nation. Second, I adopt a practice-based perspective and consider
how these principles relate to the actual activities of constructing and
evaluating explanations of different cognitive phenomena. Together,
these analyses will provide important guidelines for the articulation
of a novel and more adequate account of cognitive explanation.

This style of argumentation reflects two important constraints on
the type of philosophical analysis that I take to be appropriate for
tackling the problem of cognitive explanation. First, the account I
put forward is rooted in the careful analysis of several paradigmatic
explanatory models of cognitive capacities. This reverses the order of
more traditional philosophical analyses which tend to identify a set
of highly general principles and then seek to show how these apply
to actual cases of cognitive explanations. However, this proposal does
not merely aim to analyse and describe (faithfully) the actual practice
of constructing explanations of particular cognitive phenomena, but
also to use these analyses to articulate a more general view of what
counts as a cognitive explanation in the first place. The emerging
view will have a distinctive normative component that will not be
justifiable solely in virtue of the descriptive adequacy of the account,
but also by appealing to the role that it plays in guiding the further
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1.3 plan and argument of the thesis

investigation of cognitive phenomena and the development of better
cognitive explanations.

Second, the normative character of the proposed account will have
to cover several levels of analysis. At the most general level, it will
have to specify what counts as an explanatory structure in the first
place. In addition, the account must clarify whether there are any spe-
cific norms which govern the construction of scientific explanations
of cognitive phenomena. And, finally, it will have to investigate the
more fine-grained norms or principles which guide the construction
of specific models/theories of cognitive capacities. For the latter part
of the investigation, the account will have to pay special attention
to the details and individual differences of the cognitive phenomena
targeted by different types of explanation.

At this point, the difficulty of formulating a general and normative
account of explanation arises again precisely because one hopes to
do justice to a wide range of explanatory schemas used across the
various sub-branches of cognitive science. A nice feature of thinking
about the aims of a philosophical account of cognitive explanation
along these lines is that it respects the intuition that the best way of
approximating it is to have two camps, one pressing for the unifor-
mity and generality of the notion of explanation and the other in-
sisting on the details of particular modes/styles of explanation, each
camp contributing to the validation of the insights made available by
the other.

Relying on this general strategy, the rest of the thesis is organ-
ised in six different chapters that analyse the problem of cognitive
explanation from a series of complementary perspectives. Chapter
2 revisits some of the most prominent philosophical accounts of the
notion of scientific explanation. Starting with the classical covering
law model of scientific explanation (Hempel and Oppenheim 1948;
Hempel 1965), I then go on to discuss the statistical/probabilistic
and causal accounts, which have emerged as critical responses to
the Hempelian account. Whilst the original Hempelian model em-
phasises the inferential structure of explanation and the essential role
played by natural laws in the construction of (good) scientific explana-
tions, the probabilistic and causal accounts identify the source of the
explanatory value of scientific theories in their capacity: (i) to reveal
salient probabilistic patterns in the phenomena being investigated
(Jeffrey 1969; Salmon 1971; Mellor 1976) and (ii) to show how the
target phenomena fit into the causal structure of the world (Salmon
1984a, 1989). The main rationale for focusing on these three philo-
sophical models of scientific explanation is that they have shaped
in significant ways the landscape of current models of cognitive ex-
planation. In addition, I briefly discuss the relation between these
conceptions and the idea that explanatory theories/models have a
distinctive unificatory power (Friedman 1974; Kitcher 1989). Finally,
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1.3 plan and argument of the thesis

I address the question of how one should seek to account for the
pragmatic dimension of scientific explanation (van Fraassen 1980) in
an analysis that attempts to provide a general characterisation of the
structure of scientific explanation. The primary aim of these prelimi-
nary analyses is to provide a series of insights that would guide the
development of an adequate conception of cognitive explanation.

Against this conceptual background, I then introduce in more de-
tail the problem of cognitive explanation. Essentially, the issue con-
sists in examining whether the explanatory schemas proposed in the
various sub-branches of cognitive science constitute a distinct sub-
species of scientific explanation. In setting up this problem, I point
out that the orthodox view embraced by most philosophers of mind
maintains that none of the existing philosophical models of scientific
explanation provides an adequate picture of the explanatory aims
and strategies used by practising psychologists and cognitive scien-
tists (cf. Cummins 2010). This general way of thinking about cog-
nitive explanation has in turn created a strong artificial dichotomy
between the methodology of naturalistic fields of scientific inquiry,
such as biology, chemistry or physics, and the methodology of psy-
chology or cognitive science (cf. Wilson 1985). Furthermore, various
forms of this dichotomy have been used as launchpads for arguing
that the styles of reasoning and explanation which are adequate with
regard to the proprietary objects of cognitive science are relatively
independent from those deployed in other areas of scientific inquiry.
In particular, the idea that functional or interpretative analysis consti-
tutes the distinctive mark of psychological explanations arises from
this particular way of conceiving the nature of cognitive explanation
as essentially distinct from other types of scientific explanation (e.g.,
Fodor 1974; Cummins 1983, 2010).

Each of the following four chapters takes a prominent model of cog-
nitive explanation and analyses its main strengths and weaknesses
from a conceptual and empirical practice-based perspective. I argue,
in particular, that the adoption of the latter viewpoint is essential
for appreciating the limitations of the widespread commitment for
explanatory monism, according to which all scientific theories/models
must conform to the same standard of explanatory ‘goodness’. In
addition, I claim that the practice-based perspective allows the artic-
ulation of a novel and more adequate conception of cognitive expla-
nation which acknowledges the various insights made available by
existing models of cognitive explanation. Although the collection of
models of cognitive explanation considered in these chapters is not
meant to exhaust the variety of explanatory strategies used in all the
different areas of cognitive research, I do take it to comprise a repre-
sentative sample which will identify a number of the issues that other
similar accounts of cognitive explanation are likely to face. More-
over, the type of philosophical analysis that I promote with respect to
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1.3 plan and argument of the thesis

the problem of cognitive explanation has much to gain from a close
inspection of a few paradigmatic examples drawn from the current
modelling and theorising practices of cognitive scientists. By paying
closer attention to the individual problems addressed by particular
cognitive theories/models, one is more likely to develop a critical
outlook of the difficulties that confront the search for better theories
of cognition, as well as the exciting (and sometimes unexpected) ad-
vancements made in understanding complex cognitive phenomena.

In line with this general agenda, chapter 3 explores the mechanis-
tic view of cognitive explanation. The main reason for starting with
the mechanistic conception is that the view promises to offer a much
needed reconciliation between traditional accounts of scientific expla-
nation (outlined in chapter 1) and the hypothesis that cognitive ex-
planations have a distinctive character (e.g., Woodward 2000; Craver
2007b; Bechtel 2008). By exploring the main arguments put forward
by various philosophers and cognitive scientists in defence of the
mechanistic view, I seek to identify the main tenets of this model
of cognitive explanation. In particular, I focus on two major theses
associated with the mechanistic conception of explanation, namely
that: (i) mechanistic explanation is a form of decompositional and
constitutive explanation, and (ii) the view provides a general frame-
work for integrating all the various explanatory strategies pursued in
the different sub-branches of cognitive science. I argue against the
monist assumption implicit in the latter hypothesis, and show that it
leads to a number of difficult problems for the general mechanistic
position. Overall, I aim to modify the mechanist view in such a way
that its scope is clearly delimited and its significance within these
constraints is correctly appreciated.

In chapter 4, I turn to the analysis of classical computationalism, ac-
cording to which cognitive phenomena can be explained by postulat-
ing mental (internal) symbols and operations appropriately defined
over them (e.g., Fodor 1980; Pylyshyn 1984; Gallistel and King 2009).
The strategy proposed in this chapter distinguishes between two is-
sues which are usually conflated in discussions of classical compu-
tationalism and its associate hypothesis concerning the structure of
cognitive explanation. These are the computational individuation is-
sue and the computational explanation issue. I offer a number of
compelling reasons in support of the adoption of this argument strat-
egy, claiming that it contributes to: (i) the clarification of the main
theoretical principles of classical computational approaches to cog-
nition, and (ii) the derivation of a better strategy for assessing the
explanatory value of classical computational models of specific cog-
nitive capacities.

Chapter 4 also urges an important shift of emphasis away from the
more traditional metaphysical debates that have flourished around
the classical computationalist thesis towards a more informed anal-
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1.3 plan and argument of the thesis

ysis of the modelling and theorising practices that rely on the theo-
retical principles advocated by classical computationalists. Drawing
on the critical analysis of some of the most important arguments dis-
cussed in the scientific and philosophical literature (e.g., Fodor 1975;
Marr 1982; Stich 1983; Cummins 1989; Pylyshyn 1984; Gallistel and
King 2009; Egan 1992, 1999, 2010), I argue for the compatibility be-
tween a structural (internalist) computational individuation thesis and
a quasi-pragmatic (externalist) thesis concerning the role of mental
contents in classical computational explanations of specific cognitive
capacities. In addition, I support the conceptual arguments put for-
ward for this double thesis with a series of examples drawn from the
recent computational modelling literature.

In chapter 5, I consider another version of the mechanistic concep-
tion of cognitive explanation that promises to constitute a substantial
improvement on classical computationalist approaches to cognition.
This form of the mechanistic view characterises computational expla-
nations of specific cognitive capacities as a sub-species of mechanistic
explanations (cf. Piccinini 2007b; Craver and Piccinini 2011). Further-
more, the view argues for a wide functional individuation strategy of
the computational states and structures postulated by computational
models/theories of cognition. I review the main arguments put for-
ward in support of this position, seeking to establish whether it con-
stitutes a radical alternative to classical views of computational expla-
nations, an extension of such accounts, or is merely complementary.
As in the previous chapter, I emphasise the separability of the com-
putational individuation and computational explanation issues, and
show that the mechanistic conception of computational explanation
risks conflating the two, thereby blurring the criteria for evaluating
good computational models/theories of cognitive phenomena.

Special attention is dedicated to the claim that the mechanistic con-
ception of computational explanation provides a better strategy for deal-
ing with the so-called realisation problem (Piccinini 2008a; Piccinini
and Bahar 2013). The realisation problem points out that there is a
significant disconnect between abstract (often functional) characteri-
sations of cognitive phenomena and the neurobiological descriptions
of the mechanisms that support or otherwise maintain cognitive pro-
cessing. Because the realisation problem has been taken to consti-
tute a cornerstone of any candidate theory/model of cognitive phe-
nomena, the claim that it can be appropriately addressed within a
broadly mechanistic framework seems to confer a definite advantage
on the mechanistic model of computational explanation, since propo-
nents of the mechanistic view tend to argue that mechanistic models
of cognitive phenomena are biologically more plausible than the ab-
stract models discussed by classical computationalists. In response,
I argue that the realisation problem is still too poorly understood to
be used as a reliable criterion for distinguishing between explanatory
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1.4 scope and focus

and non-explanatory theoretical approaches to cognition. In addition,
I point out that focusing on the realisation problem tends to obscure
the explanatory structure of what are currently considered successful
explanatory mechanistic models of cognition.

In chapter 6, I turn to the connectionist conception of cognitive expla-
nation, which is also often portrayed as a radical alternative to the
classical view of computational explanation. I analyse the connec-
tionist position from two distinct but interrelated perspectives. At
the conceptual level, I investigate what distinguishes connectionist
from classical computation, and ask whether the two frameworks are
indeed committed to different computational individuation strategies
or not. Following these theoretical investigations, I adopt a practice-
based standpoint in order to determine the distinctive features of con-
nectionist explanations of cognition. I point out that, when it is con-
structed as a completely new and radical explanatory strategy for the
cognitive domain, connectionism runs the risk of deflating entirely
the notion of cognitive explanation. Another important feature of
the connectionist framework consists in its principled and pragmatic
commitment to mechanism. This raises further issues about the ex-
planatory hypothesis associated with connectionism, and how it dif-
fers from the explanatory strategies analysed in the previous chapters
of the thesis.

Finally, chapter 7 draws together the main lessons afforded by the
investigation of these different philosophical models, and articulates
a more systematic picture of cognitive explanation. In addition, I
examine the consequences of adopting the proposed picture of sci-
entific explanation for two salient problems that surface quite often
in the philosophy of cognitive science: the problem of integrating
(or unifying) accounts proposed in different branches of cognitive sci-
ence, and the scientific realism issue regarding the entities postulated
in the context of cognitive scientific research. The latter set of con-
siderations reflects the fact that the novel approach to the problem
of cognitive explanation advocated in this thesis yields important in-
sights regarding distinct problems which arise in both philosophy of
science and philosophy of mind. I conclude by assessing the promise
and limitations of the account presented in the thesis and clarify fur-
ther the implications of adopting the proposed version of explanatory
pluralism within and outside the domain of cognitive science.

1.4 scope and focus

This thesis advocates an important shift of perspective from tradi-
tional metaphysical or ontological debates concerning the nature and
structure of the mind towards a detailed analysis of various types of
explanatory accounts of specific mental/cognitive phenomena. This
reorientation reflects the fact that more and more debates within phi-
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1.4 scope and focus

losophy of mind tend to be informed by the most recent hypotheses
put forward in the various sub-fields of cognitive science.

At the most general level, the distinctive contribution of this thesis
consists in the overt questioning of the relationship between these two
fields of philosophical investigation (i.e., philosophy of mind and phi-
losophy of science) and the original integration of the analytic tools
each of them makes available for the investigation of particular cog-
nitive problems. By drawing on resources from both philosophical
fields, I seek to derive a novel and adequate conception of the notion
of cognitive explanation. At a more ‘local’ level, I derive a number
of important consequences that bear on certain specific topics dis-
cussed in the philosophical literature, such as the question concern-
ing what count as the constitutive principles of classical computation-
alism, mechanism, and connectionism, and their applicability to the
study of cognitive phenomena. Due to its focus on the notion of cog-
nitive explanation, this thesis does not analyse in a systematic way
any specific empirical hypotheses/theories of particular cognitive ca-
pacities. Rather, the models discussed in the different chapters of the
thesis are intended to illustrate the variety of cognitive problems in-
vestigated by practising scientists (in vision, memory, and language
studies). This strategy is also intended to provide additional motiva-
tion for the version of explanatory pluralism advocated in the thesis.

Pluralism in science is a widely recognised ‘fact’ which reflects the
multiplicity of models, theoretical approaches, and explanations en-
countered in different areas of scientific inquiry. Pluralism has also
been defended from various perspectives in the philosophical litera-
ture (e.g., Dupré 1993; Cartwright 1999; Mitchell 2003; Chang 2012),
and more particularly in the philosophy of psychology and cogni-
tive science (e.g., Chemero and Silberstein 2008; Dale, Dietrich, and
Chemero 2009; Stepp, Chemero, and Turvey 2011). Thus, whilst the
moderate pluralistic view I defend here is not a particularly new or
radical claim, it does make, or so I shall argue, an important contribu-
tion to current debates in the philosophy of psychology and cognitive
science. I aim to offer additional motivation for endorsing explana-
tory pluralism not only as a descriptively adequate account of the di-
versity of views found in contemporary science, but also as a broadly
normative thesis that should guide further philosophical analysis of
the actual situation in cognitive scientific practice. Also, by drawing
on the critical analyses of the philosophical models discussed in chap-
ters 3 to 6, I seek to articulate a more precise account of the various
explanatory structures utilised in the different disciplines of cognitive
science.

Having argued from both a principled and practice-based perspec-
tive for a substantial pluralistic account of cognitive explanation, I
claim that there are good reasons for attempting to extend the pro-
posed view of explanation to other fields of scientific inquiry, al-
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1.4 scope and focus

though, for reasons of space, I will have time only to raise this issue
and offer a preliminary exploration of its supporting motivations.

Finally, I highlight two particular advantages of the general per-
spective promoted in this thesis. Firstly, the argument strategy pur-
sued throughout the thesis reflects the attempt to understand the dy-
namics of those scientific activities which lead to the construction
of explanatory models/theories of cognition. This in turn promotes
the cultivation of a more acute sense of philosophical modesty that
should guard against legislating in a purely a priori manner what
should count as a proper explanatory account of a given class of
empirical (cognitive) phenomena. Secondly, the concern for the nor-
mative dimensions of the proposed account of cognitive explanation
corresponds to the complementary requirement that a philosophical
analysis should provide a series of critical tools for analysing the
underlying principles and assumptions of various scientific theoris-
ing and experimental practices. Together, these two ideas provide a
sound basis for what I take to be an informative and adequate philo-
sophical analysis of any problem which has also roots in the scientific
domain.
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2
L E S S O N S F R O M P H I L O S O P H I C A L T H E O R I E S O F
E X P L A N AT I O N

2.1 introduction

The main objective of this thesis is to provide a novel and adequate
account of the notion of cognitive explanation which embodies both
insights derived from the careful survey of the explanatory schemas
utilised by practising scientists and the general desiderata articulated
by traditional philosophical models of scientific explanation. The first
perspective is intended to secure the descriptive adequacy of the ac-
count by reflecting both the achievements as well as the challenges
that confront the scientific study of cognitive phenomena. The role
of the second perspective, on the other hand, is to balance the frag-
mented picture of the explanatory frameworks used in the different
disciplines of cognitive science by identifying their common features
and principles. Thus, drawing on the lessons afforded by traditional
analyses of the structure of scientific explanation, I articulate a view
of cognitive explanation which mirrors the main aims of cognitive
scientific research but also constitutes a critical tool for evaluating
the proposed models/theories of particular cognitive phenomena. In
addition, by combining these two perspectives, I elucidate the sense
and extent to which cognitive explanations constitute a distinctive
mode of scientific explanation. That is, the emerging account will
also clarify what sets cognitive explanations apart from other types
of scientific explanation.

The task of analysing the structure of cognitive explanation faces
three important challenges. First, the analysis seems to be torn be-
tween two prima facie opposing requirements: (i) to acknowledge the
variety of explanatory schemas utilised at different levels of analysis
and abstraction by particular groups of cognitive scientists, and (ii) to
identify any common features and principles underlying the practice
of constructing explanatory theories/models of cognitive phenomena.
The difficulty of this challenge resides in proving that the second re-
quirement does not amount, in fact, to the reduction of a set of dif-
ferent explanatory schemas to a single general strategy which would
be applicable in all the disciplines of cognitive science irrespective of
the particular problems each of them addresses. As will be shown in
the following chapters, this explanatory monist tendency is present in
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2.1 introduction

all current philosophical treatments of the notion of cognitive expla-
nation. In contrast, I attempt to show that the tension between these
two requirements can be resolved without brushing aside the relevant
features which distinguish the explanatory frameworks proposed in
different branches of cognitive science.

Second, there is yet another type of diversity which seems to frus-
trate the prospects of a ‘well-behaved’ philosophical model of the no-
tion of cognitive explanation. For, given the increased compartmental-
isation and specialisation of the disciplines that study cognitive phe-
nomena at various levels of analysis, abstraction, and resolution, the
question arises whether there is any uniform way of delimiting the
proprietary objects of cognitive scientific research from those of other
sciences such as neurobiology, cellular and molecular biology, electro-
physiology, and so on. One possible way of meeting this challenge
is simply to admit the open-ended structure of cognitive scientific
research which implies that its objects (the explananda of cognitive
theories/models) are never fixed in an absolute way. Otherwise put,
under this view, there is no uniform way of determining what counts
as the explananda of a particular cognitive theory/model, indepen-
dently of the actual scientific practice in which a particular problem
is raised and investigated. Another possible strategy of circumscrib-
ing the proprietary explananda of cognitive theories, that has been
more popular among philosophers of mind, consists in identifying
a common feature (or a cluster of features) shared by all and only
cognitive phenomena.1 On this conceptual (or a priori) strategy, the ob-
jects of cognitive explanations are precisely the phenomena that can
be said to have this distinctive feature. Although in what follows I
will provide a number of compelling reasons for preferring the first
strategy for dealing with this ‘demarcation’ issue, I also admit that
it generates a much more heterogeneous basis for a potential general
account of cognitive explanation.

The third challenge for a substantive account of cognitive expla-
nation is to clarify what distinguishes bona fide cases of cognitive
explanations from other types of scientific achievements and aims
that are also legitimately pursued by practising cognitive scientists.
That is, such an account must be able to justify the conceptual (logi-
cal) independence of the explanatory value/power of cognitive mod-
els/theories from their empirical adequacy, simplicity, and unifica-
tory power, their ability to support novel predictions and/or yield
testable experimental hypotheses. In addition, the account must mo-
tivate the idea that developing explanatory theories is a productive
aim of cognitive science in the first place. I will show that these chal-

1 The category of intentionality has been traditionally taken to constitute such a distinc-
tive feature of mental or cognitive phenomena (cf. Crane 2003). More specifically,
Burge (2010) has argued that a philosophical analysis should identify the constitutive
conditions for something being a particular type of cognitive capacity (e.g., percep-
tion, language comprehension, etc.).
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lenges can be met by adopting a practice-based perspective on the prob-
lem of cognitive explanation. The adoption of this perspective entails
the commitment to pursue an in-depth analysis of the explanatory
frameworks used by particular research communities to elucidate cer-
tain aspects of cognitive phenomena at various levels of analysis or
resolution.

Moreover, this approach does not start by assuming any particular
definition of the cognitive domain, but rather lets itself be guided by
the ways in which various investigative practices have been organ-
ised and developed in order to tackle different aspects of mental or
cognitive phenomena. This avoids ruling out a priori (i.e., in advance
of actual scientific inquiry) certain research programmes as being in-
adequate with respect to the purported proprietary objects of cog-
nitive science. Instead, the practice-based viewpoint affords a more
local analysis of the dynamics of cognitive science and of its varied
explanatory aims, promising to yield a better understanding of the
relationships holding, within cognitive science, between its compo-
nent disciplines, as well as between these and other areas of scientific
investigation. This is important because, as even a cursory look at
the recent history of cognitive science shows, the remarkable develop-
ment of the field was facilitated to a significant extent by the co-opting
of various experimental and theoretical strategies from other areas of
scientific research, as well as by the development of new techniques
(e.g., PET, fMRI, and TMS scans). Understanding how these tools and
techniques contribute to the construction of explanatory accounts of
cognitive phenomena constitutes an important part of a robust philo-
sophical account of cognitive explanation. In addition, by focusing on
the practice of constructing and refining explanatory theories/models
of cognitive phenomena, one is better placed to appreciate the often
intricate relationship between the explanatory value of a cognitive
theory and other properties such as its simplicity, unificatory power,
etc.

Although the proposed strategy is not entirely novel, I claim that its
application in this thesis will yield a distinctive view of cognitive ex-
planation which differs in significant respects from other philosophi-
cal accounts. In developing this account, I argue that the philosophi-
cal problems that come up in connection with the modelling and the-
orising practices of cognitive scientists are not entirely specific to the
cognitive domain and most of them are variants of problems that have
been discussed in other contexts before. This is not to say that the dis-
ciplines of cognitive science do not raise new philosophical problems
of their own. Rather, the point is to consider how the literature on cog-
nitive science can contribute to existing debates about, among others,
scientific modelling, idealisation, and explanation, rather than view-
ing it as exploring completely new territory. Furthermore, I claim
that emphasising the continuity with existing debates in philosophy
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2.2 traditional accounts of scientific explanation

of science increases the prospects of providing a better analysis of the
problem of cognitive explanation itself.

In line with this strategy, section 2 represents a critical survey of
three traditional accounts of scientific explanation. My aim is to show
how these accounts have shaped current models of cognitive explana-
tion and to discuss the general conditions/desiderata they impose on
a philosophical account of explanation. Then, in section 3, I offer a
brief characterisation of the factors that have generated some of the
major research questions of cognitive science. I will show that there
is a close connection between these factors and the currently preva-
lent philosophical models of cognitive explanation. Lastly, section 4

draws the general outline of the strategy that will be pursued in the
rest of the thesis in order to articulate and refine a novel and adequate
account of scientific explanation in the cognitive domain.

2.2 traditional accounts of scientific explanation

I propose to develop the analysis of the structure of cognitive explana-
tion against the background of traditional philosophical treatments of
the notion of scientific explanation. There are three important motiva-
tions for starting the investigation from these general considerations.
Firstly, this way of introducing the problem of cognitive explanation
situates the main objective of the thesis more clearly in the area of
philosophy of science and philosophy of explanation, thus differen-
tiating it from other debates currently taking place within certain ar-
eas of philosophy of mind. Secondly, I take traditional philosophical
models of scientific explanation to provide the most general set of
conditions that will direct the construction of my account of explana-
tion in cognitive science. And, thirdly, by analysing the limitations
of the traditional accounts that have been most influential in shaping
current philosophical models of cognitive explanation, I aim to iden-
tify a series of salient problems that an adequate account of cognitive
explanation must address.

The philosophical accounts on which I focus in what follows are the
covering law model of scientific explanation (Hempel and Oppenheim
1948; Hempel 1965, 2001), and two other views that have emerged
as critical responses to the problems faced by the Hempelian model
of scientific explanation: the statistic/probabilistic (Jeffrey 1969; Salmon
1971; Mellor 1976) and causal models of scientific explanation (Salmon
1984a, 1989; Lewis 1986; Psillos 2002; Woodward 2003). Whilst most
conceptions of cognitive explanation have been defined in contrast
to the covering law model of scientific explanation (e.g., Fodor 1974;
Cummins 2000; Craver 2007b), the statistical/probabilistic and causal
accounts have had a more positive influence, inspiring a range of
views that seem to be adequate with respect to the cognitive domain.
Thus, the task of the following three sections is to outline the main
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tenets of these three traditional models of scientific explanation. In
particular, I focus on the criteria that these accounts have put forward
for qualifying something as a genuine scientific explanation. Also, I
aim to identify the major challenges that these accounts still have
to confront. In light of these critical analyses, I identify a number
of important lessons that should guide the search for a substantive
account of cognitive explanation.

Debates concerning the notion of scientific explanation have also
given rise to several classificatory schemes that are supposed to dis-
tinguish the various accounts proposed in the philosophical literature.
For instance, a number of authors have followed Salmon (1984a) in
classifying accounts of scientific explanation into metaphysical (ontic),
epistemic, and modal views (e.g., Kitcher 1989; Craver 2007b; Wright
2012), whereas others have preferred Kim’s distinction between inter-
nalist and externalist views of scientific explanation (e.g., Kim 1994;
Batterman 2002). Another category that has been more recently pro-
moted in the philosophical literature covers the various versions of
pragmatist accounts of scientific explanation (e.g., van Fraassen 1980;
Faye 2007; Ylikoski 2007). Rather than trying to fit any of the ac-
counts analysed into the following sections in any of these categories,
I prefer to discuss, when relevant, their distinctive metaphysical, epis-
temic, and pragmatist commitments. This strategy will avoid, I hope,
confusing the criticism of a particular view with an objection raised
against the label attached to it. As a final terminological point, I will
use the designation ‘epistemic’ as relating to the human process of
seeking knowledge, without implying that epistemic states are neces-
sarily truth-bearing, and the term ‘pragmatist’ to designate whatever
is related to particular types of (scientific) practices.

2.2.1 Hempel’s model of scientific explanation

The primary aim of this section is to provide an analysis of the cover-
ing law model of scientific explanation (cf. Hempel and Oppenheim
1948; Hempel 1965) that will afford an instructive way of assessing
the continuities between Hempel’s classical approach and subsequent
philosophical accounts of explanation that have shaped the landscape
of models of cognitive explanation. A further objective of this analysis
is to identify the most important insights that the Hempelian concep-
tion of scientific explanation makes available for the construction of
an adequate account of cognitive explanation.

The core idea of the Hempelian approach is that explanations are
essentially arguments or derivations. There are two components of
the covering law model of explanation: deductive-nomological (D-N)
explanations and inductive-statistical (I-S) explanations. According to
Hempel (ibid.), most scientific explanations have the logical form of
a deductive argument that shows that the explanandum (conclusion)
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follows from a set of premises expressing general regularities or laws
and certain initial and/or boundary conditions. The original source
of the D-N model of explanation was provided by the case of solving
initial value problems for linear differential equations. Since differ-
ential equations are involved in the investigation of a wide range of
empirical problems involving the motion of fluids, the flow of cur-
rent in electric circuits, the dissipation of heat in solid objects, the
propagation of seismic waves, and the propagation of light, among
many others, they were taken to constitute an appropriate base for a
general model of scientific explanation. Thus, in the case in which
laws are represented by ordinary differential equations, according to
the Hempelian model, one has an explanation of some fact (for in-
stance why the system is in state Si at time ti) if one can solve the
equations given the system’s state at some time ti. More importantly,
Hempel also implies that the derivation of the final state of the system
(at some time tj), from the laws and initial or boundary conditions
should provide some insight or understanding of the phenomenon
in virtue of the fact that the derivation enables one to see why the
explanandum phenomenon was to be expected at all.

The generalisation of this particular type of context has been taken
to support the idea that the explanation of a target phenomenon stan-
dardly consists in the deductive subsumption of the explanandum un-
der the dynamical laws of the appropriate theory together with some
contingent matters of fact, which constitute the initial and/or bound-
ary conditions for the phenomenon under investigation. Moreover,
Hempel (1965) has argued that the explananda of deductive argu-
ments can be both occurrences of particular events (e.g., the appear-
ance of a rainbow or of a lunar eclipse on a particular occasion) and
general patterns expressed by natural laws themselves (e.g., the laws
of refraction and reflection that are invoked in the explanation of rain-
bows can themselves be explained by the electromagnetic wave the-
ory of light).2 This in turn has been taken to imply the applicability
of the D-N model to a wide range of scientific cases.

In the particular case of theories which appeal only to deterministic
laws, the fact that the explanans sentences show that the explanandum
phenomenon is to be nomically expected coincides with the idea that
the explanation relation is actually one of logical entailment. In other
words, in these cases, a particular theoretical description counts as
an explanation of a particular phenomenon if it can be recast in the

2 Because of its insistence of the explanatory role of natural laws, the D-N model
downplays the importance and sometimes the complications introduced by fixing
certain (internal or external) boundary conditions in the explanation of phenomena
such as the formation of rainbows. For an in-depth analysis of these examples and
of the ways in which the fixation of ‘initialandboundary’ conditions in physical mod-
elling can generate surprising shifts in explanatory structure, see Wilson (1992, 2010)
and Batterman (2002, 2010).
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form of a deductive argument where a specific set of premises (the
explanans) logically entails the conclusion (the explanandum).3

However, the main tenets of the covering law model have been
taken to apply equally well to the case of theoretical explanations of
non-deterministic phenomena, in which case the covering laws are
probabilistic or statistical laws. Hempel conceived statistical laws as
having the form of conditional probability statements, viz. Pr(G | F)
= r (the probability of something being F given that G holds is r).
Since probabilistic or statistical laws cannot be said to logically en-
tail the phenomena or patterns to be explained, according to Hempel,
non-deterministic phenomena are amenable only to Inductive Statis-
tical (I-S) explanations. More specifically, Hempel argues that I-S ar-
guments count as bona fide explanations to the extent and only to the
extent that the value of r happens to be reasonably high (Hempel
1965, p. 390). In other words, the proposed explanans sentences have
a genuine explanatory function if and only if they bestow high proba-
bility to the occurrence of the explanandum.

Both the D-N and the I-S versions of the covering law model of ex-
planation have been criticised on a number of grounds. For instance,
in the case of the statistical model, it has been pointed out that the
proposed way of determining the explanatory value of a particular
probabilistic argument is undermined by the fact that there is no non-
arbitrary cut-off below which the argument fails to explain and above
which it would count as genuinely explanatory. Otherwise put, given
their purported inductive form, statistical explanations seem to be
intrinsically ‘ambiguous’ insofar as it is in principle possible to find
conflicting ‘explanatory’ I-S arguments: one showing the high prob-
ability of the occurrence of one event relative to one reference class,
and another showing, relative to a more restrictive reference class, the
low probability of that same event/phenomenon (the epistemic relativi-
sation problem for I-S explanations). These and further issues with the
original I-S model have led to the development of alternative treat-
ments of the notion of statistical/probabilistic explanation, some of
which will be considered in the following section (e.g., Jeffrey 1969;
Salmon 1971; Mellor 1976; Railton 1978, 1981).

In addition to the specific problems threatening the I-S model of
explanation, there are two more general puzzles that have called into
question the adequacy of the Hempelian account of scientific explana-
tion. On the one hand, the wide variety of counterexamples encoun-
tered in the philosophical literature strongly suggests that Hempel’s

3 ‘Thus a D-N explanation answers the question ‘Why did the explanandum phe-
nomenon occur?’ by showing that the phenomenon resulted from certain particular
circumstances, specified in C1, C2, . . . Ck, in accordance with the laws L1, L2, . . . Lr.
By pointing this out, the argument shows that, given the particular circumstances
and the laws in questions, the occurrence of the phenomenon was to be expected; and
it is in this sense that the explanation enables us to understand why the phenomenon
occurred’ (Hempel 1965, p. 88).

23



2.2 traditional accounts of scientific explanation

analysis of scientific explanation does not actually provide necessary
or sufficient conditions for what counts as a good scientific explana-
tion. Most of these counterexamples fall under either the category of
the asymmetry of explanation puzzle or the irrelevant detail puzzle, neither
of which, it has been argued, admits of a satisfactory treatment on the
classical Hempelian view (e.g., Salmon 1989; Kitcher 1989; Hansson
2006, 2007).

However, the most salient weakness of the covering law model of
scientific explanation concerns the strong requirement that scientific
explanations be construed as arguments which have an explicit log-
ical structure. For it has been argued that most scientific explana-
tions do not come in a ready-made deductive or even argumentative
form. Although a committed deductivist might insist that all actual
(as opposed to merely schematic) scientific explanations could be re-
constructed so as to express deductive inferences, this solution would
seem to solve only part of the problem. The focus on the relation of
logical entailment still obscures the fact that scientific explanations
are normally developed in a more progressive manner and that they
often involve a series of mixed-level assumptions concerning the or-
ganisation and structure of the phenomena being targeted by a par-
ticular explanation. These general considerations seem to undermine
Hempel’s model of explanation which rests on the problematic as-
sumption that all parts of the explanans are more or less in the same
epistemic boat, in that once they are admitted for the purposes of one
explanation, they cannot be discarded at a later point in the course of
scientific investigation.

In consequence, the main lessons afforded by the covering law
model of scientific explanation seem to be primarily negative. The
model embodies the desiderata of having a set of general criteria that
determine in all contexts and for all times what counts as explana-
tory. As such, the covering law model of scientific explanation can be
taken to be committed to explanatory monism, the view that all scien-
tific theories and/or hypotheses must conform to the same standard
of explanatory ‘goodness’. Despite the criticism of the Hempelian
conception, the thesis of explanatory monism has been adopted by al-
most all successors of this account. Whereas Hempel (1965) identified
the concept of natural law as the single explanatory structure appro-
priate for the study of physical phenomena, other theorists proposed
different categories in order to ground the explanatory power/value
of all scientific theories at all times.

Whilst I will criticise this underlying monist assumption in more
detail in the case of philosophical models of cognitive explanation, it
should be noted that this particular hypothesis seems to be responsi-
ble for most of the problems faced by the Hempelian conception of
explanation. For I take it that insofar as one interprets the Hempelian
account as the more restricted claim that natural laws sometimes play
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the role of adequate explanatory structures, the account manages to
capture an important component of the explanatory schemas used in
certain areas of scientific investigation. Finally, the criticism of the
Hempelian model allows one to appreciate better the difficulties of
attempting to elucidate the nature and structure of scientific explana-
tion by focusing exclusively on its logical form. In other words, the
various counterexamples raised against the D-N and I-S models of sci-
entific explanation strongly suggest that no logical structure will be
able to fix once and for all what counts as explanatory in any domain
of human (scientific) inquiry.

In what follows, I propose to survey briefly two other philosophi-
cal approaches that have grown out of the Hempelian project: (i) the
statistical model of scientific explanation, and (ii) the causal account.
Both accounts have proposed particular solutions to the main prob-
lems that threaten the plausibility of the covering law model. In doing
so, they have generated distinctive conceptions of scientific explana-
tion which continue to inform substantively current debates in the
philosophy of explanation, underlying some of the most prominent
philosophical models of cognitive explanation.

2.2.2 Statistical explanations

The common element of the two types of explanation subsumed un-
der the covering law conception is that scientific explanations are
viewed as arguments, deductive or inductive, showing that the phe-
nomenon to be explained - the explanandum - was to be expected
in virtue of the explanatory facts set forth in the explanans. Whilst
deductive validity is an all-or-nothing affair, inductive support comes
in degrees. That is, the premises of an inductive argument are said
to lend more or less weight to the conclusion, so that one can speak
of degrees of strength of an inductive inference. More precisely, ac-
cording to Hempel’s view, ‘an inductive-statistical explanation has a
degree of strength which designates the inductive probability conferred
upon the explanandum by the explanans’ (Salmon 1971, p. 8). Two
more specific problems have led to the development of alternative
accounts of the notion of statistical explanation: (i) the difficulty of
characterising precisely the conception of inductive inference presup-
posed by Hempel’s I-S model (Jeffrey 1969), and (ii) the idea that
even low-probability phenomena are amenable to scientific explana-
tion (Salmon 1971).4

Both Jeffrey (1969) and Salmon (1971) took seriously these prob-
lems and argued against the idea that statistical explanations should
be conceived on the model of inductive arguments. They also de-

4 Since Hempel’s I-S model requires that a statistical explanation must embody a high
probability, it rules out the possibility of explaining phenomena which might occur
despite the fact of being intrinsically improbable.
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fended the intuition that uncertain phenomena are amenable to rigor-
ous scientific explanation. Thus, rather than considering high induc-
tive probability as a criterion for the explanatory value of statistical
models/theories of empirical phenomena, Salmon (1971) proposed
an alternative statistical relevance criterion. To say that a specific factor
‘is statistically relevant to the occurrence of an event means, roughly,
that it makes a difference to the probability of that occurrence - that is, the
probability of the event is different in the presence of that factor than
in its absence’ (ibid., p. 11). Thus, in essence, the statistical-relevance
model (S-R) claims that an explanation is ‘an assembly of facts sta-
tistically relevant to the explanandum, regardless of the degree of
probability that results’ (ibid). On this view, Salmon claims, even
highly improbable events admit of a perfectly legitimate explanation
if the statistical relevance criterion is met.

Proponents of the statistical model of explanation offer further jus-
tifications for characterising statistical explanation along these lines.
Since in this limited space I cannot do justice to the details of all
these accounts, I propose a more indirect route of evaluating the S-R
model of scientific explanation. I will focus on a version of the sta-
tistical model which rejects altogether the idea that scientific expla-
nations have an essential inferential or argumentative structure. Rail-
ton’s (1978, 1981) deductive-nomological-probabilistic (D-N-P) model
of scientific explanation will therefore fall beyond the scope of the
proposed analysis.

On Mellor’s (1976) model of probable explanation: ‘a (good) expla-
nation raises or makes high its explanandum probability, p; and the
more it does so (ceteris paribus) the better it is’ (cf. Mellor 1976, p. 232).
Mellor recognises that this proposal is ambiguous between saying
that the job of an explanation is: (i) to raise p or (ii) to make p high.
However, he also argues for the virtues of the second reading, on
which the point of raising p (whether from an alternative or from
a previous value) can be reduced to the requirement of making p
high. Mellor (1976) calls this the main tenet (T) of the probabilis-
tic/statistical view of explanation.

One prima facie advantage of thinking that T should constitute the
core of an account of the notion of scientific explanation is that it
accommodates the insights made available by the Hempelian model,
whilst avoiding some of its most problematic consequences. Thus,
Mellor claims that, despite the close and intuitive link between ex-
planation and inference, one needs not equate the two in order to
identify the proprietary function of an explanation. More strongly,
he argues that the case for T’s plausibility can be supported even
without relying on the conceptual link between explanation and in-
ference. For what is required by an explanation of a deterministic or
indeterministic phenomenon is not more evidence, inference, or con-
firmation to tell us what happened: observation has already told us
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that. Instead, we seem to want to know why something happened at
all. As I will argue in the next section, one form of explanation that
satisfies this criterion is causal explanation.

But sometimes suitable causal explanations are not to be had, either
because an event may lack sufficient causes (e.g., radioactive decay),
or they may not be discoverable (e.g., the onset of breast cancer), or
their sufficiency might just not show up in the available setup (i.e., in
the terms fixed by our best theory). In all these cases what happened
might not have happened for all we can learn about the causal history
of a certain event, however we cannot satisfy the request for an expla-
nation just by citing causal information. That is, there are cases when
causal explanations need to be supplanted by probabilistic explana-
tions. Now, assuming with Mellor that the epistemic possibility of an
explanandum’s falsehood admits of degrees and that relative proba-
bility measures epistemic possibility, we can say that, ceteris paribus,
(good) explanations raise the explanandum’s probability relative to
the complete explanans (or, which is the same, they reduce the epis-
temic possibility of the explanandum’s falsehood). This in turn is
taken to constitute a more refined form of tenet T stated above.

Mellor (1976) strengthens the probabilistic account of explanation
by adding an extra constraint which connects the notion of expla-
nation with that of truth. This constraint is intended primarily to
avoid the trivialisation of probabilistic/statistical explanations. On
any model of explanation that invokes the explanandum’s probabil-
ity, it seems that the explanans must do more than raise it. That
is, the explanans must be true and must incorporate any suitable in-
formation that is statistically relevant in the sense that it affects the
explanandum’s relative probability. Since statistically relevant infor-
mation can both increase and decrease the relative probability of the
explanandum (cf. Salmon 1971), in order to secure T, Mellor (1976) ar-
gues that one must add to it a truth-constraint (S), which requires that
the proposed true explanans relate only to a true explanandum. For
an ‘explanans that could relate to a false as to a true explanandum
is no explanans at all’ (ibid., p. 237). In short, an adequate model
of explanation which lists all the features requisite for a successful
explanans, including its relation to the explanandum, must not be
indifferent to the truth-value of the explanandum.

In summary, the picture of statistical/probabilistic explanation en-
tailed by the conjoined T&S thesis says that (good) explanations ought
to raise the probability of the (true) explanandum relative to all the
suitable relevant data which are available. However, under this view,
if the information specified by the explanans fails to satisfy the high-
probability (T) and/or truth (S) constraints, one is not forced to claim
that what one has must be an explanation. Sometimes the request
for explanation can be simply unwarranted or unsatisfied. In light of
these observations, I take the probabilistic account summarised above
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to state that sometimes scientific explanations of particular uncertain
phenomena/patterns amount to showing that there is a significantly
high statistical correlation between the proposed explanans and the
given explanandum.

2.2.3 Causal explanations

Another important class of scientific explanations are distinguished
by the fact that they show that there is a casual link between the ex-
planans and the explanandum phenomenon. The task of this section
is therefore to outline the causal model of explanation. For present
purposes, I will mainly rely on the classical view of causal explana-
tion (cf. Salmon 1984a; Salmon 1989; Railton 1978; Lewis 1986), which
I distinguish from later mechanistic and counterfactual elaborations
of the causal view (e.g., Machamer, Darden, and Craver 2000; Glen-
nan 2002; Woodward 2003). The classical causal approach emerged
from a series of attempts to secure the D-N model against a number
of especially recalcitrant objections discussed in the literature on sci-
entific explanation. In particular, the two key problems which seemed
to admit of a straightforward solution on the causal approach were:
(i) the asymmetry problem, and (ii) the problem of explanations that
do not mention any specific natural laws.

Whilst the asymmetry of explanation puzzle suggested that the re-
lation of logical entailment does not suffice to characterise the struc-
ture of (good) scientific explanations, the absence of law-like gen-
eralisations in a range of actual scientific explanations contributed
to a weakening of the idea that all scientific explanations must fit
the classical covering law model. According to a number of authors
(e.g., Salmon 1971, 1984a; Railton 1978; Lewis 1986), the solution to
both these problems consists in defining the explanatory relation that
holds between particular scientific statements or models in terms of
the notion of causation (Railton 1981; Salmon 1984a) or causal depen-
dence (Lewis 1986).

On the causal account, the explanans displays explanatorily rele-
vant information about the explanandum if it cites the ‘right’ causal
information concerning the occurrence of the explanandum. In this
way, the issue of explanatory relevance becomes one of determining
which factors from the causal history (or nexus) of an event or phe-
nomenon are relevant in a particular explanatory context. In other
words, scientific descriptions of observable phenomena have an ex-
planatory function only insofar as they describe the relevant aspects
of the causal nexus in which the explanandum phenomenon is em-
bedded. Although some supporters of the causal view of explanation
(e.g., Salmon 1989; Woodward 2000) admit that there might be cases
of non-causal scientific explanation (e.g., any physical explanation
that appeals to conservation principles), stronger versions of the the-
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sis argue that all scientific explanation is causal explanation. In what
follows, I will focus on three major features of this general picture of
causal explanation.

First, it has been claimed that the causal account of explanation pro-
vides a good compromise between descriptive and normative views
of what counts as scientific explanation. On the descriptive side, the
causal account is faithful to the predominance of causal talk encoun-
tered in daily scientific practice. On the normative side, causal ac-
counts hold that any admissible scientific explanation must specify
the relevant causal detail required, in any given context, to account
for the occurrence of a specific event or phenomenon of interest. De-
fenders of this type of account claim that causally complete explana-
tions are better viewed as an ideal, with actual scientific explanations
citing only a fragment of the causal history responsible for the oc-
currence of the phenomenon under investigation (cf. Railton 1981).
Hence, the causal account of explanation is taken to yield the follow-
ing (weaker) normative criterion for explanatory power/value: good
scientific explanations have to cite only a part of the relevant causal
information concerning a target phenomenon. In short, defenders of
the causal account invoke both the robust normative commitments of
their view as well as general considerations about the predominance
of causal talk in scientific descriptions to reinforce the idea that the
causal account satisfies both normative and descriptive desiderata for
a comprehensive philosophical analysis of scientific explanation.

Second, there is an important element of continuity between the
causal account and the D-N model of explanation. The proponent of
the causal account maintains that some piece of information counts
as the explanans in relation to another piece of information – the
explanandum – if and only if the two are connected via a genuine
causal relation. However, this is compatible with the idea that natu-
ral laws capture/express the significant causal relations that in turn
are taken to ground scientific explanation. On this scenario, D-N ar-
guments would turn out to be just a perspicuous way of exhibiting
the causal-explanatory relations that hold between the explanans and
explanandum. Thus, whilst an advocate of the causal account need
not be committed to the pervasiveness of D-N arguments, she might
hold that deductive arguments may provide an appropriate way of
presenting the relevant aspects of the causal network that contains
the explanandum. Of course, what is essential on the causal account
is not the D-N form of explanatory arguments, but rather the idea
that causal relations generate explanatory knowledge and/or under-
standing.

Third, the causal approach implies that, irrespective of the ways
in which one is able to identify the relevant causal information per-
taining to a target phenomenon, the ensuing description will have
an explanatory function only if it cites the right kind and amount

29



2.2 traditional accounts of scientific explanation

of causal relations. Thus, putting aside the pragmatic factors which
determine what counts as the relevant causal information in a given
context, the causal account claims that exhibiting the causal structure
of the phenomena being investigated will be explanatory in a wide
range of contexts. As such, the causal approach qualifies as a project
that analyses the concept of scientific explanation in a way that is
time-independent, and also independent of the branch of science in
which particular causal explanations are being proposed.

There are a number of prima facie advantages to endorsing a causal
account of explanation. Most prominently, the account promises to
resolve both the asymmetry and irrelevant detail puzzles. With re-
spect to the first puzzle, the causalist argument says that the rela-
tion between the explanans and the explanandum is asymmetrical
because it reflects the intrinsic asymmetry of causal dependence re-
lations. Since the explanans displays the causal factors or conditions
that are responsible for the effect described in the explanandum, the
relation between the two sides of the explanation relation cannot be
reversed without contradicting the postulate that the cause (tempo-
rally) precedes the effect and not vice versa.

The solution to the irrelevant detail problem is less straightfor-
ward and seems to depend on the assumption that, in any given ex-
planatory context, the investigators will be able to specify exactly the
amount of causal detail required by the relevance requirement. This
raises the question whether it is possible to circumscribe any uniform
causal relevance criterion or whether the causal view is so permis-
sive that it allows for multiple causal relevance criteria to ground
genuine scientific explanations (cf. Kitcher 1989). Another possibil-
ity is to endorse a broadly metaphysical strategy and to claim that
the causal information cited in a good scientific explanation is non-
redundant because it corresponds to the actual or real causal structure
of the world. However, taken at face value, both strategies seem to
imply that there is a problem with determining a uniform and gen-
eral causal relevance criterion. The reason I raise this point is that,
whilst the causal account of explanation has often been portrayed
as an ontic or metaphysical view of scientific explanation (Salmon
1984a; Craver 2007b, 2012; Strevens 2008), an adequate solution to the
irrelevant detail puzzle seems to require a broadly epistemic strategy
which acknowledges that what counts as causally relevant in any ex-
planatory context is always relative to a set of epistemic interests and
goals characteristic of a particular research programme.

Further refinements of the causal view of scientific explanation in-
clude two types of account which have been particularly influential as
models of explanations developed in the special sciences such as the
different branches of biology or even the social sciences. These are:
(i) the mechanistic account (e.g., Machamer, Darden, and Craver 2000;
Glennan 1996, 2002; Craver 2007b) and (ii) the counterfactual account
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of causal explanation (e.g., Lewis 2001; Woodward 2000, 2003; Pearl
2000). In a nutshell, on the mechanistic approach, the causal relation
which connects the explanandum and the explanans is analysed in
terms of an appropriate underlying causal mechanism relating the
two components of the explanation. Furthermore, on the standard
systemic characterisation of mechanisms, these are viewed as com-
plex systems, whose component parts and activities are organised in
such a way that they exhibit the function performed by the system
as a whole. Causal mechanistic explanations are a species of consti-
tutive de-compositional explanation which reveals something impor-
tant about the inner workings of particular observable phenomena
targeted by the scientific investigation.

More precisely, mechanistic decompositions are taken to be ex-
planatory when they reveal the actual mechanisms that underlie, main-
tain or support the phenomena being investigated (e.g., Craver 2007b).
In light of these features, certain authors have pointed out that mech-
anistic explanations are essentially local or particular. That is, mecha-
nistic explanations: ‘show us how particular occurrences come about;
they explain particular phenomena in terms of collections of particular
causal processes and interactions - or, perhaps, in terms of noncausal
mechanisms, if there are such things’ (Salmon 1984a, p. 184, m.e.).

Another advantage of the causal/mechanistic account of explana-
tion is that, unlike the Hempelian conception of explanation, it does
not assume that the explanans must show that the explanandum was
to be nomically expected. Rather, ‘it shows what sorts of expectations
would have been reasonable and under what circumstances it was to
be expected. To explain an event is to show to what degree it was
to be expected, and this degree may be translated into practical pre-
dictive behaviour.’ (Salmon 1971, p. 79). Whilst defending the plau-
sibility of low-probability explanations, Salmon also points out that
drawing on the connection between explanation and prediction does
not suffice to characterise the explanatory value of a scientific the-
ory/model. For although an explanation of a particular event might
indeed provide good and, perhaps, complete grounds for rational
prediction concerning that event, the reverse does not seem to hold.
That is, rational prediction is not a sufficient condition for claiming
that one has an explanation.

Tying explanation to prediction-making does not completely solve
the problem of characterising the relation of explanatory relevance be-
tween the information conveyed by the explanans and the explanan-
dum. On the causal account, explanatory relevance is redefined in
terms of the relation of causal relevance. However, as implied above,
without a precise way of characterising the notion of causal relevance,
the latter is still faced with a version of the epistemic relativisation prob-
lem. Nothing rules out the possibility that, on this account, something
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that would count as causally relevant in a particular context, will turn
out to be irrelevant in a different (perhaps more restrictive) context.

Moreover, if causal/mechanistic explanations are indeed essentially
local or particular, then it seems that the view has an important
blind spot in accounting for scientific explanations of general pat-
terns or regularities. Since most scientific explanations are aimed
at general patterns or repeatable phenomena, rather than at partic-
ular (or exceptional) occurrences, the local character of mechanistic
explanations seems to put into question the wide applicability of the
causal/mechanistic view itself.

Some of the difficulties faced by the causal/mechanistic account
in characterising the causal relevance criterion have been addressed
by counterfactual theories of causal explanation. According to the
latter, causal relevance relations should be understood as a sub-class
of counterfactual dependence relations (e.g., Lewis 2001; Woodward
2000, 2003). For instance, Woodward cashes out the idea of counter-
factual dependence in terms of what he calls what-if-things-had-been-
different questions or w-questions for short. That is, he claims that an
explanation ‘must enable us to see what sort of difference it would
have made for the explanandum if the factors cited in the explanans
had been different in various possible ways’ (Woodward 2003, p. 11).
Whilst Woodward construes his view of counterfactual dependence
along manipulationist or interventionist lines, other authors have ex-
tended counterfactual accounts of explanation beyond the boundaries
of causal explanation (e.g., Ylikoski 2007; Ylikoski and Kuorikoski
2010; Bokulich 2011), by avoiding construing counterfactual depen-
dence in terms of the possible causal manipulations of the system.

Nevertheless, as an account of causal scientific explanation, the
counterfactual model exhibits a number of advantages. Firstly, the
counterfactual account receives some support from psychological the-
ories which show that there is a strong connection between causal
judgments/reasoning and the psychological processes involved in
counterfactual reasoning tasks (e.g. Gopnik and Schulz 2007). Whether
or not philosophical analyses are able to show that causal notions
and judgments may be exhaustively analysed in counterfactual terms
is still an open problem (cf. the classical discussion in Lewis 1986;
see also Edgington 2011). There are, however, other grounds for be-
lieving that counterfactuals play an essential role in the explanatory
strategies utilised in science. One straightforward reason has to do
with the wide use of idealisation and abstraction in scientific expla-
nation. Both are involved in experimental and theoretical contexts
and rely heavily on counterfactual assumptions about systems that
are organised and behave in slightly different ways to the actual ones.
In light of these connections between scientific causal modelling and
counterfactual reasoning, it seems that explanations of general pat-
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terns or regularities are better handled on the counterfactual account
of explanation than on the causal/mechanistic one.

Secondly, several authors have argued that counterfactual depen-
dence relations are more pervasive than causal relations proper (e.g.,
Ylikoski 2007; Bokulich 2011). If this claim is correct, it opens the
door for a more comprehensive account of explanation that is able
to accommodate other forms of explanation that are prima facie non-
causal. Other authors have suggested that counterfactual analyses
help to elucidate some of the processes that are involved in causal
reasoning (Psillos 2004), as well as why we often treat causal descrip-
tions as explanatory in the first place (Woodward 2011). In brief, it
seems that the counterfactual account makes available a number of
resources that help clarify the epistemic dimension of the causal view
of scientific explanation, providing additional insight into why we
treat causal information as explanatorily relevant in the first place.

2.2.4 Philosophical models of scientific explanation: insights and issues

There are several important lessons that follow from the analysis of
these three classical models of scientific explanation which will fur-
ther guide the construction of an adequate philosophical account of
cognitive explanation. First, the challenges confronting the covering
law model of scientific explanation (Hempel 1965) highlight the lim-
itations of focusing one’s philosophical analysis solely on the logical
structure of explanation. Furthermore, although the Hempelian ap-
proach seems to be correct in identifying the notion of natural law as
a potential explanatory structure, the account turns out to be prob-
lematic due to its commitment to the thesis of explanatory monism
which implies that only scientific theories that invoke natural (de-
terministic or statistical) laws qualify as having genuine explanatory
power. The other two accounts analysed above attempt to overcome
the main problems of the Hempelian conception and have arguably
had a more substantive contribution in shaping the landscape of cur-
rent models of cognitive explanation.

The statistical/probabilistic model of explanation (cf. Jeffrey 1969;
Salmon 1971; Mellor 1976) draws attention to the fact that even highly
improbable events are in principle amenable to scientific explanation.
By criticising the exclusivist focus of the Hempelian account on the
inferential structure of scientific explanations, the statistical model
claims that sometimes explanations take the form of the statement
of a relevant statistical correlation between a particular explanandum
and the proposed explanans. As such, the statistical model attempts
to accommodate in the landscape of potential explanatory structures
a series of tools and techniques that have been developed in order
to deal with especially ‘recalcitrant’ or unexpected physical phenom-
ena/events. The statistical model of explanation seems to provide
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an appropriate framework for analysing the explanatory value of dy-
namic systems approaches to cognition, Bayesian models and connec-
tionist models of cognitive phenomena (e.g., Rumelhart, McClelland,
and PDP Research Group 1986; Thelen and Smith 1994; Kelso 1995;
Port and van Gelder 1995; Griffiths, Kemp, and Tenenbaum 2008;
Guastello and Pincus 2009; McClelland et al. 2010).

The causal model of scientific explanation (e.g., Railton 1981; Salmon
1984a, 1989; Lewis 1986) provides a compelling case for the idea that
causal knowledge often plays an explanatory role in scientific inquiry.
However, I have argued that, if one is to properly justify the ex-
planatory power of certain causal structures, one needs to develop
a more sophisticated set of conceptual resources. Along these lines,
the notions of mechanism and counterfactual dependence have been put
forward as essential ingredients for articulating a more robust philo-
sophical conception of causal explanation (cf., Machamer, Darden,
and Craver 2000; Glennan 2002; Woodward 2003; Craver 2007b). In
addition, I have pointed out that despite its strong intuitive appeal,
the causal model of scientific explanation needs to confront the epis-
temic relativisation puzzle and offer a more detailed and precise pic-
ture of the factors involved in the construction and evaluation of spe-
cific causal models/theories that might be deemed to be genuinely
explanatory.

This perspective in turn indicates that the standard ontic concep-
tion of causal explanation (e.g., Salmon 1984b; Strevens 2008; Craver
2012) needs to be supplemented by a more careful discussion of the
epistemic and pragmatic dimensions of the causal explanations de-
veloped in different areas of science. By analysing several models of
cognitive explanation that share the central assumptions of these two
classical accounts of explanation, I aim to show that this latter shift
of focus yields a more compelling solution to both the regress and
explanatory relevance problems faced by any philosophical model of
scientific explanation.

Finally, I would like to mention briefly two other approaches to
the problem of scientific explanation. The explanatory unification ac-
count (cf. Friedman 1974; Kitcher 1981, 1989) equates the explanatory
power of scientific theories with their unificatory power. Although
the tendency to conflate the two epistemic virtues (i.e., explanatory
and unificatory power) resurfaces in almost all philosophical analy-
ses of the notion of cognitive explanation, I argue that there are good
reasons for thinking that they are logically distinct epistemic virtues.
The presence of one of them does not guarantee that the theory in
question also possesses the other virtue. In fact, adopting the unifica-
tion criterion as an index of explanatory power/value invites the ob-
jection that unification can be achieved at the price of superficiality or
even triviality (e.g., van Fraassen 1980; Hansson 2006). Moreover, the
main intuition associated with the explanatory unification account,
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i.e., that subsuming many things under one general principle has an
explanatory force, can arguably be interpreted as an alternative for-
mulation of the covering law model of scientific explanation. Also,
given the fact that sometimes compartmentalisation in science can be
equally explanatorily efficient, contra explanatory unification, I main-
tain that unificatory power is better conceived as a separate epistemic
virtue of certain scientific practices.

The pragmatist approach to the problem of scientific explanation
(cf. van Fraassen 1980; Achinstein 1983; Bromberger 1992) highlights
the fact that the construction and evaluation of explanatory scien-
tific theories/models depends on the epistemic interests, goals, and
aims of specific scientific communities or research programmes. More
importantly, the approach draws attention to the fact that assessing
the explanatory value of scientific models/theories is always relative
to the particular problems or phenomena they were intended to ac-
count for. Although the pragmatist approach has often been taken to
yield a sceptical stance towards the philosophical project of analysing
the structure of scientific explanation, more recently the account has
given rise to a number of constructive analyses which emphasise the
double contrastive and erotetic structure of scientific explanation (e.g.,
Ylikoski 2007; Ylikoski and Kuorikoski 2010). However, it is also true
that most of these accounts developed along broadly pragmatist lines
borrow various conceptual resources from the other models of scien-
tific explanation analysed in the previous section (in particular from
the causal model of scientific explanation).

The investigations carried out in the following chapters embody
the main insights of the pragmatist approach to the problem of scien-
tific explanation. More specifically, by developing an analysis which
pays special attention to the variety of factors that play a role in
the construction of different types of scientific explanations, I fol-
low the pragmatist’s proviso of not conflating the notion of explana-
tory power/value with the other epistemic virtues of scientific mod-
els/theories: empirical adequacy, simplicity, unity, elegance, etc. (cf.
van Fraassen 1980). In addition, the proposed approach circumvents
the premature commitment to explanatory monism implicit in almost
all mainstream philosophical accounts of the notion of scientific ex-
planation. Whilst explanatory monism is usually taken to support
the project of constructing a general philosophical model of scientific
explanation, I will develop an alternative approach that is equally
compatible with the aim of elucidating the nature and structure of
scientific explanation.

2.3 introducing the problem of cognitive explanation

The main objective of this thesis is to advance a philosophical account
of cognitive explanation that is both novel and adequate with respect
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to the current explanatory frameworks used in the different branches
of cognitive science. The strategy adopted for this purpose consists in
developing a critical analysis of some of the most prominent models
of cognitive explanation discussed in the philosophical and cognitive
scientific literature in order to reveal both their underlying theoretical
assumptions and their relationship with the actual scientific activities
which generate potential explanatory theories/models of particular
cognitive phenomena. The broader framework for investigating the
structure of cognitive explanation is provided by the three philosoph-
ical models of scientific explanation analysed in section 2. Thus, the
plan is to draw on the lessons afforded by these critical analyses in
order to articulate a philosophical account which vindicates the in-
tuition that explanation is an important epistemic goal of cognitive
scientific research.

The proposed approach, therefore, combines two complementary
perspectives that contribute in distinctive ways to the construction of
a general/substantive account of cognitive explanation. The perspec-
tive that has already been introduced in the previous section serves
two main purposes: (i) to lay down the principal desiderata for a
philosophical analysis of the notion of scientific explanation and (ii)
to highlight/emphasise the continuity between the problem of scien-
tific explanation and the more specific problem of cognitive expla-
nation. I have also claimed that the second implication is beneficial
because it mitigates the claim that the domain of cognitive science
raises a number of completely novel problems within philosophy of
science, by showing how various ideas and insights from the latter
domain can be brought to bear on the analysis of the specific issues
raised in the philosophy of cognitive science. In addition, this con-
tinuity claim opens up the reverse possibility: that hypotheses and
insights made available by analysing various problems which arise in
the domain of cognitive science might apply to other areas of scien-
tific inquiry. By focusing on the development of a substantive account
of cognitive explanation, this thesis raises the question of what consti-
tutes an appropriate philosophical approach to the notion of scientific
explanation.

The preceding analysis of the three classical models of scientific ex-
planation has also revealed the limits of relying solely on this perspec-
tive for the purposes of developing an adequate account of cognitive
explanation. Because all the accounts analysed in the previous section
are committed to the thesis of explanatory monism, they run the risk
of reducing prematurely the diversity of explanatory frameworks that
are required in order to elucidate various cognitive problems. This
limitation becomes particularly salient when one adopts the comple-
mentary practice-based perspective which mirrors the multiplicity of
explanatory schemas used in the different disciplines of cognitive sci-
ence. The fact that explanatory monism has been widely taken to em-
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body the normative dimension of scientific explanation also explains
why it tends to resurface in most, if not all, accounts of cognitive
explanation. In contrast, I claim that explanatory monism is not the
only way to vindicate the intuition that explanation (in any domain
of inquiry) has a normative bite.

A practice-based perspective is not incompatible with the require-
ment that there must be a way to distinguish between explanatory
and non-explanatory theories/models of cognitive phenomena. How-
ever, by adopting this perspective one becomes more aware of the
fact that the construction of particular explanatory models/theories
is dependent upon a wide range of factors, not all of which are un-
der the researcher’s willful control. Sometimes the complexity of the
phenomena being investigated, together with the limitations (practi-
cal, technical, and intellectual) of the practicing scientists require the
development of very ingenious strategies for advancing one’s under-
standing of the phenomena being investigated. And, of course, some-
times these efforts might remain completely unsatisfied. Thus, the
practice-based perspective is also intended to vindicate the intuition
that part of the difficulty of saying anything precise about the notion
of cognitive explanation derives from the difficulty of circumscribing
the phenomena being investigated in the different fields of cognitive
science.

Whilst the practice-based perspective I propose to adopt through-
out the thesis seems to place one in the middle of things, I argue
that it does not preclude the formulation of a general philosophical
analysis of the notion of cognitive explanation. The purpose of the
following considerations is to show that, although a practice-based
perspective has been implicit from the very beginning in debates con-
cerning the status and structure of cognitive explanation, the explana-
tory monism thesis imported from classical accounts of scientific ex-
planation, and, more generally, the prioritisation of the problem of
the normative character of explanation, have tended to obscure some
of the most important insights that the adoption of this perspective
makes available.

2.3.1 A bit of history

This section proposes a short detour through the recent history of
cognitive science in order to show how the plurality of explanatory
frameworks currently used in its different sub-branches is related
to the main factors that have contributed to the constitution of the
field. First, the field of cognitive science emerged as a strong reac-
tion to behaviourism, the dominant research strategy ruling psycho-
logical studies at the beginning of the ’50s.5 The basic assumption of

5 More precisely, there are at least three major views which have been associated in
the psychological and philosophical literature with behaviourism: radical, analytical
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the behaviourist programme was that all mental phenomena or pat-
terns should be explained without any appeal to unobservable mental
states, relying instead on non-psychological mechanisms linking par-
ticular stimuli (inputs) with particular responses (outputs). Further-
more, these mechanisms were taken to be the product of conditioning.
Among the various problems encountered by behaviourism as a gen-
eral research strategy in scientific psychology, were two key issues
that progressively led to the demise of the radical behaviourist pro-
gramme. Firstly, behaviourism tended to isolate scientific psychology
from other disciplines by denying the pertinence of the hypotheses
and tools developed in other scientific domains for the study of the
mind (or psychological behaviour). Secondly, an increasing number
of acute theoretical analyses and ingenious experiments revealed an
impressive range of cognitive or psychological behaviours that cannot
be adequately explained in terms of stimulus-response mechanisms
(e.g., Tolman, Ritchie, and Kalish 1946; Broadbent 1954; Miller 1956;
Chomsky 1957, 1959).

There are two important lessons to be drawn from thinking of cog-
nitive science as a critical response to behaviourism.6 On the one
hand, behaviourism showed the limits of adopting a single narrow
methodology for the study of a very wide and diverse range of psy-
chological phenomena. Thus, the criticism of the monist method-
ological commitments of behaviourism opened the possibility that
different psychological phenomena or patterns might be appropri-
ately investigated and explained with the help of different sorts of
experimental and conceptual tools. Furthermore, the criticism of the
radical behaviourist programme revealed some of the mistaken as-
sumptions behind the exaggerated reaction against postulating un-
observable abstract mental structures for the explanation of mental
or cognitive phenomena. There is an additional cautionary lesson
that follows from the fact that psychology’s move from behaviourism
was a lengthy and drawn-out process (which, according to some, has

(or logical), and methodological behaviourism. The distinctions between these posi-
tions can be characterised in the following way. Radical behaviourism corresponds
to the project of explaining all mental phenomena in terms of stimuli, response,
and reinforcements, without any appeal to mentalistic vocabulary. Among some
of its most famous promoters, one can count: Edward Thorndike (1875-1949), John
Watson (1878-1958), Ivan Pavlov (1849 - 1936), and B. F. Skinner (1904-1990) and
Clark Hull (1884 - 1952). Logical behaviourism is a ‘semantic’ project which seeks
to analyse all mental vocabulary in terms of stimuli and (dispositions to) response
(Ryle 1949/2002). Finally, methodological behaviourism expresses the commitment
that scientific psychology should concern itself only with the external behaviour of
organisms (see also Rey 1997).

6 A pertinent historical observation in this context is that George Miller and Jerome
Bruner (founders of the Harvard Center for Cognitive Science) originally introduced
the term ‘cognitive science’ to designate the disciplines that studied not just the
smaller subset of rational processes, but all mental phenomena. The choice of the
word ‘cognition’ was merely supposed to distinguish their new approach from ‘be-
havioural (non-mental) psychology’.
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not yet been (or cannot be) completed). For despite its many faults,
behaviourism rests on a strong and compelling intuition, namely that
experience plays an important role in shaping various domains of
cognitive processing at different levels of organisation. As will be
shown in the following chapters of the thesis, this intuition continues
to motivate a number of current research programmes in cognitive
science which further testifies to the persistence and force of certain
behaviourist assumptions in the study of mental phenomena.

A second striking feature that has characterised the field of cog-
nitive science from its very beginning is its interdisciplinary nature.
A rough picture of some the most influential ideas that triggered
the wide range of research programmes currently pursued in cog-
nitive science covers fields as diverse as mathematical logic, linguis-
tics, neurobiology, cybernetics, and different branches of traditional
scientific psychology (developmental, social, and evolutionary psy-
chology, etc.). Among some of the most influential notions that have
shaped the field of cognitive science, one could count: (i) the idea of
algorithmic computation in mathematical logic (Turing 1937), (ii) the
emergence of linguistics as the formal analysis of language (Chomsky
1957), and (iii) the progressive introduction of information-processing
models of specific psychological processes in various sub-domains of
cognitive science (Broadbent 1954; Miller 1956). Other important in-
fluences include the contributions of the different sub-fields of neu-
robiology which more recently have come to dominate the space of
cognitive modelling and theorising.7

The last general feature that I would like to sketch briefly here con-
cerns the predominance of information-processing models in cogni-
tive studies. Even with the recent ascendancy of neurobiological mod-
els, one of the most prominent notions that continues to be invoked
in a host of explanatory contexts throughout cognitive science is that
of mental representation. Broadly speaking, there are two main sources
of this widespread representational talk in cognitive studies. On the
one hand, mental representations are central to pre-scientific folk psy-
chology, even though folk psychology fails to provide a rigorous def-
inition of the notion of representation. On the other hand, mental
representations came to be understood along the lines promoted in
computer science, as symbols in an information processing system
(such as a digital computer). This latter characterisation of mental rep-
resentations highlights two properties of these theoretical entities pos-
tulated in the explanation of cognitive processes/phenomena, namely
that: (i) they refer to things outside the system, and (ii) they enter into
symbol processing operations.

7 Although until the 1960s many cognitive scientists believed that the mind could be
studied without studying the brain, the development of new technologies (such as
PET and fMRI scans) for studying neural activity and new ways of modelling neural
systems (e.g., artificial neural networks and cellular automata) reinforced the idea
that the study of the mind is intimately related to the study of the biological brain.
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These two ideas have played a major role in much philosophising
about information processing or computationalist approaches to cog-
nition. As a consequence of this widespread reliance on the notion
of mental representation in cognitive studies, much of the effort in
recent philosophy of mind has been aimed at clarifying the assump-
tions and implications of this broadly representationalist picture of
the mind. Each of the following chapters of the thesis attempts to
shed further light on the role(s) that mental representations play in
the construction of explanatory accounts of various types of cognitive
phenomena. However, the task thus circumscribed should be clearly
distinguished from another major philosophical project which seeks
to construct a substantive theory of mental content (e.g., Field 1978;
Millikan 1984; Block 1986; Dretske 1988; Fodor 1987; Papineau 1987

etc.). In other words, this thesis seeks to develop an analysis of the
role(s) played by the notion of mental representation in cognitive the-
orising and experimentation whilst remaining neutral with respect to
the prospects of theories of content.

2.3.2 Explanatory paradigms in cognitive science

The previous considerations regarding the emergence of the domain
of cognitive science reflect the fact that the class of explanatory frame-
works used to investigate cognitive phenomena was and continues to
be very heterogenous. The multiplicity of explanatory schemas used
by practicing cognitive scientists mirrors both the interdisciplinarity
of the domain, and the variety of cognitive phenomena currently in-
vestigated in different branches of cognitive science, at different levels
of analysis or abstraction. Nevertheless, this fragmentation of cogni-
tive studies raises two further interrelated questions: (i) are the ex-
planatory schemas used to gain understanding of interesting cogni-
tive phenomena the same as the ones used in other areas of scientific
investigation?, and (ii) are cognitive explanations distinguished from
other types of scientific explanations in virtue of the objects which
constitute their explananda?

In response to the first question, a number of authors have argued
that traditional philosophical models of scientific explanation, such
as the covering law model, are inappropriate to describe and eluci-
date the explanatory practices encountered in cognitive science (e.g.,
Fodor 1968, 1974; Cummins 1983, 2000; Pylyshyn 1984). For instance,
Cummins (2000) has pointed out that one of the main reasons for
doubting the applicability of classical models of explanation to the
cognitive domain is that the latter counts as explananda a different
class of things than other natural sciences.8 More specifically, he ar-
gues that because cognitive science deals with a distinctive restricted

8 The standard contrast class is that of theoretical explanation in physics (Fodor 1974;
Cummins 1983). Despite the differences that separate the two styles of scientific
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region of the empirical world, the type of laws which characterise its
proprietary domain are merely laws in situ. They specify effects or
regular behavioural patterns which are characteristic only of a spe-
cific type of system (i.e., cognitive systems). As such, psychological
or cognitive laws are to be contrasted with the kinds of laws postu-
lated by physical theories which hold for a wider variety of physical
systems, under a large range of varying conditions.

The assumption underlying the contrast between cognitive and
physical explanation seems to be that physical laws can play a gen-
uine explanatory role in virtue of their generality. That is, since they
are not (standardly) used to characterise specific types of systems, the
primary role of physical laws cannot be that of identifying distinc-
tive effects of those systems. Instead, within cognitive science, Cum-
mins claims that ‘[one] should seek to discover and specify the effects
characteristic of the systems that constitute their proprietary domains,
and to explain those effects in terms of the structure of those systems,
that is, in terms of their constituents (either physical or functional)
and their modes of organization’ (Cummins 2010: 288).9 In addition,
Cummins (2010) points out that effects (or laws in situ) are not the sole
explananda of cognitive science. In fact, he claims that the primary
explananda of cognitive research are psychological or cognitive capac-
ities (e.g., the capacity to see depth, to learn and speak a language,
to predict and make decisions, etc.). However, since a capacity is a
kind of complex dispositional property, it also follows that to have a
dispositional property is to satisfy a law in situ, i.e., ‘a law character-
ising a certain kind of thing’ (ibid). On this sort of account, the main
difference between a cognitive capacity and an effect (or a law in situ)
is that the former is usually harder to specify than the latter. More-
over, whereas cognitive effects usually need to be discovered (often
through sophisticated experimentation), cognitive capacities have an
intuitive pre-theoretical characterisation.

Despite these differences, Cummins (2010) argues that there is a
general explanatory framework that is appropriate with respect to
both types of explananda of cognitive theories/models (i.e., effects
and capacities). This explanatory framework is known in the litera-
ture as interpretative or functional analysis (e.g., Cummins 1983). Func-
tional analysis consists in decomposing a given cognitive capacity,
identified as problematic, into a number of less problematic sub-
capacities such that the organised manifestation of these analysing
sub-capacities amounts to a manifestation of the target analysed ca-
pacity. Such an analysis is said to explain how a particular complex
system as a whole (i.e., a cognitive system) exercises the analysed ca-
pacity by showing it to be the result of the organised exercises of the

explanation, the polarisation promoted from within philosophy of mind and/or phi-
losophy of psychology can be, or so I shall argue, misleading (cf. Wilson 1985).

9 See also Cummins 1983: chapters 1 and 2 for a more extensive discussion of how
this kind of explanation is supposed to apply to psychology.
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simpler analysing sub-capacities. In the case of certain systems, func-
tional analysis goes hand in hand with the componential analysis of
the target system. In such cases, the analysing sub-capacities are the
capacities exhibited by the components of the system under investiga-
tion. However, Cummins (1983, 2010) and other authors have pointed
out that this form-function correlation is often absent when analysing
complex cognitive systems. This in turn has been taken to entail the
relative autonomy of functional analyses of cognitive capacities from
the componential analyses of the underlying biological mechanisms
that support them (cf. Fodor 1974; Cummins 1983).

Although functional analysis has a large number of applications
within cognitive science, as an explanatory framework it also has a
series of limitations. For instance, the explanatory role of functional
analysis seems to be constrained by the following factors: (i) the ex-
tent to which the analysing capacities are less problematic than the
analysed capacities, (ii) the extent to which the analysing capacities
are different in kind from the analysed capacities, and (iii) the rela-
tive complexity of the organisation of the component parts or pro-
cesses that is attributed to the system (e.g., Cummins 2000; Egan
and Matthews 2006). A further concern that challenges the adequacy
and/or sufficiency of functional analysis as an explanatory frame-
work for cognitive science derives from the idea that a complete the-
ory of a cognitive capacity must also exhibit details of the target ca-
pacity’s realisation in the biological system (or system type) that has
it. That is, the implicit assumption is that ’the functional analysis of a
capacity must eventually terminate in dispositions whose realisations
are explicable via analysis of the target system. Failing this, we have
no reason to suppose we have analysed the capacity as it is realised
in the system’ (cf. Cummins 2010: 292).

The primary motivation for starting the investigation of the ex-
planatory frameworks used in cognitive science with the case of func-
tional analysis is that it can be shown to underlie several prominent
models of cognitive explanation. This further implies that some of the
major problems facing the explanatory strategy associated with func-
tional analysis will carry over to these other explanatory frameworks
as well. Among these one may include: (i) belief-desire-intentions ex-
planations (widely used in developmental and social psychology), (ii)
classical or symbolic computational explanations, (iii) connectionist
explanations, (iv) evolutionary explanations, and (v) neuroscientific-
based or mechanistic explanations (cf. ibid.). Since the following
chapters of the thesis will pursue an in-depth analysis of some of
these influential explanatory frameworks, I propose to restrict my
discussion here to outlining two foundational problems that arise
for functional analysis generally, and that resurface in the context
of other influential explanatory frameworks as well.
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2.3.3 Two challenges for cognitive explanation

The two general problems that seem to affect all explanatory frame-
works currently used within cognitive science are: (i) the realisation
problem, and (ii) the unification problem. The first problem arises be-
cause the explanatory frameworks which share the characteristics of
functional analysis seem to leave a gap between the functional char-
acterisation of a cognitive system and the various nonfunctional de-
scriptions that are taken to apply to the same cognitive system at
a different level of analysis (e.g., neurobiological characterisations).
The second problem amounts to the challenge of offering a unified ac-
count of cognition. That is, an account that postulates a set of general
principles which underlie all types of cognitive processes, from early
vision and motor control to higher-order processes such as language
production and comprehension, reasoning, and decision making.

The realisation problem has often been invoked for the purposes of
either highlighting or undermining the advantages of certain explana-
tory frameworks over their alternatives. In opposition to this line of
reasoning, I seek to show that most versions of the problem are actu-
ally orthogonal to the task of characterising the structure of cognitive
explanation. The main reason why the realisation problem has been
taken, at least in philosophical circles, to constitute such an impor-
tant cornerstone for explanatory accounts of cognitive capacities is
the excessive concern with the nature of evidence and reliability in
connection to the problem of explanation. However, as pointed out
in the first part of this chapter, there are good grounds to resist the
conflation of these different notions. By analysing in the thesis sev-
eral versions of the realisation problem, I aim to show that there is no
satisfactory formulation of the problem that is amenable to a general
and informative treatment that would also impact the account of ex-
planation. Thus, whilst the realisation problem might be interesting
from a more metaphysical point of view, I claim that, in some of its
most general forms, it tends to obstruct the philosophical analysis of
the notion of cognitive explanation.

The unification problem, on the other hand, challenges the lack of
unification of the explanatory frameworks used within the different
fields of cognitive science. Those who are not content with the lack of
unification of cognitive scientific theories usually want to allow that
there might be different ways to investigate different aspects of the
same cognitive capacity. However, they also point out that the deeper
problem of cognitive science is that it fosters multiple incompatible
explanatory accounts of the same cognitive capacity (e.g., language
comprehension and production). The strong polarisation of some of
the explanatory frameworks currently used within cognitive science
(e.g., symbolic computationalism and connectionism, functional anal-
ysis and mechanistic decompositions) has been taken to reflect this
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deeper disunity problem (cf. Cummins 2010). Moreover, in addition
to the disunity encountered across frameworks there is considerable
disunity within each framework. That is, one often finds competing
models of the same cognitive capacity within the same explanatory
framework. This situation seems particularly puzzling especially if
one is inclined to think that cognitive capacities constitute distinct
natural kinds, corresponding to determinate ontological categories.

In the following chapters, I attempt to dispel part of the worry
generated by the unification problem by developing a piecemeal ap-
proach to the problem of cognitive explanation. The first step of this
strategy is to provide some compelling motivations against taking
unification to be the primary goal of cognitive modelling and theoris-
ing. I also aim to show that the notion of unification can be used to
shed light on the intricate relationships between the different explana-
tory frameworks used within cognitive science. For this purpose, I
develop, defend, and refine an account along the lines of the integra-
tive pluralist position promoted by several authors in other areas of
philosophy of science (e.g., Mitchell 2003, 2012; Chang 2012). One
prominent advantage of this sort of position is that it promises to ac-
commodate both competing and compatible alternative explanatory
accounts of cognitive capacities. At a more general level, by showing
how the pluralism of explanatory frameworks can be compatible with
a notion of local unification, I seek to reinforce the claim that explana-
tory power and unificatory power are conceptually distinct epistemic
properties of scientific theories.

2.4 outline of the strategy

In light of the considerations put forward in this chapter, I maintain
that a philosophical model of cognitive explanation should take into
account two distinct factors: (i) the main lessons afforded by the criti-
cal analysis of traditional models of scientific explanation, and (ii) the
multiplicity of explanatory frameworks currently being used within
the different branches of cognitive science. Taken at face value, adopt-
ing a strategy that incorporates both factors might seem problematic
because the two components pull in opposite directions. On the one
hand, as we have seen, most traditional accounts of explanation seem
to be committed to the thesis of explanatory monism, according to
which there is a single normative core common to all the modes of
explanation utilised across different scientific practices. On the other
hand, even a cursory glance at the explanatory frameworks used by
practicing cognitive scientists seems to suggest that a practice-based
perspective will be able to license only a very permissive form of
explanatory pluralism.

In consequence, the main challenge that confronts the present project
arises from imposing two apparently incompatible requirements or
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conditions on a philosophical account of cognitive explanation. These
are the descriptive adequacy and normative completeness conditions. For
it seems that an account which respects the descriptive adequacy con-
dition is bound to accept the ineliminable diversity of the explanatory
frameworks used to elucidate different cognitive phenomena. And
this in turn is likely to frustrate the search for a uniform and pre-
scriptive account of what counts as a reliable scientific explanation in
the cognitive domain. In fact, the only type of normative principles
which seem to be compatible with the descriptive adequacy require-
ment are the pragmatic principles which are inextricably connected
to the aims, purposes, and interests of the agents involved in the rele-
vant explanatory practices. Whilst I do not wish to dismiss the impor-
tance of the latter type of norms, I argue that they are not in principle
inconsistent with a general picture of what makes scientific explana-
tion a distinctive type of epistemic achievement. Thus, the task of the
following chapters is to show that the two requirements are not actu-
ally incompatible, but rather that they have distinctive contributions
to make to the formulation of a substantive philosophical analysis of
the notion of cognitive explanation.

The following chapters seek to elucidate the main features of sev-
eral explanatory frameworks used in the domain of cognitive science.
The plan is to pursue an in-depth analysis of certain models of cogni-
tive explanation that have been extensively discussed in the method-
ological philosophical literature and that have been taken to capture
the dynamics of the explanatory strategies currently used in cogni-
tive science. I begin with the mechanistic view of cognitive explana-
tion because it constitutes an interesting case study in which classical
philosophical analyses of scientific explanation meet the explanatory
practices of certain communities of cognitive scientists. Next, I con-
sider three different conceptions of computationalist explanations of
cognitive phenomena whose main tenets are standardly taken to be
in tension with one another. The arguments I put forward in chap-
ters 4, 5, and 6 attempt to mitigate the strong polarisation of these
accounts.

Although computational approaches to cognition do not, by far,
exhaust the range of frameworks and/or strategies developed to in-
vestigate cognitive phenomena, I claim that their critical analysis will
yield valuable insights on which to base an appropriate philosophi-
cal account of the notion of cognitive explanation that would apply
beyond the boundaries of computational theories of cognition. The
focus on mechanistic and computationalist theories/models of cog-
nitive phenomena also reflects the idiosyncrasies of the more recent
philosophical tradition which has been fascinated with the applicabil-
ity of these general concepts to the study of the mind. I think that
this particular fascination is in part explainable by the controversial
metaphysical views that these concepts have encouraged. However,
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since this investigation is not directly animated by the solution of any
particular metaphysical puzzle concerning the nature of the mind, I
propose to justify the focus on mechanistic and computational mod-
els/theories of cognition and their associated explanatory strategies
in a way that is closer to the central theme of the thesis.

One general issue which arises in connection with the problem of
cognitive explanation is whether abstract (e.g., mathematical, compu-
tational) models/theories can be taken to provide bona fide explana-
tions of particular aspects of cognitive phenomena or whether con-
crete (e.g., mechanistic) models/theories are the only ones that are
fit to fill this explanatory role in the cognitive domain. My proposal
is that by paying closer attention to the details of the applicability of
both concrete and abstract models and/or principles to the study of
cognitive phenomena, one is in a better position to appreciate both
the difficulties and the successes of using a wide variety of explana-
tory schema in order to have a better intellectual grasp of particu-
lar cognitive phenomena. Thus, the adoption of the practice-based
perspective promoted throughout the thesis is not incompatible with
the prospect of deriving a more general picture of the common fea-
tures that characterise the practice of developing good explanatory
accounts of cognitive phenomena. As a critical tool, attention to ac-
tual scientific practice checks certain sudden leaps and impulsive (or
too optimistic) conclusions that philosophers tend to make concern-
ing the structure of scientific scientific explanation in a domain such
as cognitive science.
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3

T H E M E C H A N I S T I C A C C O U N T O F E X P L A N AT I O N

3.1 introduction

Current research in the fields of cognitive science and neuroscience
makes use of a wide variety of models and techniques (e.g., Gaz-
zaniga 2000; Shadmehr and Wise 2005; Stainton 2006; Sun 2008). Some
of the most successful and influential of these rely on quite distinct
theoretical assumptions about the structure of cognitive systems, as in
the case of symbolic computational models, neural connectionist net-
works, and Bayesian models. The multiplicity of methods and tools
used to investigate cognitive phenomena gives rise to the problem
of how to evaluate the relative merits and limitations of the emerg-
ing scientific models/theories. As pointed out in the first chapter,
one of the most prominent criteria put forward for dealing with this
question consists in comparing the explanatory power of the various
competing models and frameworks.

In this and the following three chapters, I will investigate a series
of philosophical models of the notion of cognitive explanation that
promise to shed further light on the varied landscape of theoretical
and experimental approaches currently utilised in the area of cogni-
tive science. The aim of these critical analyses is twofold. Firstly, I
seek to determine the type of explanatory strategy characterised by
each of these philosophical accounts and show how each is rooted
in the scientific activities pursued by various groups of cognitive sci-
entists and/or neuroscientists. Thus, each chapter begins by survey-
ing the principal insights made available by a particular prominent
model of cognitive explanation. Secondly, I identify the main chal-
lenges facing such philosophical models that attempt to characterise
(often) in a uniform and general way the structure of various explana-
tory models/theories of cognition. This latter part of the investigation
identifies the limitations of the available models of the notion of cog-
nitive explanation and points towards an alternative, more fruitful,
way of approaching the question of the explanatory value of specific
cognitive models/theories.

In chapter 2, we have seen that the ‘received view’ of cognitive expla-
nation tends to be constructed in opposition to classical philosophical
accounts of the notion of scientific explanation. The driving intuition
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behind this conception is that the cognitive domain raises a number
of special issues that cannot be adequately tackled in the more tradi-
tional frameworks developed within philosophy of science (Cummins
1983, 2000). More recently though, mechanism has been put forward
as an adequate account of cognitive explanation which manages, nev-
ertheless, to preserve the most important features of traditional philo-
sophical treatments of the problem of scientific explanation. Precisely
because it promises to provide this important connection between
classical and more specialised models of scientific explanation, I shall
begin my investigation with the mechanistic model of cognitive explana-
tion.

The New Mechanists (e.g., Glennan 1996, 2002; Machamer, Darden,
and Craver 2000; Woodward 2000, 2003; Craver 2007b; Bechtel and
Richardson 1993/2010) promise to deliver a robust notion of scientific
explanation that has two highly desirable features, which have also
partly motivated the extension of mechanism to the domain of cog-
nitive science. Firstly, mechanism has been said to represent closely
the explanatory and experimental practices encountered in certain
scientific domains, such as the various sub-branches of cognitive psy-
chology and neuroscience. Secondly, the account proposes a uniform
and general set of criteria for something to count as having genuine
explanatory power. As such, the mechanistic view arguably allows
for the comparison of potentially competing explanatory models of a
target cognitive phenomenon.

As a general account of explanation in cognitive science, mech-
anism holds that a bona fide explanation should exhibit the causal
mechanisms that underlie, maintain, or produce the phenomena un-
der investigation. If it fails to do so, a particular model or hypothesis
cannot be said to have a genuine explanatory function. As a conse-
quence, some defenders of the new mechanistic view subscribe to the
idea that abstract (i.e., mathematical) models of cognitive capacities
lack genuine explanatory power altogether (e.g., Kaplan and Craver
2011; Kaplan 2011). In other words, since explanation arises only if
one can display certain aspects of the causal mechanisms underlying
a particular phenomenon, mathematical (acausal) models are deemed
to be inappropriate candidates for explanations.

The arguments developed in this chapter pursue two interrelated
aims: (i) to offer a critical assessment of the main tenets of the new
mechanistic philosophy of explanation, and (ii) to evaluate the ad-
vantages and limitations of applying the mechanistic framework to
different sub-branches of cognitive science. I claim that, despite its
intuitive appeal and its strong insights about some of the explana-
tory tools used within cognitive science, the mechanistic view faces
a series of problems that call into question its supposed unrestricted
scope and applicability. These challenges concern both the internal
consistency of the mechanistic criterion for explanatory value, as well
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as the emerging mechanistic position towards the status of abstract
models.

The argument strategy I pursue is structured in three distinct parts.
I begin, in section 2, by analysing the main tenets of the mechanistic
picture of explanation. In section 3, I identify some of the most sig-
nificant challenges facing the conception of mechanistic explanation
and analyse three distinct strategies that mechanists might deploy
to avoid these problems, finding the solutions they offer to be uncon-
vincing. I support these objections to the general mechanistic strategy
with respect to the cognitive domain by appeal to a series of models
whose uses and functions in the context of cognitive neuroscientific
research are analysed in detail in section 4.

The last section draws the main lessons from the critical analysis
of the mechanistic view of cognitive explanation. In particular, I take
the analysis to show that, contrary to the resolute version of the mech-
anistic thesis (e.g., Craver 2007b; Kaplan and Craver 2011; Kaplan
2011), abstract models are fit to fulfil proper explanatory roles even
when they do not specify details of the causal/mechanistic structure
in which a particular cognitive phenomenon is embedded. I con-
clude by outlining a restricted notion of mechanistic explanation that
is more adequate with respect to the varied landscape of explanatory
strategies encountered in cognitive science. The proposed interpre-
tation vindicates the numerous insights that the mechanistic account
provides with respect to the various norms that govern the construc-
tion of explanatory mechanistic models of cognitive capacities. Fi-
nally, I highlight the issues which, having been partially analysed in
the context of the mechanistic view of cognitive explanation, lead to
further important questions that will be discussed in the following
chapters of the thesis.

3.2 mechanisms and mechanistic explanations

The core idea of the mechanistic conception of explanation is that a
significant class of scientific explanations are a special sort of mech-
anistic description .1 More precisely, on this view, scientific models
and theories developed in certain areas of scientific inquiry have an
explanatory function to the extent and only to the extent that they
exhibit the causal mechanisms that maintain, produce, or underlie

1 The mechanistic view of explanation has been developed and defended especially
in the context of special sciences such as biology or the different sub-branches of
cognitive science (e.g., Woodward 2003; Craver 2007b; Craver and Piccinini 2011).
In consequence, most mechanists are willing to admit that fundamental sciences,
i.e., the different branches of physics, also use other non-mechanistic styles of ex-
planation (e.g., explanations appealing to symmetry and conservation principles in
physics). However, the limitations of the mechanistic view of explanation are less
clear when it comes to its application to different branches of the special sciences,
such as cognitive science.
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the phenomena being investigated. The mechanistic view of explana-
tion has been defended by philosophers of science, such as Bechtel
and Richardson (1993/2010), Machamer, Darden, and Craver (2000),
Glennan (2002, 2005), Bechtel and Wright (2007, 2009), Bechtel (2008,
2011), and Craver (2007b). Since they consider explicitly the applica-
tion of the mechanistic framework in the context of cognitive and
systems neuroscience, for the purposes of this chapter I will focus
on the specific versions of mechanism defended by Craver (ibid.), Ka-
plan and Craver (2011), and Craver and Piccinini (2011). However,
their notion of mechanistic explanation shares many features with
other mechanistic accounts proposed in the literature. In what fol-
lows, I emphasise two general aspects of the mechanistic conception
of cognitive explanation.

Firstly, mechanistic explanation is a form of constitutive explana-
tion that proceeds by decomposition. That is, the behaviour or func-
tion performed by a given complex system is analysed and explained
in terms of the behaviour or functions of its component parts, their
properties, relations, and modes of organisation. There are two im-
portant corollaries of this idea. On the one hand, the decompositional
strategy implies that the component parts of a mechanism (entities,
activities, etc.) are explanatorily prior or more fundamental than the
complex mechanism as a whole.2 This should not be read as claim-
ing that the component entities and activities of a complex system
are simple tout court or that the methods required to track and model
their functions/behaviours are less complex than the ones used to
study the target system as a whole. Rather, the explanatory priority
of the parts over the whole is meant to reflect the fact that, on the
mechanistic view, the component parts and their activities determine
the behaviour of the whole system. On the other hand, it is claimed
that the mechanistic decomposition of a complex system can be car-
ried out at different levels of organisation or resolution, yielding a
hierarchy of (potentially explanatory) mechanistic descriptions.

Secondly, mechanistic explanation is meant to be a form of causal
explanation. On the mechanistic view, explanations exhibit the mech-
anisms that produce the observed behaviour or function of a target
system, thereby revealing the relevant causal structure in which the
system in question is embedded (cf. Salmon 1989; Craver 2007b). By
revealing how the component parts of a mechanism, their activities,
interactions, and orchestrated organisation are responsible for a par-
ticular observable phenomenon, mechanistic explanations are taken
to track genuine causal relations which hold between the component
parts of a complex system. That is, according to most versions of the
mechanistic view, a causal relation is revealed when a bona fide mecha-

2 Psillos (2011, p. 772) makes a similar point in writing that: ‘The priority of the
parts over the whole - and, in particular, the view that the behaviour of the whole
is determined by the behaviour of the parts is the distinctive feature of the broad
account of mechanism.’
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nism is discovered: ‘mechanisms are taken to be the bearers of causal
connections. It is in virtue of them that the causes are supposed to
produce the effects’ (Psillos 2011, p. 773).

3.2.1 Advantages of the mechanistic conception of explanation

Some defenders of the mechanistic conception of explanation (e.g.,
Craver 2007b; Bechtel 2008; Kaplan and Craver 2011; Craver and Pic-
cinini 2011) have argued that the account has two distinctive virtues
that recommend it as a general approach to cognitive explanation, to
the detriment of alternatives. I briefly characterise these purported
advantages before analysing in more detail one specific formulation
of the mechanistic criterion for distinguishing explanatory from non-
explanatory models/theories of cognitive phenomena.

First, it has been pointed out that mechanistic decompositions may
reveal variables (i.e., entities or activities) which can be manipulated
and controlled for various experimental and, in some cases, clinical
purposes.3 In fact, the notion of control plays a dual role in the mech-
anistic conception of explanation. On the one hand, the discovery
of mechanisms is supposed to be a sufficient condition for the iden-
tification of the features or variables of a given system which can
be controlled and intervened upon for different pragmatic purposes
(e.g., testing, fixing, repairing, etc.). Thus, mechanistic explanations
are said to be desirable because they facilitate the realisation of these
sorts of scientific purposes. On the other hand, though, the possibil-
ity of controlling certain variables or features of a system is meant
to guarantee that the mechanisms that are postulated in the context
of specific modelling activities are real and not some artefacts of the
experimental and measuring procedures. Thus, the connection be-
tween the discovery of underlying mechanisms and control affords a
compelling characterisation of the outcomes of certain explanatory ac-
tivities in the cognitive domain. That is, the mechanistic view shows
that explanations sometimes generate new ways of thinking about
and intervening upon particular systems for the purpose of bringing
about a wide range of outcomes and effects.

Second, the mechanistic view implies that there is an important dis-
tinction between merely descriptive phenomenological models and
mechanistic models that are viable candidates for explanation. Ac-
cording to mechanists, a phenomenological model is a model that
characterises faithfully its explanandum and thus can be said to sat-

3 Along these lines, Salmon (1989, p. 812) writes that: ‘[e]xplanatory knowledge opens
up the black boxes of nature to reveal their inner workings. It exhibits the ways in
which the things we want to explain come about.’ Kaplan and Craver (2011, p. 611)
endorse a very similar idea when writing that: ‘advances in mechanistic explanation
have revealed new knobs and levers in the brain that can be used for the purposes of
manipulating how it and its parts behave. That is just what mechanistic explanations
do.’
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isfy the epistemological requirement of ‘saving the phenomena’. It is
also acknowledged that some phenomenological models may even li-
cense useful predictions about the systems being modelled (the stan-
dard example of a phenomenological model with predictive power
invoked in the mechanistic literature is the Ptolemaic model of the
solar system).4 However, it is argued that this is not enough to grant
explanatory power to phenomenological models, for two reasons (cf.
Kaplan and Craver 2011).

The first is that prediction is not a sufficient condition for expla-
nation. For instance, one can predict a storm from the falling mer-
cury in a barometer, but the latter does not in turn explain the storm.
The second reason is that phenomenological models are prima facie
indiscriminate with respect to the kind of details that are deemed
explanatorily relevant and those that are not. Inclusion of irrelevant
or random detail in the description of a model may impede explana-
tion and mislead future research. Hence, mechanists conclude that
phenomenological models, although useful heuristic tools in certain
contexts, cannot be genuinely explanatory.

However, calling phenomenological models mere heuristic tools
neither completely elucidates the difference between mechanistic and
phenomenological models nor clarifies what makes the former, but
not the latter, genuinely explanatory. A more comprehensive account
would need to comprise both: (i) a survey of the various epistemic
roles played by phenomenological models in scientific research, and
(ii) a clarification of the mechanistic criterion for explanatory relevance.
Whereas a systematic pursuit of the first task has been largely ignored
in the mechanistic literature, proponents of the mechanistic account
usually acknowledge the importance of articulating a precise crite-
rion for the explanatory relevance of the factors cited by particular
mechanistic models.

3.2.2 Mechanistic explanatory relevance

The problem of explanatory relevance confronting the mechanistic
view consists in finding a principled way to determine which of the
features of a mechanistic model are explanatorily relevant and which
are not. In a recent formulation of the mechanistic criterion for ex-
planatory relevance, Kaplan and Craver (ibid., p. 611) hold that an ex-
planatory model has to satisfy a model-to-mechanism-mapping (3M)
constraint:5

4 More relevantly, most mathematical models developed in cognitive and systems neu-
roscience are also taken to qualify as mere phenomenological models which ‘sum-
marise large amounts of experimental data compactly yet accurately, thereby charac-
terising what neurones or neural circuits do’ (Dayan and Abbott 2005, p. xiii).

5 Strictly speaking, the 3M constraint requires only that the entities and relations pos-
tulated in a scientific model be interpretable in a concrete (physical) vocabulary.
In order for the 3M constraint to count as a proper mapping account (i.e., in the
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(3M) In successful explanatory models in cognitive and
systems neuroscience (a) the variables in the model cor-
respond to components, activities, properties, and organ-
isational features of the target mechanism that produces,
maintains, or underlies the phenomenon, and (b) the (per-
haps mathematical) dependencies posited among these
variables in the model correspond to the (perhaps quantifi-
able) causal relations among the components of the target
mechanism.

The 3M requirement summarises the principal ingredients of a mech-
anistic view of explanation. First, there is the commitment to the
idea that mechanisms are the crucial explanatory tools used in cog-
nitive and systems neuroscience.6 Second, 3M includes a strong
representationalist criterion according to which abstract (mathemat-
ical) relations holding between the mechanistic variables of a system
must correspond to causal relations among the component parts of
the modelled mechanism. In other words, 3M expresses a twofold
commitment to (i) the idea that only mechanistic models of cognitive
capacities count as ‘successful’ explanations and (ii) the notion that
the systems investigated by cognitive science are, in an important
(broadly metaphysical) sense, mechanisms.

However, this picture of mechanistic explanation is not entirely
complete without the idea of a hierarchy of mechanistic decompo-
sitions mentioned above. With respect to this, Craver (2006b, p. 360),
writes that: ‘[m]odels that describe mechanisms can lie anywhere
on a continuum between a mechanism sketch and an ideally complete
description of the mechanism.’ In other words, mechanistic decomposi-
tions can be offered at different levels of organisation and they span a
continuum of decompositional descriptions ranging from mechanis-
tic sketches, mechanism schemata, up to ideally complete mechanistic
descriptions.7

The crucial difference between the members and their position on
this scale of mechanistic models consists in the amount of detail that

model-theoretic sense), mechanists should specify the two structures that are to be
connected via a particular type of mapping. However, in its current formulation, the
3M account requires only that the weaker interpretability condition be met.

6 Although they provisionally restrict 3M to the field of cognitive and systems neuro-
science, Kaplan and Craver (2011, 610, ftn.10) acknowledge that they ‘see no good
reason to exempt all of cognitive science from the explanatory demands laid out by
3M’; see also Craver and Piccinini (2011). In light of these (implicit) commitments,
the argument of the paper will continue to refer to the application of the mechanistic
view to cognitive science, broadly conceived (see chapter 2).

7 ‘A mechanism sketch is an incomplete model of a mechanism. It characterises some
parts, activities, and features of the mechanism’s organisation, but it has gaps’; while
‘ideally complete descriptions of a mechanism [...] include all of the entities, prop-
erties, activities, and organisational features that are relevant to every aspect of the
phenomenon to be explained.’ In between, he says there is ‘a continuum of mecha-
nism schemata that abstract away to a greater or lesser extent from the gory details
[...] of any particular mechanism’ (Craver 2006b, p. 360).
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each of them presupposes. For instance, mechanism sketches, which
are usually specified only at the functional level, are said to include
many filler terms that require further completion and specification (cf.
Craver 2007b; Craver and Piccinini 2011). Mechanism schemata are
more specific and include extra detail about the component parts of
a mechanism, but are still incomplete and do not qualify as genuine
mechanistic explanations.

A last conceptual distinction that mechanists introduce in order to
clarify the difference between explanatory and non-explanatory mod-
els is that between how-possibly mechanisms and how-actually mecha-
nisms (cf. Craver 2006b, 2007b). Whilst there is some overlap between
this latter distinction and the categories of mechanism sketches and
schemata, only how-actually mechanistic models count as genuinely ex-
planatory.8 How-possibly mechanisms, alongside mechanism schemata
and mechanism sketches, may serve as useful tools that aid in the
search for explanation, but they do not have an explanatory function
because they do not represent the real (actual) mechanisms underly-
ing the target phenomena.9

It is reasonable therefore to conclude that, according to this formu-
lation of the mechanistic view, scientific models of cognitive capac-
ities are explanatory to the extent and only to the extent that they
exhibit how-actually mechanisms. Moreover, given the explanatory
priority of the component parts of complex systems and the notion of
hierarchical mechanisms, there is a prima facie case for believing that
mechanistic explanation works essentially in a bottom-up fashion, by
specifying the lower-level mechanisms supporting the target higher-
level cognitive phenomena. The latter claim concerns the specific
type of explanatory structure associated with mechanism, but might
not necessarily be appropriate for characterising other features of the
mechanistic theorising and experimental practices.

Nevertheless, as will become more obvious in the following sec-
tions, this entailment of the mechanistic view seems to clash with
the idea that the mechanistic framework actually facilitates a series
of inter- and intra-level interfield integrations in the area of cognitive
science (Craver 2007). I aim to clarify the sources of this potential ten-
sion which lies at the heart of the mechanistic view, while defending
its valuable insights concerning the integration of particular hypothe-
ses developed at different levels of analysis of cognitive phenomena.

8 ‘How-actually models describe real components, activities, and organisational fea-
tures of the mechanism that in fact produces the phenomenon. They show how a
mechanism works, not merely how it might work.’ (Craver 2006b, p. 361)

9 ‘How-possibly models (unlike merely phenomenal models) are purported to explain,
but they are only loosely constrained conjectures about the mechanism that produces
the explanandum phenomenon. They describe how a set of parts and activities
might be organised such that they exhibit the explanandum phenomenon.[...] How-
possibly models are often heuristically useful in constructing a space of possible
mechanisms, but they are not adequate explanations.’ (ibid.)
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In the next section, I turn to analysing some of the most prominent
challenges that face the mechanistic model of cognitive explanation.

3.3 the limits of mechanism

This section challenges what I take to be an ambitious presupposition
underlying the applicability of the mechanistic conception of expla-
nation to cognitive science. More precisely, I argue that there is a
strong tendency in the mechanistic view of cognitive explanation to
claim that mechanism is the only genuinely explanatory framework
appropriate for the study of cognitive phenomena. This tendency is
transparent in two particular argument strategies utilised by mecha-
nists. First, there is the ‘what-else’ argument, according to which no
other framework except mechanism is able to provide a descriptively
adequate and normative picture of cognitive explanation (Kaplan and
Craver 2011; Craver 2007b). Second, mechanists also rely on an induc-
tive strategy by arguing that since mechanism has proven to be a ‘suc-
cessful’ explanatory strategy in certain branches of cognitive science,
then it must be possible to extend it to other domains as well (Craver
and Piccinini 2011). Together, the two types of arguments appear to
license, from a ‘local’ point of view, a general thesis about the wide
scope of mechanistic explanation within cognitive science.

3.3.1 Ontic mechanistic explanations

For the purpose of the following argument, I propose to distinguish
between: (i) a strong realist strategy, (ii) a moderate realist strategy,
and (iii) an epistemic strategy of defending the mechanistic view of
cognitive explanation. Although there is some variation in the ways
in which different mechanists present their position, I claim that most
of their arguments can be grouped under one of these three strate-
gies. My contention will be that none can support the bold presup-
position of the mechanistic account, viz. that mechanism provides
the only genuine explanatory framework appropriate for cognitive
science. However, I also show how one of these strategies can be in-
terpreted so that it reflects the important contributions of mechanism
to the study of certain aspects of cognitive phenomena.

The strong realist strategy is implicitly at work in some of the ar-
guments put forward by certain mechanist philosophers (e.g., Craver
2007b, 2012; Strevens 2008) and presupposes a broad metaphysical
picture of real mechanisms. On this account, any complex entity or
structure whose function is determined by the organised function-
ing of its component parts and activities counts as a mechanism.10

10 The standard characterisation of mechanisms is due to Machamer et al. 2000, who
write: ‘Mechanisms are entities and activities organised such that they are produc-
tive of regular changes from start-up to finish or termination conditions’ (3). For al-
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Thus, the metaphysical picture implicit in the mechanistic conception
is seemingly very plausible: it requires only a realist commitment
to entities and their activities that are organised together in order to
yield complex mechanisms whose overt behaviour they explain.

However, there seem to be two straightforward problems with this
‘thin’ mechanistic metaphysics. The first arises from an ambiguity
concerning the metaphysical status of mechanisms themselves. That
is, it is not entirely clear whether by ‘real’ mechanisms mechanists
mean particular or universal mechanisms. If the former, then it fol-
lows that mechanistic explanation is always explanation of a partic-
ular phenomenon/event.11 If the latter, then the strong realist com-
mitment towards universal mechanisms would be a form of realism
about abstracta which would not fit well with the mechanistic insis-
tence that mechanisms are things that can be manipulated and in-
tervened upon. This in turn further reinforces the idea that mecha-
nistic decomposition is primarily a tool for explaining particular oc-
currences of physical phenomena/events. Either way, it seems that
mechanists need to be more specific about which conception they
take to be correct before claiming that real mechanisms are the ones
doing the explanatory work in a scientific model or theory.

The second problem concerns the metaphysical consequences of
taking mechanisms to be the building blocks of nature (and the fun-
damental constituents of causation). On the assumption that mech-
anisms are the building blocks of nature, the mechanist seems to be
forced into one of the following two options. Either mechanisms go
all the way down and there is no fundamental level of mechanisms
that constitute the bare bones of natural phenomena, or there is a
fundamental mechanistic level at which explanation also stops and
is deemed to be complete. The first horn of the fundamental level
dilemma is arguably problematic because it presupposes that there is
no metaphysical basis of the hierarchy of mechanistic models. This
in turn seems to imply that there is no determinate way to establish
what mechanisms are real and explanatory with respect to the target
physical phenomena. The second horn of the dilemma assumes that
there is an ultimate mechanistic level to be discovered, presumably by
a future fundamental physics. Beside its being questionable whether
fundamental physics is in the business of discovering the mechanistic
structure of the world (cf. Schaffer 2003; Ladyman and Brown 2009;
McKenzie 2011), adopting this horn of the dilemma would still under-
mine the mechanistic explanatory relevance criterion simply because

ternative accounts which allow feedback loops and other forms of self-organisation
of the component parts and activities of a mechanism, see Abrahamsen and Bechtel
2006; Bechtel and Abrahamsen 2010, 2013.

11 Salmon (1989, p. 184), for instance explicitly says that mechanistic explanations are
local, ‘in the sense that they show us how particular occurrences come about; they
explain particular phenomena in terms of collections of particular causal processes
and interactions.’ (m.i)
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we do not yet have the mechanistic criteria provided by this future
fundamental science.12

In consequence, on both horns of the fundamental level dilemma,
one is left with an indeterminacy issue about how to determine the real
mechanisms that explain the observable cognitive phenomena. Oth-
erwise put, since neither solution to the fundamental level dilemma
is metaphysically unproblematic, mechanists have very good reasons
to avoid the strong realist strategy in promoting a mechanistic view
of cognitive explanation. I now turn to examining whether their mod-
erate realist strategy fares any better.

The moderate realist strategy is perhaps the most attractive mech-
anistic position. It starts from the description of the explanatory
practices of an important research community within cognitive sci-
ence (e.g., molecular neurobiologists) and it extracts from it a general
picture of the scientific explanation of cognitive phenomena. This
picture exploits two widely held assumptions about the structure of
explanation that depend crucially on the fact that most explanations
target complex systems. The first one is that explanations of com-
plex systems should be constitutive, i.e., they should exhibit the parts
that compose the complex system. The second assumption is that
the behaviour of a complex system will be intelligible in terms of
the behaviour of its component parts. Both assumptions express the
intuitive epistemological requirement that explanations make things
perspicuous by breaking them into smaller, more tractable pieces.

Unlike the previous strategy, the moderate realist strategy points
out that practising cognitive scientists and neuroscientists are in the
business of discovering the real mechanisms that underlie the observ-
able phenomena they want to explain. Although talk of ‘discover-
ing real mechanism’ may still be taken to have some metaphysical
undertones, mechanists often insist that the term ‘real mechanism’
merely stands for the kinds of things discovered, manipulated, and
controlled by practicing scientists. Moreover, they claim that taking
these experimental and theoretical practices at face value blocks any
serious skeptical arguments concerning the reality of mechanisms
posited in the course of scientific inquiry.

Despite the appeal of this move, there still seems to be a prima facie
tension between the moderate realist’s implicit unconditional reliance
on current scientific practice and the stricter criterion for mechanistic

12 It should be noted that the argument proposed against the mechanist’s strong realist
strategy does not depend on any particular stance that one might take with respect
to fundamentality questions in the physical sciences. The point being made is only
that under a strong realist reading of the mechanistic thesis one has a problem de-
termining which mechanisms are genuinely explanatory in the first place. However,
more generally, I take it that fundamentality questions (like any other ontological
questions) ought not to be settled a priori but should be a matter, where possible, of
empirical enquiry (cf. McKenzie 2011). This is in line with the underlying assump-
tion of the thesis that ontological questions/principles become operative when taken
in the context of particular (scientific) practices.

57



3.3 the limits of mechanism

explanatory relevance captured by the 3M constraint. The fact that
the mechanistic models developed in scientific practice are empirical
hypotheses means that they are falsifiable, which in turn implies that
a mechanistic model may be deemed to be explanatory at a certain
time but not later. Otherwise put, the exclusive reliance on scientific
practice does not guarantee that there is a decisive way of determin-
ing once and for all the explanatory power of a particular mechanistic
model.

In addition, there is another issue which indicates that adopting a
practice-based perspective might not suffice to solve the general prob-
lem of the explanatory relevance of the mechanisms discovered in the
course of scientific inquiry. Molecular biologists might discover the
real mechanisms underpinning the formation and propagation of ac-
tion potentials in nerve cells (cf. the Hodgkin-Huxley (1952) model
discussed in Craver 2006b, 2007b), but these in turn might be decom-
posed, and thereby explained, in terms of simpler biochemical mech-
anisms. The apparent problem follows from the two requirements im-
plicit in the mechanistic model of explanation, viz. that explanation
proceed in a bottom-up fashion and that only the more detailed mech-
anistic descriptions be deemed genuinely explanatory. For in light of
these requirements, only the lower-level mechanistic model (i.e., the
biochemical one) seems to count as genuinely explanatory. However,
this conflicts with the mechanistic analyses of molecular approaches
in cognitive science (Craver 2007b; Bechtel 2008; Bechtel and Richard-
son 1993/2010), according to which molecular mechanisms can also
be taken to explain a range of appropriately circumscribed cognitive
phenomena.

As will be shown below, there is a way of avoiding both of these is-
sues by appealing to the idea that mechanistic explanations are in fact
multilevel integrated accounts of the phenomena they are supposed
to model. Before considering how the notion of piecemeal intra- and
inter-level integration is supposed to work (in principle) in a domain
such as cognitive science, I will consider another strategy for promot-
ing the mechanistic conception of cognitive explanation which offers
further clues about how to interpret, in the most profitable way pos-
sible, the mechanistic view of explanation.

3.3.2 Epistemic mechanistic explanation

Whereas proponents of the realist strategies hold that mechanistic ex-
planation essentially involves fitting a phenomenon into the causal
structure of the world (e.g., Salmon 1984a; Craver 2007b, 2012), de-
fenders of the epistemic strategy (e.g., Bechtel 2008; Wright 2012) em-
phasise the fact that explanation is a human activity which is primar-
ily concerned with understanding the phenomena being investigated.
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For instance, Bechtel (2008, p. 18) explicitly states that: ‘[e]xplanation
is fundamentally an epistemic activity performed by scientists.’13

There are two important corollaries of the epistemic strategy of
defending mechanism. Firstly, the epistemic view entails that the
construction and evaluation of good mechanistic explanations of spe-
cific cognitive phenomena depends to a significant extent on the aims
and purposes of particular research communities (e.g., molecular neu-
robiologists, computational neurobiologists and cognitive scientists,
etc.). This seems to provide one potential solution to the puzzle
raised above concerning the explanatory power of alternative mecha-
nistic models. For the evaluation of the explanatory value of specific
mechanistic models would have to take into account the distinct aims
pursued by different research communities which develop mechanis-
tic models/descriptions at different levels of abstraction. Secondly,
under the view that mechanistic explanation is a complex epistemic
activity, pursued by many scientists, it has been argued that mathe-
matical objects should be treated as part of mechanistic explanations
proper (Abrahamsen and Bechtel 2006; Bechtel and Wright 2007). Oth-
erwise put, since these abstract tools are required in order to make
tractable complex cognitive phenomena, defenders of the epistemic
strategy have insisted that they should be viewed as an integrative
part of dynamic mechanistic explanations (Bechtel and Abrahamsen
2010, 2013; Bechtel 2011).

In response, proponents of the realist or ontic view of mechanistic
explanation have argued that the epistemic strategy makes mechanis-
tic explanations depend too much on the interests and goals of partic-
ular research communities, which in turn undermines their objectiv-
ity (e.g., Craver 2012). Realists claim that the epistemic strategy trans-
forms mechanism into a relativist position that assigns an explanatory
role to almost any mechanistic model that satisfies some set of suit-
able epistemic constraints. In addition, realists insist that mathemati-
cal tools play only a heuristic role in circumscribing and/or describ-
ing the cognitive patterns to be explained by the causal mechanisms
exhibited by how-actually mechanistic models. The implicit assump-
tion underlying this argument seems to be that the main strength
of explanatory mechanism within the cognitive domain consists in

13 The contrast between the two conceptions can be made more acute by pointing out
that, on the ontic conception, mechanistic explanations are ‘objective portion[s] of
the causal structure of the world, [...] the set of factors that bring about or sustain a
phenomenon.’ Or, ‘objective explanations are not texts; they are full-bodied things.
They are facts, not representations’ (cf. Craver 2007b, p. 27). On the other side, for
proponents of the epistemic conception, mechanistic explanations are texts, or de-
scriptions that aim to increase our knowledge of observable phenomena. They write
that: ‘[o]bviously, knowledge of how things work is an epistemic matter if anything
is, which is just to say that analysis of mechanistic explanatory texts properly re-
quires a broadly epistemic conception of mechanistic explanation’ (cf. Wright 2012,
p. 382).
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its commitment to the existence of certain (types of) neurobiological
mechanisms.

My contention is that the moderate realist strategy need not, and in-
deed should not, confine the explanatory value of mechanistic models
exclusively to their biological realist commitments. The main insight
of the moderate realist is that ontic principles play a crucial role in the
development of (good) mechanistic explanations. Still, this need not
exclude the possibility that other epistemic constraints or principles
might play an equally important role in constructing and evaluating
mechanistic models of particular cognitive phenomena. In fact, grant-
ing that the construction and evaluation of particular explanations
of cognitive phenomena is a complex epistemic activity, ontological
principles can be viewed as things that must be assumed in order for
the explanatory practices to get off the ground. As such, ontological
principles reflect the way in which explanation is connected to other
scientific activities such as measurement, control, and confirmation,
that complement the scientific investigation of cognitive phenomena.

In a nutshell, the proposal is to conceive the moderate realist strat-
egy as a way of emphasising the norms and principles that guide the
practice of building and evaluating mechanistic models of specific
cognitive capacities. These include both ontic commitments to the
parts and activities of complex mechanisms detected with the help
of existing experimental tools and techniques, as well as epistemic
principles reflecting the knowledge, interests, and aims of different
groups of researchers. As Phyllis Illari (2013) has pointed out, this
reinterpretation of mechanism helps to resolve the apparent tension
between realist/ontic and epistemic conceptions of mechanism, while
preserving the core structure of mechanistic explanation.

Another important consequence of the proposed reconstruction of
the moderate realist view of mechanistic explanation is that it shows
that the normative constraints identified by mechanist philosophers
are essentially tied to specific systems of scientific practice (i.e., the-
ories, research programmes). For this reason, they cannot be taken
to determine the necessary and sufficient conditions for something
to count as a good explanation of a particular cognitive phenomenon
tout court. This casts some doubt on the claim that mechanism can
offer a general unifying framework for the different styles of explana-
tion deployed in cognitive science. Therefore, contra the strong mech-
anistic contention, I claim that the explanatory value of a particular
scientific theory/model ought not to be equated to a set of existen-
tial claims about the mechanisms (their component parts, properties,
and activities) underlying a particular cognitive capacity. Instead, the
reinterpreted moderate realist strategy which stresses the normative
role played by specific ontological principles provides a better, non-
polarised philosophical perspective on the practice of constructing
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and evaluating a particular style of explanatory models of cognitive
capacities.

The above arguments suggest a shift of emphasis away from the
idea that mechanism can offer a general account of cognitive explana-
tion and towards the analysis of the different scientific activities that
yield potentially explanatory models of specific cognitive phenomena.
This move implies that mechanistic models offer only partial accounts
of the cognitive phenomena they are intended to explain. However,
this partiality does not derive from the notion that a complete ex-
planatory theory of cognition is only an ideal that guides scientific
inquiry (cf. Railton 1989; Craver 2007b). Rather, I take the partiality
of mechanistic explanation to follow from recognising that there are
other proper explanatory strategies/schemas that can be used in the
investigation of various aspects of cognition.

I turn next to a paradigmatic example of scientific modelling used
in neurocognitive research (the Difference-of-Gaussians (DOG) Model
of visual spatial receptive field organisation) in order to show how
the explanatory value of abstract models can also be justified inde-
pendently of mechanism in light of current neuroscientific practice.

3.4 non-mechanistic models revisited

It has been argued above that the explanatory power of mechanistic
models/theories consists in the specification of the organised interac-
tion of the component parts and activities of the mechanisms that un-
derlie the cognitive phenomena being modelled. As such, mechanism
has been taken to challenge the claim that dynamical system theory,
with its focus on mathematical models of cognitive phenomena, can
provide an adequate account of cognitive explanation (Chemero and
Silberstein 2008; Stepp, Chemero, and Turvey 2011). In what follows,
I propose to draw on the analysis of the DOG model to articulate a
series of important lessons about the roles of mathematisation in the
study of cognitive phenomena which will also shed light on the ex-
planatory claims of dynamical systems theorists. The model analysed
below is part of an important area of research in vision studies that
focuses on building robust models of receptive field structures that
can explain neuronal responses to different classes of visual stimuli.

3.4.1 The Difference-of-Gaussians Model of Visual Spatial Receptive Field
Organization

One general aim of vision studies is to offer an account of how the
visual system extracts structure out of the information received from
the external environment. In particular, it aims to provide an account
of how the visual system is capable of performing tasks such as edge
detection, shape, or colour perception. In order to say how the visual
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system performs these complex tasks, researchers study more basic
properties of components of the visual system, like the selectivity of
each early visual neurone to movement, line orientation, and other
features of the visual stimuli. The selectivity of each of these neural
cells to such parameters is in turn determined to a great extent by
the structure of the neurone’s receptive field. Roughly put, a cell’s
receptive field is a restricted region of visual space where a luminous
stimulus could change the cell’s level of activation.

The DOG model was proposed by Rodieck (1965) to characterise
the structure of the receptive fields of a class of neurones which play
an important role in early vision, namely ganglion cells. These cells
gather signals from multiple photoreceptors and transform them into
trains of action potentials which in turn propagate to various areas in
the visual cortex. A distinctive feature of ganglion cells is that they
have small receptive fields with a simple organisation, which resem-
bles two concentric circles, usually known as the centre-surround or-
ganisation. This organisation is primarily responsible for the selectiv-
ity of ganglion cells to certain features of the visual stimuli. There are
two types of ganglion cells: ON-centre retinal ganglion cells respond
to light spots surrounded by dark backgrounds, whereas OFF-centre
retinal ganglion cells respond to dark spots surrounded by light back-
grounds. As a first step, Kuffler (1953) modelled the receptive fields
of ganglion cells as two distinct, concentric, and mutually antagonis-
tic regions. Then, Rodieck (1965) characterised their structure as the
arithmetic difference between two Gaussian functions, as follows:

F(x, y) = A1
2πσ2
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2σ2
2
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The two terms of this function represent the ON-centre component of
the response (the relative change in firing rate after stimulation, also
known as the sensitivity distribution) and the opposite-signed OFF-
centre surrounding component. The coefficients A1 and A2 mark the
peak local sensitivity of the centre and of the surround, respectively,
while σ1 and σ2 correspond to the width parameters of the two Gaus-
sian envelopes of the centre and surround.

A series of features of the DOG model are relevant for assessing
its scope and explanatory function. Firstly, Rodieck (ibid.) had not
constrained his mathematical description so that the variables in the
DOG model may be mapped to identifiable components, organisa-
tional features, and operations of the synaptic mechanisms producing
the spatial organisation of the cells’ receptive fields. Partly because of
this, it was possible to show that the model is compatible with a series
of (how-possibly) underlying mechanisms (e.g., Cohen and Sterling
1991; Einevoll and Heggelund 2000). Also, due to the same sort of
mechanistic indeterminacy, the model cannot be taken to provide a
complete explanatory account of why ganglion cells respond in the
way that they do to retinal inputs. That is, the mathematical model
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does not provide any insight or information about how synaptic or
molecular mechanisms contribute to the ganglion cells’ selectivity to
specific features of the visual stimuli.

However, on the positive side, the model exhibits the relevant pa-
rameters on which the spatial organisation of the retinal ganglion
cells’ receptive fields depends, viz. the shape of the sensitivity dis-
tributions for the two main regions of the cell. In doing so, it rules
out a variety of other parameters which would appear in a complete
description of the specific response of ganglion cells to retinal inputs,
viz. their shape, size, and the number of corresponding photorecep-
tors. The model also characterises the specific dependence relation
between the response profiles of the two components of the spatial
receptive field, viz. the centre and the surrounding. This dependence
relation is the dominant feature of the receptive field structure in
virtue of which one can then account for the observed selectivity of
retinal ganglion cells to particular features of the visual stimuli.

Moreover, the DOG model has been tested on a variety of differ-
ent stimuli, including circles, moving bars, and sinusoidal gratings
(Einevoll and Plesser 2005) and it has been extended to characterise
the spatial field organisation of certain visual cells in dLGN (Dawis
and Tranchina 1984). As such, the model can be taken to identify a
very general feature of certain classes of neural cells in the retina and
the thalamus in virtue of which these cells are responding selectively
to particular features of the visual stimuli.

Despite its capacity to characterise accurately the target pattern in
early visual processing - viz., the specific sensitivity distributions of
retinal ganglion cells - and to license new predictions about the pro-
file responses of other types of neural cells, mechanists claim that
the DOG model does not play any explanatory role in vision studies
(cf. Kaplan and Craver 2011). Contra dynamicists, they claim that
the features emphasised above (empirical adequacy, unificatory, and
predictive power) do not suffice to make a cognitive model genuinely
explanatory.14 In addition, they claim that the model should satisfy
the standards expressed in the model-to-mechanism-mapping (3M)
constraint. In order to strengthen their point, Kaplan and Craver
(2011) claim that the mathematical DOG model can be turned into a
genuinely explanatory mechanistic model by adding information about
the anatomical connections between retinal ganglion cells and the
photoreceptors whose signals they are sensitive to. They state that:
‘[t]he explanatory step will clearly involve understanding neuronal
morphology and the synaptic connections in the retina and perhaps

14 For instance, Stepp, Chemero, and Turvey (2011, p. 435) characterise the explana-
tory function of dynamic models precisely along these lines when they write that:
‘dynamical systems models provide law-like explanations, support counterfactuals,
and allow predictions that can be used to guide future experimental research; the
best dynamical models can be used to unify disparate phenomena, capturing them
under a single explanatory scheme.’
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the developmental processes by which such functional relations are
constructed, elaborated, and maintained’ (Kaplan and Craver 2011,
p. 621).

3.4.2 Mathematical models and explanatory structure

I agree with Kaplan and Craver (ibid.) that current formulations of
the dynamicist account of cognitive explanation run the risk of be-
ing conflated with predictivism, i.e., the view that the explanatory
value of a model/theory derives from its descriptive and predictive
power. Nevertheless, I believe that there is a way to vindicate the dy-
namicist intuition according to which certain abstract models explain
particular aspects of their target cognitive phenomena without invok-
ing the causal mechanisms that produce or support them. In a nut-
shell, the proposal is that abstract (including mathematical) models
are explanatory if they reveal certain features of the target cognitive
patterns/phenomena which count as being more fundamental than the
ones identified in the description of the explanandum. In addition,
one should be able to specify a number of steps through which the
explanandum is linked to the more fundamental structure specified
by the explanans. Although a more precise characterisation of the no-
tion of fundamentality implicit in this conception of explanation will
have to be postponed for the last chapter of the thesis, a preliminary
definition should suffice to clarify the present point.

On the view I put forward, the structure postulated by the ex-
planans of a particular explanation is more fundamental than the
explanandum if it can be used to support a set of relevant counter-
factual generalisations pertaining to the phenomenon being investi-
gated, and generate further structures/concepts which yield insight
and understanding of that phenomenon. Whilst what is fundamen-
tal is standardly defined as that which is ontologically dependent
on nothing else, on the proposed view something counts as being
more fundamental only against the background of a particular system
of knowledge (embodied in a scientific theory and/or experimental
practice). This conception of fundamentality is intended to reflect the
idea that ontological dependence relations/principles become opera-
tive only when considered in the context of specific scientific practices.
Thus, in different investigative contexts, different ontological princi-
ples might turn out to be relevant for determining what counts as the
more fundamental structure of the system/phenomenon being inves-
tigated. Moreover, this conception implies that there is no way of
determining either a priori or in an absolute sense what counts as the
more fundamental, and thereby the explanatory structure that would
help elucidate a given target phenomenon.

Now, if the concepts/structures used to characterise, in a particu-
lar stepwise fashion, certain fundamental features of a target cogni-
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tive phenomenon have a distinctive mathematical character, then that
cognitive explanation is adequately characterised as a mathematical
explanation. The mathematical explanation would thus show a way
to connect the description of the cognitive phenomenon provided by
the explanandum with the fundamental feature identified and char-
acterised by the mathematical model. In other words, an explanatory
mathematical model is one that shows that certain features of a cog-
nitive system (specified by the explanandum) hold in virtue of other
more fundamental (mathematical) features that can be determined
independently from the specification of any particular causal laws or
mechanisms.

This latter characterisation of the source of the explanatory power
of cognitive mathematical models also allows us to appreciate the
sense in which mathematical (e.g., dynamic systems) models are non-
causal forms of explanation. These models are non-causal because
they do not work by providing information about a given cogni-
tive phenomenon’s causal history, or about the causal mechanisms
through which the modelled phenomenon is embedded in a larger
network of causal relations. As pointed out previously, the original
DOG model (Rodieck 1965) had not been constrained so as to reflect
the causal mechanisms underlying the selective response of ganglion
cells to multiple photoreceptors. This and other mathematical mod-
els are potentially explanatory in virtue of the fact that they show
that the cognitive pattern to be explained holds in virtue of a fea-
ture which does not correspond to any specific causal property or
process but rather is more fundamental than the features exhibited
by the underlying causal mechanisms. The advantage of this charac-
terisation of the potential explanatory value of mathematical models
of cognitive phenomena is that it is compatible with the features of
dynamical systems models discussed in the literature, namely the ca-
pacity to support counterfactual generalisations, to guide experimen-
tal research, and to unify apparently disparate phenomena (cf.Stepp,
Chemero, and Turvey 2011).

However, the proposed formulation constitutes an extension of ex-
isting accounts insofar as it does not equate the explanatory value of
mathematical models either with their predictive or their unificatory
power. Rather, it highlights the fact that cognitive explanations that
make an essential appeal to mathematical concepts are one possible
way of structuring our knowledge of cognitive phenomena which af-
fords a better understanding of some of their features (just like mecha-
nistic decompositions are yet another way of achieving a similar goal,
as will be argued below). In light of these considerations, I claim
that mathematics does sometimes play a genuine explanatory role in
cognitive modelling.

Nevertheless, claiming that certain uses of mathematics in cogni-
tive modelling have an explanatory value does not necessarily rule
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out there being other aspects of mathematisation that are consistent
with the mechanistic model of explanation. For instance, Kaplan
and Craver (2011, p. 605) point out that ‘mechanisms are often de-
scribed using equations that represent how the values of the compo-
nent variables change with one another.’ They take such mathemat-
ical descriptions to be useful tools for ‘characterising complex inter-
actions among components in even moderately complicated mecha-
nisms.’ Bechtel (2011) also recognises that mathematical tools are in
some cases indispensable for making tractable certain complex cog-
nitive phenomena, and that, for this reason they should be treated
as proper parts of dynamic mechanistic explanations. Note that al-
though Bechtel seems inclined to admit the explanatory contributions
of mathematical concepts to the understanding of empirical (cogni-
tive) phenomena, he does not provide a separate analysis of how
these mathematical structures get to play these explanatory roles in
the first place. Moreover, his insistence that mathematical structures
should be ‘integrated’ in mechanistic explanations of cognitive phe-
nomena brings him closer to Kaplan and Craver’s (2011) contention
that mathematics plays a merely heuristic role in the development of
genuinely explanatory mechanistic models.

Since an important target of this chapter has been to identify and
criticise the ambitious assumption that mechanism provides the sin-
gle most appropriate framework for explaining cognition, I now con-
sider briefly the main motivation that seems to underpin the mecha-
nistic resistance to acknowledging the explanatory role of certain ab-
stract (e.g., dynamical) models of cognition. In short, it seems that the
standard realist construal of mechanistic explanation (Craver 2007b,
2012) introduces an artificially strong distinction among the notions
and tools used in day-to-day scientific explanative activities. More
specifically, it generates a strong dichotomy between abstract mathe-
matical structures used as tools in scientific modelling and other the-
oretical posits such as complex entities, activities, and forms of organ-
isation of purported mechanisms. Tacitly endorsing this metaphysi-
cal polarisation, mechanists deny the potential explanatory value of
mathematical models, insisting that it would require a problematic
ontological commitment towards the abstract structures posited by
particular mathematical models. According to the realist, the explana-
tory value of mathematical scientific models would be secured only
via a Platonist commitment to the abstract (mathematical) entities
posited by the models in question.

It should be clear from the arguments provided so far that an ad-
vocate of the explanatory value of mathematical models of cognition
need not be a realist about mathematical or other abstract entities. If
the explanatory function of a mathematical model consists in show-
ing how a given cognitive pattern arises in virtue of a (more) fun-
damental non-causal feature of the system under investigation, then
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one should not be forced to pursue the justification of the explanatory
value of that particular model beyond this step. This is essentially be-
cause, on the proposed conception, the existence or non-existence of
the mathematical objects used to capture a fundamental feature of
the (cognitive) system being investigated does not add anything to
the explanatory structure of the mathematical model.

This line of reasoning reflects an important feature of the account
of cognitive explanation that emerges from the present investigation,
namely that there is no sharp categorial division between the dif-
ferent tools and concepts used by scientists in developing good ex-
planatory models of concrete (physical) phenomena. If explanation
essentially involves exhibiting, unfolding, and connecting salient fea-
tures/patterns in the functioning of complex physical systems, then
it should not be contentious that these regularities might be captured
(sometimes exclusively) at specific levels of abstraction (e.g., mathe-
matical). For instance, in the case of the DOG model, the explanans
consists in a specific, highly general pattern that emerges in the or-
ganisation and functioning of retinal ganglion cells. The postulated
pattern explains the specific selectivity of this class of neuronal cells
to certain features of the visual stimuli.

Assuming that the proposal sketched in this section is on the right
track, I take it to indicate a potentially fruitful strategy for mitigating
the claim that mechanism constitutes the single appropriate explana-
tory framework for cognitive science. More precisely, this strategy
is based on two ideas which have played an essential role in the ar-
guments developed so far. First, I have insisted that the explanatory
value of a model depends on whether it succeeds in creating a link
between the characterisation of a particular cognitive phenomenon
(the explanandum) and the characterisation of a more fundamental
aspect of that target phenomenon (the explanans). Thus, on the pro-
posed account, cognitive explanations create a specific type of connec-
tion between different ways of conceiving certain aspects/features of
a given cognitive phenomenon. From this ‘epistemicised’ view of cog-
nitive explanation, it follows that existential or realist commitments
ought not to be equated with the explanatory value of particular mod-
els/theories of cognition.

Second, conceiving of explanation as an epistemic activity rather
than as a metaphysical link connecting different types of entities
or structures in the world allows us to appreciate that the practice
of constructing (good) scientific explanations of cognitive phenom-
ena involves a network of scientific activities, which can vary with
the type of explanatory structure proposed by a particular scientific
model/theory. Thus, in the case of mechanistic models of cognitive
capacities, the relevant epistemic activities which contribute to the
construction of good mechanistic explanations include various ma-
nipulation, control, and confirmation techniques which increase the
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evidential support for the entities and activities postulated by spe-
cific mechanistic models. However, potential mathematical explana-
tions of cognitive patterns/phenomena need not be connected in the
same way or with the same type of epistemic activities involved in
validating mechanistic explanations of cognitive capacities. Nor is
the relation between mathematical and mechanistic explanations of
cognitive capacities always one of competition. As will be argued
below, the proposed picture of the roles of mathematisation in cogni-
tive research, albeit sketchy, helps to solve some of the inconsistencies
which threaten the mechanistic picture of cognitive explanation.

3.5 mechanisms and more

As stated in the introduction, the mechanistic view of explanation
has a series of appealing features which seem to recommend it as
a general philosophical picture of the explanatory strategies used
across the various sub-branches of cognitive science (cf., Craver 2007b;
Craver and Piccinini 2011). In this final section, I revisit these advan-
tages in light of the critical analysis developed above and respond
to some additional objections which take into account the norma-
tive character and integrative potential of the mechanistic account
of cognitive explanation. In replying to these concerns, I aim to pro-
vide additional support and motivation for: (i) the argument strat-
egy adopted in this chapter, and (ii) a more cautious endorsement of
mechanism as one of the multiple explanatory frameworks used in
the study of cognitive phenomena.

3.5.1 Final objections and replies

The distinctive feature of mechanistic explanations of cognitive ca-
pacities is that they are a type of constitutive de-compositional expla-
nation which accounts for the behaviours of (that is, functions per-
formed by) complex cognitive systems in terms of their parts, their
properties, and their organised interactions (e.g., Craver 2007b; Bech-
tel 2008; Kaplan 2011; Kaplan and Craver 2011; Craver and Piccinini
2011). Section 3 distinguished between three major strategies for de-
fending a mechanistic view of cognitive explanation: (i) a strong real-
ist strategy, (ii) a moderate realist strategy, and (iii) an epistemic strat-
egy. I have shown that the strong realist strategy (e.g., Craver 2006b,
2007b, 2012) confronts a series of difficult problems primarily because
it equates the explanatory value of mechanistic models/theories of
particular cognitive phenomena to the existential claims about the
mechanisms which underlie those cognitive phenomena. Whilst the
epistemic strategy (Bechtel and Richardson 1993/2010; Bechtel 2008,
2011) seems to provide a more adequate perspective on the scientific
practices of constructing explanatory mechanistic models/theories of
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cognitive phenomena, it has nevertheless been criticised for being too
permissive with respect to the factors that count as having a gen-
uine explanatory function in such modelling contexts. The analysis
of these two strategies led to an interpretation of the moderate realist
strategy which represents it as the most compelling way of defend-
ing the explanatory contributions of the mechanistic framework to
the study of cognitive phenomena.

The proposed interpretation aims to vindicate the intuition that
part of the appeal of the mechanistic view of cognitive explanation
resides in its biological realist commitments. Most mechanists stress
the fact that the explanatory value of mechanistic models of cogni-
tive capacities is strongly related to their biological plausibility. For
this reason, they hold that cognitive models/theories which do not
make any direct claim concerning the biological plausibility of the
theoretical entities and relations that they postulate in accounting for
different aspects of cognitive processing are not genuinely explana-
tory. In response, I have argued that there are good reasons to doubt
that the biological plausibility (or existence) criterion per se will guar-
antee the explanatory value of particular cognitive theories/models,
whether mechanist or not. This is primarily because the proposed
models/theories have to confront: (i) the incompleteness of our cur-
rent biological knowledge, and (ii) the empirical underdetermina-
tion of any model/theory of a complex empirical (cognitive) phe-
nomenon.

At this point, the mechanist might insist that biological realist com-
mitments go hand in hand with the decompositional and constitutive
character of mechanism, playing an essential role in distinguishing
good from bad mechanistic models of cognitive capacities. In con-
sequence, they should not be omitted from an account of the mech-
anistic model of cognitive explanation. In line with this intuition,
the proposed reconstruction of the moderate realist view of mech-
anistic explanation articulated in section 3.2 has shown that these
sort of biological commitments can be viewed as ontic constraints
or norms which, alongside additional epistemic constraints, guide
the construction of good mechanistic models of specific features of
cognition (cf. Illari 2013). However, given that these constraints are
embedded in a network of specific experimental and theoretical prac-
tices, they ought not be taken to constitute global norms for all types
of approaches devised to study cognitive phenomena. Instead, they
should be viewed as ‘local’ norms that help scientists establish which
of the proposed mechanistic decompositions offers an adequate ex-
planation of the phenomena being investigated at a particular level
of analysis and/or abstraction.

Recognising that ontological principles play this sort of ‘local’ nor-
mative role in guiding the practice of constructing particular mod-
els of cognitive phenomena helps resolve the tension between the
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bottom-up character of the decompositional strategy associated with
the mechanistic framework and the idea that there are multiple mech-
anistic decompositions that count as explanatory at different levels
of analysis and/or abstraction (i.e., cellular, molecular, biochemical,
etc.). Thus, instead of viewing mechanistic ontological commitments
as abstract constraints which determine what counts as explanatory
for all times and in all contexts, I propose to adopt a strategy which
identifies the different ontological principles on which the explana-
tory practices of different groups of scientists rely. This interpreta-
tion not only recovers the most important results of the philosophi-
cal analyses of mechanistic models/theories of cognitive phenomena,
but also reflects the inherent limitations of applying the mechanistic
framework to the study of cognition.

Some mechanists have proposed circumventing these purported
limitations by emphasising the integrative potential of the mechanis-
tic framework (Craver 2007b; Craver and Piccinini 2011). They have
claimed that mechanism provides the most appropriate template for
integrating the cognitive hypotheses and/or theories developed at dif-
ferent levels of analysis or abstraction. That is, as a type of decompo-
sitional constitutive analysis, mechanistic models have been taken to
cover a variety of levels of analysis or abstraction. The mechanistic de-
compositions developed at each of these distinct levels of abstraction
are in turn said to be constrained by both top-down and bottom-up
considerations, and by specific theoretical and experimental princi-
ples concerning the spatial, temporal, and active organisation of the
components postulated by these different mechanistic models.

Mechanists acknowledge that these componential, spatial, tempo-
ral, and active constraints vary from one level of analysis to another.
For example, within the different fields which contribute to memory
and LTP research, electrophysiologists investigate whether individual
synapses are silent or active, focusing on the time-course of electrical
activities in nerve cells, biochemists focus on chains of reactions in the
cytoplasm, enzyme kinetics and reaction rates, molecular biologists
analyse the mechanisms for protein production, while psychologists
study rates of learning and forgetting. Each of these fields is taken
to possess a series of specialised experimental and theoretical tools
which are used in order to develop accounts of specific cognitive pat-
terns/phenomena at different levels of analysis and/or abstraction
(cf. Craver 2007b).

However, beyond this methodological autonomy, mechanists argue
that it is possible to conceive of the investigative efforts of these differ-
ent communities of researchers as aiming towards the construction of
an integrated multilevel mechanistic theory of cognition. This is sup-
posed to be achieved by the intra- and inter-level integration of the
different models and hypotheses developed within the distinct sub-
branches of cognitive science. What is taken to secure the integration
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of these distinct models is precisely the decompositional and consti-
tutive nature of mechanism as well as the fact that models developed
at different levels of analysis have to continuously accommodate both
top-down and bottom-up constraints. The proposed mechanistic con-
ception is one which promotes multilevel integrated mechanistic ex-
planations of specific cognitive capacities.

Now, the general objection I would like to raise against what seems
to be a very attractive picture of the aims pursued in the different
fields of cognitive science is that if unification is treated as an index
of explanatory power, the mechanistic conception runs the risk of
conflating two distinct epistemic virtues of cognitive theories/models.
Moreover, by overemphasising the integrationist or unificatory poten-
tial of the mechanistic framework, its advocates risk blurring the cri-
teria for determining the explanatory value of particular mechanistic
models of cognitive phenomena.

For instance, it is not entirely clear whether, from a mechanis-
tic unificationist perspective, higher-order models of cognitive capac-
ities would also count as proper explanations of cognitive capaci-
ties. We have seen that, according to the mechanistic account, only
how-actually mechanistic models of cognitive capacities count as gen-
uinely explanatory. But how-actually mechanisms are the ones that
satisfy as many ontic and epistemic constraints as possible, and higher-
order or abstract models (mechanistic or not) would appear to satisfy
fewer constraints than lower-level mechanistic models do. This is pri-
marily why I have claimed that the multilevel model of mechanistic
explanation does not settle the question whether abstract (mathemat-
ical) models can play a proper explanatory role in the investigation
of cognitive phenomena.

This internal tension lies at the heart of the mechanistic position.
Although mechanists acknowledge that models/theories developed
at different levels of analysis are governed by different epistemic
and ontic principles, they also imply that only concrete how-actually
mechanistic models are appropriate candidates for cognitive expla-
nations. This contravenes the alleged pluralism entailed by the pic-
ture of multilevel mechanistic explanations of cognitive capacities (cf.
Craver 2007b; Craver and Piccinini 2011). A genuine pluralist position
would attempt to characterise the structure of explanatory models of
cognitive capacities in terms that are metaphysically as neutral as
possible. Furthermore, an explanatory pluralist position in cognitive
science would have to accommodate a wider range of pragmatic and
epistemic interests that might guide the development of explanatory
models/theories of cognition than the ones which are standardly as-
sociated with the mechanistic framework. In consequence, a position
that does not attempt to reduce prematurely (i.e., a priori) the plural-
ity of the explanatory schemas used at different levels of analysis of
cognitive phenomena would have to count the mechanistic strategy
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as merely one of the potential schemas that can be used to develop
explanatory models of particular aspects of cognitive phenomena.

3.5.2 Lessons from mechanism

I conclude by summarising the main lessons that follow from this crit-
ical analysis of the mechanistic model of cognitive explanation. First,
I have shown that the unrestricted extension of mechanism as the sin-
gle explanatory category appropriate for the cognitive domain faces
a series of difficult challenges. Whilst mechanists standardly appeal
to the unificatory or integrative power of the mechanistic framework
to sidestep some of these issues, I have argued that this strategy ulti-
mately generates even more indeterminacy with respect to the criteria
for evaluating the explanatory value of particular mechanistic mod-
els/theories of cognitive phenomena. Instead, mechanistic explana-
tions are better viewed as one type of cognitive explanation which
is both decompositional and constitutive. Mechanistic explanations
reveal in a stepwise fashion certain fundamental features of the cog-
nitive phenomena being investigated and are constrained by a series
of specific (local) ontic and epistemic principles or norms.

Second, the arguments developed in this chapter show that there
are good reasons to resist adopting a strong realist (ontic) perspec-
tive on the problem of cognitive explanation. Abstract ontological
commitments to ‘real’ mechanisms that underlie observable cogni-
tive phenomena generate a number of hard metaphysical puzzles. In
addition, this sort of abstract metaphysical commitment to mecha-
nism seems to be an ineffective (conceptual) tool for assessing the
explanatory value of current scientific models and/or theories. In
other words, the strong ontic constraint seems to be too far removed
from the scientific practice to be relevant for the evaluation of partic-
ular models and theories of specific cognitive capacities or processes.
Instead, the proposed moderate realist view of mechanistic explana-
tion is consistent with the idea that the pursuit of mechanistic models
of cognitive capacities is methodologically and epistemically possible
and welcome, even in the absence of a mechanistic metaphysics of
the mind.

And, finally, conceiving of mechanistic explanation as a complex
epistemic activity, that is constrained by both ontic and epistemic
considerations, entails that mechanistic explanations of cognitive phe-
nomena are essentially partial. In other words, if constructing good
mechanistic models of particular cognitive phenomena depends on
the ontological and epistemic constraints one endorses in a particu-
lar investigative practice, there is no general way of establishing that
all features of cognition will be explainable via the same mechanistic
strategy. That is, from a moderate realist standpoint, there might well
be aspects of the cognitive phenomena being investigated which are
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not amenable to a mechanistic analysis at all. The adoption of a more
modest mechanistic perspective is consistent with the idea that there
are aspects of cognitive phenomena which are appropriately investi-
gated and explained with the help of other types of tools than those
made available by the mechanistic framework.

This brings us to a more general observation which motivates the
investigations pursued in the following chapters of the thesis. As
with any other broad field of scientific investigation, cognitive sci-
ence aims to give an account of a variety of cognitive phenomena that
spans different levels of analysis or abstraction. The various research
projects carried out within cognitive science seek to advance our un-
derstanding of general features of cognition, such as: the productivity,
systematicity, and inferential coherence of language and thought or
the relation between visual processing and abstract reasoning tasks,
and the role of affective responses for short and long term decision
making, as well as of how different parts of the nervous system re-
act to certain types of internal or external stimuli or of the various
patterns of nervous activity which can be observed in different re-
gions of the brain, and of other cellular, molecular, and biochemical
patterns observed in the functioning of nervous systems. A general
concern, then, stemming from this analysis, is whether all of these
cognitive phenomena/patterns can be captured and explained via
the sort of decompositional and constitutive analysis characteristic of
mechanism.

This point relates to another important question discussed in this
chapter, concerning the explanatory value of abstract (mathematical)
models of cognitive phenomena. I have argued that there are con-
texts in which a mathematical structure can be said to play a proper
explanatory role with respect to a given cognitive phenomenon. Its
explanatory value depends on whether the abstract (mathematical)
structure/concept is able to characterise certain fundamental features
of the phenomenon under investigation. Although this proposal needs
to be articulated in more detail, drawing on the discussion from sec-
tion 4, I claim that the hypothesis being put forward is consistent with
the idea that, in other scientific contexts, abstract models are com-
plemented by mechanistic hypotheses, yielding explanatory models
which capture other fundamental features of the target phenomenon.

Whilst the explanatory structure of a mechanistic model consists in
its constitutive and decompositional features, the justification of the
components and activities postulated by an explanatory mechanistic
decomposition depends on the ontic and epistemic norms which con-
nect the explanation of a particular cognitive phenomenon to other
theoretical and experimental activities relevant for the investigation
of that particular phenomenon. This connection has led some mech-
anists to claim that the explanatory value of mechanistic models of
cognitive phenomena derives in part from their biological plausibility.
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In response, I have argued that it is a mistake to conflate the two is-
sues. One prima facie reason for resisting this conflation is that claims
of biological plausibility are relative to the current state of our bio-
logical knowledge which might change (or be partly falsified) in time
as our understanding of biological phenomena advances. A more ro-
bust mechanistic account of cognitive explanation must distinguish
between the explanatory structure of mechanistic models and the ‘lo-
cal’ norms (ontic and epistemic) that guide the construction of better
mechanistic models. Nevertheless, as we will see in the following
chapters, the biological plausibility issue tends to resurface in most
debates concerning the problem of cognitive explanation.

One prominent account that confronts the two issues sketched above
is the computational model of cognitive explanation. Computational
models/theories usually target abstract or general properties of cog-
nitive capacities, while claiming to constitute the first step towards a
biologically realistic model of cognition. In the following chapters, I
will explore several models of the notion of cognitive computational
explanation, seeking to elucidate their relationship with the mecha-
nistic thesis. As suggested in the introduction, one important reason
for choosing to focus on this particular cluster of computational mod-
els of explanation is that they have often been portrayed as providing
a fertile middle ground between our folk-psychological and scien-
tific approaches to mental phenomena. Moreover, computational ac-
counts of cognition have also been taken to constitute the paradigm
case of the cognitive revolution in the study of the mind and its place
in nature. For these reasons, I take this sort of investigation to pro-
vide, despite its limitations, a rich enough base for articulating a novel
and more adequate philosophical account of the notion of cognitive
explanation.
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C L A S S I C A L C O M P U TAT I O N A L E X P L A N AT I O N S

4.1 introduction

This chapter and the two that follow focus on three different versions
of computationalist approaches to cognition. The main objective of
these investigations is to elucidate the structure and implications of
some of the most prominent computationalist approaches to cogni-
tion. In particular, I seek to show whether and when computational
models may be said to have an explanatory function in the context of
cognitive scientific research. In pursuit of this topic, I revisit a num-
ber of debates concerning some foundational issues related to the cen-
tral thesis of computationalism, namely that psychological/cognitive
capacities are explainable by positing internal computations. In addi-
tion to important theoretical clarifications, I seek to bring a distinctive
practice-based perspective to these debates by analysing a number
of computational models currently developed by practising cognitive
scientists.

My aim in adopting this strategy is twofold: (i) to show how cer-
tain foundational questions concerning the study of the mind relate
to the current theorising and experimental practices of cognitive sci-
entists, and (ii) to identify and correct certain philosophical claims
about the principles governing computational modelling and expla-
nation in cognitive science. The objective is to determine whether a
view of computational explanation can be developed which is both
consistent with current scientific practice and also can be integrated
into a broader philosophical picture of the nature of cognitive expla-
nation.

4.1.1 Classical computationalism: an overview

I begin the investigation of computationalist approaches to cognition
by analysing the case for classical computationalism. More precisely, the
following analysis aims to elucidate the thesis that cognitive phenom-
ena can be explained in terms of internal computations and opera-
tions (rules) defined over them. For this purpose, I will count as ‘clas-
sical’ a host of positions that, in the last forty years or so, have been
developed under the banner of the computational theory of mind
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(henceforth, CTM). Thus, I will consider a variety of arguments and
hypotheses developed by a number of different philosophers and cog-
nitive scientists in support of the idea that classical computationalist
principles provide adequate explanatory tools for the study of cog-
nition (e.g., Fodor 1975, 1980, 1987; Pylyshyn 1984; Cummins 1989;
Egan 1992, 1995, 2010; Gallistel and King 2009; Shagrir 2001). I sub-
mit that by adopting this coarse-grained perspective, one is better
placed to show how the core tenets of classical computationalism re-
late to the current experimental and theorising practices encountered
within cognitive science.

As a consequence of treating such a variety of philosophical com-
putationalist accounts on equal footing, classical computationalism
will be conceived in what follows as a collection of distinct hypothe-
ses concerning the structure and organisation of particular cognitive
capacities rather than a uniform and unitary theory of the nature
of the mind. However, the key commitment endorsed by virtually
all defenders of classical computationalism is that the explanation of
cognitive capacities requires the postulation of a system of internal
structured representations (symbols) and rules (operations) for ma-
nipulating and transforming them. In other words, classical compu-
tationalists are all committed to what has been called in the literature
a classical (i.e., rules and representation) cognitive architecture (cf. Newell
1980a; Pylyshyn 1984; Fodor and Pylyshyn 1988). In addition to this
hypothesis about the structure of an appropriate cognitive architec-
ture, classical computationalism comes with a characteristic explana-
tory strategy, whose main features I will briefly sketch below.

Most versions of classical computationalism endorse either explic-
itly or implicitly a tripartite picture of computationalist explanation.
Perhaps the most influential source for this conception of explana-
tory levels has been David Marr’s (1982) pioneering tripartite view of
computational explanation. According to Marr (1982), any computa-
tional or information processing system (including human cognitive
systems such as the visual system or the language system) can be
described at different levels of abstraction. The most abstract level of
description corresponds, on his schema, to the computational theory
which specifies the task of the system: what the inputs and outputs
are, and why. The next level down is the algorithm level which de-
scribes the specific representations and operations that are used to
accomplish the task described by the computational theory. Finally,
the implementation level (theory) describes the hardware underlying
the proposed algorithm.1

1 Although Marr’s (1982) choice of terminology is not the most perspicuous for all
aims and purposes, given its influence in the methodological and philosophical lit-
erature, I will mostly rely it in the course of the following discussion. Other similar
classificatory schemes comprise those proposed by: (1) Alan Newell (1980b) who
recognises the knowledge, symbolic, and device levels; and (2) Zenon Pylyshyn
(1984), who distinguishes between the semantic, symbolic, and realisation (physi-
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Computational approaches to the study of language offer a good
example. Following Marr himself, theories of grammar are stan-
dardly described as computational-level theories. That is, a compu-
tational level syntactic theory is viewed as a description of the in-
puts and outputs (word strings and hierarchical structure) and the
relations between them. Psycholinguistic theories in turn are often
regarded as algorithms: they specify the representations and oper-
ations responsible for accomplishing the translation between word
strings and hierarchical structure. And, at the level of implementa-
tion one would need to have an account of how these algorithms are
instantiated using neural mechanisms. Whilst the Marrian tripartite
picture has been criticised on a number of grounds (e.g., Sun 2008;
Phillips and Lewis 2013), it nevertheless can be taken to provide a
convenient scheme for assessing the main theoretical tenets of classi-
cal computationalism and is broadly followed by virtually all classical
computationalists.2

Another salient feature of the explanatory strategy associated with
classical computationalism is that it consists in a top-down decompo-
sitional analysis, similar in some respects to functional analysis (Cum-
mins 1989, 2010) and the mechanistic view of explanation (Craver
2007b; Craver and Piccinini 2011). Computational explanations are
decompositional in the sense that they involve the decomposition of
a complex cognitive capacity into its simpler component cognitive
sub-capacities whose computational structure accounts for important
features of the initial target capacity. This characterisation of the
general explanatory strategy associated with classical computational-
ism suggests that there are important elements of continuity between
the mechanistic, functional, and computational explanatory schemas.
However, this prima facie continuity does not necessarily entail the pri-
ority of any of the existent explanatory strategies over the others. In
fact, I will show that all these explanatory strategies (e.g., functional,
computational, and mechanistic) contribute in distinguishable ways
to the investigation of particular aspects of cognitive phenomena.

The distinctive mark of the explanatory strategy associated with
classical computationalism is that it postulates complex (i.e., inter-
nally structured) symbols and rules in order to account for certain
salient cognitive patterns/phenomena. As will be argued at length
in what follows, most debates concerning classical computationalism
conflate two distinct issues which arise in connection with the appli-
cation of classical (symbolic) computational structures to the study of
cognitive phenomena, viz.: (i) the computational individuation issue,

cal) levels. I will resort to these alternative classifications only for the purposes of
clarifying certain fine-grained distinctions between the versions of classical compu-
tationalism analysed in this chapter.

2 I will return to discuss some of the concerns raised in connection with the application
the Marrian picture to the current landscape of computational theories/models of
cognitive capacities in the last section of the chapter.
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and (ii) the cognitive explanation issue. Whereas the first concerns
the criteria that determine what makes something a particular type
of computational structure or state, the second issue amounts to clar-
ifying when and why certain computational structures can be said
to play an explanatory role with respect to particular cognitive prob-
lems.

With regard to the individuation issue, proponents of classical com-
putationalism have been divided between defending a semantic view
of computational individuation or a formal view of computational in-
dividuation. For the purpose of the following arguments, I will use
the designation ‘semantic’ to stand for externalist semantics, that is,
semantics that relate a state to things other that its formal computa-
tional effects within a computational system, including objects and
properties in the external world. It should be noted however that the
contents assigned to a state by an externalist semantics are not neces-
sarily only concrete objects and properties in the environment. They
may also be abstract (or non-existent) entities and properties. Thus, a
semantic view of computational individuation holds that the seman-
tic contents of computational structures determine (at least in part)
their computational type-identity. A formal or internalist view of
computational individuation, on the other hand, claims that only in-
ternal structural properties/relations of a computational system con-
tribute to fixing its computational identity. In addition to the two
distinct computational individuation hypotheses, both camps of clas-
sical computationalism have developed specific accounts about when
and why computational structures might be said to explain particular
cognitive phenomena/patterns.

In what follows, I will show that by drawing a systematic distinc-
tion between the computational individuation and explanation issues,
one is better placed to evaluate the strengths and weaknesses of the
two strands of classical computationalism. Following this strategy, I
aim to provide a more consistent account of the structure of classical
computational explanations of cognitive phenomena.

4.1.2 Outline of the argument

The structure of the rest of the chapter comprises three distinct parts.
Section 2 focuses on the issue of classical computational individua-
tion. I analyse the main arguments put forward by classical compu-
tationalists for the two distinct positions with regard to what counts
as an appropriate individuation scheme for computational systems.
The aims of this analysis are twofold: (i) to demonstrate that the
semantic (externalist) view of computational individuation oscillates
between two incompatible criteria, viz. essential semantic contents
and the formality constraint, and (ii) to argue that once the seman-
tic individuation strategy is exposed as being deeply problematic, its
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proponents are forced into accepting a non-semantic formal picture
of computational individuation, as proposed by the internalist.

In section 3, I turn to investigating the issue of the explanatory
value of classical computational models of cognition. I seek to clarify
the idea that semantic interpretations (i.e., assignments of mental con-
tents to the internal states of a computational system) play an impor-
tant ‘bridging’ role in securing the applicability of abstract computa-
tional models to the study of specific cognitive capacities/phenomena.
In light of these considerations, I emphasise the advantages of adopt-
ing a broadly externalist view of the applicability of computational
models to cognition, whilst retaining an internalist stance on the is-
sue of computational individuation.

The last section concludes with an evaluation of the main tenets of
classical computationalism. More specifically, I focus on the strengths
of the emerging picture of classical computational explanations and
suggest a general strategy to circumvent one traditional metaphysical
challenge concerning the abstract character of classical computational
models/theories of cognitive capacities.

4.2 the puzzle of computational individuation

This section focuses on the issue of computational individuation. As
suggested in the introduction, I claim that by keeping the individ-
uation and explanation issues apart, one is in a better position to
construct a more robust account of the applicability of computational
models to the study of cognition. I aim to show that the principles
governing the type-individuation of the internal states and structures
of a computational system are distinct (separable) from the principles
that determine when and whether a given computational structure
adequately describes and perhaps explains a target cognitive capac-
ity. By clarifying the nature of the computational individuation issue,
I seek to shed further light on the complex relationship that holds
between computational individuation and explanation in the specific
context of computational cognitive science and neuroscience.

The puzzle of computational individuation consists in establishing
the factors that play a role in fixing the computational identity of a
given state or structure. In other words, solving the individuation
puzzle requires that one specify the features of a system in virtue of
which it belongs to a particular computational type rather than an-
other. Thus, the underlying assumption of the individuation puzzle
is that only certain features of a complex system (concrete or abstract)
are pertinent to its computational identity. These features (and only
these) determine whether two or more structures are computationally
indistinguishable or not. If two structures share all their computation-
ally relevant properties, then they are identical from a computational
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point of view; otherwise, they are computationally distinguishable,
i.e., they count as different computational states or structures.

The philosophical literature on classical computationalism comprises
two main proposals for an appropriate computational individuation
strategy: (i) the semantic (externalist) and (ii) the internalist view of
computational individuation. Whilst the former claims that mental
contents (whatever they are) play an essential individuative role, the
later promotes a purely formal (syntactic) computational individua-
tion schema.3 In what follows, I seek to clarify each of these proposals
and disentangle some of the confusions concerning the relationship
between the notions of computational individuation, identification, and
explanation. I begin by surveying the semantic view of computational
individuation and some of the major challenges that have been raised
against it. Then I analyse the main arguments for endorsing an in-
ternalist view of computational individuation. Finally, I assess the
theoretical (conceptual) arguments put forward in support of such an
internalist perspective against three representative computationalist
models proposed in the field of vision studies.

4.2.1 The semantic view of computational individuation

The semantic view of computational individuation claims that com-
puting systems and their states are type-individuated in terms of
their semantic contents. Thus, if two purportedly computational
states/systems have different semantic contents, then they also count
as being distinct qua computational states/systems. As a result, since
differences in semantic contents are taken to generate differences in
computational types, computational states and structures are said to
possess their contents essentially. There are several important lines of
reasoning which are taken to support the idea that semantic contents
play a crucial role in computational individuation. In what follows, I
discuss each of them in turn.

The semantic view of computational individuation seems to receive
some prima facie support from the standard construal of the notion of
computation (cf., Fodor 1975; Pylyshyn 1984). On this standard pic-
ture, a physical system S is said to compute a function F only if,
under appropriately circumscribed circumstances, the system will al-
ways go from one physical state si to another physical state s f such
that for every pair of such states 〈si, s f 〉, it is possible to specify a rep-
resentation function f in such a way that the value associated with
the final state f (s f ) is a function F of the value associated with the ini-

3 Because of its insistence that computational individuation is a purely formal (or
syntactic) affair, the internalist position has also been taken to illustrate a reductionist
stance in the sense that it denies (reduces) the intentional character of computational
theories of cognition. There are good reasons to think that this denomination is
unhelpful and rather misleading for understanding the implications of the internalist
account of computation and this why I will continue to avoid using it.
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tial state f (si). In changing its internal state from si to s f , the system
is said to compute F, in virtue of the fact that the system’s behaviour
is interpretable under the function f as returning the value of the
function F whenever presented with an argument for that function.

Whilst the standard construal of the notion of computation does
indeed imply that computations are defined over symbols (i.e., struc-
tures that can be assigned semantic contents), it fails to entail that
these symbolic structures possess their contents essentially, i.e., that
contents uniquely determine the computational-type of these struc-
tures. In fact, the standard construal is consistent with the hypothe-
sis that the same computational structures can be assigned multiple
(i.e., non-unique) semantic interpretations. Put differently, the stan-
dard notion of computation affords a clear-cut distinction between
symbols and their (semantic) contents. The point here is that the
principled separability of the two notions ultimately undercuts the
strong support that the standard construal of computation allegedly
offers to a semantic view of computational individuation.

The same sort of response strategy can be used to reject a similar
line of reasoning that has been dubbed ‘the argument from the iden-
tity of computed functions’ (e.g., Shagrir 1997, 1999; Peacocke 1999; cf.
Piccinini 2008a). This argument relies on two main premises: (i) com-
puting systems are individuated by the functions they compute, and
(ii) functions are individuated semantically, i.e., by the ordered cou-
ples: 〈domain element, range element〉, denoted by the inputs and
outputs of computation. From (i) and (ii), it is derived that comput-
ing systems and their states are individuated semantically. However,
this sort of argument is a non sequitur because computational func-
tions can be individuated in purely formal or syntactic terms, i.e.,
non-semantically. The semantic scheme can be used to identify, with
respect to a particular context, the internal states of a computational
system that is taken to perform a particular task. However, given that
the semantic interpretation adds extra assumptions about the states
of a computing system (e.g., referential assumptions) than those re-
quired by the individuation task itself, it is best characterised as an ex-
trinsic identification strategy. Thus, as before, the semantic layer is not
necessary for the purposes of computational individuation proper.

However, the dismissal of these two closely related lines of reason-
ing need not pose an insurmountable problem for the defender of a
semantic view of computational individuation since she can resort to
other, allegedly more pertinent and convincing, argumentative strate-
gies. I what follows, I will consider a set of arguments which may be
conveniently grouped together in virtue of the fact that they explicitly
equate the computational individuation and explanation issues. The
common strategy underlying these arguments starts from the obser-
vation that internal computations are postulated in order to explain
various interesting cognitive phenomena. The next step is to infer
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that at least some of the properties that play a role in determining the
explanatory value of computational models of cognitive phenomena
also contribute to fixing their computational type-identity.

One of the most intuitive versions of this type of argument rests
on the assumption that computationalist theories of psychological ca-
pacities must be able to vindicate (at least in part) the explanatory
success of folk-psychology. The latter in turn is taken to depend to
a large extent on the fact that folk-psychology individuates psycho-
logical states such as beliefs, desires, and thoughts in terms of their
contents and thus succeeds in capturing a large number of interest-
ing psychological patterns/behaviours. For instance, the common-
sense (folk-psychological) explanation of my tea-drinking behaviour
appeals to my desire to drink tea (rather than coffee), my belief that
there are tea-making ingredients nearby (rather than at the supermar-
ket), and my ability to prepare tea. In line with this, it has been
proposed that, if computational psychology is to vindicate this sort
of psychological pattern, then it must also individuate its theoreti-
cal computational posits in terms of intentional (semantic) categories.
Despite its prima facie intuitive appeal, almost everyone agrees now
that whatever (complex) relation holds between commonsense psy-
chological explanations and computationalist explanations of cogni-
tion, it is not one that forces computational psychology to import
the categories and tools used by folk-psychology to generate certain
patterns of explanation. Otherwise put, the expectation that folk-
psychological taxonomies will simply be imported into computation-
alist psychology is not likely to survive even brief scrutiny of past
and current scientific practice in and outside of the arena of cognitive
science.

Still, one need not rely on the fact that folk-psychology individ-
uates psychological states intentionally, i.e., in semantic terms, for
there is a much more compelling case to be made that large parts
of scientific psychology and cognitive science itself make use of such
intentional (semantic) vocabularies on a daily basis. This seems to
bolster the claim that mental states and processes are indeed individ-
uated in semantic terms, which in turn leads to a new argument for
semantic computational individuation. Assuming both that: (i) the
identity of mental states (capacities, processes, etc.) depends essen-
tially on their semantic properties, and (ii) computationalist theories
of cognition propose to explain precisely these psychological capac-
ities, it follows that the theoretical posits of computational theories
of cognition must also be individuated in semantic terms (cf. Fodor
1975; Burge 1986; Peacocke 1999; Wilson 1994). The main assumption
driving this style of argument is that, in the case of scientific expla-
nations of cognitive phenomena, the explananda and explanantia must
be individuated in similar, i.e., semantic, terms. But, as pointed out
above, there seems to be a straightforward problem with this pro-
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posal. Whilst it is true that one must usually be able to provide an
account of how a particular theory relates or applies to a given set of
observable phenomena (or to the pre-theoretically specified questions
raised in a particular domain of inquiry), there is no reason to expect
that such an account will take the form of a one-to-one mapping be-
tween the ‘pre-theoretical’ categories and the posits of a particular
scientific model/theory.

This conclusion can be reinforced by invoking a more general argu-
ment that has been put forward against the idea that contents play a
crucial role in computational individuation. In what follows, I anal-
yse two slightly different versions of this argument which is originally
credited to Stephen Stich (1983, 1991). The first step in Stich’s general
eliminativist argument4 against the individuative role of mental con-
tents is to point out that content ascriptions have a series of properties
(i.e., R (for relativity)-properties, cf. Egan 2009) which make them in-
adequate tools for computational individuation. More specifically,
content ascriptions are said to be both vague and context-sensitive.
That is, for any given predicate of the form ‘believes that p’ there
will be some contexts in which it applies and others in which it does
not apply, thus making it indeterminate whether a generalisation that
invokes such a predicate will hold or not across all contexts and con-
ditions. Appeals to content are also observer-relative in the sense that:
‘to believe that p is to be in a belief state similar to the one underly-
ing our own sincere assertion of p’ (Stich 1983, p. 136). In addition,
appeals to content often seem to presuppose ideological similarity as
well as reference similarity. Two beliefs are ideologically similar if
and only if they are embedded in similar doxastic networks, and they
are reference similar only to the extent that the terms subjects use
to express the beliefs have the same referent.5 Because content as-
criptions have the R-properties, Stich argues that they impose a more
fine-grained individuative scheme than seems appropriate for use in
any field of scientific psychology, which in turn is taken to imply that
they are not adequate tools for computational individuation.

Stich’s (1983) original argument against the semantic view of com-
putational individuation was formulated in terms of a specific con-
straint which he dubbed the Autonomy Principle (AP). According to
AP, ‘any state or property invoked in a psychological explanation

4 Traditionally, Stich’s (1983, 1991) anti-content arguments have been read as implying
a strong eliminativist position, according to which mental contents do not play any
role in computational models of the mind. I think there are good reasons to reject this
eliminativist reading and I provide further support for this claim in the following
sections. For present purposes, it suffices to point out that a strong (eliminativist)
reading of Stich’s anti-content conclusion risks to conflate the individuation and
explanation issues, against the policy stated in the introduction.

5 Thus, Jo’s belief that ‘Huw is a conservative’ and Don’s belief that ‘Huw is a con-
servative’ count as the same belief if and only if all of Jo’s relevant beliefs about
Huw and conservatives are the same as those of Don; and the same goes for their
referential intentions.
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should supervene on the current, internal, physical state of the or-
ganism’ (Stich 1983, p. 164). Taken at face value, AP provides a good
illustration of the major motivations driving the classical debate in
philosophy of mind concerning the distinction between broad (wide)
and narrow mental contents and their respective roles in a compu-
tational theory of mind. Unlike broad contents which are taken to
depend on the subject’s historical, environmental or social context,
narrow contents are standardly taken to be supervenient on the phys-
ical states of a system.6

In brief, AP claims that the sort of scientific explanations of cog-
nitive behaviours sought by cognitive scientists and psychologists
should apply to all physical duplicates of an organism. That is, such
explanations should invoke only narrow states and properties (shared
by all physical duplicates); in particular, Stich claimed that scientific
cognitive explanations should invoke only narrow contents. Thus,
this line of argument leaves open the possibility that some notion of
narrow mental content impact computational taxonomies. Otherwise
put, Stich’s (1983) anti-content argument seems to be consistent, pace
AP, with the hypothesis that narrow contents play (in part) an indi-
viduative role in computational psychology.

But while Stich’s original argument did focus on the notion of or-
dinary (externalist) content (i.e., the sort of content ascribed in folk-
psychological predictions and explanations of behaviour), the revised
argument from 1991 claimed that narrow content - which abstracts
away from the subject’s historical, environmental, and social context -
is nonetheless still too vague and context-sensitive (i.e., has too many
of the R-properties) to determine the taxonomy of computational
models of cognitive capacities.7 The latter, Stich argued, individu-
ate computational states/structures in terms of their narrow causal
role, which, he insisted, is different from narrow content proper. That
is, narrow causal roles are taken to depend only on the internal or-
ganisation of the component parts of a computational system which
performs a specific function.

There are two preliminary conclusions that follow from Stich’s anti-
content arguments. Firstly, neither a broad nor a narrow notion of

6 There are several conceptions of narrow content available on the philosophical mar-
ket. Some authors conceive the narrow content of a mental state such as a belief as
the detailed description of that particular belief (cf. Putnam 1975; Mendola 2008). A
different approach identifies narrow contents with conceptual roles (cf. Block 1986).
Other influential conceptions of narrow content include the mapping account (Fodor
1987), Stalnaker’s notion of diagonal propositions (Stalnaker 1990, 1999), and Chalmers’
notion of sets of maximal epistemic possibilities (cf. Chalmers 1996, 2002).

7 To summarise, the argument against narrow content says that: ‘The categories of
a narrow content taxonomy are simply the categories of a broad content taxonomy
extended to meet the demands of the principle of autonomy. But the broad content
taxonomy of commonsense psychology is too vague, too context-sensitive and too
unstable to use in a serious scientific theory. Narrow content inherits all the deficits’
(Stich 1991, p. 250).
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mental content seems to be well-suited to play an individuative role
in computational theories of the mind. Secondly, despite their obvi-
ous differences, the two types of content have many features in com-
mon (i.e., their common R-properties), which implies that whatever
roles they might turn out to play in computational theories of cogni-
tion, they will, in any case, be very similar. In the remainder of this
section, I survey two more strategies that have been used to promote
a semantic view of computational individuation.

Fodor (1975, 1987) and Pylyshyn (1984) have argued that one of
the main attractions of CTM is that it seems to provide a straightfor-
ward account of the ‘striking parallelism’ between the causal relations
among propositional attitudes and the semantic relations connecting
their particular contents. The key ingredient of the purported suc-
cess of CTM is the postulation of internal representations that have a
dual character, i.e., they have formal properties which are taken to be
causally efficient (in virtue of the fact that they represent classes of
physically equivalent states) and can be assigned semantic interpre-
tations (contents). Furthermore, according to these authors, in order
to explain such a striking parallelism one is led to suppose not only
that causal powers are attributed to internal states that are taken to be
semantically evaluable, but also that ‘causal relations among proposi-
tional attitudes somehow typically contrive to respect their relations
of content’ (Fodor 1987, p. 12).

If the latter assumption is correct, then it seems that contents must
play at least a partial role in the type-individuation of these states.
For if mental contents do not play any role in the type-individuation
of computational states, then states with different semantic contents
would still count as being the same from a computational point of
view. But then, arguably, the causal relations holding between com-
putational states would not mirror perfectly the semantic relations
holding between their contents, contrary to the strong parallelism
view. A similar line of reasoning can be found in Pylyshyn (1984).
Although he admits that in general computational states can have
multiple semantic interpretations, he maintains that ‘[i]n the case of
a psychological model we want to claim that the symbols represent
one content and no other, since their particular content is part of the
explanation of its regularities’ Pylyshyn (ibid., 40, m.e.). Therefore, the
main conclusion of this type of argument seems to be that representa-
tional structures posited by a computational theory of cognition must
have essential (unique) contents which participate (partly) in their
type-individuation qua computational structures/states.

There are three interrelated points to raise in response to this line
of argument. First, the conclusion being put forward relies on simply
equating the factors that play a role in determining the explanatory
value of particular computational models/theories of cognitive capac-
ities with the factors that fix their computational type-identity. This
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sort of conflation is problematic, especially in light of the fact that
the authors recognise that in different contexts (i.e., outside cognitive
modelling), the individuation of computational systems/structures
does not depend on the semantic contents assigned to them (cf. Fodor
1980; Pylyshyn 1984). Given that an adequate view of computational
individuation should presumably provide a uniform account of what
makes something a computational state/structure that is indepen-
dent of the specific contexts in which computational structures are
being used and/or applied to study various types of problems, there
are good reasons to resist the adoption of the semantic individuation
strategy proposed by these authors.

Second, granting that the ‘syntax parallels semantics view’ captures
a series of salient empirical features of cognitive phenomena which re-
quire an adequate explanation, one still needs to establish the extent
to which this parallelism holds in the cognitive domain, i.e., whether
it holds across all types of cognitive phenomena or only for a limited
range of them. Otherwise one could be criticised for trying to estab-
lish what should count as the correct view of computational individ-
uation based on a series of sweeping speculative considerations con-
cerning the nature and structure of this purported parallelism. Both
of these points are intended to highlight the limitations of extract-
ing a view of computational individuation solely from the modelling
practices of computationalist cognitive scientists.8

Finally, the argument strategy that seeks to secure a semantic view
of computational individuation based on the explanatory interests
of practising cognitive scientists seems to be in conflict with another
important criterion for computational individuation discussed in the
philosophical literature, namely the formality constraint (cf. Fodor
1980). In a nutshell, the formality constraint requires that the inter-
nal states/structures and operations postulated in a computational
model of a particular cognitive capacity have formal properties which
are mapped via an adequate function in equivalence classes of physi-
cal properties, which in turn explains why these properties are taken
to be the ones that are actually effective in the mechanisms underpin-
ning cognitive processes.

Thus, according to the formality constraint, the representations and
operations postulated by a computational model/theory of a particu-
lar cognitive capacity are individuated in terms of a set of structural
(formal) relations which hold between the component parts of the sys-
tem. What counts for the individuation of a system/structure qua a
certain type of computational system are neither the particular (exter-
nal) contents that can be assigned to its states nor the specific physical
properties of the system that might implement that particular type of

8 As will be argued in the following sections, a more adequate account of the fac-
tors that determine the computational type of a particular state/structure should be
relatively orthogonal to the particular epistemic aims (e.g., explanation, prediction,
confirmation) of practising cognitive scientists.
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computation. Instead, from a computational point of view, what dis-
tinguishes between different types of computational structures are
their structural (formal) properties.9 As pointed out by Fodor (1980)
himself, the formality constraint is quite strict because it implies that
mental contents are not sufficient for individuating the internal states
of a computational mechanism:

[I]f the computational theory of the mind is true (and if,
as we may assume, content is a semantic notion par ex-
cellence) it follows that content alone cannot distinguish
thoughts. More exactly, the computational theory of mind
requires that two thoughts can be distinct in content only
if they can be identified with relations to formally distinct
representations. More generally: fix the subject and the
relation, and then mental states can be (type) distinct only
if the representations which constitute their objects are for-
mally distinct (Fodor 1980, p. 64).

However, it might be argued that this formulation of the formality
constraint is still compatible with the idea that contents play a partial
role in the individuation of computational states. As an example of a
sophisticated argument put forward in support of this sort of claim I
will briefly consider the position defended by Oron Shagrir (2001). As
per the previous arguments, Shagrir discusses the problem of compu-
tational individuation in the context of understanding computation-
alist approaches to cognition. He claims that certain computational
systems (models) that satisfy one formal (syntactic) description will
generally satisfy other formal descriptions as well (cf. the multiplicity
of syntactic implementation assumption). Shagrir (2001) further argues
that, when considered outside a specific modelling context, one can-
not decide which of the possible formal descriptions of a computa-
tional model is appropriate with respect to the cognitive task being
modelled. He then concludes that in order to settle which formal de-
scription individuates the computational system of interest one needs
to take into account the semantic description of the task being mod-
elled. This in turn is taken to imply that semantic interpretations
(or contents) play a partial role in the individuation of computational
models of cognition, i.e., they help select the relevant individuative
formal description.

But upon closer scrutiny it turns out that this argument does not
support a semantic view of computational individuation after all. For
in specifying the semantic features which do play a role in computa-
tional individuation, Shagrir (ibid., p. 20) writes that: ‘I do not claim

9 Some authors (e.g., Piccinini 2007) have argued that the formality constraint should
not count as a proper individuative principle because it is formulated in terms of
the causal powers of computing mechanisms. However, I believe that the reference
to causal powers does not affect the idea that only structural or formal properties of
a computational system play an individuative role.
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that every change in content alters computational identity. The fea-
tures that make a computational difference, in my view, are formal
features, that is, set-theoretic relations and other high-level mathemat-
ical relations among the represented objects.’ (m.e.) Although such
formal features might be taken to constitute a kind of internal seman-
tics of the computational system, they do not seem to relate the states
of the system with something outside the system, thereby qualifying
as semantic contents in the standard externalist sense. Rather, formal
features can be seen as characterising internal relations between the
components of a computational system. This brings Shagrir’s (2001)
account closer to the internalist view of computational individuation
which will be analysed in more detail in the following section. Nev-
ertheless, one might insist that the identification of the right formal
features that play a role in the type-individuation of a particular com-
putational system is facilitated or mediated by the externalist seman-
tic description of the task performed by the system. Although this
latter point may turn out to be valid, it does not entail that semantic
(externalist) contents play a role in the computational individuation
of a particular system or structure.

Finally, a somewhat different line of reasoning aims to establish
that (mental) contents play a role in the individuation of computa-
tional systems and their states by showing that prominent computa-
tional models of cognitive capacities adopt (explicitly or implicitly)
precisely such a semantic individuative strategy. Tyler Burge (1979,
1986, 2010) is one of the authors who has most forcefully pursued
this defence strategy. He claims that the modelling practices of com-
putationalist psychologists in fields such as vision studies support a
semantic view of computational individuation. Whilst Burge’s anal-
yses reveal a number of important aspects of the complex epistemic
activities of constructing adequate explanatory accounts of particular
cognitive capacities, I contend that such a practice-based perspective
does not by itself entail the semantic view of computational individu-
ation. Instead, I argue that some of Burge’s most interesting criticisms
of the internalist view of computationalism, which rely on the anal-
ysis of the modelling practices of vision scientists, pertain more di-
rectly to the explanatory value of computational models/theories of
cognitive capacities. I will return to the analysis of these insights and
their implications, in section 2.3, after evaluating the main theoretical
considerations that have been proposed in support of an internalist
view of computational individuation.

4.2.2 The internalist view of computational individuation

As a version of classical computationalism, the internalist account
of computation endorses the hypothesis that computational models
of cognition postulate internally structured representations (symbols)
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and operations (rules) defined over them. However, defenders of the
internalist account also insist that the interpretability of the mental
symbols postulated by classical computationalist models does not en-
tail that these symbols possess their (semantic) contents essentially.
That is, the internalist holds that, although postulated computational
states may be assigned specific/particular contents, these are not es-
sential for their computational identity.

In what follows, I will use the account that Frances Egan has devel-
oped and refined in a series of papers (cf. Egan 1992, 1999, 2010, 2013)
as a starting point for discussing the strengths and weaknesses of the
internalist position within classical computationalism. However, as
will be shown in what follows, although Egan’s position is adver-
tised as an internalist view of computational individuation, there are
good reasons to question the overall consistency of her account. In
line with the formality constraint (Fodor 1980), Egan holds that an ad-
equate computational individuation strategy should follow only very
abstract or formal principles. She spells out this picture of computa-
tional individuation by claiming that a computational system (state)
is individuated by two types of mappings: (i) a realisation function
( fR) which maps a particular computational process into an appro-
priate equivalence class of physical states and (ii) an interpretation
function ( f I) which maps the computational process into a canonical
description of the function performed by the system. The latter map-
ping, Egan claims, is a mathematical function which together with the
realisation function contributes to the type-individuation of the compu-
tational system.

In contrast to a more traditional semantic account (e.g., Newell
1980a; Pylyshyn 1984) where the interpretation function ( f I) provides
a mapping between equivalence classes of physical states of a sys-
tem and elements of some external (or internal) represented domain,
Egan (2010) insists that the interpretation function merely provides
a canonical mathematical description of the function computed by a
particular type of physical system. She argues that the interpretation
function, thus conceived, does play an individuative role, and in virtue
of this property, it should be distinguished from a proper (externalist)
semantic interpretation:

The characterisation of a computational process or mecha-
nism made available by the interpretation function f I - the
mapping that provides a canonical description of the func-
tion computed by the mechanism, and hence (along with
the realisation function fR) serves to type-individuate it - is
[...] an abstract mathematical description. This semantic
interpretation does not provide a distal interpretation of
the posited internal states and structures; the specified do-
main is not external objects and properties [...] but rather
mathematical objects. The interpretation maps the states

89



4.2 the puzzle of computational individuation

and structures to a domain of abstracta, hence the specified
relation is not regarded, in the theory, as a Naturalistic re-
lation. It cannot be a causal relation since abstracta have
no causal powers (Egan 2010, p. 256).

Hence, the revisionary twist in Egan’s formulation of the individ-
uation criterion consists in modifying the traditional domain of the
interpretation function, from objects and features of the external or in-
ternal environment of the system to mathematical structures. Taken
at face value, the idea that the interpretation function ( f I) offers a
mathematical characterisation of the task performed by the system
is in line with the notion that a computational theory is meant to
give an abstract or highly general account of cognitive phenomena.
The mathematical characterisation provides a concise way of identi-
fying the parameters which are essential from a computational point
of view (thus reducing the degrees of freedom of the system). This
idea does not conflict with the notion that a computational process is
just an abstract operation, defined over appropriate types of symbols,
which is neutral with respect to the actual content of the symbols
manipulated, transformed or created in the course of computation.

Egan (ibid.) reinforces her point about the formal individuation of
computational mechanisms by appealing to two examples from com-
putational cognitive science. The first example is taken from Marr’s
(1982) traditional computational theory of early visual processing, in
which the computational mechanism for the initial filtering of the reti-
nal image is described from a computational perspective in terms of
two specific mathematical functions. More specifically, the device is
said to compute the function ∇2G ∗ I (the X channels) and its time
derivative ( δ

δt (∇2G ∗ I) (the Y channels). The second example is taken
from the computational neurobiology of reaching and pointing. The
model of object manipulation proposed by Shadmehr and Wise (2005)
decomposes the computational task of object grasping in three sub-
tasks, each of which is amenable to a mathematical canonical charac-
terisation. In relation to these examples, Egan comments that:

[t]he important point is that in both examples the canon-
ical description of the task executed by the device, the
function(s) - computed, is a mathematical description. [...]
this description characterises the mechanism as a mem-
ber of a well-understood class of mathematical devices. A
crucial feature of this characterisation is that it is ‘envi-
ronment neutral’: the task is characterised in terms that
prescind from the environment in which the mechanism
is normally deployed (Egan 2010, p. 256).

The last part of the previous quote insists that the proper compu-
tational description of a target cognitive system is highly abstract
(i.e., mathematical) and that any externalist semantic interpretation
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attached to it provides only an extrinsic description of the computa-
tional system. As such, it does not affect the type-individuation of
the internal states of the computational system, i.e., it does not play
any part in the individuation process.

Nevertheless, as will be shown in section 3.3, on Egan’s account,
the semantic (externalist) description does play several important, al-
beit non-individuative, functions in the construction and assessment
of successful computational models of specific cognitive capacities.
For this reason, the formal individuation hypothesis should not be
mistaken for the claim that in building a computational theory of
cognition, practising cognitive scientists ignore the various contex-
tual (environmental) factors which shape the specific computational
problems that cognitive systems are taken to solve. As Egan (1999)
herself points out, this sort of blindness to mind-external world inter-
actions would make computational structures inappropriate tools for
the modelling and explanation of genuine biological capacities. How-
ever, she correctly points out that this observation is consistent with
the idea that the computational characterisation of a target cognitive
phenomenon is itself ‘environment neutral’ or formal.

Therefore, I take Egan’s arguments for a formal (internalist) view
of computational individuation to pursue two interrelated aims: (i) to
reinforce and sharpen the main reasons for resisting the adoption of
a semantic view of computational individuation and (ii) to promote
the idea that computational models/theories provide an abstract or
very general description of certain target features of particular cog-
nitive phenomena. Besides the theoretical considerations she brings
in support of her position, Egan claims that the modelling and the-
orising activities of computationalist cognitive scientists support an
internalist view of computational individuation. There are two main
concerns that I would like to raise in relation to Egan’s internalist
position.

Firstly, a number of authors have argued that Egan’s view of com-
putational individuation does not actually qualify as a proper non-
semantic account because mathematical contents, which, on her view,
play an individuative role, constitute a thin semantic layer after all
(cf. Shagrir 2001; Piccinini 2007b). That is, from a purely formal per-
spective, the different kinds of contents assigned by an interpretation
function are all equivalent (i.e., each of them constitutes a range or
co-domain for the interpretation function). As such, Egan’s account
seems to be very close to Shagrir’s (2001) semantic view of computa-
tional individuation. For, as we have seen above, Shagrir claims that
only formal features (‘set-theoretic or other higher-order mathemati-
cal relations’) determine the computational type of a particular com-
putational system/state. So, it seems that either both views should
be qualified as being semantic accounts or they should both count as
internalist accounts of computational individuation.
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Secondly, as mentioned above, Egan (1992, 1995, 2010) has argued,
contra Burge (1979, 1986) and others (e.g., Davies 1991, Silverberg
2006), that the scientific practice of constructing good explanatory
computationalist models of cognitive capacities supports an internal-
ist view of computational individuation. As a response, I contend
that the modelling practices of computationalist cognitive scientists
cannot serve as an arbiter in disputes concerning the correct view
of computational individuation. This is because, as will be shown
below, most of the principles that guide the practice of constructing
good explanatory models of cognitive capacities do not bear directly
on the computational individuation issue. However, this does not in-
validate the idea that the correct view of computational individuation
is one that mandates that the computational type-identity of a partic-
ular system depend exclusively on the formal (structural) properties
and/or relations of its internal component states.

Thus, I claim that Egan’s account fails to provide proper internal-
ist (formal) criteria for computational individuation. As stated above,
the two factors that generate the tension which lies at the heart of
Egan’s (2010, 2013) account are: (i) the thesis that mathematical (inter-
pretation) functions play a role in the type-individuation of computa-
tional systems, and (ii) her strong reliance on the modelling practices
of computationalist psychologists. Whilst in section 2.3 below, I will
show some of the main difficulties of taking computational modelling
practices in the cognitive domain to guarantee an internalist view of
computational individuation, in section 3.2, I will attempt to provide
a more adequate treatment of the role(s) played by mathematical con-
tents/structures in constructing adequate computational models of
cognitive phenomena.

In summary, the theoretical considerations discussed so far en-
tail an internalist view of computational individuation according to
which the type-identity of a computational system depends only on
certain formal (structural) properties and/or relations of the internal
components of the system. On a more traditional formulation, the
computational identity of a system is determined solely by the real-
isation function which maps classes of physically equivalent states
or properties into certain formal (structural) properties or relations.
Having established that the internalist or formal view is the correct
way of thinking about the issue of computational individuation, there
is a more difficult issue which needs to be addressed next. This issue
concerns the factors and/or principles which play a role in determin-
ing whether and when a particular computational structure can be
used to model and explain a particular cognitive phenomenon.

In what follows, I propose to describe briefly three models from vi-
sion studies, in order to identify some of the lessons that the current
scientific practice of computationalist modelling affords for a more
general philosophical analysis of classical computationalism. In par-
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ticular, I claim that such a practice-based perspective affords impor-
tant insights about the roles that both mathematisation and an exter-
nalist semantics play in the construction of good classical computa-
tional models of cognitive phenomena. For this reason, the following
section also constitutes a good entry point for the discussion of the
issue of the explanatory value of computational models of cognitive
phenomena.

4.2.3 Computational modelling in practice

I will focus on three examples of computational models from vision
studies: (i) a model of early visual processing that suggests why neu-
rones in the initial stages of the visual pathway have the particular
filter properties that they do; (ii) a model that links early vision with
object recognition; and (iii) a model of how object recognition might
influence early vision. Although much more complex and accurate
computational models are available in the literature, the three models
discussed here serve a useful expository purpose due to their sim-
plicity. For instance, they illustrate a number of strategies used by
practicing scientists to overcome some of the most important chal-
lenges of the computational modelling of vision, e.g., the poor input
quality, the severe underconstrainedness of the problems, the neces-
sity of rapid computation of results, and the need for incorporating
high-level or cognitive influences in the computations. Moreover, con-
sidered together, these three models cover a broader range of visual
processes, thus providing a more general perspective on what is in-
volved in the computational modelling of a specific domain of cogni-
tion.

Visual processing can be partitioned broadly into two stages - an
early stage concerned with image representation in terms of a basic
vocabulary of filters, and a ‘late’ stage concerned with recognition.
To understand the connection between early visual areas and down-
stream recognition processes, the analysis must begin with the cur-
rent understanding of what is being computed in early vision and
why. A wide range of computational and physiological studies on
early vision have converged towards characterising the function of
this part of the visual system in terms of edge extraction. Descrip-
tive models of early visual receptive fields usually take the form of
Gabor patches or wavelets, both of which provide a means of repre-
senting image structure in terms of local oriented edges at multiple
scales. In addition, the selection of this particular representational
scheme is supported by the fact that, across a wide number of studies,
wavelet-like structures emerge as a robust solution to visual redun-
dancy reduction (cf. Bell and Sejnowski 1997; Olshausen and Field
1996, 2005). It has been claimed that the wavelet-like structures are a
plausible representational format for the computations performed by
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V1 cells because they are compatible both with the hypothesis that
any sensory system constructs representations that take advantage of
the latent structures in the input to obtain an efficient code for incom-
ing stimuli as well as with the fact that natural scenes processed by
the visual system are highly structured. Despite an ongoing debate
over how well simple Gabor or wavelet models of V1 receptive fields
describe visual processing, the modelling community has endorsed
such features as a useful preliminary step in a wide range of compu-
tational tasks, amongst which one can also count object recognition.
More precisely, for object and face recognition, representing images
with a multiscale ‘pyramid’ of oriented edge information or informa-
tion closely related to this has become a standard pre-processing step
for many successful algorithms.

The ‘qualitative’ computational model of face recognition (cf. Sinha
2002; Sinha and Balas 2008), the second of the three models under
consideration, starts from the observation that neurones in the early
stages of the visual pathway are sensitive primarily to ordinal, rather
than metric, relations.10 Thus, in the representational scheme pro-
posed by the model, objects are encoded as sets of ordinal relations
across large image regions. The model aims to explain how ordinal
encoding can permit face recognition despite significant appearance
variations. It does so by identifying a series of local stable ordinal
measurements that encode stable facial attributes across different il-
lumination conditions. By combining all these invariances, a larger
composite invariant is obtained, called a ratio-template in virtue of
the fact that it comprises a set of binarised ratios of image luminance.

The computational problem addressed next by the model is how
the structure of the ratio-template (which constitutes the representa-
tion of a face under different illumination setups) is matched against
a given image fragment to determine whether it is a face or not.
The model postulates two computational stages: (i) averaging the im-
age intensities over the regions laid down in the ratio-template’s de-
sign and determining the prescribed pair-wise ratios; (ii) determining
whether the ratios measured in the image match the corresponding
ones in the ratio-template. The latter problem is basically treated by
the modellers as an instance of the general graph problem. In brief,
the model assumes that the visual system solves this sort of computa-
tional problem and determines an overall match metric which is used
to establish whether the given fragment image contains an image or
not.

This ‘qualitative’ model of face recognition further implies that the
computational processes underlying visual detection tasks do not
comprise the extraction of 3-D shape and other related features of
the perceived image, but rather rely directly on outputs of the low-

10 Because of this dependence on ordinal relations, the units of the model are called
qualitative in their responses.
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level visual mechanisms.11 However, this leaves open the problem
of the difference between the high-quality of our visual percepts and
the indeterminacy of the low-level visual outputs. The last model to
be sketched here aims to provide an account of how edge extraction
by the early visual system can yield stable visual percepts under a
wide range of varying conditions. Its main assumption is that this
computational task is possible only if there are top-down recognition
influences that drive the early stages of visual processing like edge-
detection, implicit and explicit 3-D shape recovery, colour constancy,
and motion analysis (cf. Jones et al. 1997).

Jones et al.’s (1997) computational strategy for incorporating high-
level influences in perception uses the concept of flexible models. ‘A
flexible model is the affine closure of the linear space spanned by the
shape and the texture vectors associated with a set of prototypical
images.’ (cf. Sinha and Balas 2008, p. 627) An optical flow algorithm
is then used to obtain pixelwise correspondences between a reference
image and the other prototype images. These correspondences then
serve to represent an image as a ‘shape vector’ and a ‘texture vector’.
‘The shape vector specifies how the 2-D shape of the example differs
from a reference image and corresponds to the flow field between
the two images. Analogously, the texture vector specifies how the
texture differs from the reference texture.’ (cf. ibid., p. 627) The linear
combination of the example shape and texture vectors constitutes the
flexible model for an object class. By optimising the linear coefficients
of the shape and texture components one obtains the matching of the
model to a novel image. The parameters of the flexible model which
have been estimated in this way can be used for effectively learning
a simple visual task, like 3-D shape recovery and other supposedly
early perceptual tasks, such as edge-detection, colour constancy, and
motion analysis. Given its general features, the computational model
proposed by Jones et al. (1997) is better viewed as an example of a
class of algorithms that can be used to learn visual tasks in a top-
down manner, specific to different classes of objects.

The three models briefly described above afford two indirect les-
sons for the problem of computational individuation. The first model
of early visual processing illustrates the fact that developing adequate
computational models of specific aspects of cognitive processing in-
volves various heuristic and theoretical principles. These also medi-
ate the potential semantic interpretations attributed to different parts

11 Experimental tests have shown that, despite the various idealising assumptions in-
cluded in the model, the probability of false positives is actually quite small. In
addition, the computations postulated by the model are sufficiently straightforward
to be executed rapidly. That is, the model does not raise a prima facie implemen-
tational or realisation problem. This is primarily due to the fact that, against the
standard Marrian conception, this qualitative model of face recognition does not
require extensive pre-processing of the input image. It directly makes use of the
outputs of ‘early’ visual features, dispensing with the need for complex and error
prone computations, such as 3-D shape recovery.
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of the computational model (e.g., interpreting wavelet-like features
as ‘edges’). Otherwise put, mental content ascriptions on this model
are indirect and thus cannot be said to play any proper individuative
role with respect to the component states and structures of the com-
putational model. The lesson of the first model, therefore, seems to be
that semantic interpretations are extrinsic to the computational model
per se and as such cannot impact the individuation of computational
systems.

Taken at face value, the second ‘qualitative’ model of object recog-
nition might seem to be more supportive of the semantic view of
computational individuation, because there are more features of the
model being correlated with distal (externalist) features of the per-
ceived objects (e.g., faces). However, a closer scrutiny of the model
reveals that the contents being assigned to different components of
the computational model constitute a rather mixed bag (i.e., along-
side externalist features, the model also mentions contents defined
in terms of the outputs of other internal computational systems, and
even purely formal features of the model itself). Moreover, the com-
putational structures used at different stages in the model are indi-
viduated in virtue of their formal properties, which further undercuts
their purported support for a semantic individuation scheme.

Finally, the third model from vision studies highlights the fact
that the development of computational models of cognition is usu-
ally driven by various theoretical considerations that sometimes go
beyond local explanatory concerns. One might seek to develop mod-
els that are better integrated with existing prominent hypotheses or
that are simpler, or models that can be used to describe and explain
patterns which govern the functioning of other, apparently disparate,
cognitive systems. Since all these aims and concerns are likely to
influence the semantic interpretations assigned to specific compu-
tational models, it seems that contents are too indeterminate and
context-sensitive to impact computational individuation.

In sum, the analysis of these three models from vision studies
seems to undermine the hypothesis that content plays an essential
role in the computational individuation of the systems/structures
used to model certain cognitive phenomena. However, as will be
argued below, I do not take this conclusion further to imply that
computational theories of vision are purely formal or internalist. Es-
tablishing the features that determine the individuation of particular
systems qua computational systems is only a part of the analysis of
classical computationalist approaches to cognition. What the previ-
ous analysis of the examples from vision studies has shown is that
there are a range of considerations which drive the construction and
refinement of good computationalist models of cognitive phenomena.

In line with these observations, I think that it is possible to miti-
gate the dispute between ‘individualists’ (e.g., Chomsky 1995; Egan
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1992, 1999, 2010) and ‘anti-individualists’ (e.g., Burge 1979, 1986, 2010,
Shagrir 2001; Silverberg 2006; Piccinini 2008a) by acknowledging that
whilst the former attempt to articulate a distinct internalist (formal)
view of computational individuation, the latter emphasise the various
factors which guide the construction of adequate and potentially ex-
planatory computational models of cognitive capacities. In this way
it becomes possible to see that the anti-individualist’s appeal to the
modelling practices of cognitive scientists is more adequate in the
sense that these practices, rather than bearing on the issue of compu-
tational individuation directly, provide important insights on the sort
of elements and/or principles that practising cognitive scientists take
into account when constructing explanatory computational models of
particular cognitive phenomena. In what follows, I propose to offer
a more systematic treatment of these types of considerations in con-
nection with the problem of the explanatory value of computationalist
models/theories of cognitive phenomena.

4.3 the puzzle of computational explanation

The previous arguments led to the conclusion that the internalist
view of computational individuation cannot by itself guarantee an
appropriate comprehensive analysis of the modelling and theorising
practices encountered in different branches of cognitive science. In
addition, one needs to clarify what makes certain computational sys-
tems appropriate for modelling and explaining particular aspects of
cognitive phenomena. For this reason, I will focus next on the struc-
ture of classical computationalist explanations and elucidate the sort
of principles and norms that guide the development of good com-
putationalist explanations of cognitive phenomena. In this context,
I discuss in more detail the role played by the notion of mental con-
tent in the construction and evaluation of particular computationalist
models of cognitive phenomena. I point out that both the seman-
tic (anti-individualist) and the internalist (individualist) versions of
classical computationalism appeal to the notion of mental (seman-
tic) content specifically in the context of explanation. This supports
the hypothesis suggested above that the semantic interpretation of
computational models of particular cognitive capacities is governed
by a set of epistemic and pragmatic principles that go beyond com-
putational individuation concerns. More importantly, I contend that
the internalist computational individuation strategy advocated in the
previous section is a necessary condition of an adequate picture of
classical computational explanations of cognition.
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4.3.1 Computational explanations on the semantic view

The previous sections have argued that mental contents do not impact
computational individuation per se. However, the key intuition driv-
ing most versions of classical computationalism is that mental con-
tents play an essential role in developing appropriate and potentially
explanatory computational theories/models of cognition. In order to
have a better grasp of the role(s) that mental contents play in a com-
putational theory of cognition it is helpful to consider some of the
main motivations that have been put forward for postulating them
in the first place. In the specific case of the semantic view of clas-
sical computationalism, mental contents are typically introduced in
relation to the problem of cognitive explanation. For instance, some
proponents of the traditional semantic view of classical computation-
alism have explicitly argued that a proper level of semantic analysis
that postulates mental contents is required in order to be able ‘to state
generalisations concerning the behaviour of systems under certain de-
scriptions’. That is, because of its power to capture/express certain
interesting cognitive patterns, the level of analysis which postulates
mental contents is taken to be different from other levels of analysis:

[I]n a cognitive theory, the reason we need to postulate
representational contents for functional states is to explain
the existence of certain distinctions, constraints, and regu-
larities in the behaviour of at least human cognitive sys-
tems, which, in turn, appear to be expressible only in
terms of the semantic content of the functional states of
these systems (Pylyshyn 1984, p. 38).

Put another way, for the semantic level to constitute an independent
level of description and explanation in a computational theory of cog-
nition, one must be able to show that there are important counterfac-
tual supporting generalisations that cannot be expressed at a different
level of analysis (e.g., functional or physical). Or conversely, ‘if under
a particular description of a system’s behaviour, a physical, neural,
or purely functional account captures all the relevant generalisations
hence serves the explanatory function, then appealing to representa-
tions is not essential (ibid., p. 26).’12

Still, to claim that there is a special class of semantic-level counter-
factual-supporting generalisations that characterise various cognitive

12 A similar formulation of the main motivation for postulating an independent seman-
tic level is the following: ‘The principle that leads us to postulate representational
states (individuated by their content) that are distinct from functional states is ex-
actly the same as the principle that leads us to postulate functional states that are
distinct from physical states. In both cases we want to capture certain generalisa-
tions. We discover that in order to do this, we must adopt a new vocabulary and
taxonomy; hence, we find ourselves positing a new, autonomous level of description’
(Pylyshyn 1984, p. 32).
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phenomena does not suffice to justify the claim that mental contents
have an explanatory function in computational theories of cognition.
Consider first some basic facts about the construction and evaluation
of computational models in cognitive science. A preliminary con-
dition for saying that a computational device/system models a par-
ticular cognitive capacity is that it satisfies an input-output or weak
equivalence criterion. That is, the device must, under certain carefully
specified conditions, yield the right type of output in response to an
appropriate class of inputs. However, many authors have pointed
out that this sort of behavioural evidence does not suffice to establish
whether a certain computational model offers an adequate descrip-
tion or, more strongly, an explanation of a particular cognitive capac-
ity. If it is to do the latter, the model must satisfy a stricter condition
than mere behavioural mimicry, i.e., something along the lines of the
strong equivalence criterion (cf. Pylyshyn 1984). The point of formu-
lating such a stricter criterion is to guarantee that the computational
modelling practice will avoid unprincipled and ad hoc moves:

Psychologists pursue the goal of explanation, which means
that, although we pursue a constructivist program, we
must make sure our use of computer models is principled.
This, in turn, means that stringent constraints must be ap-
plied to the theory construction task to ensure that the
principles are separated from the ad hoc tailoring of the
systems to make them fit the data. [...] we must make
sure we specify the constants of the model in order to de-
termine whether there are fewer degrees of freedom than
are data points (ibid., p. 85).

The strong equivalence criterion is supposed to reflect the variety of
strategies and techniques scientists use for improving both the empir-
ical adequacy and explanatory power of current computational mod-
els of specific cognitive capacities.13 The visual processing models
discussed in section 2.2 illustrate several of these constraints which
range from empirical or experimental-based constraints up to various
theoretically-driven hypotheses. For instance, modelling the response
of V1 cells in terms of Gabor patches or wavelets is driven both by
results of simultaneous recordings from the LGN and V1 neurones
and by higher-order principles like optimal visual redundancy reduc-
tion. Similarly, Jones et al.’s (1997) model of the top-down influences
on early vision in terms of flexible models has been prompted by the
idea of solving the tension between the poor performance of early
visual systems and the high-quality of visual percepts.

13 As such, the satisfaction of this criterion is better seen as a matter of degree, which
means that not even strong equivalence provides necessary and sufficient condi-
tions for something counting as a definitive computational theory of cognition. This
caution is particularly pertinent because, as it will be shown in what follows, the
criterion remains incomplete in significant respects.
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More generally, if a formally specified computational process is to
be a serious candidate as an explanatory model of mental processing,
then one should provide as explicit an account as possible of the way
the model relates to the empirical phenomenon it is to explain. This
in turn implies that one should seek to establish various constraints
on the class of possible input-output equivalent computational mech-
anisms, e.g., by considering time and resource constraints as well as
the capacity of such mechanisms to produce specific inferential and
systematic patterns of behaviour. For instance, the ‘qualitative’ recog-
nition model which postulates computations over ordinal relations
between structural features of perceived images fares better with re-
spect to such strong equivalence criteria than other models which
construed the recognition problem in terms of comparisons of Gabor
jet vectors or other related models (cf. Sinha and Balas 2008). More
specifically, the computations postulated by the ‘qualitative’ recogni-
tion model do not raise special computational tractability issues that
other previous models do, and the number of false positives gener-
ated by the model is close to insignificant. In addition, the model
correctly predicts the patterns of successful recognitions and failures
under a wide variety of illumination conditions. In light of these
features, the model is a better candidate as an explanatory model of
object recognition than other alternative models.

In summary, the practice of constructing adequate computational
models of cognitive capacities seems to be constrained by a series of
principles and norms, that include various higher-order or top-down
considerations about general patterns such as the systematicity, com-
positionality, inferential coherence of certain cognitive phenomena
such as thought and language. Whilst some authors have argued
that the adoption of such constraints implies that the correct cogni-
tive architecture of the brain must be a classical (symbols and rules)
architecture (e.g., Fodor and Pylyshyn 1988), they have been criticised
for failing to provide an unambiguous characterisation of the general
(top-down) patterns that are supposed to entail such a strong conclu-
sion (e.g., Smolensky 1988b; Matthews 1997; Frank, Haselager, and
van Rooij 2009). One possible response strategy would be to insist
that the difficulty of saying something more precise about these fea-
tures stems precisely from their generality.

Another more compelling solution would be to take a closer look
at the top-down principles that guide the actual scientific practices of
developing better computational models/theories of cognition. De-
spite the fact that such a perspective is likely to yield a very frag-
mented picture of the aims, interests, and principles used by cogni-
tive scientists in their modelling and explanatory practices, I claim
that it nevertheless supports the general hypothesis that semantic in-
terpretations (or the assignment of mental contents to the component
parts of computational models) play an important normative role in
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determining which of the proposed models provides an adequate ex-
planation of the target cognitive capacity. This is essentially because
the phenomena that are to be explained by a cognitive theory are typi-
cally characterised in broadly externalist (semantic terms). Whilst this
observation does not imply an externalist (semantic) computational
individuation strategy, it nevertheless vindicates the main insight of
the semantic view of computationalism, which is expressed in the
following quote:

Although in the computational model, the symbolic codes
themselves do not specify their intended interpretation
(and the model’s behaviour is not influenced by such an in-
terpretation), the cognitive theory that makes claims about
what it is a model of, which aspects of it are supposed to
model something and which are not, does have to state
what the states represent, for reasons already noted, hav-
ing to do with explanation and with capturing generali-
sations. The cognitive theory would be gratuitous, or at
best, weakly equivalent or ‘mere mimicry,’ if the ascription
of some particular representational content were not war-
ranted. The particular interpretation placed on the states,
however, appears to be extrinsic to the model, inasmuch as
the model would behave in exactly the same way if some
other interpretation had been placed on them (Pylyshyn
1984, pp. 42-43).

I take this passage to support the separability of the individuation
and explanation issues advocated in this chapter. Moreover, claim-
ing that semantic interpretations are extrinsic to the models them-
selves does not commit one to any reckless form of subjectivism. For,
as noted above, ascriptions of mental contents are constrained in a
number of ways: they have to reflect the relevant top-down (higher-
order) regularities and have to be assigned to appropriately typified
structures. Thus, the defender of classical computationalism need
not claim that semantic (externalist) contents play a role in the type-
individuation of computational states in order to justify the important
contributions that semantic interpretations make to the construction
of adequate explanatory models of cognitive capacities.

A similar account of the role played by mental contents in computa-
tional theories of cognition can be found in Frances Egan (2010, 2013).
The latter is taken to be an extension of her internalist account of
computational individuation. By analysing her position, I seek both
to clarify the main source of the internal tension threatening Egan’s
computationalist views and to provide a more adequate account of
the role played by mathematical descriptions in computational cogni-
tive explanation.
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4.3.2 Cognitive interpretations as gloss

Egan (1999, 2010, 2013) acknowledges that the internalist view of com-
putational individuation does not constitute a complete analysis of
the practice of developing adequate computational models of cogni-
tive phenomena. In addition, one must provide an account of how
abstract computational models are connected with their target cogni-
tive capacities. In order to do this, she maintains that one must say
why and when computational theorists appeal to ascriptions of men-
tal contents. Egan’s proposal is that mental content ascriptions serve
several important epistemic and pragmatic functions in the context
of computational psychology. In particular, she claims that mental
contents are essential in assessing the explanatory value of a compu-
tational theory of cognition.

In her 2010 article, Egan calls the ascription of mental contents
to a formally characterised computational system: ‘the cognitive in-
terpretation of the model’. She nevertheless insists that this type of
cognitive interpretation should be ‘sharply distinguished from the
mathematical interpretation specified by f I . Only the latter plays an
individuative role’ (Egan 2010, p. 256). I have already shown that
there are good reasons to resist the idea that mathematical functions
play a proper individuative role with respect to computational sys-
tems/states. In what follows, I expand the previous critical analy-
sis by discussing Egan’s notion of cognitive interpretation. I then pro-
pose, in section 3.3, an alternative way of thinking about the roles
played by the mathematical (canonical) description of a computa-
tional model/system.

Among the roles played by contents in computational theories of
cognition, Egan (1999) identifies two that are common to different
modelling techniques used in other physical sciences and one which
seems to be unique/specific to the field of cognitive psychology. More
specifically, she argues that a cognitive (semantic) characterisation of
a computational model serves an expository or presentation function,
‘explicating the formal account which might not itself be perspicuous’.
A similar line is found in Chomsky (1995), who maintains that inten-
tional characterisations of abstract computational models serve only
as an informal presentation tool, contributing to the ‘general motiva-
tion’ of a computational theory. In addition, Egan (1999) points out
that representational contents can also be instrumental in the elabora-
tion of partial models or theories, since:

a computational theorist may resort to characterising a
computation partly by reference to features of some rep-
resented domain, hoping to supply the formal details (i.e.,
the theory) later. In the meantime, contents can serve a
reference-fixing function allowing the theorist to refer to
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states yet to be given a precise formal characterisation’(Egan
1999, p. 182).

The characteristic function that mental contents are taken to play in
computational psychology has to do with the fact that the questions
that antecedently define the domain of a psychological theory are
usually couched in semantic or intentional terms. A semantic or cog-
nitive characterisation of the postulated computational processes is
taken to enable the theory to adequately address these questions. In
other words, the cognitive interpretation is said to play a bridging
role between the pre-theoretical questions defining the psychological
domain and the formal computational theory:

The cognitive characterisation is essentially a gloss on the
more precise account of the mechanism provided by the
computational theory. It forms a bridge between the ab-
stract, mathematical characterisation that constitutes the
explanatory core of the theory and the intentionally char-
acterised pre-theoretic explananda that define the theory’s
cognitive domain (Egan 2010, pp. 256-257).

On this view, in order to assess whether a particular computational
model has an explanatory value with respect to a target cognitive ca-
pacity, the processes and structures postulated by the computational
model need to be construed under a cognitive interpretation as rep-
resentations of proximal or distal features of some external environ-
ment (for instance in the case of early visual processing, as edges,
joint angles, etc. or in the case of visual recognition as invariant
features of the object). Only when this is done, one can definitely
say whether the model answers the questions that motivated the
search for a computational theory in the first place. In consequence,
the bridging role hypothesis claims that mental contents are fit to
play only the epistemic role of connecting pre-theoretically or incom-
pletely specified cognitive processes with formally specified models
of these processes.

A prima facie difficulty with thinking of the roles played by mental
contents in computational models along these lines is that it seems to
make the interpretation of computational mechanisms look arbitrary
and unprincipled. This would seem to follow because the idea that
mental contents play a series of broadly epistemic roles is compatible
with the fact that the semantic interpretation of any computational
state/system is non-unique. However, as suggested above, this pur-
ported non-uniqueness of the cognitive interpretation does not neces-
sarily amount to its being ad-hoc or non-objective:

To call the cognitive characterisation a ‘gloss’ is not to sug-
gest that the ascription of representational content is un-
principled. The posited states and structures are not in-
terpretable as representations of distal visible properties
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(as, say, object boundaries, or depth or surface orientation) un-
less they co-vary with tokening of these properties in the
subject’s immediate environment (Egan 2010, p. 257).

This remark is in line with the observation made previously that the
assignment of mental contents is actually guided by a series of norms
and general principles which make semantic interpretations seem less
arbitrary or indeterminate. Another way of thinking about this issue
is to consider cognitive interpretations as being constrained by some-
thing like a directness requirement which reduces the class of possi-
ble content ascriptions. That is, given a certain cognitive modelling
context, the ascription of certain distal features to the component
structures of a specific computational model may well be the most
straightforward (salient) and adequate interpretation. However, by it-
self, this requirement does not imply that the structures postulated in
computational theories of cognition must necessarily represent their
normal distal causes, for, in some cases, the computational structures
postulated by a computational theory may equally well be interpreted
as representations of proximal features (e.g., as discontinuities in the
image, brightness ratio magnitude, etc.).

Thus, from a modelling perspective, both broad and narrow con-
tents can play the role of creating a link between the semantically
characterised explananda of computationalist cognitive theories and
the abstract explanatory structures postulated by such theories. How-
ever, adopting a broadly externalist view with respect to the problem
of cognitive computational explanation does not commit one also to
an externalist view of computational individuation. Instead, I have ar-
gued that the correct view of computational individuation mandates
that only formal properties/relations determine the type-identity of
computational states/systems. Having established that externalist
(semantic) contents do not count as criteria for computational individ-
uation, the only remaining point that requires clarification concerns
the relationship between the mathematical canonical description and
the so-called cognitive interpretation.

On Egan’s own account this relationship turns out to be quite prob-
lematic for two reasons. The first is that Egan (2010) claims both
that the mathematical description constitutes ‘the explanatory core of
the [computational] theory’ and also that mental contents play the
essential role in the evaluation of the explanatory value of candidate
computational models of cognition. One possible way to read the two
claims so that they are not in tension with one another is to say that
the mathematical description constitutes the explanans of the compu-
tational model/theory, which then is cast in an appropriate cognitive
interpretation. But even under this reading it is unclear whether it is
the mathematical description itself that does the explanatory job or
rather the cognitive interpretation. Therefore, Egan seems to face the
challenge of giving a more detailed account of how is it that mathe-
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matical structures can play a proper explanatory role in an empirical
theory of cognition.

The second reason why this relationship is problematic has to do
with the status of mathematical functions (descriptions) themselves.
On Egan’s own account, mathematical structures are sometimes said
to play a genuine explanatory role in computational cognitive theo-
ries (as per the previous quote), and, at other times, they are taken to
play an essential role in individuating computational states/systems.
Claiming that mathematical structures (functions) serve both to in-
dividuate computational states/systems and to explain specific cog-
nitive capacities or patterns risks conflating the individuation and
explanation issues all over again. In line with an internalist (formal)
view of computational individuation, I maintain that mathematical
descriptions are better viewed as playing an explanatory role in com-
putationalist theories of cognition.

4.3.3 The structure of classical computationalist explanations

In light of the previous arguments, I claim that classical computa-
tional explanations of cognitive capacities proceed by decomposing
a complex cognitive task (e.g., object recognition) into a set of more
basic tasks (e.g., edge extractions, feature construction, ordinal match-
ing, etc.) which in turn are characterised in terms of a series of
computing operations defined over appropriately typified symbols.
Thus, computational explanations connect, via a number of identifi-
able steps, the target cognitive phenomenon/pattern (which is often
characterised in semantic or intentional terms) to a computational
structure which reveals certain fundamental features of the cognitive
capacity in question. These features contribute to a better under-
standing of the cognitive phenomena under investigation by allowing
cognitive scientists to test a wider range of counterfactual generalisa-
tions pertaining to the target cognitive phenomena, and to draw con-
nections between the computational descriptions of what sometimes
seem to be different types of cognitive structures.

I have argued that the assignment of semantic (broadly externalist)
contents plays a crucial role in the development of these computa-
tional models because it serves to justify why a particular computa-
tional structure/system can be taken to capture something relevant
about the structure of the target cognitive phenomenon. In addition,
I have shown that in order to play this sort of normative role in the
construction and refinement of good explanatory models of cognitive
phenomena, the interpretation function need not be taken to be a one-
to-one mapping between computational states and semantic contents.
In fact, even a cursory glance at the modelling practices of cognitive
scientists shows that semantic interpretations of computational mod-
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els are most of the time partial and mixed (i.e., comprising both what
philosophers have identified as broad and narrow mental contents).

Besides semantic interpretations, the explanatory adequacy of par-
ticular computational models is usually evaluated by taking into ac-
count additional constraints, developed along the lines of the strong
equivalence criterion (Pylyshyn 1984). According to the latter, the
input-output (or weak) equivalence of the cognitive system and the
computational system/model may not suffice to guarantee that the
proposed model has a genuine explanatory value. In addition, mod-
ellers take into consideration quantitative measures such as response
times, complexity profiles of the modelled and modelling systems,
and so on, which further increase the adequacy of the computational
structures postulated by classical computational models/theories of
cognition.

Furthermore, I claim that taking semantic interpretations to func-
tion as norms which guide the construction of good computational
theories of cognition is compatible with the idea that the mathemati-
cal (canonical) descriptions of computational theories/models of cog-
nitive capacities play an explanatory rather than individuative role.
Mathematical descriptions can be taken to identify or index the com-
putational structures postulated by particular models/theories of cog-
nitive capacities. Identifying computational systems in terms of the
mathematical functions they compute is theoretically useful since it
makes these (often highly complex) systems theoretically tractable by
identifying the variables of a system that are relevant from a mod-
elling point of view.

Since these mathematical descriptions identify certain stable (more
fundamental) features in the cognitive phenomena being investigated,
which in turn support relevant counterfactual generalisations and
provide further insight about the structure of the target cognitive phe-
nomena, they can be said to play an explanatory role in these scien-
tific practices. This way of thinking about the role of mathematical
descriptions in computationalist modelling is also consistent with the
discussion of the contributions of mathematisation to the dynamic
systems modelling practices analysed in chapter 3. In concluding
this investigation, I would like to emphasise a number of advantages
of adopting this multilayered view of computational explanations of
cognition.

4.4 concluding remarks

The interpretation of classical computationalism proposed in this chap-
ter comprises two main hypotheses. First, the individuation hypoth-
esis claims that the internal states and structures of a computational
model are type-identified on purely formal grounds, i.e., in virtue of
their structural (syntactic) properties. This hypothesis is in line with
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the formality constraint endorsed by virtually all classical accounts of
computation; but it contravenes the orthodox reading of the seman-
tic view of computation, according to which semantic (externalist)
principles and/or contents play an essential role in computational in-
dividuation. In other words, in contrast to the latter claim, the formal
individuation thesis denies that mental contents (both broad and nar-
row) impact the individuation of the internal states of computational
systems. Second, the broadly externalist explanation hypothesis that
constitutes the other pole of classical computationalism rescues men-
tal contents from a strictly eliminativist picture of computational ex-
planation. I have argued that the semantic (cognitive) interpretation
of the formally specified structures postulated by computational mod-
els of cognitive phenomena plays a normative role in establishing the
adequacy and explanatory value of such a computational model.

Therefore, the account being put forward has an internalist com-
ponent because it claims that the individuation of computational sys-
tems/states is affected only by structural features (properties, rela-
tions) of their component parts. However, as a general account of
computationalist explanation, the proposed view is compatible with
a weak form of semantic externalism which acknowledges that the
practice of constructing adequate computational models of cognitive
phenomena is constrained by the semantic interpretations that can
be assigned to these models. This further implies that assignments
of mental contents (broad and narrow) play a substantive role in the
construction and evaluation of the explanatory value of particular
computational models of cognitive phenomena. That is, they consti-
tute a bridge between the explananda of cognitive theories/models
and the abstract (mathematical) explanatory structures postulated by
classical computational models/theories.

The analysis carried out in this chapter was intended to identify
the main theoretical principles which underlie classical computation-
alist approaches to cognition. I have characterised the explanatory
scheme associated with classical computationalism as a decomposi-
tional strategy which elucidates particular cognitive phenomena by
revealing in a stepwise fashion certain more fundamental abstract
features of the phenomena being investigated. For the purposes of
this analysis I have relied broadly on the classical Marrian picture of
computational explanations (Marr 1982). From a theoretical point of
view, Marr’s tripartite conception proves to be very helpful in allow-
ing a clear articulation of the internalist (formal) view of computa-
tional individuation. Moreover, I think that this picture provides a
convenient way of characterising the different levels of abstraction at
which cognitive phenomena can be analysed.

However, from a practice-based perspective, the tripartite picture is
better viewed as a simplification of a continuum of abstract models.
As was shown in section 2.3, computationalist models of cognitive ca-
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pacities are specified at multiple levels of abstraction and/or analysis.
This observation further reinforces the idea that classical computa-
tionalist models are not developed in isolation from considerations
pertaining to lower-levels of analysis. In fact, Marr (1982) himself in-
sisted that no single level of description/explanation can be well un-
derstood without reference to the other levels. The present account
recognises the importance of these factors which guide the construc-
tion of adequate explanatory models of cognitive phenomena.

Finally, I would like to comment briefly on a thorny issue often
raised in debates concerning classical computationalism, namely the
realist commitments entailed by this theoretical position. Throughout
the investigations carried out in this chapter, I have explicitly ignored
the fact that most supporters of classical computationalism are dyed-
in-the-wool realists about mental computations. The main reason for
doing this is that the almost exclusive focus on these realist concerns
has driven too many philosophers to conflate the individuation and
explanation issues which in turn generated a series of difficulties for
the formulation of an adequate account of classical computationalist
explanations of cognitive phenomena.

Against this trend, I have focused on the explanatory framework as-
sociated with classical computationalism and articulated an account
which clarifies the main factors that contribute to the construction
of adequate computationalist models/theories of cognitive phenom-
ena. Within this setup, I have argued that the appeal to theoretical
posits such as internal representations and rules is a preliminary con-
dition for the scientific practice of developing computational mod-
els/theories of cognitive phenomena. There is however a mild real-
ist concession that can be derived from the analysis of the problem
of cognitive explanation. For the success of some of the proposed
computational models/theories of cognition may be taken to provide
some sort of vindication of the ontological principles presumed in
these activities. However, this concession should not be taken to im-
ply that the explanatory value of a scientific model/theory reduces to
its existential commitments or that the latter by themselves guarantee
the explanatory import of particular cognitive theories. I will pursue
these themes further in the next chapter where I will analyse another
model of cognitive explanation which combines the insights afforded
by the classical computationalist and the mechanistic frameworks.
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5

T H E M E C H A N I S T I C V I E W O F C O M P U TAT I O N A L
E X P L A N AT I O N

5.1 introduction

The issues facing classical computationalism have encouraged the de-
velopment of a series of alternative models of computational explana-
tion. This chapter explores the attempt to extend the notion of compu-
tational explanation by incorporating it into the mechanistic account
of computation defended by Piccinini (2007b, 2008a, 2010), Craver
and Piccinini (2011), Milkowski (2010, 2013), and Kaplan (2011), among
others. The mechanistic conception of computational explanation com-
prises two major hypotheses: (a) the functional view of computational
individuation, and (b) the mechanistic view of computational expla-
nation. According to the functional individuation hypothesis, compu-
tational states and processes are individuated in terms of their func-
tional properties, i.e., non-semantically. More specifically, the func-
tional properties that are taken to type-individuate computations are
specified via mechanistic decompositions of complex (physical) sys-
tems. The individuation hypothesis is complemented by the mecha-
nistic explanation hypothesis, according to which computational ex-
planations are a special sub-class of mechanistic explanations.

5.1.1 A motivational strategy for the mechanistic view

There are three principal motivations that drive the mechanistic view
of computation. Firstly, computational mechanists argue that the ac-
count constitutes a better alternative to classical computationalism,
avoiding the pitfalls of the orthodox semantic view of computational
individuation (cf. Piccinini 2008a). Defenders of mechanism claim
that their proposed computational individuation scheme is neither
context- or observer-dependent, nor does it rely on purported ref-
erential or ideological resemblances between the internal states and
structures of a computational system. In other words, the functional
view of computational individuation is supposed to deliver determi-
nate and objective computational taxonomies which are used to type-
identify specific computational devices.
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Secondly, proponents of the mechanistic view claim that the ac-
count provides a more robust picture of both computational individ-
uation and computational explanation that covers a wide range of ex-
perimental and theoretical practices, from computer science and engi-
neering to computational psychology and neuroscience. And, thirdly,
these theorists claim that their approach yields a sharp separation
between the questions raised by computationalist approaches to cog-
nition and those specific to theories of mental content. This in turn is
supposed to help disentangle a number of philosophical debates that
have systematically conflated the two issues.

In addition, they argue that the mechanistic view exhibits a number
of desirable meta-properties which recommend it as a general encom-
passing picture of computation. Proponents of the account maintain
that mechanism provides an objective picture of what it is for a phys-
ical system to be a computing device in the first place. Furthermore,
the mechanistic view is said to support a robust distinction between
computing and non-computing mechanisms, viz. by showing that
the ‘right’ things compute (e.g., digital computers, calculators, etc.),
whereas the ‘wrong’ things do not (e.g., the weather, planetary sys-
tems, etc.).

Lastly, it has been argued that the mechanistic view entails an ap-
propriate account of the applicability of computability notions and
principles to the study of cognition. More specifically, as an account
of the applicability of the theory of computation to cognitive phenom-
ena, the mechanistic view has two potentially interesting entailments.
First, the account reinforces the useful distinction between compu-
tationalist models and computationalist explanations of cognitive ca-
pacities. Second, the functional individuation scheme promoted by
the mechanistic account is arguably compatible with the actual tax-
onomies used by practicing cognitive scientists.

5.1.2 Aims and outline of the argument

Despite its promising features, the mechanistic account faces a num-
ber of challenges that undermine its claim to ascendancy over other
versions of computationalism. In this chapter, I show that the mech-
anistic account actually conflates the individuation and explanation
issues by equating computational individuation criteria with prag-
matic explanatory principles. The mechanistic account also seems to
distort some of the specific aims and purposes of computationalist
approaches to cognition. This chapter therefore challenges the idea
that the mechanistic view provides the most appropriate account of
the applicability of computational models to the study of cognition.
More importantly, I maintain that the mechanistic component of this
view of computationalist explanation tends to undermine the very
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idea of there being a distinct class of computational explanations of
cognitive phenomena.

This chapter comprises four parts. I begin by analysing the concep-
tion of computational mechanism articulated in a series of papers by
Gualtiero Piccinini (2007a, 2008a, 2010). Then, in section 3, I show the
consequences of adopting his notion of generic computation for the
issue of computational individuation. Section 4 explores the details
of the mechanistic picture of computational explanation and the idea
that the mechanistic framework facilitates the unification of various
explanations of cognitive phenomena developed at different levels of
analysis or abstraction. In the last section, I discuss some of the main
limitations of the mechanistic account of computation, and conclude
with a comparison between mechanistic and classical computational-
ism.

5.2 computing mechanisms

As stated in the introduction, the mechanistic view comprises two al-
legedly separable hypotheses pertinent in this context: (i) a functional
hypothesis of computational individuation and (ii) a mechanistic hy-
pothesis of computational explanation. I claim that both hypotheses
can be viewed as consequences of the notion of generic computation
developed on the mechanistic approach. By analysing this notion, I
seek to identify the similarities between classical computationalism
and mechanistic computationalism. I maintain that acknowledging
the features that the two views have in common allows a better as-
sessment of the distinctive contributions of each framework to the
study of cognitive phenomena.

There are several distinct threads which contribute to the mech-
anistic conception of computation (cf. Piccinini 2007a, 2008a, 2010;
Craver and Piccinini 2011; Piccinini and Bahar 2013). In particular,
mechanists insist on the centrality of the distinction between abstract
and concrete computation. Within the latter category they further dis-
tinguish between analog, digital and neural computation, and argue
that only the notion of neural computation is an appropriate tool for
elucidating the nature and structure of cognition (cf. Piccinini 2009;
Piccinini and Bahar 2013). In what follows, I analyse the various dis-
tinctions introduced by the mechanistic account of computation in
order to clarify how the notion of generic computation is related to
that of neural computation, which in turn is taken to play a crucial
role in computationalist approaches to cognition. The following dis-
cussion is also intended to sharpen certain ideas presented in chapter
4 concerning the relation between abstract and concrete computation.
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5.2.1 Abstract computation

The abstract notion of computation has its origins in the pioneering
work of Alan Turing (1937), Alonso Church (1936) and other math-
ematicians who sought to define in rigorous technical terms the in-
tuitive notion of computable function. Their work in mathematical
logic yielded a series of formally equivalent characterisations of the
class of effectively computable functions. The results that came to
be known as the Church-Turing thesis synthesise these efforts in the
claim that all effectively computable functions are Turing computable
(or, equivalently, recursive functions or abacus computable functions).
Although the thesis is not obvious nor can it be rigorously proved
(since the notion of effective computability is itself an intuitive and
not a rigorously defined one), an enormous amount of evidence has
been accumulated in support of it. What follows is a rough picture
of the key ideas that underlie the mathematical work associated with
the development of the technical notion of computable function.

From a formal point of view, to define a computation amounts to
specifying a string of letters from a finite vocabulary and a list of in-
structions for generating new strings from old strings. An ordered
list of instructions constitutes an algorithm, i.e., the abstract charac-
terisation of a program. Thus, given a vocabulary (V) and a list of
instructions appropriately defined over strings of V-letters, a compu-
tation is a sequence of strings such that each member of the sequence
is derived from another member via some instruction in the list. Let-
ters and strings are usually called symbols or symbolic structures in
virtue of the fact that they are typically assigned semantic interpreta-
tions. However, as noted in the previous chapter, this does not imply
that formally typified symbols possess any of their potential contents
essentially. Thus, symbols are formally identified entities that may
be concatenated to other symbols to form lists called strings. This in
turn implies that strings which are complex symbolic structures are
formally individuated solely by the types of symbols that compose
them and their order within the strings.

This approximate characterisation of what counts as a computation
is consistent with the idea that most interesting computations depend
not only on the input strings of data but also on the internal state of
the system that is said to perform the computation. Since internal
states may also be defined as strings of symbols, the individuation
criteria for input strings will apply to internal states as well. Accord-
ing to this picture, a computation comprises an initial internal state
of the system together with an input string, a series of intermedi-
ate strings, and a final string consisting of the output plus the final
internal state of the system. In addition, for all V-strings and any ap-
propriately defined algorithm, it is possible to specify a general rule
which characterises the function computed by the system that acts
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in accordance with the algorithm (e.g., the addition rule). This rule
offers a general characterisation of the relation which holds between
inputs, internal states, and outputs produced by the system follow-
ing the steps (instructions) of the algorithm. There are two important
features which characterise this sort of rule, viz: (i) it is highly gen-
eral, i.e., it connects all inputs and outputs from a relevant class; and,
(ii) it is input-specific, in that it depends on the composition of the
input for its application. Note that this type of rule is typically more
abstract than any specific algorithm, in the sense that the same rule
can characterise different algorithms, but it may also be equivalent to
the algorithm itself.

The abstract conception of computation makes it clear that com-
putations are type-identified only by the type of entity over which
they are defined together with the algorithms (list of instructions)
that specify how these entities are manipulated and transformed to
yield other types of entities. However, proponents of the mechanis-
tic view insist that the notion of abstract computation does not suf-
fice to elucidate either the conceptual or the empirical implications
of computationalist approaches to cognition. They claim that the
mathematical notion of computation applies directly only to abstract
systems/mechanisms. Mechanists therefore require, in addition, a
clarification of how this abstract notion applies to concrete (physical)
mechanisms.

5.2.2 The varieties of concrete computation

In order to grasp the connection between the mathematical notion of
computation and the varieties of concrete or physical computation
discussed in the scientific and philosophical literature, it is helpful to
note that the abstract notion provides a sketch for a broad or generic
conception of computation. Digital, analog, and neural computation
will in turn be shown to be species (among others) of this generic
view of computation. One of the clearest mechanistic formulations of
the generic notion of computation says that:

Computation in the generic sense is the processing of vehi-
cles (defined as entities or variables that can change state)
in accordance with rules that are sensitive to certain vehi-
cle properties and, specifically, to differences between dif-
ferent portions (i.e., spatiotemporal parts) of the vehicles.
A rule in the present sense is just a map from inputs to
outputs; it need not be represented within the computing
system. Processing is performed by a functionally organ-
ised mechanism, that is, a mechanism whose components
are functionally organised to process their vehicles in ac-
cordance with the relevant rules (Piccinini and Bahar 2013,
p. 458).
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On this definition of generic concrete computation, the properties
(of the vehicles and instructions) that are counted as relevant for
the purposes of computing are independent of the physical media
that implement them. More specifically, mechanists claim that com-
putational structures (i.e., the vehicles) are medium independent in
the sense that the input-output map (the general rule) that defines
a computation ‘is sensitive only to differences between portions of
the vehicles along specific dimensions of variation - it is insensitive
to any more concrete physical properties of the vehicles’ (Piccinini
and Bahar 2013). Otherwise put, the general rules that define spe-
cific computational processes are ‘functions of state variables associ-
ated with a set of functionally relevant degrees of freedom, which
can be implemented differently in different physical media’ (ibid.).
This implies that a particular computation can be implemented in
multiple physical media (e.g., mechanical, electro-mechanical, elec-
tronic, etc.) provided that the candidate implementational bases have
enough degrees of freedom (i.e., distinguishable states) that can be ap-
propriately accessed and transformed. Defenders of the mechanistic
position claim that, despite its permissiveness, this notion of generic
computation rules out a host of physical mechanisms as being non-
computational (e.g., stomachs, the weather, planetary systems, the
Watt governor, etc.).

It should be noted that nothing that has been said so far about the
notion of generic computation contravenes to the internalist (formal)
view of computational individuation defended in chapter 4. However,
mechanists seem to insist that one major advantage of their way of
thinking about computation is that it rules out upfront the semantic
view of computational individuation by showing that computations
can be defined in a purely formal way, independently of any seman-
tic characterisation/interpretation. In addition, the generic notion of
computation is said to allow the clear differentiation of three more
specific notions of computation: digital, analog, and neural compu-
tation. Among these, mechanists maintain that only neural compu-
tations are appropriate devices for investigating the structure of cog-
nitive phenomena. I begin by analysing the mechanist formulations
of the notions of digital computation and analog computation, before
considering the notion of neural computation itself.

5.2.2.1 Digital computations

Perhaps the most popular notion of computation discussed both in
the computer scientific and philosophical literature is that of digital
computation. As with all the other notions of computation analysed
in this section, that of digital computation admits of both an abstract
and a concrete or physical characterisation. At the abstract level, dig-
ital computation can be characterised along the lines of Turing’s orig-
inal proposal sketched above, viz. as the manipulation of strings of
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discrete elements (symbols) (cf. Turing 1948/2004). In order to obtain
a concrete characterisation of the notion of digital computation, the
first step is to establish the concrete counterpart of the formal notion
of symbol. Mechanists have suggested that symbolic structures pos-
tulated at the abstract level of defining a computing system may be
physically implemented by ‘digits’. A digit is a macroscopic state (of
a component of a physical system) whose type can be reliably and
unambiguously distinguished by the system from other macroscopic
state types. Just as their abstract counterparts (viz. symbols), digits
can be ordered to form sequences of strings which in turn serve as
the vehicles of computation. Thus, a concrete digital computation is
defined as the processing of strings of digits in accordance with a
rule, which is simply a map from input strings and internal states, to
output strings. Although they qualify as concrete computations, op-
erations over strings of digits are not responsive to any specific kind
of physical property. This seems to imply that digital computations
can be implemented by any physical medium with the right internal
composition and organisation. In summary, the concrete conception
of digital computation entails that:

Digits are unambiguously distinguishable by the process-
ing mechanism under normal operating conditions. Strings
of digits are sequences of digits, that is, digits such that
the system can distinguish different members of the set
depending on where they lie along the string. The rules
defining digital computations are, in turn, defined in terms
of strings of digits and internal states of the system, which
are simply states that the system can distinguish from
one another. No further physical properties of a physical
medium are relevant to whether they implement digital
computations (Piccinini and Bahar 2013, p. 459).

Mechanists claim that defining digital computation in terms of oper-
ations over digits affords a more general conception than three other
related and more commonly invoked notions: classical computation
(cf. Fodor and Pylyshyn 1988), algorithmic computation, and Turing-
computable functions. However, this claim seems to be overstated.
Firstly, as I have shown in the previous chapter, classical computa-
tionalism need not be committed to the hypothesis that all digital
computations are defined exclusively over language-like vehicles and
thus need not be seen as more restrictive than the present conception
of computation. Secondly, the motivations for saying that concrete
digital computations go beyond Turing-computability are not entirely
clear, especially since mechanists tend to be quite sceptical about the
notion of hypercomputation (e.g., Copeland 2002; Copeland and Sha-
grir 2011; Piccinini 2007b). And, lastly, as suggested above, the notion
of algorithm is just another variant of describing the input-output
mapping that connects the input strings of digits with the output
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strings of digits, and thus again cannot be said to yield a more restric-
tive notion of computation.

Although I do not think that mechanists can make a strong case for
any of these differences, I concede that the mechanistic formulation
of the notion of digital computation has the advantage of avoiding
certain misleading implications that are typically associated with the
other proposed accounts. In particular, since on the mechanist frame-
work the notion of digital computation is presented explicitly as an
extension of the abstract notion of Turing-computation, this formula-
tion avoids the temptation of claiming that strings of digits have es-
sential semantic interpretations (contents). That is, when considered
outside any specific modelling context, the formal characterisation of
digital computation becomes the most salient.

Thus, to recapitulate, according to mechanists, a physical system
counts as a digital computing system to the extent that it is ‘function-
ally organised to manipulate input strings of digits, depending on the
digits’ type and their location on the string, in accordance with a rule
defined over the strings’ (cf. Piccinini and Bahar 2013, p. 460). This
characterisation implies that there are two distinctive features of the
notion of digital computation:

(a) whether a particular microscopic state belongs to a
digit type is unambiguous relative to the behaviour of
the system; and (b) the output of the computation de-
pends (either deterministically or probabilistically) only
on the internal state of the system and on the number of
input digits of their types, and the way they are concate-
nated within the string during a given time interval (ibid.,
p. 460).

From this definition it follows that a wide range of physical sys-
tems qualify as performing digital computations: Turing machines,
finite state automata, ordinary computers and calculators, and per-
haps more surprisingly certain physical implementations of connec-
tionist networks such as perceptrons (e.g., Minsky and Papert 1972)
and McCulloch-Pitts nets (McCulloch and Pitts 1943). Whilst this
classification seems to support the claim that the mechanist defini-
tion of digital computation is more general than the one typically
invoked in discussions of classical computationalism, I submit that
this generality is primarily a consequence of the fact that mechanists
characterise the notion of digital computation in a way that is inde-
pendent of the particular tasks or problems that such computational
systems/devices are taken to solve or model.

Whilst the notion of digital computation (both abstract and con-
crete) is the notion that can be credited with inspiring the compu-
tational theory of cognition, various authors have claimed that the
internal dynamics of cognitive processes points towards a different
notion of computation. One such candidate, analog computation, is
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analysed in some detail by proponents of the mechanistic view, but
for reasons that I will spell out below, it is found to be inappropriate
for the purposes of modelling and explaining cognitive phenomena.

5.2.2.2 Analog computations

The notion of analog computation is more difficult to pin down than
that of digital computation. For instance, according to one very broad
sense of the term ‘analog’, a process qualifies as analog if it can be
characterised as the dynamical evolution of real variables in real time.
At least some of the authors who have proposed that the notion of
analog computation is adequate for the study of cognitive processes
employ precisely this conception (cf. Churchland and Sejnowski 1992;
van Gelder 1998). The problem with the proposal is that most sys-
tems count as analog in this sense, even those that intuitively are not
proper computing systems, such as the planetary motions, digestion,
and so on.

Another sense of the term ‘analog’ encountered in the cognitive
literature refers to representations that are analogous with what is be-
ing represented. For instance, certain models of visual (Hubel and
Wiesel 1962) and auditory (Schreiner and Winer 2007) receptive fields
make reference to such analog representations constructed by the rel-
evant parts of the nervous system. However, as some mechanists have
pointed out, this loose talk of analog models does not suffice to estab-
lish whether there are certain brain functions adequately described
in terms of analog computations (e.g., Piccinini 2008b). Despite its
limitations, a number of authors (cf. Pour-El 1974; Rubel 1985, 1993;
Mills 2008) have argued that analog computation provides an alter-
native, better, set of principles than digital computation does for the
study of cognitive phenomena. For this reason, it is worth clarifying
further the main differences that separate the two conceptions.

Mechanists claim that the distinction between analog and digital
computation consists in the fact that physically implemented contin-
uous variables are quite different entities from the strings of digits
over which digital computations are defined. For one thing, a digital
computer can distinguish between different types of digits in an un-
ambiguous manner, whereas a physically implemented analog com-
puter cannot do the same with the exact values of continues variables,
simply because the latter can be measured only within a certain mar-
gin of error. It is primarily in virtue of this feature that mechanists
(e.g., Piccinini 2007b, 2008a,b; Piccinini and Bahar 2013) maintain that
analog computing systems constitute a different class from digital
computers. Nevertheless, analog computation has an important fea-
ture emphasised in the case of generic computation, namely that of
being defined over environment independent entities (vehicles). This
is important because it implies that, just like other types of computa-
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tions, analog computations are type-individuated in principle solely
by their formal or structural properties.

Turning to analog computationalism as a hypothesis about biolog-
ical cognitive systems, it has been claimed that functionally signifi-
cant signals manipulated by the nervous system are irreducibly con-
tinuous variables. Thus, there seems to be a prima facie case for the
analog computationalist hypothesis in the fact that both types of sys-
tems (i.e., analog computers and brains) have a continuous dynamic.
Neural inputs - viz. neurotransmitters and hormones - are most use-
fully modelled as continuous variables and their release and uptake
is modulated by chemical receptors that operate continuously in real
time. Similarly, dendrites and at least some axons transmit graded po-
tentials, i.e., continuously varying voltage changes. These and other
features seem to support the comparison between brains and analog
computers. However, in addition to these preliminary similarities,
there are also several major differences between nervous systems and
analog computing systems.

For instance, while it is true that the firing threshold of individual
neurones is subject to modulation by continuous variables (such as
ion concentrations), graded potentials vary continuously, and spike
timing may be functionally relevant, none of these aspects of neu-
ral signals are similar enough to the components of analog comput-
ing systems to allow the application of the mathematical theory of
analog computation to the understanding of brain functions. More
importantly, in the case of spikes which are presently thought to be
functionally the most significant signals transmitted by neurones, it is
not the absolute value of the voltage which is treated as functionally
relevant, but rather the fact of whether a spike is present or not. As
a consequence, spikes are said to have an all-or-none character and
neuroscience presently focuses on firing rates and spike timing as the
principal functional variables at the level of neural networks. This
generates a disanalogy between nervous systems and analog comput-
ing systems because there does not seem to be anything resembling
firing rates or spike timing in the architecture of analog computers.
All these remarks seem to weaken the main claim of analog compu-
tationalism, namely that brains are analog computers.

Although there are other notions of computation that can be de-
fined as subspecies of the generic notion of computation (e.g., quan-
tum computation), mechanists insist that the notion which is most
pertinent in the context of cognitive psychology and neuroscience
is that of neural computation. They claim that neural computation
constitutes a sui generis type of computation which is indispensable
for properly assessing the explanatory value of proper computational
models/theories of cognition.
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5.2.2.3 Neural computations

The mechanistic argument for postulating neural computations as a
distinct species of generic computation is grounded in two claims:
(i) the neurally relevant units of computation cannot be either dig-
its or strings of digits; and (ii) the neuroscientific community makes
use of a notion of neural computation which satisfies the principal
mechanistic criteria for generic computation. Recall that according to
the mechanistic picture, something counts as a generic computational
process if and only if it can be defined over environment-independent
vehicles which are manipulated and transformed in accordance with
a general, input-sensitive rule. Mechanists hold that neural computa-
tions can be characterised in terms of these two parameters without
assuming that the variables processed by neural computations are
anything like digits or strings of digits (i.e., the vehicles of digital
computation).

The mechanistic notion of neural computation is best seen as a
direct response to the computationalist hypothesis defended by Mc-
Culloch and Pitts (1943), according to which neural processes can
be appropriately conceived as digital computations performed over
spikes. The principal empirical justification proposed for this hypoth-
esis is the alleged similarity between digits and spikes, viz. spikes
appear to be discrete or digital, that is, they are unambiguously typi-
fied functional units of a cognitive neural system. To this, McCulloch
and Pitts (ibid.) added the assumption that sets of spikes are strings
of digits, which in turn requires that spikes be concatenated. There
are at least two ways in which to conceive of this concatenation rela-
tion. In the case of spike trains from a single neurone, the obvious
candidate for the concatenation relation consists in the temporal or-
dering of the spikes. In the case of classes of spikes from different
neurones occurring within well-defined time intervals, a concatena-
tion relation might be defined by first identifying a relevant set of
neurones and then taking all spikes occurring within the same time
interval as belonging to the same string.

In response to this traditional hypothesis, mechanists argue that
‘the suggestive analogy between spikes and digits - based on the all-
or-none character of spikes - is far from sufficient to treat a spike as
a digit, and even less sufficient to treat a set of spikes as a string of
digits’ (cf. Piccinini and Bahar 2013, p. 468). The argument against
McCulloch and Pitts (1943) digital conception of neural computation
divides into two steps which basically deny that: (i) spikes can be
appropriately typed as digits and (ii) spikes can be fitted into strings
of digits. Mechanists begin by denying the founding assumption of
the traditional conception of neural computation according to which
spikes are digits. They point out that since digits belong to finitely
many types which are ‘unambiguously distinguishable by the system
that manipulates them’, for spikes (and their absence) to be digits, it

119



5.2 computing mechanisms

must be possible to individuate them into finitely many types that are
equally unambiguously distinguishable by neural mechanisms. How-
ever, this proposal is highly problematic for a number of reasons.1

To get their argument off the ground, mechanists endorse the as-
sumption that the most functionally significant variables for the pur-
poses of understanding neural computational processes are the prop-
erties of neural spike trains such as firing rate and spike timing. With
this hypothesis in hand, they argue that the neuroscientific evidence
concerning these sorts of properties supports the conclusion that nei-
ther spike trains from single neurones nor sets of synchronous spikes
from multiple neurones are viable candidates for strings of digits.
Since without strings it is not possible to define appropriate oper-
ations over strings, mechanists claim that the digital conception of
neural computation is bankrupt. Instead, they propose that neural
computation is sui generis:

In a nutshell, current evidence indicates that typical neu-
ral signals, such as spike trains are graded like continuous
signals but are constituted by discrete functional elements
(spikes). Therefore, typical neural signals are neither con-
tinuous signals nor strings of digits; neural computation
is sui generis (cf. Piccinini and Bahar 2013, p. 477).

In further support of their contention, mechanists also point out
that theoretical neuroscientists build mathematical models of neural
mechanisms and processes in which ‘the explanatory role of (digi-
tal) computability theory and (digital) computer design is nil’ (ibid.).
They insist that understanding neural computation requires specially
designed mathematical tools rather than the mathematics of digital
and analog computation. More generally, the mechanistic argument
is taken to challenge ‘not only classical computationalism, which is
explicitly committed to digital computation, but also any form of con-
nectionist or neurocomputational theory that is either explicitly or
implicitly committed to the thesis that neural activity is digital com-
putation’ (cf. ibid., p. 469). So, whilst the notion of digital computa-
tion sketched above is taken to constitute a distinctive sub-species of
generic computation, mechanists challenge the idea that this notion
is appropriate in the context of modelling and explaining cognitive
phenomena.

Their criticism, which is primarily targeted at the traditional pic-
ture of neural computation (e.g., McCulloch and Pitts 1943), has been
taken to have three important consequences for the debates concern-
ing computational approaches to cognition. Firstly, the notion of
generic computation, of which neural computation is only a sub-
species, is taken to yield a functional computational individuation
strategy that goes hand in hand with a mechanistic conception of

1 For a detailed discussion, see Piccinini and Bahar (2013, pp. 469-474).
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computational explanation. Secondly, the focus on the notion of neu-
ral computation is meant to bring out how computational modelling
of cognitive capacities differs as an activity from other applications
of computability theory to the empirical domain. And, thirdly, the
mechanistic arguments are supposed to bridge the gap between cog-
nitive psychology and neurobiology, by providing a framework in
which the different taxonomies and explanatory strategies used in
these fields can be appropriately integrated. In what follows, I anal-
yse these three key consequences of the mechanistic view of computa-
tional explanation and their connections with the account of classical
computationalist explanations developed in chapter 4.

5.3 the functional view of computational individuation

As stated above, both the computational individuation and explana-
tion hypotheses can be seen as consequences of the mechanistic no-
tion of generic computation. I start by analysing the specific version
of the individuation hypothesis proposed by supporters of mecha-
nism, viz. the functional view of computational individuation. For mecha-
nists, this picture of computational individuation is supposed to hold
for all sorts of computational models used in different branches of
science, including among others, cognitive psychology and neuro-
science (cf. Piccinini 2007a, 2008a; Craver and Piccinini 2011). More
specifically, mechanists maintain that scientific practice across a large
number of domains supports a wide functional individuation strategy.
I analyse the arguments supporting this individuation hypothesis as
well as the claim that wide functional individuation is distinct from
computational individuation by wide functional contents. The lat-
ter point is important for establishing whether or not the mechanist
hypothesis of computational individuation counts as a semantic indi-
viduation strategy.

There are two main arguments for the functional view of compu-
tational individuation. One basically consists in the critique of the
semantic view of computational individuation. Given that I have
argued at length in the previous chapter against the adoption of a
semantic view of computational individuation, I will not elaborate
on these objections further. Whilst I agree with most of what the
mechanists have to say against the semantic individuation hypothe-
sis, I have also shown that it is possible to reconstruct the classical
computationalist position so that it no longer entails a semantic indi-
viduation scheme. This in turn implies that the outcome of criticising
the semantic computational individuation strategy does not necessar-
ily amount to a wholesale rejection of classical computationalism.

The other major argument for the functional view of computational
individuation rests on the definition of generic computation intro-
duced in the previous section. Computation in the generic sense is
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defined as the processing of specific types of medium-independent
entities (i.e., vehicles) in accordance with general rules that are sen-
sitive only to some of the properties of these entities.2 Since the ve-
hicles of generic computations are said to be medium-independent,
it follows that the type-individuation of particular computing sys-
tems/structures is determined solely by certain structural (formal)
features of their constituents. Because these individuative features
are distinct from the detailed physical descriptions of the computa-
tional systems of interest (e.g., program-controlled computers, analog
computers, brains, etc.), mechanists propose to call them functional
properties (cf. Piccinini 2004, 2007a, 2008a,b). This label also serves
to convey the idea that the mechanistic computational individuation
hypothesis should yield a genuinely non-semantic taxonomy. The key
idea of the functional view of computational individuation is that the
internal states and structures of a computational model (mechanism)
are individuated solely in terms of (a subclass of) their functional
properties.

As suggested above, the functional view of computational individ-
uation is meant to cover all types of computational systems, both
abstract and concrete. For instance, when applied to the case of stan-
dard Turing machines (TM), this individuation strategy characterises
TMs in terms of two principal components: (1) a (potentially infinite)
tape, whose function is to hold symbols (letters), and (2) a scanner
whose function is to move along the tape, writing or erasing symbols
on it. Particular TMs are individuated by a finite list of conditional
instructions (IFs) such as: if the current scanned cell of the tape con-
tains a particular type of symbol and the scanner is in a certain state,
then the scanner prints a particular letter, moves one step to the left
(or right) and goes into a new state. Therefore, each particular TM is
uniquely individuated by its characteristic list of instructions, which
also comes with an implicit appropriate vocabulary. The crucial point
is that although these individuating descriptions of particular TMs
might be semantically interpreted, they need not be in order to do
their individuative job. Otherwise put, they do not essentially involve
any semantic properties of the internal states of the device; rather,
they characterise the functioning of the computing device, i.e., how
the scanner, in virtue of its current inner state, sequentially changes
or otherwise manipulates the symbol on the scanned part of the tape.
The computational identity of specific TMs is fixed by their instruc-
tions, and not by the interpretations that may or may not be assigned
to their inputs, outputs, and internal operations.

According to the mechanistic account, the same sort of individua-
tion strategy applies to the whole range of computational systems, in-

2 As I have previously argued, this general rule can be an abstract characterisation of
the algorithm or ordered set of instructions followed by the computing system or
the algorithm itself. If the former, then the rule need to be explicitly represented in
the computational architecture of the system.
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cluding universal TMs, program-controlled computers, artificial neu-
ral networks, and neural computation (cf. Piccinini 2008a; Piccinini
and Bahar 2013). However, whereas in the case of simple computing
systems, such as standard TMs, the individuation strategy seems to
be straightforwardly internalist or formal, in the case of more com-
plex (and concrete) computing systems, mechanists defend a wide
functional individuation scheme.

The idea of a wide functional individuation scheme goes hand
in hand with the adoption of an overall mechanistic framework for
thinking about computing systems, their functioning, and their ap-
plicability to the study of cognition. Recall that, on the mechanistic
framework, the function of a complex system is analysed in terms
of its component parts, their characteristic functions and organised
interaction. Moreover, mechanists claim that in order to identify the
functions performed by the component parts of a complex system,
one must often rely on a set of both top-down and bottom-up consid-
erations. This is because in identifying the functions of the component
parts of a mechanism one needs to take into account how the complex
system itself is embedded in a larger causal mechanism and how its
function contributes to yielding the function performed by the higher-
order mechanism.

Thus, the mechanistic argument for wide functional individuation
seems to be the following. Computational systems are a special type
of mechanisms which are type-individuated in terms of some of their
functional properties. In order to identify the functional properties
which are relevant for a (complex) system being a particular type of
computing system, one needs to appeal to the functions of its compo-
nent parts and perhaps even to the functions of the larger computing
mechanism in which the target system is embedded. The strategy
is called ‘wide’ precisely because in order to establish the functional
properties which play a role in the type-individuation of a particular
computational system/state one needs to carve them from a wider
network of functional relations that hold between the target system,
its components, and other (possibly) larger systems.

To further support their proposal, mechanists argue that, ‘scien-
tific theories typically individuate the functional properties of mech-
anisms widely’. Computational theories, as a subclass of scientific
theories, are also said to individuate their theoretical posits widely.
Otherwise put, in order to distinguish the properties of computing
mechanisms that are functionally relevant (both computationally and
non-computationally) from those that are not,

we need to know which of a computing mechanism’s prop-
erties are relevant to its computational inputs and outputs
and how they are relevant. In order to know that, we need
to know what the computational inputs and outputs of the
mechanism are. That, in turn, requires knowing how the
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mechanism’s inputs and outputs interact with their con-
text (cf. Piccinini 2008a, p. 220).

Mechanists also insist that wide functional individuation should be
clearly distinguished from individuation based on wide (functional)
content, the latter being merely a form of semantic individuation.
Along these lines, they write that: ‘[i]ndividuation based on wide
content is one type of wide individuation, but wide individuation
is a broader notion. Wide individuation appeals to the relations be-
tween a mechanism and its context, relations which may or may not
be semantic’ (cf. ibid., p. 219).

Thus, mechanists maintain that the correct individuation strategy
with respect to computing systems is ‘wide individuation that does
not appeal to semantic relations’ (ibid.). This claim is reinforced by
two sorts of considerations. Firstly, mechanists point out that ‘the
functional properties that are relevant to computational individua-
tion, even when they are wide, are not very wide’. They have to do
with the normal interaction between a computing mechanism and
its immediate mechanistic context via its input and output transduc-
ers. Secondly, mechanists defend the separation between wide func-
tional individuation and individuation by wide (externalist) contents
by claiming that:

In most of the literature on wide contents, wide contents
are largely ascribed by intuition, and theories of content
are tested by determining whether they agree with the rel-
evant intuitions. By contrast, under the functional view
of computational individuation, the functional properties
that are relevant to the computational individuation of a
mechanism are to be found by elaborating mechanistic expla-
nations under the empirical constraints that are in place
within the natural sciences. This establishes the computa-
tional identity of a mechanism without appealing to any
semantic intuitions (cf. ibid., p. 222).

I submit that neither of the two types of considerations suffices to
guarantee that the wide functional view of computational individua-
tion is not yet another version of the semantic individuation hypoth-
esis. Whilst the first motivation simply plays on the ambiguity of
the notion of ‘wide’ content, the second creates a contentious divide
between the methodological principles adopted by classical computa-
tionalists and those endorsed by mechanists.

That is, the first type of consideration is problematic because it
does not actually rule out the possibility that even ‘less wide’ (func-
tional) properties might count as proper semantic contents. After
all, the scale of mental contents proposed by defenders of a seman-
tic individuation strategy need not comprise only the extremes, i.e.,
(very) broad and narrow contents, but also intermediary values such
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as restricted wide functional contents. More importantly, there is an
implicit ambiguity about which properties actually count as proper
semantic contents on the mechanistic conception. According to mech-
anists themselves, an external semantics is one which relates internal
states of a computational system with entities/properties external to
the system itself (cf. Piccinini 2008a). However, on this characterisa-
tion, even the ‘not very wide’ functional properties which are said to
be relevant for computational individuation seem to count as seman-
tic properties. Therefore, unless this ambiguity is clarified, wide func-
tional individuation seems to be compatible with a semantic account
of computational individuation, contra the mechanistic contention.

The second line of defence seems at first blush to be more effec-
tive, but it is in fact the source of more trouble for the functional
view of computational individuation because it risks confusing the
individuation and explanation issues all over again. Appealing to
certain methodological principles used by practicing scientists to con-
struct better computational models does not by itself prove that these
principles also determine/fix the computational identity of particu-
lar physical systems. Still, this observation does suggest a different
way of avoiding the problems faced by the wide functional view of
computational individuation.

One might argue that in order to identify the properties which are
relevant from a computational point of view, one needs to take into
account a host of factors, including the ways in which the target sys-
tem is embedded and interacts in certain contexts with other parts
of more complex systems. However, this need not conflict with the
idea that the properties which effectively determine the type-identity
of a particular computational system/state are formal or structural
properties which hold between the component parts of the system
and their internal mode of organisation. In fact, the latter is precisely
the view of computational individuation which is directly implied by
the notion of generic computation.

Moreover, this latter characterisation supports the contention that
there is no substantial disagreement between an internalist view of
classical computational individuation and a functional view of mech-
anistic computational individuation. Recall that, according to an in-
ternalist view of computational individuation, the type-identity of a
particular computational system is determined exclusively in terms of
its formal or structural properties that characterise the way in which
the component parts of the system are organised together so that,
given a particular type of input, the system is able to generate a
specific type of output. The internalist view of computational indi-
viduation guarantees that a computational mechanism will keep its
computational identity across a wide range of contexts and condi-
tions. In addition, unlike the wide functional view of computational
individuation, the internalist account defended in chapter 4 takes a

125



5.4 the mechanistic view of computational explanation

resolute stance on the separability of the individuation and explana-
tion issues, which in turn allows a better assessment of the principles
that govern the application of computational systems/models to the
study of different empirical domains.

Thus, I propose that the qualification ‘wide’ from the wide func-
tional view of computational individuation does, in fact, reflect an
additional aspect of the practice of using/constructing computational
systems for modelling and theorising purposes, different from mere
individuation concerns. Namely, it emphasises the fact that in order
to establish or identify the computational system which is most ad-
equate for modelling a particular cognitive phenomenon one needs
to appeal to a range of wide functional properties. That is, for the
purposes of modelling and explaining a cognitive phenomenon, one
needs to take into account not only how the system is internally or-
ganised but also a series of features which pertain to how the system
fits in the wider causal structure of the cognitive task. Some of these
features refer to the relations between the computational system and
its environment (internal or external) or even to certain semantic fea-
tures (wide functional contents) whose attribution to certain parts of
the computational system would further guarantee its adequacy as a
model of a particular cognitive capacity. Rather than fixing the com-
putational identity of a system, these factors seem to play a role is
determining whether and when a computational model can explain a
target cognitive phenomenon.

5.4 the mechanistic view of computational explanation

The central idea of the mechanistic view of computational explana-
tion is that computationalist explanations are actually a sub-species of
mechanistic explanation. My purpose in this section is to examine the
reasons offered in support of this thesis. In particular, I am interested
in establishing what the mechanistic view of computationalist expla-
nations of cognitive capacities adds to the classical computationalist
view of cognitive explanation. With this aim in view, I will adopt the
following strategy. First, by analysing the motivations for a mecha-
nistic conception of computationalist explanations, I seek to extract
the most salient advantages that seem to recommend the adoption
of this proposal. Second, I argue that the case for the mechanistic
conception is undermined by two distinct problems. The first derives
from equivocations introduced by arguments proposed in support of
this view, while the second concerns the consequences that the mech-
anistic view of computational explanation entails.
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5.4.1 Computational explanations as a class of mechanistic explanations

Mechanists are keen to point out that one rationale for thinking about
computational descriptions and/or explanations within a mechanis-
tic framework is that this strategy guarantees the integration of cogni-
tive computationalist explanations with other explanatory strategies
widely employed in other related scientific domains such as physiol-
ogy and engineering. Mechanists claim that in these scientific fields
there is a widespread consensus that the capacities of biological and
artificial systems like brains and computers are to be explained mech-
anistically (cf. Bechtel and Richardson 1993/2010; Craver 2007b).

Thus, proponents of the mechanistic view of computation endorse
a broad notion of mechanism, according to which a mechanism is
a complex system whose behaviour or function can be decomposed
into its component parts, their proper functions, interactions, and
organisation. As shown in chapter 3, the corresponding notion of
mechanistic explanation is that of a description that elucidates the
behaviour of a complex system in terms of a system’s components,
functions, and organisation. The concise version of the argument for
the mechanistic conception of computational explanation claims that
since computational systems (digital, analog, neural, etc.) are com-
plex systems made out of rigorously organised parts (i.e., they are
particular types of mechanisms), computational explanation is the
form taken by mechanistic explanation when the activity of the tar-
get mechanism can be accurately described as the processing of ade-
quately typified strings of entities in accordance with the appropriate
types of rules.

There is an important assumption implicitly at work in this brief
statement of the argument for the mechanistic view of computational
explanation. As I pointed out above, mechanists hold that compu-
tational explanations should be distinguished from mechanistic ex-
planations simpliciter. That is, if computational systems are a spe-
cial class of physical systems, then the description and explanation
schemes appropriate with respect to such systems should also be dis-
tinguished from the description and explanation strategies employed
in the investigation of non-computing physical mechanisms (e.g., di-
gestive systems, planetary motions, etc.). This commitment is also
implicit in the distinction drawn by some mechanists (e.g., Piccinini
2007a) between causal explanations and mechanistic computational
explanations:

Mechanistic explanation, unlike causal explanation sim-
pliciter, distinguishes between a system’s successes and
its failures. It also distinguishes between the conditions
relevant to explaining successes and failures and those
that are irrelevant. This gives us the resources to distin-
guish the properties of a mechanism that are relevant to
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its computational capacities from those that are irrelevant.
But mechanistic structure per se is not enough to distinguish
between mechanisms that compute and mechanisms that do not.
[...] The main challenge for the mechanistic account is to
specify mechanistic explanations that are relevant to com-
putation (cf. Piccinini 2007a, p. 508).

Sidestepping the potential ambiguity introduced by distinguishing
between mechanistic and causal explanation3, the previous quote
emphasises the fact that computational explanations, besides their
mechanistic decompositional format, possess an additional feature
which distinguishes them from other types of mechanistic explana-
tions. This additional feature is the type of entities or mechanistic
components and rules (of interaction) over which genuine comput-
ing systems are taken to be appropriately defined.

Although, on various occasions, mechanists seem ready to defer
the specification of the computationally relevant mechanistic compo-
nents to the judgment of the ‘pertinent’ scientific community, they
do sketch a general account that is meant to complete the mecha-
nistic picture of computational explanation. As discussed in section
2, mechanists distinguish between two notions of computation: one
abstract and one concrete, and at least three major sub-classes of con-
crete computation: digital, analog, and neural computations. In each
case, they insist that computing systems (abstract and concrete) can
be differentiated in terms of the specific type of entities over which
computational rules are defined. Thus, what completes the mechanis-
tic picture of computational explanation is the idea that a mechanistic
decomposition of a system is computational if it specifies the ‘right’
type of component entities over which the overall functioning of the
system is defined.

More specifically, a particular explanation counts as a computa-
tional explanation of a digital computer if it describes the functioning
of the system and its specific patterns in terms of appropriately de-
fined operations over strings of digits. Similarly, according to mecha-
nists, an explanation of a particular cognitive capacity/process counts
as a proper computational explanation if the mechanistic decomposi-
tion of the system appeals to appropriately specified neural computa-
tions. And so on for the other types of computational systems.

Hence, a direct consequence of this version of the mechanistic view
is that a computational model of a particular cognitive process is ex-
planatory only to the extent that it yields a mechanistic decomposi-
tion of the process in which the computationally relevant factors are

3 By virtually all mechanistic accounts of explanation, the notion of mechanism pro-
vides the key conceptual tool for spelling out the true nature of causal relations, thus
providing a more specific framework for articulating causal explanations of various
physical phenomena (cf. Machamer, Darden, and Craver 2000; Glennan 1996, 2002,
2010; Craver and Bechtel 2007, etc.)
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type-identified as neural computations. More specifically, on this pic-
ture, explanatory computational models of cognitive capacities must
specify the composition, organisation, and interaction of the variables
that are taken to be functionally significant from a computational
point of view, viz. the properties of neural spike trains such as fir-
ing rate and spike timing. Before assessing this mechanistic explana-
tory hypothesis in the context of cognitive psychology and neuro-
science, I briefly review some of the purported consequences that
follow from adopting this mechanistic framework for understanding
computational approaches to cognition.

5.4.2 Four entailments of the mechanistic picture

Proponents of the mechanistic view of computation claim that their
position has a number of attractive consequences which enhance its
appeal in comparison with other candidate accounts (e.g., classical
and connectionist versions of computationalism). The main entail-
ments of the mechanistic view of computational explanation may be
summarised under four distinct labels: objectivity, coverage, genuine
explanatory function, and integration.

To begin with, mechanists claim that their account implies that com-
putationalist explanations constitute a distinct type of objective scien-
tific explanations. More specifically, they maintain that the mecha-
nistic construal of computational explanations shows both pancom-
putationalism (Copeland 1996) and the subjectivity of computational
descriptions (Putnam 1975; Searle 1992, 2002) to be unacceptable hy-
potheses. According to mechanists, pancomputationalism trivialises
the idea that certain physical systems perform computations, thereby
making computationalism about cognitive capacities a priori true. Un-
der this view, computationalism about cognitive capacities would just
be the trivial application to biological organisms of a general thesis
that applies to everything. In response to this potential trivialisa-
tion of the computational strategy, mechanists propose that computa-
tionalism should be conceived as an empirical hypothesis about the
specific types of mechanisms that underlie and explain psychological
phenomena.

In other words, mechanists claim that they offer an account on
which whether a given mechanism performs a particular computa-
tion can be shown to be a matter of fact. This in turn goes against
the subjectivity hypothesis according to which computational descrip-
tions are a matter of free interpretation. In brief, the intuition driving
the subjectivist reading of the computationalist hypothesis is that any
system may be described as performing any computation and there
is no further matter of fact as to whether one computational descrip-
tion is more accurate than another. However, the mechanists rightly
point out that the modelling practices of computational psychologists,
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computer scientists, engineers, and other practitioners are incompati-
ble with the strong relativism of computational descriptions implied
by the subjectivist hypothesis.4 Adequate and potentially explana-
tory computational descriptions usually have to satisfy a host of con-
straints and/or norms in any specific modelling context. The claim
is that, in all of these fields, there are various ways of ranking the
adequacy and potential explanatory value of alternative candidate
computational models.

In addition, mechanists claim that their account affords a sharp dis-
tinction between genuinely explanatory and non-explanatory compu-
tational models of concrete (physical) phenomena. The mechanistic
account argues that only mechanistic descriptions which show that
the behaviour or function performed by a particular system is the re-
sult of the organised interaction of a series of appropriately defined
component entities (digits, analog signals, train spikes, quidits, etc.)
are good candidates for explanation. This implies that descriptions
of complex systems which fail to satisfy either of the two conditions
do not qualify as genuine computational explanations at all. Neither
non-mechanistic descriptions nor mechanistic descriptions which do
not mention the appropriate type of component entities qualify as
being potentially good computational explanations.

These two mechanistic constraints on computational explanations
are supposed to capture the idea that practicing scientists might de-
velop certain computational models without expecting them to have
a genuinely explanatory function. Thus, the mechanistic view shows
that the mere possibility of developing computational models of par-
ticular complex physical systems does not suffice to establish whether
the systems in question are proper computing systems or not, i.e.,
whether the computational models are genuinely explanatory. Mech-
anists contend that the main problem with adopting a too permis-
sive modelling view of computationalism in cognitive science is that it
runs the same risk as pancomputationalism does, i.e., trivialising the
computationalist hypothesis by making all proposed computational
models of cognitive capacities explanatorily relevant. They point out
that computational models are used, in cognitive science as in other
scientific domains, for various epistemic and experimental purposes,
e.g., prediction, confirmation, etc. The double mechanistic constraint
is thus meant to block the threat of trivialising the notion of com-
putational explanation by isolating the factors which confer genuine
explanatory value on a computational model, namely, (i) mechanistic
organisation, and (ii) appropriately typified component entities.

As a third major consequence, the mechanistic view of computation
is said to accommodate a wide range of computationalist explanatory
strategies used in different branches of science. The hypothesis that

4 For a more detailed criticism of the subjectivist reading of computationalism, see
e.g., Copeland (1996); Rey (1997); Piccinini (2007a).
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computational explanations are mechanistic descriptions which com-
prise, as functionally significant components, generic computations
entails that many types of systems, from abstract Turing machines
studied by the theory of computation, to analog, digital, and quan-
tum computers investigated in fields such as computer science and ar-
tificial intelligence, and brains studied by cognitive neuroscience, ad-
mit of a mechanistic computational description and/or explanation.
According to the mechanistic account, the feature that distinguishes
these various types of computational descriptions/explanations from
one another consists in the type of atomic entities that are responsi-
ble for the functioning of the system. Computational explanations
of cognitive capacities will characterise the functions performed by
complex cognitive systems in terms of the organised interaction of
train spikes (i.e., the purported units of neural computation), while
the computational explanation of a digital computer will provide a
mechanistic decomposition which postulates appropriately defined
operations over strings of digits. And so on for the other types of
computational systems. Thus, whilst the mechanistic view of com-
putation has a wide coverage and allows one to assess the similari-
ties between mechanistic explanations used in different scientific do-
mains, it also arguably provides a generic criterion for distinguishing
between different types of adequate mechanistic explanations.

There is a last important entailment of the mechanistic account of
computation. It has been claimed that if computational explanations
are a form of mechanistic explanation, then computational explana-
tions of cognitive capacities can be integrated with other types of
mechanistic explanations developed at lower levels of neurobiologi-
cal organisation: cellular, molecular, biochemical, electrophysiologi-
cal, etc. (cf. Craver and Piccinini 2011). This consequence is taken
to refute the classical autonomy thesis according to which higher-
level explanations proposed in cognitive psychology are independent
from neuroscientific hypotheses and explanations (Fodor 1974; Fodor
1997; Block 1997). Thus, various authors have argued that the mech-
anistic view of computational explanation corrects the misleading
‘two-levelism’ hypothesis assumed in most philosophy of mind and
psychology (cf. Piccinini and Bahar 2013). Against the two-levelism
stance which divides the investigation and explanation of cognitive
phenomena into two separable levels of analysis, the cognitive level
and the implementational level, mechanists propose that an appropri-
ate approach to psychological phenomena requires a more integrated
perspective on the hypotheses proposed at the two purported lev-
els of analysis of cognitive capacities (cf. Craver 2007b; Craver and
Piccinini 2011; Piccinini and Bahar 2013). They claim that such an in-
tegrated perspective is to be achieved by shifting the focus from cog-
nitive psychology and classical computationalism to cognitive neuro-
biology and mechanism.
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5.5 mechanisms vs . computational explanations

Although for all the reasons mentioned above, mechanism promises
to offer a robust enough framework for analysing the varied land-
scape of computational approaches to cognition, the view still seems
to face important challenges. In what follows, I will focus on two
problems which undermine the strong contention that mechanism
provides a better model of computational explanation than the clas-
sical view. The first problem arises from the fact that, despite their
claims to the contrary, mechanists confound the computational in-
dividuation and explanation issues. I rehearse the motivations for
keeping the two issues apart and trace the consequences of disre-
garding this distinction for the mechanistic view of computation. In
light of these considerations, I reevaluate the relationship between
the mechanistic view of computational explanation and the so-called
modelling view of computation. The second problem concerns the
mechanist’s conception of neural computation which is used as a cri-
terion for distinguishing between proper computational explanations
and non-explanatory computational models of cognitive and/or neu-
ral processes. In relation to this problem, I reopen the issue of the
autonomy of abstract (non-mechanistic) accounts of cognitive pro-
cesses. I conclude, in section 6, by comparing the mechanistic view of
computation with the revised version of classical computationalism
articulated in chapter 4.

5.5.1 Individuation versus explanation

There are two principal motivations for keeping apart the computa-
tional individuation and explanation issues. First, the separability
thesis allows one to treat the different tools (e.g., computing struc-
tures) used in the investigation of cognitive phenomena as indepen-
dent objects that display a number of interesting properties which
support their applicability to the study of different cognitive pat-
terns/phenomena. That is, individuative criteria can and should
be viewed as principles that govern the computational systems inde-
pendently of their application to the study of cognitive phenomena.
Second, the separability thesis vindicates the widespread externalist
assumptions involved in much cognitive modelling as well as the in-
tuition that the notion of mental content plays an important role in
the construction of good models of cognitive capacities. For, on the
proposed view of computational explanation, both wide (externalist)
and narrow (proximate) mental contents can play a role in the jus-
tification of the structures postulated for the explanation of various
cognitive patterns.

In addition, by allowing the principles/criteria which determine
the type-identity of computational systems postulated in the explana-
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tion of cognitive phenomena to be independent of specific semantic
assignments, one is in a better position to support the idea that com-
putational explanations function by exhibiting certain stable (more
fundamental) features of the cognitive phenomena being investigated.
This intuition is also closely related to the idea that an explanatory
account should capture as many counterfactual supporting general-
isations as possible about the phenomena being investigated. In or-
der to test these counterfactual supporting generalisations one must
guarantee that: (i) there are certain features of the system which are
stable under a range of well-specified conditions, and (ii) it is possi-
ble to specify the varying conditions themselves. On the proposed
approach, the first requirement is satisfied by mandating that indi-
viduative principles for computational structures take into account
only their formal features, whereas the second requirement is met
by acknowledging the context-sensitivity of the semantic interpre-
tations assigned to particular computational structures in different
modelling contexts. In brief, I claim that the separability hypothesis
is necessary in order to make sense of the very idea that explanatory
accounts of cognitive phenomena support a variety of ceteris paribus
generalisations (or laws) concerning the functioning of the cognitive
systems under investigation.

I have argued that the mechanistic account of computation can be
reinterpreted so as to reflect the separability of the two issues. That
is, I have shown that the view of computational individuation which
is entailed by the notion of generic computation promoted by mech-
anists themselves is in line with the internalist account defended in
chapter 4. According to an internalist or formal view, the compu-
tational identity of a given system depends on a set of formal or
structural properties and relations that hold between the component
parts of the system and their organisation. In addition, I have ar-
gued that the mechanistic reference to ‘wide’ functional properties is
better understood in the context of discussing the applicability and
explanatory value of particular computational models of cognitive
phenomena rather than in relation to the problem of computational
individuation proper. By considering the norms which guide the use
of computational systems in the study of cognitive phenomena, one
is better placed to vindicate the mechanistic intuition that in order
to establish (or justify the choice of) the computational system which
best models a given cognitive capacity, one needs to take into account
a series of considerations that go beyond the computational identity
of a given system.

If I am right that the generic notion of computation supports a
formal view of computational individuation, then it seems that the
mechanist and the defender of a classical view of computation might
be able to agree at least on this point. For the latter need not insist,
on this way of carving up the problem, that semantic (wide or nar-
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row) contents play a role in computational individuation per se, if it is
granted that they still are an important part of the explanatory appa-
ratus of computational theories of cognition. After all, the main con-
tention of the classical view is that the semantic or representational
level captures a series of interesting cognitive patterns (regularities)
which are in need of explanation (Fodor 1980; Pylyshyn 1984). But
this sort of commitment need not affect, as the mechanists point out,
one’s stance on the computational individuation issue. Thus, I con-
tend that both mechanists and defenders of classical computational-
ism should endorse a purely formal view of computational individu-
ation. In response, the mechanist might still argue that her approach
sharpens the correct view of computational individuation and, in ad-
dition, provides a series of important insights about how to evaluate
the explanatory value of particular computational models of cognitive
phenomena. I agree, with the caveat that wide functional contents are
better viewed as linking computational models with their target cog-
nitive phenomena rather than fixing the computational type-identity
of particular computational systems.

Focusing on the problem of explanation itself, one of the main
attractions of the mechanistic account is that it promises to draw
a sharp distinction between computational modelling and computa-
tional explanation (cf. Piccinini 2008a; Craver and Piccinini 2011; Pic-
cinini and Bahar 2013). According to mechanists, on a modelling view
of computational explanation, the possibility of constructing a computa-
tional model of a given cognitive process is already an index of its po-
tential explanatory power. However, it is easy to show that this claim
is problematic. For instance, constructing a computational model re-
quires only that there be a weak input-output equivalence between
the model and the target phenomenon, but since input-output equiv-
alences are rather cheap, it follows that one complex system (e.g.,
a particular cognitive process) admits of a large number of weakly
equivalent models. In order to establish which (if any) of these mod-
els is a good candidate for explanation, one needs to strengthen the
input-output equivalence requirement.

On the mechanistic account of computation, what distinguishes a
mere computational model from a proper computational explanation
of a particular cognitive capacity is that only the latter, but not the
former, provides a mechanistic decomposition of the system into its
simpler component parts which in turn can be appropriately charac-
terised as generic computations. Models that fail to specify the com-
ponential and functional organisation of a complex system or that are
defined over entities which are not of the appropriate type to enter
into computational relations do not qualify as genuinely explanatory
computational models.

More specifically, according to mechanists, what is special about
computational explanations of cognitive capacities is that they postu-
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late neural computations. Since the latter are taken to be distinct from
all other forms of generic computation (cf. section 2.2.3), mechanists
conclude that digital, analog, as well as other possible versions of
computationalism are inappropriate for studying the nervous system
and its functions. Thus, an important consequence of the mechanistic
account of computation is that the mathematical theory of computa-
tion is not an adequate framework for developing explanatory mod-
els of cognitive capacities. Instead, some mechanists suggest that new
types of mathematical tools must be developed in order to study the
relations holding between the actual units of neural computation.

In what follows, I focus on three challenges facing this proposal. I
begin by sketching a cautionary argument against the strong reliance
of the mechanistic view of computational explanation on certain con-
siderations pertaining to the biological plausibility (or implausibility)
of the potential units of neural computation. Then, I question the
idea that all computational models which appeal to some notion of
neural computation are best understood along mechanistic lines and
maintain that there are good reasons to resist imposing any unique
framework in order to account for the distinct explanatory contribu-
tions of different types of computational models used in different
branches of cognitive science and neuroscience. And, finally, I chal-
lenge the quick mechanistic rebuttal of the autonomy of higher-order
computational models of cognitive capacities. In light of these critical
remarks, I reassess the limits of the range of application of the mech-
anistic framework for understanding computationalist approaches to
cognition.

5.5.2 The limits of biological plausibility

As shown in the previous sections, the mechanistic account appeals to
two distinct factors for establishing the explanatory value of compu-
tational theories/models of cognition, viz. the availability of detailed
and appropriate mechanistic decompositions of the target physical
systems, and the postulation of appropriate computing units, i.e., the
entities over which neural computations are appropriately defined.
For instance, mechanists like Piccinini and Bahar (2013, p. 475-6) con-
tend that ‘[g]iven current evidence, the most functionally significant
variables for the purpose of understanding the processing of neural
signals are properties of neural spike trains such as firing rate and
spike timing.’ Since these properties are explicitly discussed in the
context of their criticism of the hypothesis of digital computational-
ism, we are led to believe that these authors are committed to the
idea that genuinely explanatory neural computations should be de-
fined over these or other similar types of properties of neural spike
trains.
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However, there seems to be a prima facie problem with this mech-
anistic strategy which ties indiscriminately the evaluation of the ex-
planatory value of all computational models proposed in cognitive
science and neuroscience to what biological theory about the organ-
isation of the nervous system currently counts as plausible. Argu-
ments which invoke the biological plausibility of some theoretical
posit tend to be misleading because they presume that all potentially
new scientific (e.g., biological) hypotheses will have to look plausible
in light of our current limited knowledge. But this assumption seems
to go against the very notion of scientific discovery and progress.5

That is, claiming that neural computations must be defined in terms
of operations over certain properties of neural spike trains might look
like the only plausible option if one takes for granted that future re-
search would not discover other appropriate candidates for being the
functional units of neural computation. In order to avoid the fallacy
of turning an empirical claim (about what are currently treated as the
functional units of neural computation) into a conceptual (a priori)
definition of neural computation, one ought to avoid making the no-
tion of computational explanation depend on any particular hypoth-
esis concerning the implementation of the neural processes targeted
by particular computational models.6

Moreover, the thesis that neural computations should be defined
on neural properties such as firing rate and spike timing implicitly as-
sumes that all computational processes (properties) in the biological
brain are realised by the same type of structure and in the same way.
Whether this is the case or not ought surely to be established through
further empirical investigation rather than postulated as part of the
definition of neural computation. That is, one should allow for the
possibility that different features of neural computing systems (e.g.,
symbols, rules, structured representations, etc.) might turn out to
have distinct implementational bases. Thus, another problem facing
the mechanistic argument analysed above is that it disregards sev-
eral speculative hypotheses according to which certain symbol-like

5 Gallistel and King (2009) proposes a ‘cautionary tale’ which captures the main moral
of this objection. He points out that before the discovery of the structure of DNA
(Crick 1953), the gene was a deep biochemical puzzle and that its ‘reality’ was
doubted by a number of biochemists. This was because: ‘A gene was assumed
to have two utterly mysterious properties: it could make a copy of itself and it could
direct [...] the synthesis of other molecules. Because the properties of a gene as-
sumed by geneticists made no biochemical sense, some biochemists simply refused
to believe in its physical reality, despite what I think almost anyone in retrospect
would argue was a very large body of evidence and theory arguing that there had
to be such a thing’ (Gallistel and King 2009, p. 281).

6 The same sort of considerations apply to arguments from biological implausibility
(the flip side of biological plausibility). Recall that part of the mechanistic argument
against classical computationalism consists in noting that we do not yet know how to
implement digital computation in the neural tissue of the brain. But I contend that
such claims are just misleading appeals to ignorance that have no demonstrative
force.
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features of neural computation might have a molecular (or even sub-
molecular) implementational basis (e.g., Gallistel and King 2009; Gal-
listel and Matzel 2013; Marcus 2009, 2013). For instance, Gallistel and
King (2009, p. 280) suggest that plausible mechanisms for memory
might be found in certain ‘ingenuous adaptation[s] of the molecu-
lar machinery that is already known to have an information-carrying
function’. They speculate that at the sub-molecular level, changes in
nucleotide sequences in either DNA or RNA might constitute a pos-
sible mechanism for memory, whereas at the molecular level, such a
mechanism might be realised by a rhodopsin-like switch molecule.7

Although both of these speculative claims would require much
more theoretical and experimental work before one could properly
assess their empirical adequacy, they still serve to illustrate two im-
portant points about the mechanistic arguments from biological plau-
sibility. Firstly, the mechanists ought to be careful not to rule out the
possibility that other levels of organisation and/or resolution than
the level of neural spike trains and their properties might be relevant
for the application of different computational notions to the study
of cognitive and neural processes. Secondly, the previous remarks
caution against the impulse to ground (almost exclusively) the ex-
planatory value of all computational models constructed in different
branches of cognitive science and neuroscience in certain (potentially
defeasible) hypotheses about the plausible biological basis of neural
computation.8 Thus, my contention is that appeals to biological plau-
sibility by themselves cannot guarantee the explanatory value of a
given computational model of a particular cognitive or neural pro-
cess.

However, there are at least two promising response strategies that
mechanists might use in order to avoid this sort of criticism. On
the one hand, mechanists might retort that their account of computa-
tional explanation in the cognitive and neuroscientific domain does
not commit them to any specific hypothesis about the realisation ba-
sis of neural computations. Along these lines, they write that: ‘[i]t

7 Whilst highly speculative, both realisation hypotheses avoid the second major prob-
lem faced by the mechanistic conception of neural computation. Namely that of
accounting for the difference between the speed of neural computation and that
of nervous signal transmission (which seems to travel several orders of magnitude
slower). Modelling neural computation at the cellular or circuit-structure level neces-
sarily raises the problem of accounting for the differences between the two temporal
profiles. However, if the (computational) functions and structures that are currently
modelled at the level of cellular or circuit structure can in fact be implemented at the
level of molecular structure, then this would deal with what is presently a serious
limitation of neuroscientific models. And this is because in the case of the molecular
(and sub-molecular models) much less time and space would be wasted transmitting
signals over long distances (as in the cellular models).

8 As Gallistel and King (2009, p. 287) somewhat strongly point out: ‘[u]ntil the day
comes when neuroscientists are able to specify the neurobiological machinery that
performs this key [memory] function, all talk about how brains compute is prema-
ture.’
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does not follow that we should consider only algorithms that can be
implemented using spiking neurons and abandon immediately any
other research program.’ Instead, they claim that their position en-
tails that: ‘anyone seriously interested in explaining cognition should
strive to show how the computations she or he postulates may be
carried out by neural processes, to the extent that this can be made
plausible on current neuroscience. The better an explanation of cog-
nition is grounded in neural computation, the better the explanation’
(Piccinini and Bahar 2013, p. 480).

Whilst the first part of the previous quote seems to allow for the
possibility of developing relatively autonomous computational mod-
els of cognitive and/or neural processes, the second part reinstanti-
ates the dependency between the explanatory value of particular com-
putational models and specific hypotheses about the neural mecha-
nisms underlying the phenomena/patterns targeted by these models.
In other words, mechanists seem to be committed to the idea that
all computational explanations should be constrained by mechanis-
tic norms. Moreover, mechanists also seem to imply that explana-
tory prowess is always gained by specifying more details about the
mechanisms underlying the computational characterisations of cer-
tain cognitive and/or neural processes. In the following section, I
will challenge the idea that all computational models used in cogni-
tive neuroscience should conform to mechanistic strictures in order
to count as genuinely explanatory accounts. In its place I propose
a moderate version of the autonomy of computational explanations
used in the cognitive and neuroscientific domains, respectively.

Still, mechanists can appeal to a more reasonable strategy in de-
fense of their position. Namely they could maintain that particular
neurobiological hypotheses are ontic norms which guide the construc-
tion of certain kinds of computational models of cognitive or neural
processes. Thus, rather than claiming that all computational models
ought to conform to mechanistic strictures, a more robust position
would be that biological plausibility considerations play a partial role
in the evaluation of the explanatory value of particular computational
models. That is, there are contexts in which it is possible to coordi-
nate particular computational hypotheses about certain cognitive or
neural processes with information pertaining to the neurobiological
machinery/mechanisms supporting them. This strategy can yield, as
mechanists point out, potentially explanatory models of the capaci-
ties or processes under investigation.

However, the desideratum of achieving this sort of coordination
does not by itself imply that only models/theories which can be
thus coordinated can be genuinely explanatory. Rather, the limited
(or partial) applicability of neurobiological constraints on computa-
tional modelling is consistent with the idea that computational mod-
els might play an explanatory role independently of any mechanistic
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constraints. I claim that this proposal avoids the problems of mak-
ing the notion of neural computation depend on any specific empir-
ical neurobiological hypothesis concerning the realisers of particular
types of neural computations.

Otherwise put, granting that only certain computational models of
neural processes are constrained by mechanistic norms yields a no-
tion of neural computation which, whilst distinct from that of digital
or analog computation, is not tied to any particular realisation hy-
pothesis about the mechanisms underlying these computations. That
is, I claim that one is better off taking the notion of neural compu-
tation to stand for any formally describable input-output transfor-
mation that neural systems are capable of performing. Note that
whilst this way of characterising the notion of neural computation
is compatible with the broad outlines of the mechanistic strategy of
distinguishing between different types of computing notions, it also
acknowledges the open-textured nature of this notion, whose theo-
retical definition should still be considered as work in progress (cf.
Chirimuuta 2014).

5.5.3 The case of canonical neural computations

In a recent paper, Chirimuuta (2014) has argued that practicing com-
putational neuroscientists make use of a distinctive (non-mechanistic)
explanatory style, viz. efficient coding explanation in order to account
for certain salient properties of neural processes. Against mechanists
like Kaplan (2011), Piccinini (2008a), and Craver and Piccinini (2011),
she claims that computational explanations in neuroscience are better
understood as minimal interpretative models that are not necessarily
constrained by the mechanistic norms of explanation. According to
Chirimuuta (2014), intepretative models ellucidate why a particular
neuronal type or brain area is organised in a certain way by appeal-
ing to efficient coding principles. She maintains that whilst computa-
tional principles are central to this style of modelling and explanation,
detailed mechanistic descriptions are not required and can even im-
pede the success of explaining certain properties or patterns of neural
processing. The resulting explanatory models are said to be minimal
because in order to design and test them, computational modellers
usually abstract away from most of the biophysical details of the tar-
get neural systems (cf. Chirimuuta (2014); see also Batterman 2000,
2002).

At this point, it is worth stressing that the interpretative minimal
view of computational explanation defended by Chirimuuta (2014)
seems to appeal to a more robust, theory-neutral, notion of neural
computation than the one proposed by defenders of the mechanis-
tic position. Thus, if her proposal is on the right track, it supports
the idea that the notion of neural computation can play a role in
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constructing explanatory models/theories in neuroscience indepen-
dently of any mechanistic assumptions. Chirimuuta (2014) illustrates
her view of computational explanation with the help of two impor-
tant case studies: (i) the contrast normalisation model of the visual
primary cortex and (ii) the Gabor-model of V1 receptive fields (RFs).
Against Kaplan (2011) who maintains that these and similar mod-
els offer ‘mere’ phenomenal descriptions of the target neural proper-
ties or patterns, she argues that these models exhibit a distinct (non-
mechanistic) style of explanation. In what follows, I will focus only
on the case of normalisation models, but very similar considerations
apply to her other case studies as well.

As her starting point, Chirimuuta (2014) notes that a large body of
literature addressing the methodological and explanatory concerns
of computational neuroscience emphasises the importance of abstrac-
tion and idealisation for the purposes of modelling and explaining
certain salient neural properties and/or patterns (e.g., Sejnowski et
al. 1988; Trappenberg 2010; Steratt et al. 2011). That is, an impor-
tant part of the community of computational neuroscientists seems to
favour the hypothesis that at least in certain contexts, minimal mod-
els can provide better explanations of certain salient features of the
complex neural systems being investigated.9 One case study which
seems to support this hypothesis is the contrast normalisation model of
the primary visual cortex. Presented by David Heeger in 1992, the
normalisation model provides a quantitative account of the response
properties of simple cells in the primary visual cortex. According
to this model, ‘each simple cell has linear excitatory input originat-
ing from the LGN, and in addition it receives inhibitory input from
nearby neurons in the visual cortex’ (cf. Chirimuuta 2014, p. 136). Al-
though prima facie this model seems to be a mechanistic sketch which
provides an incomplete description of some of the components of the
mechanism that supports the response profiles of simple cells in the
primary visual cortex, Chirimuuta (2014) points out that the normal-
isation model is currently treated as an instance of canonical neural
computations (CNC) performed by the brain. The latter are typically
conceived of as ‘standard computational models that apply the same
fundamental operations in a variety of contexts’ (cf. Carandini and
Heeger 2012, p. 51). Thus, the normalisation model together with
other CNCs (e.g., linear filtering, recurrent amplification, exponentia-
tion) is taken to capture a computational operation which is applied

9 In discussing the notion of ‘minimal’ models, Chirimuuta (2014) is careful to distin-
guish between what she calls B-minimal models (cf. Batterman 2002) and A-minimal
models (cf. Weisberg 2007; Strevens 2004, 2007). The latter are typically treated as
providing a kind of causal/mechanistic explanation, whereas the former are taken
to make their explanatory contributions to scientific investigation independently of
mechanistic considerations (cf. Batterman 2002a, 2002b). (For a more detailed discus-
sion of the distinction between these two classes of minimal models, see Chirimuuta
2014, pp. 141-147.) For the purposes of this section I will focus exclusively on the
notion of B-minimal model.
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by the brain in different anatomical regions (corresponding to dif-
ferent sensory modalities) and which can be subsequently described
independently of any assumption about its potential biophysical im-
plementations.

Drawing on the physiological and behavioural evidence cited by
Carandini and Heeger (2012) that shows that normalisation models
can be successfully applied to a wide variety of modalities, brain
regions, and species, Chirimuuta (2014) claims that the explanatory
value of such models does not depend on the specification of the par-
ticulars of the neural mechanisms underlying these types of computa-
tions. Instead, she argues that their distinct explanatory contribution
is better understood as consisting in the identification and charac-
terisation (at a higher level of abstraction from mechanistic consider-
ations) of certain stable properties or patterns of neural processing
observed across different sensory modalities and brain regions. As
such, these models support the formulation and testing of a very
wide class of counterfactual generalisations concerning the function-
ing of various neural systems. This observation helps locate the inter-
pretative minimal model of computational explanation defended by Chir-
imuuta (2014) in the broader difference-making account of explanation
proposed by Woodward (2003, 2013).

I conclude this section with two final considerations about the
model of computational explanation sketched above. First, the idea
that canonical neural computations can play the role of explanatory
structures in the context of cognitive neuroscience independently of
specific mechanistic hypotheses does not imply that ‘CNCs are com-
pletely independent of biophysical implementation or that CNCs can
best be studied in full isolation from mechanistic considerations’ (Chir-
imuuta 2014, p. 139). Rather, the central claim of the interpretative
minimal view is that computational modelling makes available a dis-
tinct style of explanation that can be successfully used in cognitive neu-
roscience. Moreover, this view of computational explanation does
not imply that minimal computational models should be regarded as
complete accounts of cognitive or neural processing. Their explana-
tory partiality is in principle consistent with the mechanistic desider-
atum of coordinating (or integrating) different types of explanatory
models which target various aspects of the same cognitive and/or
neural processes. However, as pointed out above, this desideratum
should not be taken to restrict the explanatory power of computa-
tional models to those for which one has appropriate linking-ready
mechanistic hypotheses.

There are at least two good reasons to resist imposing mechanistic
norms on all computational models used in cognitive neuroscience.
On the one hand, since such linking-ready hypotheses are not always
available, the mechanistic position risks imposing too strong of a con-
straint on the class of explanatory models currently used in cognitive
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neuroscience. On the other hand, as suggested above, the explanatory
contributions of at least certain computational models do not depend
on the availability of mechanistic descriptions at all, but rather on
their ability to capture and account for certain stable general features
of neural processing.

Second, a number of researchers have proposed that one important
role of canonical neural computations is to provide ‘important sim-
plifying insights into the relationship between neural computations
and behaviour’ (Angelaki et al. 2009). For instance, it has been sug-
gested that a wide variety of observed attentional modulation effects
can be explained in terms of a unique computational model of con-
trast gain control (ibid.). More generally, the idea is that due to their
abstract (non-mechanistic) character, canonical neural computations,
such as normalisation models of different neural systems create a
bridge between hypotheses about the behavioural patterns targeted
by cognitive research and more detailed mechanistic models of neu-
ral computation. In the following section, I consider another class of
computational models used in cognitive science that are grounded in
classical computationalist assumptions and which make very similar
bridging claims. By focusing on this class of computational models,
I aim to formulate a more reasonable thesis concerning the auton-
omy of abstract computational models of cognitive capacities than
the ‘two-levelism’ hypothesis typically targeted by mechanistic argu-
ments (cf. Piccinini and Craver 2011; Piccinini and Bahar 2013).

5.5.4 The relative autonomy of computational models of cognitive capaci-
ties

The challenge of bridging the gap between behaviour and the neuro-
biological machinery that underpins it is more serious than cognitive
neuroscientists are sometimes willing to admit. As an illustration,
consider the fact that even if the orthodoxy in current neuroscience
is that the mechanisms of long term potentiation (LTP) constitute the
basis of memory, this hypothesis by itself cannot account for any of
the various cognitive behaviours which seem to require the exercise
of different kinds of memory systems. That is partly the reason why
researchers need to appeal to a richer set of conceptual and experi-
mental tools in order to be able to explain different complex cognitive
behaviours. For instance, a more tractable approach to the various
problems raised in the study of memory seems to be provided by the
classical computationalist framework. Gallistel and colleagues (e.g.,
Gallistel 1993; Gallistel and King 2009; Gallistel and Matzel 2013; Gal-
listel and Balsam 2014) have argued that positing an addressable read-
write memory structure would help explain a host of behavioural
patterns observed in study of animal spatial learning and navigation.
The notion of a read-write memory which is used as an explanatory
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structure in the computational models proposed by these researchers
mirrors the type of read/write (fetch/store) memory encountered in
virtually all engineered (digital) computing machines. In a digital
computer, this type of memory is a universal device which allows
information acquired at different times to be stored and used to influ-
ence the current behaviour of the machine. That is, the results of the
computations performed on earlier inputs to the machine are stored
in memory (written), so that when they are needed in future compu-
tations they can be retrieved from memory. In what follows, I argue
that appeals to the digital notion of a read-write memory facilitate the
explanation of a host of cognitive behaviours and that the resulting
explanatory strategy is consistent with the general aims and concerns
of mechanistic modelling in cognitive neuroscience.

Since analysing the details of these computational models lies be-
yond the scope of this paper, I will support my claim by focusing on
the case of insect navigation.10 Most insects have a home base from
which they leave in search for food and to which they eventually re-
turn. This type of behaviour involves navigation which in turn, it
has been argued, relies on the storage of information acquired from
experience. For instance, a large number of experiments show that
if an ant who sets on a particular outward foraging path were cap-
tured and displaced into an unfamiliar territory, it would still run
the same compass course it ran in returning to its nest for approxi-
mately the same distance and then begin the search for its nest. It
has been argued that the ability to run a prescribed course for a pre-
scribed distance through an unfamiliar territory implies dead reckon-
ing which is understood as the integration of the velocity vector with
respect to time to obtain the position vector as a function of time.
In discrete terms, ‘dead reckoning requires the summation of succes-
sive displacement vectors, with the current displacement vector being
continually added to the sum of the previous displacement vectors’,
which can be further understood as an instance of the composition of
functions. This observation is important because it supports the idea
that navigation (viz., dead reckoning which is the recursive compo-
sition of the simple function of addition) ‘requires a memory mech-
anism capable of carrying forward in time the information acquired
from earlier experience (earlier displacements) in a form that permits
that information to be integrated with subsequently acquired infor-
mation (later displacements)’ (cf. Gallistel 2012, p.46).

More generally, Gallistel et al. have forcefully argued that in order
to explain the various behavioural patterns observed in the wide va-
riety of experiments on insect navigation one needs to postulate that
these organisms are able to learn representations of spatial locations
and directions, and various time durations and time intervals. This

10 For a more comprehensive review of the behavioural literature supporting this style
of computational modelling, see Gallistel and Matzel 2013.
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theoretical outlook on modeling spatial learning and navigation fur-
ther implies that the brain has one or more spatial coordinate systems
that encode locations in one or more frames of reference, and also
that it can perform distance and direction estimating computations
(cf. Gallistel 1993; Gallistel 2012; Gallistel and Matzel 2013; Gallis-
tel and Balsam 2014). Moreover, since dead reckoning (or path inte-
gration) and piloting are thought to be essential for different kinds
of spatial navigation, these computational models postulate that the
brain must be able to implement (perhaps at the cellular or molecu-
lar level) these abstract operations. Thus, classical computationalist
models/theories which posit abstract computational structures and
operations in order to account for the behavioural patterns observed
in insect navigation is not entirely cut off from mechanistic concerns.
In fact, proponents of such classical computationalist models often
insist on the importance of developing neurobiological models that
could be coordinated with higher-level (abstract) models of particu-
lar cognitive capacities. However, given the many challenges facing
the search for such linking-ready models, these researchers point out
the need to appeal to a distinct explanatory strategy for dealing with
the complexity of cognitive behaviours exhibited by various living
organisms.

Thus, rather than having to maintain that explanations of partic-
ular cognitive capacities are something that can be achieved only in
the horizon of a future complete neuroscience, an appropriate view
of the explanatory aims and purposes of cognitive and neuroscien-
tific research should acknowledge the distinct character of computa-
tional models developed in the various branches of cognitive science.
I claim that in order to avoid a paralysing scepticism concerning the
prospects of cognitive neuroscientific research one should endorse a
moderate thesis concerning the explanatory autonomy of the models
developed at higher levels of abstraction than mechanistic descrip-
tions.

This form of explanatory autonomy would not be grounded in
the mistaken assumption that higher-order models ought not be con-
strained by any sort of hypothesis concerning the biophysical bases of
cognitive processes, but rather in the acknowledgment that abstract
computational models play an explanatory role by reducing the gap
between behaviour and its underlying neural mechanisms. For in-
stance, classical computational models postulate a series of abstract
structures and operations which capture certain stable patterns or
properties exhibited by functioning cognitive organisms. Otherwise
put, by appealing to certain abstract computational structures one is
a position to test and confirm a wide variety of regularities that seem
to govern the behaviours of many cognitive systems. Furthermore,
as mechanists themselves are keen to point out, these abstract mod-
els can help design or refine particular mechanistic descriptions of
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the biophysical underpinnings of the cognitive capacities exhibited
by different living organisms.

However, as argued above, one should not take this aim of cogni-
tive research to constitute the sole valid criterion for evaluating the
explanatory value of models of cognitive or neural processes. Clas-
sical computational models used in cognitive research differ from
other modelling approaches in that they postulate certain abstract
structures and operations (representations and rules) which help ex-
press a series of important regularities governing the cognitive be-
haviour of living organisms. In fact, as shown in chapter 4, classical
computationalists (e.g., Pylyshyn 1984; Gallistel 1993) have typically
insisted that the main motivation for postulating such explanatory
structures is precisely because they allow the formulation of a host of
relevant counterfactual supporting generalisations about the cogni-
tive behaviours being investigated. I submit that in so far as classical
computational models can be viewed as providing a bridge between
the analysis of the complex cognitive behaviours of living organisms
and more detailed causal/mechanistic descriptions of the biophysical
level of organisation of these organisms, they earn their explanatory
keep. Moreover their relative autonomy from mechanistic norms is
not the expression of the sort of dogmatic ‘two-levelism’ criticised
by mechanists but rather a necessary condition for the explanatory
productivity of the field of cognitive science as a whole.

5.6 classical computationalism , mechanism or both?

Proponents of the mechanistic view have argued that their account of
computational individuation and explanation provides a better alter-
native to classical computationalism on at least three grounds. Firstly,
they claim that the mechanistic account allows for a larger variety of
computational architectures that may be used in the investigation of
the structure of particular cognitive capacities and neural processes.
Secondly, mechanists hold that the functional view of computational
individuation avoids all the problems facing the classical computa-
tional individuation strategy. And, thirdly, the mechanistic account
is said to provide a more accurate characterisation of the explanatory
strategies used in different sub-branches of cognitive science. Despite
the strong revisionary tone of these claims, I contend that the mech-
anistic account has more features in common with classical computa-
tionalism than is generally acknowledged. Also, I have argued that
some computational models of cognitive and/or neural processes can
be said to have an explanatory value despite the fact that they are not
directly constrained by mechanistic norms.

One of features that mechanistic and classical computationalism
have in common is that they both seem to be committed to a non-
semantic, formal view of computational individuation. According to
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this view, the type-identity of particular computational systems de-
pends solely on certain formal or structural properties of the systems
in question. In particular, their computational type-identity does not
depend on the semantic contents that their internal states might be
taken to possess as well. I have argued that this view of computa-
tional individuation can be easily derived from the generic notion of
computation proposed on the mechanistic account and that it also
reflects the classical computationalist commitment to the formality
constraint thesis (cf. Fodor 1980). According to the latter, computa-
tional processing is sensitive only to the formal (syntactic) or struc-
tural properties of certain physical systems.

Secondly, so far as the explanatory strategies entailed by each of
the two views of computation are concerned, they are far from being
incompatible. In fact, the classical computationalist strategy provides
a series of insights into the modelling and explanatory practices of
cognitive scientists that are consistent with the mechanistic picture of
computational explanation (Craver and Piccinini 2011). That is, I have
insisted that most researchers working in computational cognitive sci-
ence and neuroscience seek to develop linking-ready computational
models/theories that could be coordinated with mechanistic hypothe-
ses/theories concerning the biophysical bases of cognition. However,
against the mechanistic contention that all computational explana-
tions used in cognitive neuroscience are a sub-species of mechanistic
explanations, I have argued that computational modelling affords a
distinct explanatory style which is relatively autonomous from mech-
anistic norms.

In support of this contention, I have focused on two case studies
in which the notion of computation is used to construct explanatory
models of neural and/or cognitive processes. First, the example of
canonical neural computations (Carandini and Heeger 2012; Chir-
imuuta 2014) illustrates how the notion of neural computation can fig-
ure in abstract explanations of certain general patterns or properties
of neural systems independently of any specific assumption about the
biophysical implementation of neural computation. Thus, following
the discussion in Chirimuuta (2014), I have pointed out that canonical
neural computations like the contrast normalisation model are best
understood as minimal (non-mechanistic) models which explain why
a large variety of neural systems exhibit certain salient properties or
patterns. Second, the example of classical (symbolic) computational
models of insect navigation (Gallistel 1993; Gallistel and King 2009)
shows the productivity of postulating certain abstract computational
structures and operations in order to account for the behavioural pat-
terns observed in insect navigation. In connection with the latter
type of example, I have argued that the relative autonomy of compu-
tational models of cognitive capacities developed at higher levels of
abstraction from their biophysical implementation is a necessary con-
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dition for reducing the significant gap between behaviour and neural
mechanisms that cognitive neuroscience is currently facing.

Therefore, I claim that although classical computationalism uses
a top-down methodological strategy in order to model and explain
different cognitive capacities, it is not guilty of ignoring altogether
the constraints imposed from a bottom-up, neurobiologically inspired
perspective. A better way to understand the commitments and aims
of classical computationalism is to view it as a modelling and explana-
tory strategy which seeks to create a link between the description
of complex cognitive behaviours or capacities and the mechanistic
characterisation of their neurobiological/biophysical underpinnings.
At different stages in this chapter, I have pointed out that mecha-
nists tend to downplay the difficulty of bridging the gap between
behaviour and neural mechanisms by claiming that neural compu-
tations provide the building blocks for explanations of both cogni-
tive and neural processes. The main problem with this tendency is
that it distorts both the successes and challenges facing the field of
cognitive neuroscience. A more fruitful perspective, I have argued,
should acknowlege that practicing cognitive scientists and neurosci-
entists appeal to a variety of modelling strategies, each of which
yields partial explanatory accounts of the phenomena or systems be-
ing investigated. In particular, computational cognitive science and
neuroscience often appeal to distinct forms of computational explana-
tion which are not directly constrained by mechanistic norms. That
is not to deny the mechanistic concerns of these fields, but rather to
recognise the productivity of using different explanatory styles each
of which reflects the limits on the range of application of any partic-
ular explanatory strategy or structure. In light of these arguments, I
conclude that not all types of computational explanations used in the
cognitive domain are best understood as a sub-species of mechanistic
explanation.

Lastly, it should be noted that despite the strong stance that mech-
anists take against digital computationalism, they do in fact preserve
the central distinction defended by classicists in their broader notion
of generic computation. More specifically, the mechanistic definition
of generic computation presupposes that one is able to distinguish
between a specific kind of entities (i.e., symbols) and operations (i.e.,
general rules) defined over appropriately typified entities. This in
turn supports the idea that there is a substantial element of continu-
ity between the digital computationalist hypothesis and the neural
computationalist one. In consequence, I claim that, at a general level,
the notion of neural computation constitutes a less radical departure
from the classical notion of computation than usually argued.

In fact, the distinctive contribution of the mechanistic view of com-
putational explanation seems to be that it identifies a different type
of structure, viz. neural computations, which may be used to explain
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certain aspects of the neurobiological mechanisms underlying cogni-
tive processing. Moreover, mechanists make a compelling case that in
order to evaluate the explanatory value of particular theories/models
which deploy such a notion, one must take into account a series of
hypotheses concerning the organisation of the nervous system at the
systems and cellular levels. These hypotheses and/or principles func-
tion as local norms which constrain and direct the construction of ad-
equate and potentially explanatory models of cognitive phenomena.
In the following chapter, I propose to analyse yet another style of
computational approach to cognition, which shares various elements
with both classical computationalism and mechanism.
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6
C O N N E C T I O N I S T A P P R O A C H E S T O C O G N I T I O N

6.1 introduction

The previous two chapters have focused on two major philosophical
accounts of computationalism, analysing their underlying theoretical
principles and associated hypotheses concerning the nature and struc-
ture of cognitive explanation. In order to arrive at a more compre-
hensive picture of the computational tools and techniques currently
used within cognitive science, this chapter will focus on the theoret-
ical principles and practical implications of connectionist approaches
to cognition.

In the last thirty years, connectionist models, also known as artifi-
cial neural networks (ANN) or parallel distributed processing (PDP)
models, have been applied to a diverse range of cognitive capacities,
including memory, attention, perception, action, language, concept
formation, and reasoning (e.g., Rumelhart, McClelland, and PDP Re-
search Group 1986; Elman 1996; Christiansen and Chater 2002). Al-
though many connectionist models target adult cognitive processes,
connectionism has been promoted primarily for yielding novel and
important insights into the nature of learning, thus urging an in-
creased focus on acquisition and developmental phenomena. Sup-
porters of this computationalist framework have argued that connec-
tionist modelling provides an alternative approach to the study of
cognition which differs in crucial respects from that afforded by clas-
sical computationalism.

Connectionists reject the assumption that the internal computations
underlying cognitive processing must be characterised in terms of
complex symbolic structures and rules defined over appropriately
typified symbols. Whilst a separate issue, connectionism is also of-
ten taken to contest the classical innateness hypothesis according to
which an important part of the machinery underlying cognitive pro-
cessing is innate (e.g., Chomsky 1975; Laurence and Margolis 2001;
Berwick et al. 2011). In contrast, they argue that: (i) all cognitive
phenomena arise from the propagation of activation among simple
neurone-like processing units and (ii) such propagation is mediated
by weighted synapse-like connections between units. In light of these
two central tenets, connectionists claim that one important reason for
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preferring the adoption of a connectionist (over a classical) framework
is that connectionist models are neurologically more realistic (plausi-
ble) than symbolic computational models of cognitive capacities.

The arguments developed in this chapter pursue three interrelated
goals: (1) to clarify the relationship between connectionist and classi-
cal (symbolic) approaches to cognition, (2) to assess the explanatory
roles of connectionist notions and principles in modelling particular
aspects of cognitive processing, and (3) to draw out the main chal-
lenges facing the exclusivist adoption of a connectionist framework
within cognitive science. I take the last of these to be a strong presup-
position implicit in both past and current philosophical discussions of
connectionist approaches to cognition. I will argue that this claim is in
part the result of a strong polarisation between classical and connec-
tionist versions of computationalism. By mitigating this dichotomy,
I seek to shed light on both the similarities and differences between
the two types of strategies of explaining cognitive phenomena.

The structure of this chapter divides into three distinct parts. In
section 2, I begin by surveying the main concepts and principles that
constitute the core of the connectionist framework. As in the previ-
ous two chapters, I adopt an argument strategy which distinguishes
questions that pertain directly to the theoretical framework of connec-
tionism from questions regarding the applicability of connectionist
concepts and tools to the study of cognition. I will explore first the
individuation problem, seeking to draw out the relevant distinctions
between classical computational individuation and connectionist in-
dividuation. Next, I discuss the representational problem, which per-
tains more directly to the issue of the applicability of connectionism
to the study of cognition. This will lead, in the last part of the section,
to a preliminary discussion of some of the signature features of the
explanatory strategy promoted by connectionists in the investigation
of cognitive phenomena.

Having discussed the theoretical underpinnings of connectionism,
in section 3, I adopt a practice-based perspective in order to analyse
in more detail the strengths and limitations of connectionist models
of cognitive capacities. First, I briefly survey some of the most impor-
tant connectionist theses that are standardly taken to challenge the
adequacy of classical computational models/theories of cognition. I
then illustrate these claims via two influential classes of connectionist
models developed and refined in the cognitive literature, viz. connec-
tionist models of English-past tense inflection (Rumelhart, McClel-
land, and PDP Research Group 1986), and word recognition (Elman
1996). The critical analysis of these models serves three purposes: (i)
to show how connectionist methods are actually applied in the inves-
tigation of specific aspects of cognition, (ii) to illustrate some of the
most polemical connectionist claims made against symbolic computa-
tional modelling, and (iii) to pin down the main challenges currently
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faced by connectionist accounts of cognitive phenomena. In section
4, I return explicitly to the problem of connectionist explanation in
order to sketch a more adequate way of thinking about the contribu-
tions made by connectionist modelling to the study of cognition.

6.2 the main tenets of connectionism

This section explores the central notions and principles underlying
connectionist approaches to cognition. Connectionism claims that
the internal computations which underlie cognitive processing are
carried out by a set of simple processing units that operate in parallel
and affect each other’s activation states via a network of weighted
connections. In order properly to evaluate the ambitious claim that
connectionism can provide the foundation for a new paradigm of
computational theories of cognition that supplants the classical (sym-
bolic) framework, I propose to elucidate first the central theoretical
tenets of the connectionist framework. After introducing the principal
design features of a connectionist architecture (section 2.1), I discuss
the individuation issue in a connectionist setting (section 2.2). More
precisely, I survey a number of potential strategies that might be used
for the type-individuation of particular connectionist networks. Via
this analysis, I seek to pin down both the relevant differences as well
as the similarities between the individuation of connectionist systems,
on the one hand, and classical computational systems, on the other.

I then proceed to tackle the representationalist problem as it per-
tains to the applicability of connectionist architectures in the study
of cognition (section 2.3). There are two primary motivations for
a critical analysis dedicated to this issue. First, the postulation of
representational contents seems to play an important ‘bridging’ role
in the application of connectionist principles to the study of particu-
lar cognitive problems. Second, the representationalist character of
connectionist models/theories has been taken by many philosophers
to constitute the litmus test for the adequacy of connectionism as a
proper cognitive-level theory. Thus, my aim is to clarify the roles
played by representational contents in the connectionist framework
and how they constrain proposed connectionist explanations of par-
ticular cognitive phenomena. The preliminary conclusions concern-
ing the nature and structure of connectionist explanations of cogni-
tion (section 2.4) will be complemented, in section 3, by a critical
analysis of some paradigmatic connectionist models of higher-order
cognitive processes.

6.2.1 Basic features of connectionist networks

Current connectionist architectures applied in the study of cognition
span a wide range of systems which nevertheless share various prop-
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erties and types of components. In what follows, I provide a rough
survey of some of the most salient principles and properties of con-
nectionist networks. The principal purpose of this section is to iden-
tify the general (theoretical) features which are most likely to play a
role in the type-individuation of different connectionist systems.

Following the classical exposition of the connectionist framework
(cf. Rumelhart, McClelland, and PDP Research Group 1986; Bechtel
and Abrahamsen 1991), I discuss next seven prominent features of
connectionist or artificial neural networks (henceforth, ANNs). First,
all ANNs comprise a set of processing units (ui) which are often dis-
tinguished into input, output, and hidden units. Units are standardly
organised into levels or layers which are connected in various ways
to one another, so that the processing activity in one layer affects the
activity of some other layers of the connectionist network. Second, a
network of such processing units is characterised at any given time
(t) by an activation state (a). More specifically, the state of a set of pro-
cessing units will be represented by a vector of real numbers a(t). A
typical assumption about this representation format is that the acti-
vation level of simple processing units varies continuously between 0

and 1.
The notion of activation level is strongly related to a third feature

of connectionist networks, namely that of pattern of connectivity. The
activation state of one unit can be affected by the activation state of
another unit in function of the value of the connection strength be-
tween the two units. Most commonly, the strength of the connections
between two units (i and j) is represented by a matrix W of weight
values (wij). If a particular network comprises more than one type
of connection, then the patterns of connectivity may be represented
by multiple matrices. For instance, one matrix may specify excitatory
connections between units and another may specify inhibitory con-
nections. In principle, the weight matrix allows that every processing
unit in the network may be connected to every other unit in the net-
work. However, as hinted above, units are typically arranged into
layers (e.g., the input, hidden, and output layers) which in turn may
be fully or partially connected to one another.1

The rule which specifies how activation states are propagated in a
network constitutes the fourth prominent feature of any ANN. Such
a rule takes the vector a(t) of output values for the processing units
sending activation and combines it with the connectivity matrix W
to produce a net input into each receiving unit. The net input to
a receiving input is given by the following formula: neti = W ×
a(t) = ∑iwijaj. This rule is used to determine how the net inputs to a
given unit are combined to produce its new activation state. The fifth,

1 For instance, in a three-layer feedforward architecture, i.e., where activation passes
in a single direction from input to output, the input layer would be fully connected
to the hidden layer which in turn would be fully connected to the output layer.
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and closely related, feature is the activation function F which, as just
suggested, derives the new activation state, i.e., ai(t + 1) = F(neti(t)).
A key property of the activation function is that it can vary, i.e., it
can be either a threshold function (so that the unit becomes active
only if the net input exceeds a certain given value), linear, Gaussian,
or a sigmoid function, depending on the particular type of artificial
network one seeks to build.2

The sixth key feature of an ANN is the so-called learning algorithm
(or function) that modifies the patterns of connectivity as a function
of experience. Almost all learning algorithms defined within connec-
tionism can be shown to be variants of the Hebbian algorithm (cf.
Hebb 1949). The driving idea behind this very simple learning func-
tion is that the weight between two units must be altered in propor-
tion to the units’ correlated activity. That is, if a unit ui receives input
from another unit uj, and both are highly active, then the weight wij
from ui to uj is strengthened, following the simple rule: 4wij = η

aiaj, where η is a proportionality constant also known as the learning
rate. This simple rule is slightly modified if an external target acti-
vation ti(t) is available for a unit i at a time t to reflect the disparity
between ui’s current activation state ai(t) and its target (i.e., desired)
activation state ti(t), thus yielding the so-called delta rule: 4wij = η

(ti(t)− ai(t))aj.
However, if the network includes hidden units, one cannot deter-

mine target activation states directly, so the weights of such units
may be modified solely by certain variants of the Hebbian learning
algorithm or by the backpropagation of error signals from the output
layer. Backpropagation allows one to determine, for each connection
weight in the network, the effect of changing its value for the overall
network error. The general rule for changing the strengths of connec-
tions consists simply in adjusting each weight in the direction that
would tend to reduce the error, and change it by an amount propor-
tional to the size of the effect that the adjustment would have. In the
case in which the network comprises multiple layers of hidden units,
this process can be iterated as many times as required. First, error
derivatives are computed for the hidden layers closest to the output
layer; from these, derivatives are computed for the next deepest layer,
and so on and on. In this way, the backpropagation algorithm can
modify the pattern of weights in very complex (multi-layer) artificial
networks. In other words, it modifies the weights to each deeper
layer of units so that at the same time it reduces the error on the
output units (cf. Rumelhart, McClelland, and PDP Research Group
1986). A wide range of versions and extensions of the Hebbian and

2 Sigmoid functions are perhaps the most common, operating as a smoothed threshold
function that is also differentiable. The fact that the activation function is differen-
tiable is important in light of the fact that learning in an artificial network seeks
to improve a performance metric that is evaluated via the activations state whereas
learning itself can only operate on connection weights.
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error-correcting algorithms have been introduced in the connectionist
modelling literature (cf. Thomas and McClelland 2008).

The seventh feature of connectionist networks which has been em-
phasised particularly in the context of cognitive modelling is the rep-
resentation of the elements and environment of the systems being
modelled. Standardly, this is taken to consist of a set of externally
provided events or a function for generating such events. For in-
stance, a single pattern such as a visual input can count as an event,
as well as a class of such patterns, e.g., the spelling of a word or its
corresponding sound or meaning; or a sequence of inputs, such as
words in a sequence. That is, as models of particular cognitive pro-
cesses, ANNs are supplemented by a representational scheme which
maps the elements of the cognitive domain of interest to the set of
vectors depicting the relevant informational states or mappings for
that domain. In what follows, I propose to explore which of these
features of connectionist architectures bear on the individuation and
explanations issue, respectively.

6.2.2 The individuation of connectionist computations

With these basic features of a connectionist architecture in hand, we
can now consider the issue of the type-individuation of connectionist
systems. As in the case of classical computationalism, I hold that this
question can and should be treated independently of the question
concerning the explanatory value of particular connectionist models
of cognitive capacities. In brief, I take the individuation issue to be
concerned with the characterisation of a particular type of structure
(in this case connectionist networks) which may be applied to the
study of various cognitive phenomena. In other words, the individ-
uation issue focuses primarily on establishing the factors that play a
role in the type-individuation of specific connectionist systems. The
separability of the individuation and explanations issues allows a bet-
ter grasp of the connectionist structures which are supposed to play
an explanatory role in particular theoretical contexts by facilitating
the investigation of the properties/features of connectionist networks
which might play a crucial role in the modelling of a particular aspect
of cognition.

In what follows, I analyse two general strategies of individuating
connectionist systems and discuss how they differ from the formal
or internalist individuation strategy of classical computational sys-
tems (cf. chapter 4). Whilst other individuation strategies might
be proposed, I contend that these alternatives would raise the same
or very similar issues to the ones discussed in connection with the
two strategies sketched below. Hence, I will distinguish between two
types of individuation strategies: (1) an architectural-based individua-
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tion strategy, and (2) an input-output (wide) functional individuation
strategy.

According to the architectural individuation strategy, the distinc-
tions between the different types of connectionist systems (architec-
tures) can be determined by considering three main features of the
constituent elements of a connectionist system and their organisation:
(i) their patterns of connectivity, (ii) the activation rules for process-
ing units, and (iii) the learning algorithms used to train specific types
of networks. As hinted above, the patterns of connectivity specify
how the processing units of a network are connected to one another.
According to this criterion, connectionist systems can be grouped in
two major classes: (a) feedforward networks which have unidirec-
tional connections, and (b) interactive networks which allow for bidi-
rectional connections (cf. Bechtel and Abrahamsen 1991).

Feedforward connectionist networks standardly comprise a specific
number of input units (or nodes), hidden, and output units organised
into separate layers or levels, with units from one level feeding their
activations forward to the units at the next level, until the final level
is reached. The activation in such a network flows strictly from the
input layer of nodes through the hidden layer to the output nodes
(connections within a layer or from higher to lower layers are forbid-
den) in a way that depends on the specification of the initial values of
the connection weights and the particular learning algorithm which
is used to train the network. The simplest system with such a configu-
ration will consist of only two layers of units: input and output units.
When the connection strengths (weights) are properly set, even this
type of very simple connectionist system can yield specific output
patterns for different input patterns. However, since these two-layer
connectionist networks have a limited computational power, feedfor-
ward networks have been developed to include more than two layers
of processing units. Hence, the class of feedforward networks com-
prises both two-layer and multi-layered networks.

Further variations can be achieved in the class of two-layer and
multi-layered feedforward architectures by letting, for instance, units
at the same level send inhibitions and excitations to each other as well
as to units at the next level up. An important variation of this type of
architecture is the recurrent network (Elman 1990, 1991, 1993), which
can receive input sequentially and modify its response appropriately
depending upon what information was received at previous steps in
the sequence. A simple recurrent network (SRN) can do this because,
unlike a standard feedforward network, it is supplemented with a
context layer that records a copy of the state of the hidden layer. This
context layer feeds back into the hidden layer at the next time step.
At any given point, the activation levels of the hidden units depend
not only on the activation of the input units but also on the state of
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these context units, which can be viewed as a sort of memory in this
type of network.

Another class of connectionist systems that have been utilised in
cognitive modelling are the interactive networks in which at least
some connections are bidirectional, and the processing of any single
input occurs dynamically across a large number of cycles (cf. Bech-
tel and Abrahamsen 1991). Unlike feedforward networks, interactive
networks may or may not be organised into distinct levels. If they are
thus organised, then it can be said that processing occurs both back-
wards and forwards. Examples of interactive networks include Hop-
field nets (Hopfield 1982), Boltzmann machines, and harmony the-
ory (Rumelhart, McClelland, and PDP Research Group 1988). Whilst
none of these types of networks will be treated in detail anywhere in
this chapter, for the purposes of discussing the individuation issue it
suffices to point out that varying the organisation of connectionist net-
works alongside the dimension specified by the connectivity pattern
yields distinct types of connectionist networks.

Even more fine-grained distinctions between connectionist systems
can be achieved by taking into account not only their specific patterns
of connectivity, but also the activation rules which determine the ac-
tivation values of their component units after processing. In virtue of
the type of activation values taken by individual units, connectionist
systems can be distinguished into: (a) systems which take discrete
activation values (which are typically binary), and (b) those which
take continuous activation values which in turn can be unbounded
or bounded. But the variations within the classes of connectionist
systems can be further refined by taking into account the activation
rules which specify how to calculate the level of activation for each
unit at a given time. Although these rules can be quite similar for the
two general classes of networks distinguished above (i.e., feedforward
and interactive networks), they nevertheless yield a more fine-grained
way of type-individuating different connectionist networks.

As outlined in the previous section, some of the most common ac-
tivation rules are the linear activation rule and the logistic or sigmoid
function (cf. Rumelhart, McClelland, and PDP Research Group 1986,
1988). Each of these activation rules can be adapted to obtain discrete
rather than continuous activation values, typically for use in networks
in which both input and output units are binary. In the case of the
linear activation rule, the adaptation consists in comparing the net
input to a threshold value. If net input exceeds the threshold, the out-
put’s unit activation is set to 1, otherwise being set to 0.3 In the case

3 With a zero threshold, positive net input turns the output unit on and negative net
input turns it off. A unit that uses a threshold in this way is called a linear threshold
unit. For instance a network with an output layer of linear threshold units and an
input layer of binary units is an elementary perceptron. Linear threshold units can
also be used in the hidden and output layers of multi-layered feedforward networks
and in interactive networks as well (cf. Bechtel and Abrahamsen 1991).
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of the logistic activation rule, discrete activations can be achieved by
using stochastic versions of the logistic function. When such versions
of the logistic functions are used in a feedforward network of binary
units, the relation between its net input and its activation becomes
probabilistic. That is, the activation function determines the relative
frequency with which the unit will turn on versus off.

The same activation rules that govern the propagation of activation
in feedforward networks can be used in interactive networks as well.
The only difference is that a special parameter t for time must be
included as well because in these networks activations are updated
many times on the same unit during processing. A further difference
that affects the activation rules for interactive networks is that be-
tween synchronous update and asynchronous update procedures. In
the first case, every unit’s activation is updated once per timing cycle,
whereas in the second case, there is no common sequence of cycles
but rather a random determination of the times at which each unit
separately is updated. Each update will require a separate applica-
tion of the activation rule, unlike the case of the feedforward network
where the activation rule is applied just once to each unit.

As this sketch already makes clear, there are a variety of ways of
fixing both the types of activation a unit might take as well as the
function which determines the unit’s activation value. What all these
functions have in common is that the new activation of a unit will
depend to some extent on the net input the unit receives from other
units in the network. The net input is determined in part by the
weights on the connections which can be either hard-wired or can be
determined by the network itself. This brings us to the last feature
that plays a role in the architectural individuation of connectionist
systems and that pertains to the distinctive ability of neural networks
to change their own connection weights: learning principles.

As pointed out in section 2.1, learning for a connectionist system
consists in changing the connection weights between simple units.
Moreover, since the network is supposed to figure out the appropri-
ate changes in weights without the intervention of an external pro-
grammer or internal executive in the network, the control over weight
change must be entirely local. The learning principles should invoke
or specify only information that can generally be available locally,
such as the current activations of the units. This idea has inspired
one of the first and most influential learning principles for connection-
ist networks, namely the Hebbian learning rule according to which
whenever two units have the same sign, the connection between them
is increased proportionally to the product of the two activations. Oth-
erwise, the weight of the connection is decreased proportionally to
the product of their activations (Hebb 1949). Numerous variations of
the Hebbian learning rule can be used to train different connectionist
systems. Further variation is introduced by training networks with
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alternative learning functions such as the backpropagation algorithm
and other related gradient descending methods which are said to in-
crease the computational power of connectionist systems (cf. Elman
1996).

To sum up, from an architectural perspective, connectionist sys-
tems can be type-individuated in virtue of their patterns of connec-
tivity, activation rules, and learning principles. This strategy will
yield a large variety of connectionist systems, only some of which
will be applicable in the investigation of particular cognitive phenom-
ena. One advantage of this individuation strategy is that it captures
many important features of the internal dynamics of a functioning
connectionist network, thus allowing one to specify the relevant for-
mal features that distinguish between different types of connectionist
systems. This is important because some of these features (e.g., learn-
ing algorithms) have been taken to be essential for modelling specific
aspects of cognitive phenomena, such as the gradualness of language
learning and development or various interference effects in memory
tasks.

Furthermore, the architectural individuation strategy comes very
close to the formulation of the formal or internalist view of classi-
cal computational individuation defended in chapter 4. In the latter
case, a system’s computational identity is determined by the struc-
tural features that characterise its component elements, and their or-
ganisation, which in turn can be specified as a set of conditional in-
structions appropriately defined over the component elements of the
system. Hence, the previous discussion supports the idea that, in-
sofar as the individuation issue is concerned, there seems to be no
significant difference between connectionist computations and sym-
bolic computations.

One might nevertheless worry that this way of type-individuating
various connectionist networks creates too great a gap between the
formal features of connectionist networks and their application to the
study of particular cognitive phenomena. Moreover, one may object
that such a formal individuation strategy ignores the neurological
inspiration underlying the original development of artificial neural
networks. In order to address these worries, I sketch next another
possible individuation strategy which seems to presuppose a more
minimal gap between the individuation and explanation interests of
connectionist modellers. I will return to the issue concerning the
purported contributions of neurobiological constraints to the individ-
uation of connectionist networks before concluding.

Another way to type-individuate connectionist systems is by the
input-output functions they are able to perform or execute. In this
case, the initial pattern of activation supplied to a connectionist net-
work will be regarded as the relevant input that a system requires in
order to yield, after a series of processing steps, a particular target
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output. In this case, the connections are said to constitute constraints
on the intended output and the stable state achieved by the system
should be the state of the network that best satisfies these constraints.
The adoption of this individuation strategy seems to be encouraged
also by the fact that connectionists themselves insist on the centrality
of the semantic interpretation of connectionist systems used in the
study of different cognitive phenomena. That is, although they recog-
nise that semantic interpretations are extrinsic to the connectionist
systems themselves, connectionists also seem at times to imply that
the type of input and output a given network is supposed to produce
constrains the architecture of the system and thus its computational
type. The idea implicit here seems to be that the semantic properties
of the inputs and outputs processed by a given network determine
(in part) its computational type.

Again, this latter interpretation of the connectionist functional in-
dividuation strategy is similar to some versions of the semantic view
of computational individuation discussed in chapter 4 (e.g., Shagrir
2001). On this account, the semantic (externalist) contents of the in-
puts (and outputs) of a connectionist network are taken to impact its
computational identity. This sort of strategy has been exploited by
some defenders of radical connectionism (e.g., Frank, Haselager, and
van Rooij 2009), but I will argue that it poses some serious problems
for the applicability of connectionist models to the study of cogni-
tive phenomena. However, as hinted above, there is also an internal-
ist or formal characterisation of the functional individuation strategy
which claims that connectionist systems are responsive only to cer-
tain formal features of the inputs/outputs on which the network op-
erates (e.g., the patterns of activation corresponding to the input and
output states, respectively). This is in turn consistent with the inter-
nalist view of classical computational individuation. Hence, whilst
the wide (externalist) functional individuation strategy looks more
appealing from a modelling perspective, I claim that it also tends
to conflate the individuation and explanation issue, thereby compro-
mising the independent characterisation of the connectionist models
applied in the study of specific cognitive phenomena.

At a more general level, there are two considerations which reflect
the main challenges confronting the input-output (functional) view
of connectionist individuation. First, holding that the individuation
of connectionist systems should proceed in terms of the input-output
functions these systems are able to perform entails that connectionist
networks are not that different from classical computational systems
after all. For if two systems, one connectionist and the other classical,
are able to compute the same input-output function, and furthermore
they are individuated in terms of this particular criterion, then they
will count as being computationally equivalent. The two systems
might compute the same input-output function in different ways, but
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from the point of view of their individuation, those differences will
simply be irrelevant, because their type-identity will be determined
by the input-output function they are able to perform (compute).

Second, the hypothesis that connectionist systems are individuated
in functional terms is compatible with the idea that there exists a va-
riety of networks which are able to perform the same input-output
function. Otherwise put, the input-output functional individuation
criterion seems to generate too coarse grained a taxonomy of connec-
tionist systems. So, whilst the input-output functional individuation
strategy might be viewed as a first step towards proving the appli-
cability of connectionist networks to the study of cognitive functions
or capacities, it also introduces an indeterminacy problem with re-
spect to the connectionist system that would best capture the cogni-
tive function being investigated. A possible way to further refine the
individuation of connectionist systems postulated in cognitive mod-
elling would be, as outlined above, to complement the functional cri-
terion with a series of neurobiological constraints. These constraints
would require that the connectionist systems postulated in the expla-
nation of particular cognitive phenomena should be constrained by
our current biological knowledge about the structure and organisa-
tion of the nervous system.

There are two straightforward problems with this proposal. Firstly,
given the limits of our current biological knowledge concerning the
structure and organisation of the nervous system and its components,
it is reasonable to believe that the neurobiological constraints will be
either too general or too indeterminate to fix in any strict sense the
type-identity of any particular connectionist system. Secondly, the
relevance of the neurobiological constraints for the individuation of
specific connectionist systems rests on the strong assumption that all
connectionist systems should model the particular patterns of con-
nectivity of neurones in the brain or other neurobiologically relevant
features such as the differences between various neurotransmitters
that affect neural activity in different areas of the brain etc. Instead,
I propose that connectionist systems which incorporate some neuro-
biologically based constraints constitute a sub-class of a wider va-
riety of connectionist systems. This in turn implies that the type-
individuation of connectionist systems cannot be determined solely
in terms of neurobiological constraints either.

In addition, as it can be seen from any brief survey of the mul-
tiple connectionist models developed within the arena of cognitive
modelling, the proposed architectures such as the LISA architecture
(e.g., Hummel and Holyoak 1997, 2003), the neural blackboard ar-
chitectures (van der Velde and de Kamps 2006), the tensor products
based architectures (e.g., Smolensky 1990), and vector symbolic archi-
tectures (Plate 2003; Eliasmith and Stewart 2012) can be distinguished
in terms of their architectural features along the lines sketched above.
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This is mainly because neurobiological constraints are translated in
the design of a connectionist system in terms of restraining the num-
ber of processing units, patterns of connectivity, activation rules, and
learning algorithms that can be deployed by particular connectionist
systems when embedded in a particular type of (cognitive) environ-
ment. Thus, whilst I would agree that neurobiological constraints
play an important role in selecting the connectionist systems which
are relevant for the study of particular cognitive phenomena, I main-
tain that they do not bear directly on the problem of connectionist
individuation.

The preliminary conclusion of the preceding analysis is that an
architectural individuation strategy is the most fit to capture the rele-
vant features which play a role in the type-individuation of particular
connectionist systems. In addition, there are good reasons to believe
that such an architectural individuation strategy is very similar to the
internalist view of classical computational individuation. The func-
tional input-output individuation strategy, on the other hand, seems
to be more convenient for identifying connectionist networks for spe-
cific modelling purposes. However, the discussion so far has left open
the question of how to understand the practice of applying connec-
tionist networks to the study of cognitive phenomena. In what fol-
lows, I seek to clarify this issue by discussing in some detail the rep-
resentationalist problem as it arises in a specific connectionist setting.

6.2.3 The representationalist problem

This section tackles the issue of the semantic interpretation of connec-
tionist systems. As will be shown below, this constitutes a crucial step
in the applicability of connectionist networks to the study of cognitive
phenomena. In section 2.1, I pointed out that an important feature of
connectionist networks used in cognitive modelling is the representa-
tional scheme which provides a way of interpreting the elements of
a connectionist network in a way that makes it relevant to the cogni-
tive problem/phenomenon being modelled. Now I turn to analyse
in more detail the role that these representational schemes play in
the construction and development of good connectionist models of
specific aspects of cognition.

At a more general level, the problem of the representational or
non-representational character of connectionist approaches to cogni-
tion has been and continues to this day to be a major point of debate
between defenders of classical computationalism, on the one hand,
and proponents of connectionism, on the other hand (e.g., Fodor
and Pylyshyn 1988; Smolensky 1988a,b; Jackendoff 2002; Bechtel and
Abrahamsen 1991; Frank, Haselager, and van Rooij 2009; Eliasmith
and Stewart 2012; Werning 2012, etc.). In what follows, I seek to clar-
ify what is actually at stake in these sorts of debates and extract some
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lessons that would allow us to advance our understanding of both
classical and connectionist theories/models of cognition.

6.2.3.1 A plea for internal structured representations

Classicists claim that the explanation of certain salient properties of
cognition (e.g., its productivity, systematicity, compositionality, infer-
ential coherence, etc.) requires the postulation of internal structured
representations, and rules appropriately defined over them. Connec-
tionists maintain that cognitive processes and/or properties can be
explained exclusively in terms of the transmission of activation pat-
terns through the processing units (nodes) of highly complex neural
networks. That is, according to connectionists, there are good rea-
sons to believe that an explanatory theory of cognition should dis-
pense with internal structured representations (symbols) and rules.
Although it is not the case that all those who endorse connectionism
would agree with this radical stance, I take it to be an assumption im-
plicit in many presentations of the connectionist program in cognitive
science (e.g., Christiansen and Chater 1994, 2008; Eliasmith and Stew-
art 2012; Werning 2012). The purpose of the following arguments is
to show that a more moderate position is both available and more
advisable.

Consider first the question whether connectionism ought to be
viewed as a representationalist theory of cognition at all. The answer
to this will depend of course on what you take a representationalist
theory of cognition to be in the first place. Connectionists seem to be
committed to characterise their theories as representational primarily
in order to be able to qualify them as proper cognitive-level theories,
as opposed to merely implementational ones. Connectionists accept
that cognitive-level tasks/problems are standardly specified in rep-
resentational or semantic terms. So there ought to be a way of con-
necting adequate connectionist theories of cognition with the repre-
sentational/semantic descriptions of the phenomena being modelled.
Along these lines, various authors have claimed that connectionist
networks ‘are explicitly concerned with the problem of internal repre-
sentation’ (cf. Rumelhart, McClelland, and PDP Research Group 1986,
p. 121).

In response, a number of classical computationalists (e.g., Fodor
and Pylyshyn 1988; Jackendoff 2002) have argued that this sort of
representationalist commitment leads connectionists straight into the
arms of a dilemma. For, they claim, representationalism goes hand
in hand with the postulation of internal structured representations or
symbols. In other words, according to this line of thought, the ‘cor-
rect’ way to understand the notion of mental representation or sym-
bol is as something that must be able to participate in certain kinds
of structured representations. But since most connectionists seem de-
termined to reject a computational architecture that relies on symbols
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and operations which are able to create novel internally structured
symbols out of atomic symbols, Fodor and Pylyshyn (1988) conclude
that connectionist theories/models should not be deemed to be gen-
uinely representational in the first place.

A somewhat similar conclusion is defended by Ramsey (2007), who
argues that connectionist theories are not representational in any ‘in-
teresting’ sense. Ramsey agrees with other authors, such as Cum-
mins (1983), Fodor and Pylyshyn (1988), and Jackendoff (2002), that
assigning specific semantic values to the input and output nodes of
a connectionist network does not suffice to qualify the system as be-
ing genuinely representational. He claims that, for a connectionist
network to count as a proper representational system, the hidden
layers and the learning algorithms must be interpretable in terms
of structured representational relationships, on the model offered by
classical computationalism. However, the latter requirement would
conflict with the substantive connectionist claim that learning algo-
rithms are general, domain-independent functions which operate on
connection weights, changing the activation patterns between layers
of simple processing units. Because of this, Ramsey (2007) concludes
that connectionist models are essentially non-representational. Still, he
points out that this verdict does not necessarily rule out the adequacy
of connectionist models as tools for studying, and potentially explain-
ing, various aspects of cognitive processing.4

I propose to read Ramsey’s analysis as showing that connectionist
models are representational only in a weaker sense. That is, admit-
ting that semantic interpretations are actually external characterisa-
tions of computational models of cognitive processes, connectionist
networks would count as weakly representational insofar as there ex-
ists a reasonable assignment of contents to their input and output
nodes (cf. Ramsey 1999). There are two desirable consequences that
recommend the cautious adoption of this proposal. First, this ‘liberal-
isation’ of the notion of mental representation is consistent with the
idea that the adequacy of a computational model of cognition (classi-
cal or connectionist) does not depend exclusively on the availability
of a direct semantic interpretation of all of its component structures
and states. Second, a weaker (quasi-pragmatist) form of representa-
tionalism acknowledges the role that the selection of representational
formats for the inputs and outputs of connectionist networks (models)
plays in developing better models of cognitive phenomena. There-
fore, a weakening of the representational thesis would allow us to
focus more on the constraints that determine the choice of particular
representational schemes used by different connectionist modellers
and to understand how they contribute to the potential explanatory

4 Although it is not clear how Ramsey would account for the adequacy of connection-
ist theories of cognition, his solution to the classicist’s dilemma may be viewed as a
reasonable proposal which at least avoids spurious debates concerning the meaning
of the term ‘representation’.
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power of the proposed connectionist models. Before considering this
issue in more detail, I would like to say something about where this
line of argument leaves the objection raised by classicists against con-
nectionism’s inability to explain certain salient features of cognitive
processes such as their productivity, systematicity, compositionality,
and inferential coherence.

6.2.3.2 Connectionist alternatives

Consider first some of the major response strategies that have been
put forward in the connectionist literature. One of the most radi-
cal response routes defended by a number of connectionists is the
so-called approximationist approach (cf. Rumelhart, McClelland, and
PDP Research Group 1986; Smolensky 1988a; Bechtel and Abraham-
sen 1991). On this view, connectionist theories will one day provide
the most detailed and accurate account of cognitive processing. Clas-
sical symbolic models, on the other hand, are viewed as more abstract
(idealised) accounts which nevertheless manage to capture in an ad-
equate way certain important features or patterns in the cognitive
phenomena being investigated. It is in this sense that symbolic mod-
els are said to approximate connectionist models, viz. by providing
a less detailed account of the target cognitive process/phenomenon
than the connectionist model.

Although the term ‘approximation’ is somewhat misleading, the
driving thought of this connectionist strategy seems to be the follow-
ing. Classical rule-based computationalist theories of cognition can-
not capture adequately ‘the variability, flexibility, and subtlety’ dis-
played by cognitive phenomena, because the rules used to account
for such phenomena are ‘brittle’. Hence, connectionists argue, struc-
tured symbols and representations might be useful in constructing
higher-level models that abstract away from many of the details ex-
tracted from the behavioural data, but in order to model the actual
mechanisms underlying various cognitive processes, more detailed
and less brittle models are needed. This is taken to imply that an
explanatory theory of cognition will not require the postulation of in-
ternal structured representations and rules and instead it will specify,
in a broadly connectionist framework, the mechanisms underlying
various cognitive capacities and/or processes.

The standard way of arguing for the approximationist approach
consists in pointing out that there is a wide class of connectionist
models or simulations currently being developed which can accom-
plish cognitive tasks that would seem at first blush to require the use
of internal symbols and rules. In fact, this ‘exemplification’ strategy
is used on many occasions to support the appeal of connectionist
approaches to cognition. The general argument is that such connec-
tionist simulations/models provide something like an inductive basis
by showing how an ‘approximation’ of a cognitive task might be car-
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ried out by a very simple connectionist system. Then, assuming that
the behaviour displayed by the connectionist network will scale up to
accommodate realistic demands on complex cognitive systems, one
should be inclined to conclude that a purely connectionist account
of the mechanisms underlying cognition is in principle possible pre-
cisely in virtue of this sort of ‘inductive proof’. Whilst some of these
models will be analysed in more detail in section 3 below, I would
like to make here two quick remarks about the implications of this
connectionist strategy with respect to the ‘classicist’s dilemma’.

First, it should be noted that in order for this sort of inductive proof
to work at all, one must be able to guarantee that the connectionist
models are not themselves relying on implicit rules that determine
their ‘successful’ performance. In fact, there are a number of studies
which have shown that at least some of these successful connectionist
models do rely on the implementation of hidden classical rules (e.g.,
Marcus 2001; Ramsey 2007). However, these criticisms should not
be taken as providing an impossibility proof for the construction of
non-rule-governed connectionist systems that ‘approximate’ certain
well-specified cognitive tasks. Actually, they can be interpreted as
highlighting additional constraints that connectionist models must
satisfy if they are to count as proper non-classical accounts (cf. Elia-
smith and Stewart 2012).

Second, most connectionists who endorse the approximationist ap-
proach take it to entail that the properties singled out by classicists
(e.g, the productivity, systematicity, etc. of cognition) are not actually
instantiated by real cognitive systems. So they take successful connec-
tionist models to illustrate how more limited versions of these prop-
erties might be exhibited by actual cognitive systems but deny their
presence in cognitive systems generally. Otherwise put, the approxi-
mationist approach partly rejects the classicist challenge to explain in
a purely connectionist way the productivity, systematicity, and other
similar properties of cognition because these properties are viewed
as idealised (abstract) versions of the properties displayed by actual
cognitive systems (e.g., Christiansen and Chater 2002; Christiansen
and Chater 2008; Werning 2012).

Another type of response to the classicist challenge that has been
discussed in the connectionist literature is the so-called compatibilist
approach (Touretzky and Hinton 1988; Dyer 1991). According to this
view, there are certain cognitive processes such as complex reasoning,
decision making, and problem solving that could not be explained
without positing internal symbols that are systematically manipu-
lated by rules. This account is then consistent with the idea that
there might be certain features such as productivity, systematicity,
and coherence which characterise precisely those types of cognitive
processes that are inexplicable without the appeal to internal struc-
tured representations and rules. But connectionists should not even
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attempt to take up the challenge to explain these patterns/features
in the first place because they are appropriately stated in terms of
the relations that hold between the terms posited by the symbolic de-
scription of the cognitive processes. Under this view, the purpose of
connectionist models is to provide plausible implementational accounts
for the rule-governed cognitive processes.

To further clarify the previous claim, it should be pointed out that,
unlike the approximationist approach, which proceeds in a bottom-
up way by showing that some appropriately trained networks can
exhibit certain types of regularities that correspond to patterns ob-
served in cognitive processing, the compatibilist approach works in a
top-down fashion. That is, proponents of the compatibilist approach
(e.g., Touretzky and Hinton 1988) usually start with the rule process-
ing description of a given cognitive tasks and then try to construct a
network that would be able to implement the rules in question. How-
ever, despite the acknowledgment that some connectionist systems
provide an implementational rather than cognitive-level account of
certain cognitive phenomena, the compatibilist approach should not
be taken to imply that an implementational characterisation dimin-
ishes the importance of having a connectionist account of a particular
cognitive phenomenon.

Thus, contra classicists like Fodor and Pylyshyn (1988), compati-
bilists do not regard connectionist models as being in any way ‘infe-
rior’ on the grounds that they are ‘mere’ implementational accounts
of a given cognitive capacity. Although the arguments developed by
these authors are not fully articulated, the implicit claim seems to be
that such implementational connectionist models can reflect impor-
tant computational properties that would not be tractable in classical
symbolic implementations. This argument is a potentially important
challenge to Fodor and Pylyshyn’s (1988) contemptuous characteri-
sation of implementational accounts of cognition, for it would show
that connectionist models may even contribute to the development
and refinement of better cognitive-level classical symbolic models.

Finally, another way to account for the relation between connection-
ist architectures and the notion of internal structured representations
and rules consists in saying that networks may develop the capacity
to interpret and produce symbols that are external to the network
itself. This alternative has been put forward by Rumelhart, Smolen-
sky, McClelland, and Hinton (1986) and subsequently elaborated by
Smolensky (1988), Clark (1997), and more recently, illustrated by the
connectionist model of sentence comprehension constructed by Frank
et al. (2009). The key idea of this approach is that the internal struc-
tures postulated by a classical computationalist approach are stable
patterns that a network can acquire in time by sufficient exposure
to a highly structured environment. In other words, the internal
symbol-and-rules structures of certain cognitive capacities are said
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to be the result of a complex interaction between certain connection-
ist networks and a ‘symbolically structured’ external environment
(Frank, Haselager, and van Rooij 2009).

According to this strong ‘externalist’ approach, the properties high-
lighted by classical computationalists (productivity, systematicity, etc.)
are extracted by connectionist networks from a highly symbolically
structured external environment. This way of explaining these par-
ticular features of cognition has the purported advantage of allowing
for imperfections in the ways in which actual cognitive systems un-
der different conditions display these particular properties. That is,
the productivity, systematicity, and coherence of cognitive systems
is prima facie limited by the degree to which these properties are
present/instantiated by the external environment in which a particu-
lar cognitive system is embedded. The most challenging part of this
approach is to account for the way in which external symbolic struc-
tures might be internalised (to some extent at least). Assuming for the
sake of the argument that such an account would be readily available,
it is important to note that, on this approach, the internalised symbols
are simply patterns in a network. That is, the network is said to settle,
via some form of dynamic encoding (which is arguably quite distinct
from the construal of symbols in the classical framework) into cer-
tain stable states which count as ‘symbols’. Thus, if one brackets the
reservations expressed above, the externalist approach would seem
to afford a purely connectionist explanation of the salient features
highlighted by classicists.

I take the preceding discussion to have shown that, contrary to the
strong classicist contention, connectionists have available a number
of strategies for avoiding the challenge that neural networks are not
an appropriate tool for investigating interesting cognitive phenom-
ena. Whilst the availability of all these strategies tends to suggest
that the dilemma posed by classical computationalists is less defini-
tive than standardly assumed, none of the connectionist responses is
free from criticism. As outlined above, the approximationist strategy
implies that the properties emphasised by symbolic approaches are
in fact mere theoretical artefacts and that the actual features which
are in need of explanation are much more fuzzy and vague. Whilst
connectionists welcome this consequence and claim that it is a way
of reconceptualising certain properties of cognitive phenomena, it
can be shown that the strategy endangers the notion of connection-
ist explanation itself. That is, the bottom-up strategy promoted by
defenders of an approximationist strategy makes it look like the ex-
planandum is defined as whatever can be generated by an appropri-
ately trained connectionist network, rather than something which is
a robust feature of the phenomenon/system being modelled with the
help of connectionist system. Not only does this seem to reverse the
order of explanation, but it also puts into question what counts as an
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appropriate training regime for the connectionist model in the first
place.

The ‘externalist’ symbolic approach also faces a series of challenges,
such as that of specifying the mechanisms via which connectionist
systems can settle into stable internal structured states and the way
in which these are then used at different stages of cognitive pro-
cessing. Without such an account, the plausibility of the approach
seems to rest again on the success of particular networks in extract-
ing some structure from a carefully manipulated/constrained envi-
ronment. Although a number of such examples have been discussed
in the literature, the inductive proof which is supposed to secure the
generality of the approach is vulnerable to the fact that the success of
these models depends to a large extent on the control of the external
environment from which the network is meant to extract a particu-
lar type of symbolic structure. Realistic environments contain much
more noise, so an appropriately scaled-up network is very likely to
perform sub-optimally in such an unconstrained setting. The com-
patibilist approach seems to avoid the classicist challenge, but it is
unclear where it actually stands with respect to the idea of genuine
classical symbolic explanations of cognitive phenomena.

Because of all these limitations, I propose to treat the connection-
ist strategies as non-exclusive alternative ways of responding to the
classicist dilemma. This suggestion implies that connectionist mod-
els/simulations are apt to play not one but a host of different roles
in cognitive modelling. Moreover, this proposal allows that, for cer-
tain aspects of cognitive processing, connectionism might provide a
more adequate treatment than a classical rules and representations-
based account. For instance, connectionism seems well positioned to
explain certain ‘unexpected’ or rare cognitive effects which arise in
various domains of cognitive processing, such as the catastrophic ef-
fects in learning and memorisation tasks, or certain types of illusions
in visual processing and perhaps also various types of developmental
disorders (e.g., McClelland et al. 2010).

However, this aspect of connectionism does not support the ambi-
tious hypothesis that connectionism will one day provide a unified
theory of cognition. In particular, I contest the connectionist claim
that all symbolic models should be treated as heuristics for better
and more detailed connectionist theories of cognition. As in the case
of ‘mere’ implementational treatments of connectionism, I think the
heuristic qualification is misleading in creating an artificial polari-
sation between classical and connectionist approaches to cognition.
Instead, I maintain that both frameworks make available important
ways of conceptualising and explaining different aspects of cognitive
phenomena. In what follows, I briefly return to discuss the role of rep-
resentational schemes in connectionist explanations of cognitive phe-
nomena. This discussion complements and extends the notion of a
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‘weak’ representationalist character of connectionist models/theories
of cognition.

6.2.4 Representational schemes and connectionist explanations

The structure of this section comprises two interrelated parts. I start
by briefly analysing the distinction between localist and distributed
representations, and then turn to the question of how semantic in-
terpretations of connectionist systems contribute to the evaluation of
the explanatory power of connectionist models of specific cognitive
phenomena. In a nutshell, on the localist approach to the semantic in-
terpretation of connectionist systems, each concept from the relevant
domain of the cognitive problem being modelled is assigned to one
distinct unit of the network, whereas on the distributed approach, each
of the relevant concepts are distributed across multiple units. Each of
these approaches has its own advantages and limitations.

The primary advantage of localist models is that units can be la-
beled in the most intuitive way possible so as to facilitate keeping
track of what the network is doing. The disadvantage of this strategy
is that one might be tempted to assume that the semantic interpreta-
tions assigned to individual nodes of the network are intrinsic, i.e.,
they convey further (semantic) information that contributes to the
processing of the network. However, as was shown in the discussion
of the issue of connectionist individuation, there is no prima facie rea-
son to believe that semantic contents contribute to the individuation
of different connectionist systems. Hence, the correct way to conceive
of the process of semantic interpretation is that it constitutes an exter-
nal (pragmatic) step which establishes a correspondence between the
concepts that define a particular cognitive problem and the elements
of the connectionist system that is supposed to model that particular
cognitive problem. This further implies that when a particular net-
work is being used as a model of a particular cognitive task, its suc-
cess will depend to a significant extent on the modeller’s intuitions
about the ways in which the relevant concepts in the target cogni-
tive domain are interconnected and how they should be encoded (i.e.,
associated with the units of the network), as well as on her skill in
setting up connections appropriate to that encoding.

The ‘extrinsic’ task of semantic interpretation is even more com-
plex under the distributed approach. For in a distributed network,
each concept is represented by a pattern of activation across a set
of units. That is, on such an approach no single unit can be said
to represent a concept on its own (i.e., individual units do not have
semantic interpretations). One way to achieve such a distributed rep-
resentation consists in carrying out a so-called featural analysis of the
concepts that characterise a given cognitive task, and then encode
that analysis across an appropriate number of units. As such, feat-
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ural representation actually involves a localist representation of the
extracted features (one feature per unit), and a distributed represen-
tation of each of the relevant concepts. There are two main ways to
obtain a featural analysis of a target cognitive domain which would
generate the distributed representations used by a network to carry
out a particular cognitive task.

One option is to rely on an existing theory to guide the featu-
ral analysis; for instance, a particular linguistic theory may be used
as a basis for representing words as patterns over phonemic units.
Although this method suggests a close connection between connec-
tionist and classical accounts of cognitive phenomena, connectionists
insist that since the semantic interpretation is extrinsic to the func-
tioning of the connectionist network per se, the essential contribu-
tion made by networks in a cognitive modelling context is to show
how a connectionist cognitive system might make use of such a dis-
tributed representation in order to carry out a particular task. That is,
the explanatory contribution of the network would consists in show-
ing something about the mechanisms underlying the cognitive phe-
nomenon/task being modelled. Still, there is a sense in which the
(higher-level) theory used to derive the featural analysis provides a
series of constraints on the mechanisms and patterns explored with
the help of the connectionist system. That is, the theoretical descrip-
tion can be said to secure the possibility of applying a connectionist
system in order to study certain aspects/patterns of a given cogni-
tive phenomenon. There is nothing in this compatibilist picture that
precludes the possibility of the connectionist system being used to
reveal features or patterns in the target cognitive phenomena which
are not tractable from an alternative (e.g., classical computationalist)
perspective.

Another option is to let the system perform its own analysis of the
domain. In this case, when a network is trained with a particular
learning algorithm, the modeller specifies only the semantic interpre-
tations for the input and output units; in addition, the input-output
cases used for training are selected with respect to this particular in-
terpretation. However, under this method of carrying out the featural
analysis, the modeller can remain agnostic about the aspects of the
input-output cases which each hidden unit will become sensitive to.
The learning process can be viewed as a process of feature extraction
which assigns to the hidden units so-called ‘intermediary representa-
tions’ which can nevertheless fail to correspond to the most salient
regularities (features) in the input. Instead, each hidden unit is said
to be sensitive to complex and subtle regularities called microfeatures.
On this account, each layer of hidden units can be viewed as provid-
ing a different distributed encoding of the input pattern.

Connectionist modellers are usually keen to emphasise a number of
advantages of this method of obtaining the featural analysis which de-
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termines the distributed representation of the concepts that define a
particular cognitive task. Namely, they claim that, under this method,
partiality of the representation is still compatible with successful per-
formance. The general point is that once information is distributed
as a pattern across units, the resources used to process it are also dis-
tributed, which in turn implies that a system using this information
would be more resilient to damage. In addition, this method is said
to allow the system to learn new information without sacrificing ex-
isting information. For instance, without adding new units, one can
teach a network to respond to new input that is significantly different
from any it has encountered until a certain point simply by making
slight changes to a variety of weights so that one does not affect the
way in which the network responds to existing patterns.5 In addition,
connectionists emphasise that distributed representations are a good
way of imposing a series of quantitative constraints on connectionist
models so that they may be viewed as neurologically plausible in that
they would not require huge processing resources that a human brain
cannot support.

The preceding considerations suggest that, as in the case of classical
computationalist models, semantic interpretations, whilst extrinsic to
the connectionist systems themselves, play an important role in evalu-
ating the explanatory power of connectionist models of particular cog-
nitive phenomena. That is, they connect certain connectionist systems
to particular cognitive problems or tasks that the system is meant to
perform. The performance of the system in turn is taken to provide
some insight into the functioning of the cognitive system being in-
vestigated. However, unlike the case of classical models where se-
mantic interpretations are facilitated by the classical decompositional
strategy which maps simpler computational elements into simpler
semantic interpretations and more complex computational elements
into appropriately structured semantic interpretations, both localist
and distributed representational schemes fail to reflect this type of
symmetry. As we saw above, the semantic interpretation of hidden
units and of learning algorithms is at best partial and approximate.
This is in part what makes purported connectionist explanations of
particular aspects of cognitive processes harder to grasp.

However, the fact that connectionist explanations seem to be epis-
temically more complex need not be taken as a sign that they are
not proper cognitive-level accounts. I think that connectionist expla-
nations are indeed better viewed as providing an alternative to both
classical computational and mechanistic explanatory strategies. This
is primarily because network architectures attempt to explain par-
ticular aspects of cognitive phenomena without assuming the sort

5 It should be pointed out that there are limits to this capacity, i.e., in certain circum-
stances when the system has to learn new inputs, it can display so called ‘catas-
trophic interferences’ which mark the fact that the new input disrupts previous
learning to an unacceptable degree.
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of componential decomposition that characterises both the classical
symbolic and the mechanistic approach (cf. Bechtel and Richardson
1993/2010). Instead, connectionism conceives various cognitive ef-
fects and/or processes as the result of the complex organisation and
interaction of a system of simple units governed by simple updat-
ing (i.e., learning) rules. Precisely because most connectionist mod-
els/theories bypass decompositional and localisation concerns, they
are not strictly speaking implementational accounts but rather ab-
stract (i.e., mathematical) ways of describing and elucidating certain
aspects of cognitive processing/performance. As such, they are in
principle consistent with other strategies of investigating and explain-
ing cognitive phenomena.

In summary, when considering the issue of the explanatory value
of connectionist models/theories of cognition, I distinguish between
two questions: (i) what makes connectionist systems potentially ex-
planatory of cognitive phenomena, and (ii) what sort of factors con-
tribute to the construction of better explanatory connectionist mod-
els of specific cognitive phenomena. The answer to the first question,
sketched above, is that connectionist systems, structurally or formally
individuated, have a series of features which reflect certain important
patterns or features of cognitive phenomena. Otherwise put, they al-
low us to conceptualise certain cognitive phenomena in ways that
advance our understanding of them. Furthermore, when used in
conjunction with other explanatory frameworks, they can yield novel
hypotheses about the structure and organisation of cognition at dif-
ferent levels of abstraction, e.g., symbolic and/or neurobiological. As
for the second question, I think it is better approached from a practice-
based perspective which would afford a more fine-grained analysis of
the factors that contribute, in the current cognitive modelling practice,
to the development of better connectionist explanations of cognition.

6.3 connectionism from a practice-based perspective

Nowadays, connectionist models are applied within most of the sub-
branches of cognitive science, and, in certain cases, have been taken
to yield explanatory hypotheses about certain surprising aspects of
cognitive processing (e.g., the catastrophic interference effect in mem-
ory tasks, cf. McClelland et al. 2010). In what follows, I will focus
on two models proposed in the domain of language processing: (i) a
model of English past tense inflection (Rumelhart, McClelland, and
PDP Research Group 1986), and (ii) a model of word recognition (El-
man 1996; Elman 1990).6 The aim of this critical analysis is twofold.
Firstly, I seek to establish which architectural features of these partic-

6 This choice of examples is primarily motivated by the fact that the great majority of
connectionist models which have been singled out for the purposes of philosophical
analysis belong to this area of cognitive research.
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ular models are and are not essential to their functioning. In other
words, I investigate the specific architectural commitments that are
taken to make connectionist models adequate descriptive and poten-
tially explanatory tools in the investigation of cognitive phenomena.
Second, I show that these commitments are consistent with the fact
that certain classical principles and/or hypotheses are implicitly used
in at least some ‘successful’ cases of connectionist modelling. More
generally, I maintain that PDP modelling is compatible with a range
of classical hypotheses about the nature and structure of cognition.
In the last section of the chapter, I discuss in more detail the conse-
quences of this proposal. For now, I turn to the connectionists models
themselves in order to clarify how they work and what they show
about the general structure of connectionist explanations of cognitive
phenomena.

6.3.1 Connectionist models of linguistic inflection

Among the various cognitive problems to which connectionist mod-
elling has been systematically applied, linguistic inflection is perhaps
the one that has generated most interest and controversy in philo-
sophical circles. More specifically, the acquisition of English past
tense has often been taken to illustrate the substantive clash between
classicism (i.e., generative linguistics) and connectionism (cf. Mar-
cus 2001; Yang 2002). Although assigning a central role to the prob-
lem of past tense in the study of language can be misleading, for
present purposes it suffices to assume that it constitutes an instruc-
tive example for assessing the relationship between the two theoreti-
cal paradigms.7 The analysis pursued in this section comprises two
steps. First, I sketch a minimal background for understanding the
empirical and theoretical context in which connectionist models of
English past tense acquisition have been developed. Second, I iden-
tify the main architectural commitments of this class of connectionist
networks and discuss their explanatory function.

The problem of past tense concerns the systematic patterns ob-
served in children’s acquisition of past tense. For instance, in En-
glish children (and adults) in general inflect novel verbs with the -d
suffix, as in cross-crossed. Another important fact is that young chil-
dren sometimes overregularize. That is, they sometimes produce pat-
terns such as take-taked instead of take-took, where the suffix -d for
regular verbs is used for an irregular verb. According to the most
extensive study of past tense acquisition (Marcus et al. 1992), over-
regularization occurs on average in 10% of all instances of irregular

7 A number of authors have pointed out that ‘the problem of past tense, particularly
in English, notorious for its impoverished phonology, is a marginal problem in lin-
guistics, and placing it at the centre of attention does no justice to the intricacy of
the study of language’ (cf. Yang 2002, p. 59).
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verbs. In addition, errors such as bring-brang and wipe-wope, that is,
mis-irregularization errors where children misapply and overapply
irregular past tense forms, also occur but are very rare, representing
about 0.2% of all instances of irregular verb uses (cf. Pinker 1995).

The leading connectionist approach to the problem of English past
tense inflection claims that the systematic patterns noticed in past
tense acquisition emerge from the statistical properties of the input
data presented to connectionist networks (cf. Rumelhart, McClelland,
and PDP Research Group 1986). To unpack this claim, consider first
the influential Rumelhart and McClelland (1986) model of past tense
inflection. The original model works by taking a phonetically en-
coded input and transforming it into a phonetically encoded output.
For instance, the input to the model on a given trial is a phonetic
description of the word sing, while the target output is sang. On this
model, words consist of sets of triples, known as Wickelfeatures. Thus,
a word like sing is represented by the simultaneous activation of the
triples #si, sin, ing, and ng# (where # is a special marker for the begin-
ning or end of a word).

Although the model initially proposed by Rumelhart and McClel-
land (1986) did not have any hidden units, it performed surprisingly
well at capturing some interesting qualitative phenomena. For in-
stance, even if the model did not implement any explicit -d rule, it
was able to extend the default inflection to a number of novel verbs
(i.e., not present in the training space), yielding overregularizations
such as breaked or taked. Also, the model was able to correctly inflect
a number of irregular verbs before it first began to overregularize.

Despite the initial enthusiasm triggered by the performance of this
model, it is now widely acknowledged that the model is seriously
flawed. For example, it has been shown that the feature mentioned
above, i.e., the ability of the model to capture a period of correct irreg-
ular use prior to overregularization, was dependent upon an unreal-
istic, abrupt change from an almost irregular input vocabulary to an
almost entirely regular input vocabulary (cf. Marcus 2001). Another
more serious problem is that the model yields bizarre blends such as
the past tense membled for mail and the past tense imin for the novel
verb stem smeeb (not encountered in acquisition data). In addition,
it turns out that the Wickelfeatures system used to represent words
on this model cannot keep certain pairs of words distinct which in
turn affects the statistical distribution of the input from which the
network is supposed to learn reliably past tense inflection (cf. Pinker
and Prince 1988; Marcus 2001).

Nevertheless, the initial wave of criticism against Rumelhart and
McClelland’s model of linguistic inflection left open the question why
the model had failed to appropriately accommodate the empirical
data in the first place. Whilst a number of authors (e.g., Pinker 1995;
Marcus 1999) have attributed the model’s limitations to its lack of
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rules, others have argued that their source lies in the fact that the
model lacks a hidden layer. Other connectionists have proposed that
the use of the backpropagation algorithm (or other gradient descent
learning functions) in a network with hidden units constitutes an im-
portant step forward in the application of ANNs to the study of cog-
nitive phenomena such as linguistic inflection (cf. Hare, Elman, and
Daugherty 1995). In consequence, various researchers have proposed
more sophisticated networks, which are enhanced with a hidden layer
and more plausible training regimes, as well as phonetic representa-
tion schemes.

However, it should be noted that the continuity between these
newer models and the original model of past tense inflection is non-
negligible, for they all treat the task of past tense acquisition as one
of using a single network for learning ‘a mapping between a phono-
logically represented stem and phonologically represented inflected
form’ (cf. Marcus 2001, p. 72). Moreover, the general aim of all these
inter-related models is to show that ‘regular and irregular verbs . . .
[are] represented and processed similarly in the same device’ (cf. El-
man 1996, p. 139).

A first pass at a general criticism of the connectionist approach to
the phenomena of linguistic inflection pertains to the bold ‘unifica-
tionist’ aim invoked by Elman (ibid.). For if connectionist principles
were sufficient for the explanation of the patterns observed in the
acquisition of English past tense, it is rather surprising that there is
as yet (more than 30 years later) no substantial proposal of a com-
prehensive single-mechanism model for English past tense inflection.
Instead, the models currently available are targeted at different as-
pects of the past tense formation: e.g., one model for why denominal
verbs (such as ring as in ring a city with soldiers) receive regular inflec-
tion (Daugherty et al. 1993), another for handling defaults for low fre-
quency verbs (Hare, Elman, and Daugherty 1995), another for distin-
guishing homonyms that have different past-tense forms (MacWhin-
ney and Leinbach 1991), and still another for handling overregulariza-
tion phenomena (Plunkett and Marchman 1993a,b). This fragmenta-
tion of the connectionist modelling space seems even more problem-
atic when one takes into consideration the fact that existent models
differ from one another in their representational formats for the input
and output units of particular networks, as well as in their training
regimes. As such, the prospects of a single integrated connectionist
model for learning past tense seem to be quite bleak. Contra Elman’s
(1996) optimistic pronouncement, rather than showing how inflection
can be achieved by a single device, current models seem to suggest
that more than one mechanism is necessary for linguistic inflection.

Another general difficulty facing these models is that they do not
match up very well to the quantitative data gathered from both child
language acquisition and comparative studies of the world’s languages
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(cf. Marcus 2001; Yang 2002). This is a serious challenge especially
given the danger highlighted above. Connectionist accounts tend to
reverse the order of the explanation in the sense that they are more
concerned to justify and motivate empirically the patterns generated
by the performance of certain connectionist networks rather than to
show how certain salient (problematic) patterns in the cognitive phe-
nomena are accounted for by the principles governing the functioning
of such systems. Moreover, this problem persists even if one grants
that connectionist modelling is still in its infancy and this somehow
justifies the quantitative limitations of existing connectionist mod-
els/simulations of cognitive functions.8

Although current connectionist models of linguistic inflection do
not provide a unified account of the cognitive task they were in-
tended to model, and although they fail to meet other adequacy con-
straints such as developmental compatibility and quantitative con-
straints from language acquisition and cross-linguistic studies, they
can nevertheless be taken to provide appropriate (statistical) tools for
modelling the the gradualness of language learning in the particular
domain of English past tense acquisition. Otherwise put, whilst these
models are not decisive in ruling out a classical rule-based approach
to language acquisition, they have arguably facilitated the investiga-
tion of a number of learning principles (paradigms) which charac-
terise the gradualness of the cognitive process of linguistic inflection.

That is, these models suggest that some of the mechanisms that are
responsible for the acquisition of English past tense involve the sort of
general principles reflected in the functioning of the connectionist sys-
tems used to model this particular cognitive task. Whilst limited, this
contribution elucidates a feature of cognitive processing which was
not directly tractable from a classical rule-based perspective. Thus,
even if we were to discover that future, perhaps hybrid, models of
English past tense inflection are able to capture the phenomena in
more detail and satisfy to a greater extent both quantitative and other
types of adequacy constraints, I claim that this would not cancel out
completely the distinctive explanatory role played by connectionists
models in the investigation of this complex cognitive phenomenon.

8 For instance, a number of connectionists have argued that the objections raised
against the original model proposed by Rumelhart and McClelland (1986) can be
avoided by using an alternative class of networks called classifiers (e.g., Hare, El-
man, and Daugherty 1995). For a detailed criticism of the latter class of models as
providing a radical alternative to classical symbolic accounts of linguistic inflection,
see Marcus (2001). The basic idea of Marcus’s argument is that the successful perfor-
mance of classifier models is due to the fact that they rely on two implicit classical
rules/operations performed by the external clean-up network included in Hare et
al.’s (1995) connectionist architecture.
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6.3.2 Connectionist models of word recognition

In what follows, I propose to investigate the architectural commit-
ments of yet another class of connectionist networks that are offered
as an alternative to classical models that postulate rules and com-
plex structured representations. It is worth pointing out from the
outset that although this class of models was originally developed
for the task of word recognition, it has been very influential in other
areas as well, such as acquisition of syntax and phonology, where it
is viewed as challenging more directly the classical generative frame-
work. Broadly, these models are taken to demonstrate how the linear
organisation of neural networks can give rise to apparently intricate
structural dependencies.

Word recognition is an instance of the more general problem of
extracting structure from what appears to be linear input data. The
most influential approach to modelling this task in connectionist terms
has been developed by Elman (1990, 1991, 1993). The architecture
proposed by Elman (1990) is known today as the simple recurrent
network (SRN). As pointed out in section 2, a SRN has, in addition
to the input, output, and hidden layers, a layer of context units to
which a copy of the activation of the hidden units at given time step t
is transmitted. Subsequently, this activation vector is fed back to the
hidden units at time t + 1. Standardly, such a network is trained with
a version of the backpropagation algorithm, just as any other mul-
tilayer feedforward network, ignoring the origin of the information
coming from the context layer. The latter is simply meant to guar-
antee that each input to the SRN is processed in the context of what
came before. This feature of the network is supposed to permit the
network to learn statistical relationships across sequences of inputs,
i.e., to extract structure from a wide range of available inputs. Part of
the appeal of this type of connectionist model comes from its robust
applicability to a diversified class of language processing problems.

Across a series of applications, the use of this type of connection-
ist networks was taken to show that the internal representations ex-
tracted by connectionist networks from input data are not necessarily
‘flat’ but could include hierarchical encodings of category structure
(cf. Elman 1996). A connectionist model that has been taken to illus-
trate this hypothesis is the one discussed by Elman (1991). Elman fo-
cused on ‘long-range dependencies’, which are links between words
that depend only on their syntactic relationships in the sentence (and
not on their separation into words, for example). One instance of this
sort of relation is subject-verb number agreement (as in the boy chases
the cat, but also in the boy whom the boys chase chases the cat).

Using a SRN trained on a prediction task similar to the original one
(ibid.), in which the network was supposed to predict the next letter
in a series of concatenated words, Elman (1993) showed that the net-
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work was able to learn certain types of long-range dependencies, even
across the separation of multiple phrases. For instance, if the subject
of the sentence was boy, when the network came to predict the main
verb chase as the next word it also predicted that it should be in the
singular. It is worth considering briefly the way in which the perfor-
mance of the network was subsequently evaluated. Elman explored
the similarity structure in the hidden unit representations, using prin-
cipal component analyses to identify the salient dimensions of simi-
larity across which activation states were varying. This allowed the
reduction of the high dimensionality of the internal states to a man-
ageable number that afforded a better visualisation of the underlying
process. In this way, he was able to plot the trajectories of activation
as the network altered its internal states in response to each subse-
quent input. Following the trajectories across different dimensions
of the principal component space, he was able to show that the net-
work adopted similar states in response to particular lexical items but
also that it modified the pattern slightly according to the grammati-
cal status of a word. This was then taken to suggest that some of the
emerging trajectories might encode the singularity/plurality feature,
whereas others might be responsible for different types of structural
features.

The representation of sentences by trajectories through an activa-
tion space in which the activation pattern for each word is subtly
shifted according to the context of its usage was taken to challenge
the classical view according to which symbolic structures (possessing
fixed type-identities) are bound into particular grammatical roles by
specific syntactic constructions. Moreover, in light of the same pre-
liminary results, Elman and his followers proposed that the property
of compositionality at the heart of the classical symbolic computa-
tional approach is not required to explain language processing after
all (cf. Christiansen and Chater 2002, 2008). Instead, a new series of
categories, such as context-sensitive compositionality and restricted
(ersatz) recursivity, are better suited to characterise and explain the
salient patterns observed in language production and comprehen-
sion.

Two limitations of the SRNs used to model various aspects of syn-
tactic acquisition are particularly salient. Firstly, in the proposed sim-
ulations, the prediction task does not seem to learn any sort of cate-
gorisation over the input set (cf. Marcus 2001). Although the simu-
lations demonstrate that information important for language produc-
tion and/or comprehension can be induced/extracted from word se-
quences, neither task is actually performed. This seems to be the case
since the learned distinction between the categories of noun and verb
emerging in the hidden unit representations is completely tied up
with carrying out the prediction task itself. However, in order to per-
form a task such as language comprehension, the SRN would need to
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learn categorisations from the word sequences. That is, the network
must be able to decide, for instance, which noun was the agent and
which noun was the patient in a sentence, regardless of whether the
sentence was presented in the active or passive voice. These types
of computations are more complex and the available connectionist
solutions are typically problematic from a tractability perspective.

Secondly and more generally, whilst connectionism tends to be pro-
moted as a radical and unificatory account of linguistic phenomena,
the existent connectionist models are very far from providing an inte-
grated picture of language acquisition and/or development. As also
suggested by the previous example, I think that this is in part because
connectionism has not really tackled the problem of language acquisi-
tion in a broad enough empirical context. As illustrated with the help
of the models analysed in this section, a main line of the connection-
ist research is dedicated to proving that specific neural networks are
able to capture some limited aspects of language processing. Whilst
these results might be revealing in certain respects, I think that they
do not suffice to support the strong claim that connectionism consti-
tutes the single most appropriate framework for studying cognitive
phenomena. That is, the preceding analyses shows that the appro-
priately circumscribed explanatory value of particular connectionist
models of cognition is compatible with there being other explanatory
frameworks (except connectionism) that are appropriate for the inves-
tigation of cognitive phenomena.

6.3.3 The allure of the connectionist approach

Given the challenges facing current connectionist models, and the
difficulty of justifying their specific/distinctive explanatory contribu-
tions to the understanding of cognitive phenomena, it is no surprise
that connectionists have invoked a series of more general considera-
tions in support of the adoption of neural networks as an adequate
tool for the investigation and explanation of cognition.9 In what fol-
lows, I discuss briefly two of these more general considerations in
order to shed more light on the conclusions concerning the nature
and structure of connectionist explanations of cognitive phenomena.

9 This move has attracted even more criticism from defenders of classical computa-
tionalism who have pointed out that the master argument against classical computa-
tionalism does not seem to rest so much on empirical arguments against particular
classical models of specific cognitive capacities, but instead on theoretical consider-
ations such as those sketched in this section concerning general features of connec-
tionist networks (e.g., Marcus 2001; Gallistel and King 2009). Whilst I agree with the
classicist that many of the arguments put forward by connectionism against classical
computational approaches are non-demonstrative, I also think that the current way
of framing the debate between classicism and connectionism is deeply flawed and
bound to give rise to a priori and misleading arguments. It is part of the task of this
chapter to suggest an alternative way of tackling some of the substantive issues that
are at stake between classical and connectionist approaches to cognition.
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The two salient claims on which I will focus are that: (i) connectionist
modelling can yield neurally plausible models of specific cognitive
processes, and (ii) connectionist concepts and principles help to re-
formulate, and make more tractable a series of interesting aspects of
cognitive phenomena.

6.3.3.1 Neural plausibility

One of the primary features of connectionist modelling that has been
put forward as an index of its adequacy in the study of cognition and
as an advantage over classical computationalism is its purported neu-
ral plausibility. That is, connectionist tools are taken to afford the con-
struction of models of specific cognitive capacities/processes which
are plausible from a neurobiological point of view (i.e., compatible
with current knowledge about the structure and organisation of the
nervous system). Whilst it is true that most connectionist modellers
have traditionally drawn their inspiration from the purported com-
putational properties of neural systems (e.g., McCulloch and Pitts
1943), more recently it has become an important point of controversy
whether these brain-like systems are really plausible from a neurobi-
ological point of view at all (e.g., Piccinini and Bahar 2013).

The challenge of neural implausibility recently raised against con-
nectionism takes one of the following two forms: (i) connectionist
models include properties that are not neurally plausible or (ii) they
omit other properties that neural systems appear to have. In response
to the first type of challenge, some connectionists have claimed that
the core features of artificial neural networks might, in fact, be re-
alised in the neural mechanisms of the brain. For example, although
the backward propagation of error across the same connections that
carry activation signals is generally viewed as biologically implausi-
ble, a number of authors have argued that the difference between ac-
tivations computed based on standard feedforward connections and
those computed using standard return connections can, in fact, be
used to derive the crucial error derivatives required by backprop-
agation learning algorithms (cf. Rumelhart, McClelland, and PDP
Research Group 1988). Since these latter principles do not pose the
same biological implementation puzzle, connectionists have claimed
that backpropagation algorithms are not necessarily implausible from
a biological perspective after all.

Another defence strategy adopted by some connectionists consists
in pointing out that current ANN models are cognitive-level and not
proper neural implementational theories, and that they were never in-
tended as such. That is, they claim that connectionists were never par-
ticularly interested in modelling specific patterns of connectivity in
the brain, or simulating the differences between various neurotrans-
mitters or the very intricate ways in which excitations to neurones
are compounded to determine whether a neurone will actually fire or
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not. This sort of strategy is supposed to block both types of objections
concerning the neural implausibility of current connectionist models.
Since most networks model the behaviour of complex systems at lev-
els no higher than cellular and local networks, some abstraction and
simplification in the construction of these models is said to be legit-
imate. This in turn implies that ANNs are abstract models and as
such they should not be directly assessed for their neurobiological
plausibility. Instead they are intended to capture only certain aspects
of the coarse architecture of the brain. Some authors have suggested
that this should be regarded as a strength rather than a weakness of
connectionism, because it reinforces its status as a proper cognitive
theory.

Hence, there seem to be two different stances that one might take
with respect to the neural plausibility issue. On the one hand, one
may grant that connectionist modelling is underdetermined by the
lack of direct neurological relevance of (at least some of) the posits of
ANN models (which turn out to be only weakly equivalent with the
complex systems being modelled). On the other hand, one may re-
ject the relevance of this type of objection altogether, by invoking the
abstract or cognitive character of current connectionist theories of cog-
nition. Either way, the moral of this discussion seems to be the same,
namely that connectionism would be better off if it avoided claiming
the neural plausibility of its modelling assumptions and posits as a
definite advantage over symbolic computationalism.

The purported neural plausibility of connectionist theories of cogni-
tion is often invoked in debates between classical computationalism
and connectionism in order to show that the latter is an adequate
approach for the study of cognition in biological organisms. How-
ever, in light of the previous remarks, I contend that, as with other
instances of the realisation problem, the issue of the neural plausibil-
ity of connectionist models is a red herring. This is not to say that
either classical or connectionist models are absolved from attempting
to accommodate implementational (realisation) concerns, by propos-
ing, when possible, ‘linking-ready’ theories/models that could be in-
tegrated with neurobiological hypotheses concerning the functioning
of the brain. Rather, the point is merely to recognise that, at present,
such considerations are too weak to decide between classical and con-
nectionist models of cognition. Next, I turn to another salient feature
of connectionism which pertains more directly to the problem of cog-
nitive explanation.

6.3.3.2 Methodological implications

One of the signature features of the connectionist approach to cog-
nition is that it promotes a predominant bottom-up research strategy
which has been taken to have a number of important methodological
implications. For instance, connectionists insist that since the focus in
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connectionist modelling falls on determining the learning algorithm
which is responsible for yielding a certain stable state in a particular
type of neural network, one is entitled to substitute, as a default re-
search strategy, experiments in learnability for preliminary theoretical
analyses of the domain of interest. That is, given that a function may
be learned by a neural network independently of whether we already
have a comprehensive theory (or understanding) of the function or
not, connectionists tend to claim that it is not necessary to spend a lot
of time in analysing the target function before setting a particular net-
work to learn it. This methodological commitment differs strikingly
from classical computationalist approaches to cognition where one
begins with a characterisation of the adult cognitive capacity (e.g.,
grammar) and works backward to account for how the child might
arrive at this ‘steady state’ characterisation. In contrast, connection-
ist approaches can be viewed as working forward from the existing
data about children’s cognitive (linguistic) behaviour to some char-
acterisation of adult (linguistic) capacity. Thus, as indicated above,
connectionist theories of the ‘steady state’, in so far as they are avail-
able, will tend to be quite unlike theories of such steady capacities
put forward by classical theorists.

As a result, the more ambitious underlying claim seems to be that
connectionist methods afford a new type of strategy for investigating
cognitive phenomena. This strategy is not strictly speaking decom-
positional or constitutive in the classical sense. Rather, connectionists
maintain that artificial neural networks explain higher-level cognitive
patterns or regularities by showing that they are the emergent conse-
quences of a large number of simple non-cognitive processes. More-
over, whilst connectionism is better characterised as being a piece-
meal approach, the connectionist explanatory strategy is said to apply
to a (very) wide range (if not all) of cognitive phenomena. Although
the question of the precise notion of emergence that is presupposed
by these connectionist claims is a matter of some debate (e.g., Stephan
2006; Bechtel and Richardson 1993/2010; Mitchell 2003, 2012), I think
that, in light of what has been said so far, one can safely infer that con-
nectionist explanation is a version of the statistical model of scientific
explanation.

In fact, neural networks can easily be viewed as an integrative part
of a much more general approach to cognition which can be labeled
the generalised statistical modelling approach (cf. Yang 2002). For in-
stance, the sort of connectionist accounts of linguistic phenomena ex-
emplified in this chapter are part of a more general approach which
treats the (child) learner as a generalised data processor that approx-
imates the adult language based on the statistical distribution of the
input data. I emphasise this point because connectionists have often
drawn on the success of similar approaches, such as dynamic systems
accounts, in order to strengthen the generality of their modelling ap-
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proach to cognition. But, as shown in chapter 2, characterising some-
thing as a statistical explanation does not settle the question of the
scope of this particular model of scientific explanation. In particular,
viewing connectionist explanations as a form of statistical explanation
still leaves open the issue of whether connectionist theories provide
the best (and unique) framework for studying cognitive phenomena.

One straightforward problem with this bold implication of the con-
nectionist program is that current connectionist models, for all their
virtues, have not yet tackled any interesting cognitive problem in a
broad (enough) empirical context. As demonstrated in relation to
some of the showcases of connectionist modelling analysed in sec-
tions 3.1 and 3.2, the landscape of connectionist modelling is still
very fragmented. Hence, connectionists seem to face the challenge
of providing first a more unified theoretical account of at least some
of the cognitive problems currently under investigation, e.g., object
recognition or linguistic inflection. Until that challenge is met, the
framework seems to be rather limited with respect to the range of
theoretical explanations that it can make available.

In addition, despite the fact that connectionist modellers often de-
nounce the inadequacy of classical theoretical posits, they seem nev-
ertheless to rely on many of the steady-state descriptions provided
by classical theories in order to evaluate when and whether a specific
neural network has learned a particular set of data and has gener-
alised correctly on the basis of the available input. It therefore seems
that theoretical descriptions of cognitive ‘steady-states’ are implicit
in the design of many ‘successful’ connectionist networks (e.g., they
guide the featural analysis underlying distributed representations).

Furthermore, it has been pointed out that, if these theoretical de-
scriptions are not being used, it is much more difficult to establish
the explanatory contribution of a particular connectionist model to
understanding a given cognitive phenomenon. In such cases, connec-
tionist systems are, at best, viewed as having an exploratory function,
i.e., they are used to discover new patterns in certain types of cog-
nitive phenomena. However, the underlying worry here is that the
patterns generated by the functioning of a particular network might
be mere artefacts of the performance of that connectionist network.
Then the justification of the explanatory value of those connection-
ist models risks to be ad-hoc and misleading. This fact implies that
the potentially radical character of the methodological implications
of the connectionist strategy undermines the very idea that connec-
tionist models are explanatory at all.

6.4 connectionism : limits and perspectives

In the remainder of this chapter, I propose to synthesise the strengths
and the weaknesses of connectionist approaches to cognition. I begin
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by reviewing the general lessons drawn from the two case studies
discussed in sections 3.1 and 3.2, and show that they do not sup-
port the idea of a radical connectionist turn in the study of cognition
(4.1). Drawing both on the preliminary conclusions sketched in sec-
tion 2, and on the lessons afforded by the practice-based perspective
adopted in section 3, I then sketch an account of connectionist expla-
nations of cognition (4.2).

6.4.1 Outcomes of the arguments

Connectionist approaches have more recently gained increasing influ-
ence in various areas of cognitive modelling. In their most radical mo-
ments, connectionists claim that PDP architectures provide the foun-
dation for a new paradigm of computational theories of cognition.
My investigation has focused on the application of neural networks
to specific aspects of language acquisition and development, mainly
because it is in this area of research that the clash between connec-
tionism and classicism (i.e., generative linguistics) has been said to be
particularly salient.

I have argued that, despite the enthusiasm engendered by the per-
formance of these and other similar networks developed within the
cognitive modelling practice, connectionist approaches still face seri-
ous problems in matching up to the relevant constraints introduced
by both child language acquisition and comparative studies of the
world’s languages. In addition, given that child and adult language
display significant disparities in statistical distributions, adequate con-
nectionist models of language acquisition and development should be
able to find a ‘pure’ learning-theoretic way to account for these biases
and for the relation between them (cf. Yang 2002, 2004). As long as
these and similar challenges remain unmet, the claim that PDP learn-
ing principles/paradigms overturn our (theoretical) conceptions of
cognitive capacities such as language is simply overblown.

The critical analysis of the psycholinguistic models carried out in
section 3 also encourages the adoption of a more cautious attitude
towards the theoretical transformations promoted by some connec-
tionist modellers. The latter claim that connectionist notions and
principles impose a radical shift in the theoretical concepts and tools
used to describe, analyse, and explain cognitive processes and func-
tions (e.g., language production and comprehension). Rather than
endorsing such a radical shift, one should simply acknowledge that
connectionist principles sometimes allow us to capture certain fea-
tures/patterns in the phenomena being investigated that would not
be tractable within a different framework (e.g., catastrophic effects
in fast learning/memorising tasks, certain types of motion related il-
lusions, etc.), thus increasing our understanding of certain cognitive
phenomena. However, recognising the important roles played by con-
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nectionist modelling in cognitive research need not amount to reject-
ing the explanatory role of other theoretical frameworks developed
for the study of cognitive phenomena at different levels of analysis
and/or abstraction. In particular, it seems premature to say that the
limited performances of connectionist networks refute the explanatory
value of classical notions such as those of compositionality, structure
dependency or recursivity.10

The preliminary conclusion of the discussion so far is that the
strong hypothesis according to which connectionist architectures pro-
vide the foundation for a new paradigm of computational theories of
cognition is undermined both from a general (theoretical) as well as
from a practice-based perspective. Although the principal aim of the
proposed argument strategy has been to evaluate critically the argu-
ments and models put forward by connectionists in support of their
strong foundational hypothesis, there is also a more positive lesson
of this investigation concerning the nature and structure of potential
connectionist explanations of cognition, that I will develop in the next
section.

6.4.2 Connectionist explanations

An important outcome of the critical arguments presented above con-
sists in a moderation of the purported novelty of the connectionist
framework. Throughout this chapter, I have striven to show that the
emphasis on the novelty of the tools and principles made available
on the connectionist framework prevents one from appreciating what
a philosophical analysis of connectionism could actually contribute
to specific ongoing debates concerning the nature and structure of
the mind. A focus on the continuity of the results of connectionist
research with existing classical hypotheses seems to be more benefi-
cial than a forced attempt to polarise and compartmentalise the study
of cognitive phenomena. Moreover, I claim that the consequence of
contesting these novelty claims is an analysis of the roles of connec-
tionism in cognitive research which is actually consistent with the
spirit of the integrationist (unificationist) programme promoted by
connectionists themselves.

Turning to the problem of connectionist explanation, the philo-
sophical analysis developed in this chapter has revealed three in-
terrelated features that characterise connectionist accounts of cogni-
tive phenomena. Firstly, connectionist accounts are bottom-up ap-
proaches on which higher-level (more abstract or general) cognitive
patterns or regularities are explained in terms of the interaction and

10 There is also ample evidence (not discussed in this chapter) which suggests that this
general call for the ‘relativisation’ of theoretical notions is in part based on a series
of misleading assumptions about the aims and scope of generative linguistics (cf.
Wagers and Phillips 2007; Phillips and Lasnik 2002; Phillips 2013a,b).
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activity of underlying lower-level (simple/non-cognitive) processing
units. However, a distinctive aspect of this bottom-up strategy is that
connectionist descriptions and/or explanations are not decomposi-
tional and constitutive in the classical sense. That is, the cognitive
behaviour or function performed by a certain complex system is not
explained, on this sort of framework, by decomposing it into a series
of cognitive sub-components which in virtue of their organisation
and mutual interaction yield (or are responsible for) the observable
higher-level phenomena (as is the case in classical functional analy-
ses). Instead, according to connectionism, cognitive phenomena (e.g.,
thoughts, utterances, etc.) have a rich complex structure that is the
emergent consequence of the interplay of simpler (non-cognitive) pro-
cesses.

Secondly, because it is a bottom-up strategy, connectionism is of-
ten said to be consistent with mechanism both on principled as well
as pragmatic grounds. On the principled side, connectionism claims
that cognitive phenomena are the product of evolutionary and devel-
opmental pressures and constraints that include the limited capabili-
ties of biologically realisable hardware and the real-time demands of
the environment. In other words, connectionism emphasises the fact
that the nature of cognition is shaped by the performance characteris-
tics of the underlying mechanisms, thereby implying that approaches
which abstract away from such information run a serious risk of miss-
ing critical aspects of the cognitive tasks real biological systems have
evolved to perform. On the pragmatic side, connectionists militate for
the importance of thinking about specific implementational strategies
which in turn may lead to valuable theoretical advances that would
be unavailable when operating only at a more abstract level of analy-
sis. For these reasons, artificial neural networks are said to be more
adequate tools for modelling specific properties of the neurobiologi-
cal mechanisms which support cognitive functions/behaviours.

However, the mechanistic undertones of connectionism should not
be confused with the adoption of a purely mechanistic explanatory
strategy, for, as we have seen in previous chapters, the latter has a
strong constitutive and decompositional character which is absent in
a proper connectionist strategy. Under a connectionist approach, vari-
ous aspects of cognitive processing are said to be explainable in terms
of the organisation of a class of simple processing units governed by
very simple learning rules. This strategy does not seem to rely on
any particular assumption about how a complex cognitive process
can be decomposed in simpler cognitive sub-processes, or even on
any particular localisation hypotheses that would assign specific cog-
nitive functions to particular structures in the nervous system. Thus,
I submit that the mechanistic commitments of connectionism are bet-
ter interpreted as reflecting two salient methodological concerns: (i)
the concern to integrate specific implementational hypotheses in a
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broader picture of cognition, and (ii) the concern to explain cognitive
properties and processes in purely non-cognitive (i.e., mechanistic)
terms.

The third major feature of connectionist accounts of cognition be-
comes evident when one considers the learning functions used to
train neural networks to perform particular cognitive tasks. Although
I have argued that PDP learnability does not exhaust the analysis
of acquisition and developmental phenomena, there are at least two
interconnected lessons which follow from the consideration of con-
nectionist learning principles that are too sensible to dismiss. In
a nutshell, the intuition strengthened by connectionist modelling is
that learning (across a wide range of cognitive domains) is essen-
tially gradual. That is, the sort of statistical learning principles in-
corporated by neural networks do seem to be most naturally suited
to modelling the gradualness of different aspects/parts of cognitive
development. But, as argued above, this need not conflict with the
hypothesis that different cognitive domains are subserved by specific
internal symbolic structures. In other words, the insights made avail-
able (both at the theoretical and experimental level of investigation)
by connectionism are not necessarily inconsistent with all classical
hypotheses concerning the organisation of specific cognitive systems.

Traditionally, connectionist explanations of cognitive phenomena
have been characterised as a style of implementational or instantiation
explanations (cf. Cummins 1983, 2010; Fodor and Pylyshyn 1988;
Ramsey 1997; Ramsey 2007). Whilst these labels are appropriate in
certain respects, they can also be potentially misleading. Given that
connectionist models analyse cognitive processes in terms of complex
interacting networks of non-cognitive processes, it seems adequate to
describe them as implementational accounts/explanations of cogni-
tive phenomena. In addition, at least some ANNs have been used
explicitly in the investigation of the neurological mechanisms under-
lying specific cognitive processes such as episodic memory (e.g., Mc-
Clelland 1995), which has further encouraged the general conception
of connectionism as pertaining to the implementational rather than
the more abstract functional or cognitive level of analysis.

The instantiation view of connectionist explanations takes into ac-
count the fact that neural networks are quantitatively constrained in
a number of ways, viz. with respect to their computing resources,
processing time, and the training sets to which they are exposed. Be-
cause of these quantitative limitations, neural networks are taken to
show how a particular cognitive task would be performed by a very
simple system. This is supposed to be the first step of a connection-
ist explanation which is completed by proving that the functioning
of a simple neural network could be scaled up to match realistic con-
straints concerning both the available biological resources of a human
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brain as well as the available input.11 That is, it has been proposed
that connectionist explanations should be characterised in terms of a
two-step instantiation strategy, where: (i) the first step proves that a
simple connectionist system can perform a specific cognitive task, and
(ii) the second step consists in extending the results obtained in the
case of a simple network to a realistic connectionist-like system via an
inductive hypothesis (cf. Matthews 1994, 1997). This way of thinking
about connectionist explanations is in line with the implementational
characterisation since they both purport to show that (and how) cog-
nitive phenomena are the result of the interplay of a series of simple
non-cognitive processing elements.

I agree that one should think about connectionist accounts in imple-
mentational terms for the reasons stated above. However, this does
not suffice to clarify the sense in which connectionist models of spe-
cific cognitive properties and/or processes might be explanatory in
the first place. In order to do this, one should further admit that con-
nectionist modelling tools are able to capture certain salient (counter-
factual supporting) regularities that would otherwise be missed on
a different type of approach (computational or non-computational).
And that, in addition, connectionist notions and principles are able
to show why and how these regularities occur at all in the sort of (bio-
logical) system being modelled. Therefore, I claim that connectionist
models play an explanatory role when they generate novel ways to
conceptualise and explore particular aspects of cognitive processing.
It has been suggested that such a contribution is already available in
the form of the statistical learning algorithms investigated by connec-
tionist modellers with respect to different areas of cognitive develop-
ment.

Rather than insisting that connectionism provides a radical new
framework for understanding cognitive processes and their proper-
ties, it seems more reasonable to talk about the distinct, and in some
cases, complementary contributions that the two computational styles
of modelling make to our understanding of cognition. This proposal
receives further support from a practice-based perspective which re-
veals a number of ‘hybrid’ cognitive models/hypotheses that com-
bine both classical and connectionist principles and hypotheses. For
instance, Yang’s (2002) variational approach to language acquisition
models the process of learning language into a classical generative
framework that also incorporates statistical learning principles. The
model postulates that learning language is the result of a competition
between a number of internally represented (and putatively innate)

11 Thus, most connectionists acknowledge that scalability is necessary for any model
to be cognitively plausible (i.e., functional in a realistic world). When applying
connectionist models to domains of real-world size and complexity, two problems of
scalability can arise: (i) the size of the networks required to implement the modelled
capacity may grow out of bounds, and (ii) the time required for the network to learn
the required connection weights may become unrealistically long.
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grammars (which constitute the hypothesis space) in accordance to a
specific statistical learning mechanism. Other examples of hybrid
models can be found throughout cognitive science from domains
such as vision studies, motor control, up to reasoning, decision mak-
ing, and language processing theories (e.g., Sun 2008; Marcus 2013).
One of the main lessons afforded by this type of models is that uni-
fication need not be the definitional goal of a particular framework
(such as connectionism), and that instead it should be viewed as the
consequence of other more local goals pertaining to the increasing
understanding of the nature and structure of cognition.

In contrast, we saw that the adoption of some of the more radical
versions of connectionism generates a number of difficult problems.
Consider for instance one of the most questionable consequences of
radical connectionism. If one accepts that cognitive systems are ‘pure’
connectionist networks (or generalised statistical learners) whose com-
plex structured higher-order organisation is extracted exclusively from
the external environments in which they are embedded, then two
things seem to follow. First, every observable cognitive pattern will
be explainable in purely statistical terms. Second, and closely related,
the connectionist approach would imply that there are no aspects of
human cognition that could possibly elude this style of explanation.12

Taken together, these two consequences seem to preempt the very ef-
forts of characterising the structure of connectionist explanations of
cognitive phenomena. Rather than endorsing this strategy, I have pro-
posed that the specific statistical tools deployed in connectionist mod-
elling allow one to capture and explain specific features of cognition
(sometimes exceptional or unexpected). Moreover, I have claimed
that this proposal is consistent with the idea there are other features
of cognitive processing which are more adequately characterised and
explained by using other alternative tools or concepts, such as the
ones made available by classical computationalist approaches to cog-
nition.

Finally, one might object that the picture presented above becomes
possible only because I have deflated too much the opposition be-
tween classical and connectionist approaches to cognition. That is,
a sceptic might argue that there are substantial differences between
the two frameworks at the level of their foundational assumptions
and that these disagreements cannot be ignored in assessing the re-
lationship between the modelling practices of the two research com-
munities. In response, I have proposed a strategy that mitigates these

12 It should also be pointed out that from this radical perspective on connectionist
explanation, the question of how connectionist systems are individuated simply be-
comes mute. For if performing any cognitive task depends on the structure of the
environment in which the network is embedded (and trained), then the features that
distinguish different networks will simply be the ones which are exhibited by the
environments themselves and not by the internal constitution and organisation of
the network.
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foundational issues and provides a critical assessment of the current
computational modelling tools employed in different disciplines of
cognitive science and neuroscience.

My rationale for preferring this moderate deflationary strategy to a
more polemical discussion is that it promotes a way of thinking about
cognitive modelling which reveals the continuities between the differ-
ent existing approaches to cognition as well as some of the general
features shared by all styles of cognitive explanations. I claim that,
despite its limitations, the proposed strategy manages to avoid a num-
ber of spurious debates concerning the meaning of certain theoretical
terms used in the cognitive literature. The resulting perspective is one
that takes seriously the variety of the explanatory strategies used to
tackle cognitive phenomena and tries to account for their individual
contributions to advancing our understanding of cognition.
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A P L U R A L I S T A C C O U N T O F C O G N I T I V E
E X P L A N AT I O N

7.1 introduction

The main objective of this thesis has been to clarify the nature and
structure of explanations of cognitive phenomena. The argument
strategy proposed to address this issue combines two complemen-
tary perspectives. I began this study with a survey of some of the
most influential philosophical accounts of scientific explanation, rais-
ing the question whether any of them might provide an appropriate
framework for thinking about the nature and structure of cognitive
explanations. More precisely, I explored the extent to which these
conceptions have been influential in the development of philosophical
models of the notion of cognitive explanation. The outcome of these
preliminary investigations showed that whilst traditional accounts af-
ford important insights into the structure of scientific explanation,
they nevertheless raise a series of issues which bring into question
their unconditional application to the cognitive domain. Most impor-
tantly, perhaps, traditional accounts of scientific explanation seem to
be committed to the thesis of explanatory monism, according to which
all the sciences conform to a single standard of explanatory ‘good-
ness’. Taken at face value, this seems to challenge the diversity of
explanatory schemas actually used in the investigation of cognitive
phenomena.

In response, I have argued for the adoption of a more fine-grained,
practice-based perspective on the explanatory schemas currently used
within the domain of cognitive science itself. Therefore, the second
component of the argument strategy developed in the thesis relies
essentially on a detailed analysis of several paradigmatic explanatory
frameworks used in a number of representative fields of cognitive sci-
entific research. These critical analyses provide a series of ingredients
for constructing a more adequate conception of cognitive explanation,
that could arguably be extended to other areas of scientific inquiry as
well.

This chapter is divided into three distinct parts. Section 2 revisits
the principal conclusions of the arguments developed in the previous
five chapters of the thesis, exploring some additional critical links be-
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tween them. Then, section 3 articulates a pluralist conception of cogni-
tive explanation that combines the insights afforded by both traditional
philosophical models of scientific explanation and specific accounts
of the notion of cognitive explanation. Finally, section 4 discusses the
strengths and limitations of the proposed model of cognitive expla-
nation, and considers the prospects of extending it to other scientific
domains.

7.2 arguments and consequences

As illustrated throughout the thesis, the difficulty of formulating a
substantive account of cognitive explanation arises from the fact that
the perspectives identified above seem to impose two conflicting re-
quirements on the project. Traditionally, philosophical accounts have
attempted to formulate a highly general and uniform conception of
scientific explanation which would hold across time and apply to all
fields of scientific investigation. As such, traditional accounts can be
taken to be driven by an important normative concern, according to
which any philosophical analysis of the notion of scientific explana-
tion should capture what distinguishes explanation from other sorts
of scientific achievements, by providing normative criteria for some-
thing to count as a scientific explanation in the first place.

The variety of explanatory strategies that are currently being used
in particular domains of scientific inquiry, on the other hand, seems
to raise the opposite sort of challenge, namely to provide an account
which does justice to the multiplicity and diversity of explanatory
tools used by practicing scientists. Thus, according to the latter view-
point, an adequate philosophical analysis of the notion of scientific
explanation must also seek to satisfy a general descriptive adequacy
condition which requires accommodating and justifying the plurality
of explanatory structures/schemas utilised in any particular field of
inquiry, such as cognitive science.

Applied to the specific case of cognitive science, the two opposing
aims or criteria for a robust substantive account of cognitive explana-
tion are: (i) to characterise in abstract and general terms what makes
a cognitive theory/model explanatory at all (the normative criterion),
and (ii) to capture and justify the plurality of explanatory strategies
currently used in cognitive science (the descriptive adequacy criterion).

Despite this prima facie tension, I have insisted that the two per-
spectives must coexist in order to reinforce and correct one another
whenever one of them yields unwarranted claims about the nature
and structure of cognitive explanation. I have deployed this twofold
argument strategy in chapters 3 to 6, focusing on four influential
philosophical models of cognitive explanation. Each of these chap-
ters consisted of two parts. The theoretical part explored the concep-
tual considerations put forward in support of each particular view
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of cognitive explanation and their purported advantages over alter-
native accounts. The practice-based part assessed each of the pro-
posed philosophical views in light of the modelling and explanatory
practices utilised in the relevant field of cognitive science (e.g., neu-
robiology, computational psychology, psycholinguistics). Whilst the
primary outcomes of this study were mainly negative (limiting re-
sults), I have argued that they can also be taken to constitute im-
portant constraints on a substantive philosophical model of cognitive
explanation. In other words, by criticising prominent philosophical
models of cognitive explanation, I have also attempted to identify a
series of factors which would help to construct a more adequate way
of thinking about the problem of scientific explanation in the context
of cognitive scientific research.

7.2.1 Classical models of scientific explanation: Insights and Issues

The starting point of the present investigations was the critical anal-
ysis of three of the most influential models of scientific explanation.
The key idea behind this strategy is that, despite the features that
make cognitive science a special area of scientific inquiry, there are
also numerous methodological aspects it has in common with other
natural sciences. Thus, rather than treating the question of what con-
stitutes a proper cognitive explanation in isolation, as a separate and
special case within philosophy of psychology or philosophy of mind,
I framed this issue as a natural extension of the more general philo-
sophical project of analysing the structure of scientific explanation. In
this way, I have claimed, both sides can take better advantage of the
insights made available by the alternative perspective. That is, de-
bates concerning the nature and structure of cognitive explanation
can draw on ideas developed in connection with the broader theme
of scientific explanation, while disputes concerning the latter subject
matter can build on the hypotheses developed with respect to the
special case of cognitive explanation.

The three classical models of scientific explanation surveyed in
chapter 2 were: (i) the covering-law model (Hempel and Oppenheim
1948; Hempel 1965), (ii) the statistical/probabilistic model (Jeffrey
1969; Salmon 1971; Mellor 1976), and (iii) the causal model (Salmon
1989; Woodward 2003; Craver 2007b). Each account puts forward a
specific category that is supposed to ground the explanatory value of
any proposed scientific theory. These are the categories of: (i) natural
law, (ii) probabilistic/statistical correlation, and (iii) cause. In contrast
to the traditional accounts, I have argued that all these different con-
cepts play a genuine explanatory role if the right kind of relevance
relation can be established between the phenomenon circumscribed
by the explanandum and the proposed explanatory structure (or ex-
planans). Moreover, the same explanandum can be connected to dif-
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ferent explanatory structures that sometimes go beyond those identi-
fied by the concepts of law, statistical correlation, and cause. In other
words, I have argued that if one pays attention to the particular prob-
lems addressed by different scientific explanations and the complex
ways in which explanatory relevance relations are established, one is
led to conclude that the different conceptual structures identified by
each of the classical models typically play an explanatory role only
jointly with other categories. This idea mirrors the practice-based
observation that often in science explanatory prowess is gained by
combining various explanatory schemas that together afford a better
understanding of the phenomena being investigated.

These general considerations imply that one should focus primar-
ily on the notion of explanatory structure rather than on the idea that
explanation should provide a true account of the phenomena being
investigated. In connection to this, it is important to stress that by
focusing on the notions of evidence, reliability, confirmation or truth,
mainstream philosophical analyses have tended to neglect a series of
factors which play an essential role in the construction of (good) scien-
tific explanations. For although the process of seeking and construct-
ing explanations is inextricably connected with the search for truth,
truth by itself is not explanatory. Unlike true statements simpliciter,
explanations provide insight and enable one’s intellectual grasp (or
understanding) of certain things treated as being problematic. The
emphasis on explanatory structure and the ensuing change of focus
from the notion of truth to that of understanding and insight repre-
sent the primary result of these preliminary analyses of classical mod-
els of scientific explanation. I maintain that this way of rethinking the
problem of scientific explanation is especially pertinent if one has in
mind the continuity between classical models of scientific explanation
and more recent accounts of cognitive explanation. In other words, I
take the conclusions derived with respect to classical models of scien-
tific explanation to constitute the general frame of a correct approach
to the problem of explanation that can be productively applied to
guide the analysis of distinctively cognitive models of explanation.

7.2.2 The mechanistic view of cognitive explanation

The mechanistic view characterises cognitive explanation in terms of
a decompositional analysis that reveals the mechanisms which under-
lie, support or otherwise maintain the cognitive phenomena being
investigated (e.g., Bechtel and Richardson 1993/2010; Craver 2007b;
Bechtel 2008). Moreover, mechanistic decompositions are taken to
elucidate how a particular phenomenon fits into the causal structure
of the world. In fact, the decompositional strategy associated with
mechanism underlies both the causal and the constitutive character of
mechanistic explanation. The key presupposition is that the complex
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behaviour or function performed by a particular cognitive system is
the result of the organised interaction of certain component parts of
the system, their properties, and activities. Mechanistic explanations
are taken to show: (i) that a given system has a particular cognitive
capacity in virtue of its component parts, their activities, organisation,
and interactions (thus providing a constitutive account of the cogni-
tive capacity); (ii) why a particular cognitive phenomenon happened
in certain circumstances given its internal organisation and constitu-
tion, and (iii) how the occurrence of a particular (type of) phenomenon
fits in the wider causal structure of the world.1

The primary appeal of extending mechanism as an explanatory
strategy for the study of cognitive phenomena resides in the promise
that mechanistic decompositions will provide an appropriate way of
bridging the gap between higher-order characterisations of various
cognitive processes and lower-level descriptions of the functioning of
certain parts of the nervous system. This aspect of the mechanistic
account is important because it challenges the traditional autonomy
thesis (Fodor 1974; Marr 1982; Fodor 1997), according to which what
is relevant for the high-level (psychological) descriptions and explana-
tions of cognitive phenomena is quite different from the kind of thing
that is explanatorily relevant from a lower-level (e.g., neurobiological)
perspective. Moreover, given the prevalent concern for achieving a
more unified theory of cognition, the promise of mechanism seems
to be almost irresistible (cf. Craver and Piccinini 2011).

I have argued that both the strengths, as well as the limitations, of
the mechanistic view of cognitive explanation are best illustrated by
considering some of the paradigmatic examples that have motivated
the adoption of the view within the domain of cognitive science in
the first place. One example is the neurobiological mechanism that is
currently taken to underlie much of higher-level learning and mem-
ory processes, namely the mechanism of long term potentiation (LTP),
which consists essentially in the long-lasting enhancement in signal
transmission between two neurones resulting from their simultane-
ous stimulation. One of the first models developed in the study of
LTP, viz. the Hodgkin and Huxley (1952) equations of synaptic trans-
mission has been used by a number of mechanists for the purposes
of clarifying the distinctive explanatory contribution of mechanistic
models used in neuroscience (e.g., Craver 2006a; Craver 2007b; Bogen
2008).

The original HH model (Hodgkin and Huxley 1952) described the
electrical behaviour of giant squid axon preparations in the form of
a mathematical equation which in turn was taken to constitute a first

1 Although the causal and constitutive character of mechanistic descriptions are often
conflated in the mechanistic literature (e.g., Craver 2007a; Craver 2007b), it has been
pointed out that by differentiating them, one is in a better position to appreciate the
variety of problems addressed by mechanistic explanations in the cognitive domain
and beyond (cf. Ylikoski 2013).
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approximate model of the propagation of action potential. Whilst
Hodgkin and Huxley (1952) used fundamental laws (e.g., Coulomb’s
law and Ohm’s law) to derive their equations, by constraining the cal-
culation of ion permeabilities, conductances, resting potentials, driv-
ing forces and so on, from experimental data, mechanists claim that
the HH equations do not explain the transmission of action potentials.
Instead, they point out that, from the very beginning, the aim of de-
veloping such mathematical convenient characterisations was to facili-
tate the construction of more specific mechanistic hypotheses/models
that show how the factors involved in neural signal transmission
yield the observable patterns or regularities. Otherwise put, mech-
anists argue that although physical laws apply to ion currents and
membrane potentials, they do not account for how these factors con-
spire to produce action potentials in the first place. What is required
are proper mechanistic hypotheses concerning the components, prop-
erties, activities, and overall organisation of the mechanisms involved
in generating action potentials.

Despite their non-explanatory character, mechanists recognise that
mathematical characterisations such as the original HH model have
been very influential in the development of subsequent mechanis-
tic models of the neurobiological processes underlying learning and
memory (e.g., Hille 2001; Naundorf, Wolf, and Volgushev 2006; Er-
mentrout and Terman 2010). A very similar lesson is derived from
the analysis of the difference-of-Gaussians (DOG) model of the space
receptive fields of ganglion cells (Rodieck 1965), analysed in detail in
chapter 3.

There are three important general lessons that I take to follow from
these mechanistic analyses of modelling examples from the field of
neuroscience. First, mechanists imply that fundamental laws cannot
play the role of proper explanatory structures in the context of a neu-
roscientific investigation. As such, they oppose the idea that the cover-
ing law model of explanation provides an appropriate framework to
think about the explanatory practices encountered in the field of neu-
roscience and/or cognitive science (e.g., Craver 2007b; Bogen 2008).
Second, although they acknowledge that abstract mathematical mod-
els often play important epistemic roles in the investigation of par-
ticular cognitive and/or neurological phenomena, mechanists tend
to dismiss the idea that they are genuinely explanatory (Kaplan and
Craver 2011; Craver 2012). And, third, what is required for a model
to be genuinely explanatory is to describe the actual mechanisms that
underlie the particular (type of) phenomenon being investigated. In a
nutshell, the proposal is that one arrives at such explanatory models
via a decompositional strategy that is guided by a series of appro-
priate experimental (i.e., localisation and control) strategies. Because
it assumes that there is a consistent connection between the experi-
mental tools and techniques used by practicing neuroscientists, and
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the entities postulated by a mechanistic explanation, the mechanis-
tic conception of cognitive explanation is said to wear its ontological
commitments on its sleeve.

Besides its biological realism, mechanism has also been promoted for
its ability to cover a wide range of models/theories developed in dif-
ferent branches of cognitive science and neuroscience. That is because
the decompositional strategy associated with mechanism can be used
to obtain a series of mechanistic descriptions of any given cognitive
capacity or process ranging from abstract mechanistic sketches, mech-
anistic schemata, and how-possibly mechanisms up to how-actually
mechanistic models (Craver 2007b). Whilst all these mechanistic de-
compositions can be taken to play a host of roles in the investigation
of cognitive phenomena, not all of them qualify as genuine explana-
tions. In fact, only how-actually models count as proper mechanistic
explanations because they exhibit the real causal mechanisms (their
components, properties, activities, and modes of organisation) that
support or maintain the phenomena under investigation. According
to a recent formulation of the mechanistic explanatory relevance crite-
rion, called the 3M constraint, a mechanistic model counts as being
genuinely explanatory if and only if there is a direct ‘mapping’ be-
tween its component entities and activities, and the actual biological
mechanisms underlying the target cognitive phenomenon (cf. Kaplan
and Craver 2011).

I have identified three general strategies that might be used to de-
fend such a criterion of mechanistic explanatory relevance, namely:
(i) the strong realist strategy, (ii) the moderate realist strategy, and
(iii) the epistemic strategy. The strong realist strategy has been found
to be problematic because it equates the explanatory value of par-
ticular mechanistic models with the commitment to the existence of
certain uniquely determined causal mechanisms (e.g., Strevens 2008;
Craver 2012). However, the strong realist claim that there must exist
some ‘real’ mechanisms that explain the target cognitive phenomena
leaves open the question whether any proposed mechanistic model
counts as being genuinely explanatory. It is of little comfort that we
can have in principle mechanistic explanatory models of everything, if
we do not have a determinate criterion for establishing whether the
models that we do have are explanatory or not. More problematically,
by assuming that everything can in principle be explained in a mecha-
nistic way one runs the risk of trivialising the very idea of mechanistic
explanation (cf. Psillos 2011).

The most compelling strategy of defending mechanism has been
shown to be the moderate realist position. More precisely, I have pro-
posed an interpretation of the moderate realist strategy which mit-
igates the differences between strongly ontic (realist) and epistemic
views of mechanistic explanation (e.g., Bechtel 2008; Bechtel 2011;
Wright 2012). According to the latter type of account, good mech-
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anistic explanations are the result of a series of epistemic activities,
governed by a variety of norms which connect the evaluation of the
explanatory value of particular mechanistic models to the epistemic
aims and interests pursued by different research communities. In
some of its formulations, the epistemic view has been taken to entail
a stronger relativist position according to which any proposed mech-
anistic model can be deemed to be explanatory relative to some set of
aims and purposes. I have argued that one way to avoid this sort of
trivialisation of the mechanistic conception is to recognise that both
epistemic and ontological principles play a role in the development
of good mechanistic explanations of cognitive phenomena (cf. Illari
2013).

This proposal shifts the emphasis from the question concerning the
‘source’ or ‘locus’ of the explanatory value of particular mechanistic
models towards the norms that ‘locally’ govern the practice of de-
veloping mechanistic explanations in the cognitive domain. I have
argued that this perspective allows one better to appreciate the differ-
ence between the explanatory structure of mechanistic models and the
norms which govern the construction and evaluation of explanatory
models of specific cognitive phenomena. The explanatory structure
of mechanism consists in a decompositional analysis of the target
system into component parts, their properties, and activities, whose
organised interaction can be taken to yield the phenomena or pattern
being investigated. Viewed as a special type of explanatory structure,
mechanisms can be differentiated both from laws and causal links
simpliciter.

This way of looking at mechanism has two welcome consequences.
First, if mechanism is no longer viewed as an absolute explanatory
category then it becomes more straightforward, identifying the vari-
ous epistemic roles played by mechanistic decompositions and show-
ing how they may enter an explanatory strategy together with other
components, such as mathematical concepts. For instance, I have
claimed that the Difference of Gaussians (DOG) model of the or-
ganisation of the spatial receptive fields of early visual neural cells
(Rodieck 1965) allows one to understand the special selectivity of
these neurones to certain formal geometrical features of a large va-
riety of visual stimuli. However, I have also pointed out that the
explanatory value of abstract (mathematical) models does not rule
out the possibility that these models can also be used as launchpads
for the construction and refinement of other mechanistic models of
cognitive phenomena. Rather, the lesson derived from these consid-
erations is that mechanisms are better viewed as elements of more
complex explanatory schemas that are deployed in order to elucidate
particular cognitive phenomena.

Second, the arguments developed in chapter 3 showed that the uni-
ficatory potential of the mechanistic framework is conceptually dis-
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tinct from the explanatory value of mechanistic models/theories of
cognitive phenomena. Thus, against Craver (2007b) and Craver and
Piccinini (2011), I have argued that the unificatory power of the mech-
anistic framework does not directly entail mechanistic explanatory
monism. In fact, conflating the two epistemic virtues risks blurring
the mechanistic explanatory relevance criteria which in turn mirror
the epistemic and ontological norms/principles that guide the prac-
tice of developing and refining mechanistic models of cognitive phe-
nomena.

7.2.3 Classical computationalist explanations

Having identified the strengths and limitations of the mechanistic
conception, I have then focused on another influential model of cogni-
tive explanation that has been widely discussed both in the philosoph-
ical and cognitive scientific literature. In a nutshell, classical compu-
tationalism is the view that cognitive capacities and/or processes are
explainable in terms of internal mental representations (symbols) and
operations (rules) appropriately defined over them. Although classi-
cal computationalism also qualifies as an analytic decompositional
strategy, accounting for complex cognitive capacities in terms of their
component sub-capacities and organisation, the view is taken to dif-
fer from mechanism because of its lack of explicit neurobiological
(mechanistic) commitments. The latter idea supposedly follows from
the autonomy thesis standardly associated with classical computation-
alism (e.g., Fodor 1974; Marr 1982; Cummins 1983; Block 1997; Fodor
1997). On a strong reading of this thesis, computational explanations
of specific cognitive phenomena can be developed independently of
hypotheses pertaining to the neurobiological (or implementational)
level of organisation of cognitive capacities.

The arguments put forward in chapter 4 explored two important
aspects of the view of cognitive explanation associated with classi-
cal computationalism: (i) the structure of classical computationalist
explanations of cognitive capacities, (ii) the criteria for individuating
the computational states and/or structures postulated by such expla-
nations. The first issue amounts to clarifying the factors that con-
tribute to the construction of adequate computational explanations of
particular cognitive phenomena, whereas the second concerns the cri-
teria that are involved in determining the type-identity of particular
computational states/structures. By clarifying the relationship be-
tween these aspects of classical computationalism, the chapter sheds
light on another topic that has attracted much attention in philoso-
phy of mind and cognitive science: the notion of mental content and
its function in cognitive theorising. With respect to this problem, I
have attempted to develop a position which elucidates the role(s) that
mental contents play in the construction and evaluation of potentially
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explanatory computational models/theories of cognitive phenomena,
whilst remaining neutral with respect to the question of what would
constitute a proper philosophical theory of mental content.

My primary interest was to present and analyse classical computa-
tionalism as one of the alternative explanatory frameworks utilised by
practicing cognitive scientists, rather than as a broadly metaphysical
picture of the mind and its place in nature. As a consequence, I have
focused on a series of philosophical arguments that seemed to be di-
rectly relevant for the central issue of cognitive explanation, treating
other philosophical hypotheses that are standardly associated with
these different classical computationalist accounts as orthogonal to
the main theme of the thesis. The argument strategy adopted for this
purpose relies essentially on the systematic distinction between the
computational individuation issue and the issue concerning the explana-
tory value of particular computational models of cognitive phenom-
ena.

As a starting point, I have identified the core principles shared by
the various theoretical accounts which have been developed under
the wide umbrella of classical computationalism in both the philo-
sophical and scientific literature (e.g., Fodor 1980; Pylyshyn 1984;
Egan 1992, 1999, 2010; Gallistel 1993; Gallistel and King 2009). The
key idea that these views share is that certain aspects of cognitive
phenomena can be appropriately explained in terms of a set of oper-
ations defined over symbolic computational structures or states. This
commitment is also captured by the hypothesis that classical cogni-
tive architectures consist in a set of rules and symbols which, when
appropriately manipulated or transformed, yield the target features
of cognitive phenomena. This general model of cognitive explana-
tion raises two interrelated questions: (i) what makes something a
computational system in the first place, (ii) what are the grounds for
believing that computational systems are an appropriate tool for in-
vestigating and explaining cognitive phenomena. The first question is
the target of the computational individuation issue, whereas the second
question concerns the justification of the explanatory value of (classical)
computational models/theories of cognition.

With respect to the individuation issue, I have shown that a wide
range of arguments advanced by proponents of classical computa-
tionalism entail an internalist or formal view of computational indi-
viduation (e.g., Fodor 1980; Chomsky 1995; Egan 1992, 2010, 2013).
According to such an internalist thesis, the states and structures of
a computational system are individuated in virtue of their formal
or abstract properties. On this view, the computational structure of
a system coincides with its formal (or syntactic) structure, which it
implements. The internalist view of computational individuation op-
poses the idea that content impacts the type-identity of a computa-
tional system. In these debates, perhaps the most widespread notion
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of content invoked (but by no means the only one) is that of external
content, by which one typically means some feature or other of the
system’s external environment. Thus, according to what has been
called the semantic view of computational individuation, which opposes
an internalist account, semantic features (such as factors in the sys-
tem’s external environment) determine (in part) the computational
identity of certain physical systems (e.g., Burge 1979, 1986; Wilson
1994; Shagrir 2001).

The hypothesis that content impacts computational individuation
is strongly connected to the idea that the component structures/states
of computational systems (i.e., symbols) have a dual nature. That is,
they possess purely formal or syntactic features and they can be as-
signed semantic interpretations (contents). I have surveyed a number
of arguments (e.g., Fodor 1980; Stich 1983, 1991; Egan 1992, 1999, 2010;
Matthews 2007) which purport to show that symbols do not possess
their contents essentially and that content - either broad (externalist)
or narrow (i.e., narrow causal roles or formal features such as high-
level mathematical relations among the represented objects) - does
not determine the computational type of a particular physical system.
I have shown that some of these arguments draw on the mismatch
between the stability of computational taxonomies and the context-
sensitivity and ambiguity of semantic (intentional) characterisations
of cognitive capacities (Stich 1983, 1991; Egan 1999), whereas others
insist that the semantic view of computational individuation does not
reflect the actual theorising and modelling practices of computational-
ist cognitive scientists and neuroscientists (Egan 1992, 2010; Chomsky
1995).

Whilst I have taken these arguments to be successful in showing
that the type-identity of a particular computational system depends
only on its component entities, their internal relationships, and or-
ganisation within the system, I diverge from these positions when
they take this internalist view of computational individuation to en-
tail a purely internalist picture of (classical) computationalist theories
of cognitive capacities. My primary motivation for defending an in-
ternalist or formal view of computational individuation is that such
a view allows one to understand computational systems as indepen-
dent epistemic tools which can be used in the investigation of cogni-
tive phenomena. That is, they can be characterised as having certain
properties which make them appropriate for the explanation of some
aspects of cognitive phenomena. I have claimed that this view of com-
putational individuation is neutral with respect to the metaphysical
hypothesis that the mind has an essentially classical computational
structure. In addition, the proposed internalist individuation hypoth-
esis is consistent with the idea that computational theories of cogni-
tion can and sometimes do make substantial reference to features of
the external environment of the target cognitive system.
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Nevertheless, I have claimed that in order to support this weak
form of externalism with respect to computational theories/models
of cognition, one does not need to be committed to the idea that con-
tent impacts computational individuation per se. Instead, I have ar-
gued that even more sophisticated accounts such as those proposed
by Shagrir (2001) and Egan (1999, 2010) are best interpreted as say-
ing that contents play an important role in the identification of the
specific type of computational system which explains a given cog-
nitive capacity. For instance, Shagrir (2001) argues that in order to
be able to determine which syntactic (formal) characterisation of a
computational system is the most appropriate with respect to a given
cognitive problem/task, one needs to take into account some of the
semantic features of the computational system in question (e.g., for-
mal features such as set-theoretic or other high-level mathematical
relations among the represented objects). Similarly, Egan (1999, 2010)
contends that mathematical functions provide canonical descriptions
of the functions computed by particular types of physical systems.
However, there are good reasons to doubt that either of these posi-
tions manages to show that a sufficiently substantive notion of con-
tent determines the type-identity of computational systems.2

Instead, I have taken Shagrir’s (2001) observation that ‘there is a
close relationship between a system’s computational identity and the
semantic characterisation of the [cognitive] task in question’ (ibid.,
p. 17) to delineate the explanatory aim of a computational model of
that particular cognitive task. That is, if a computational model of a
particular cognitive capacity is to count as genuinely explanatory, one
must be in a position to show how the posits of that theory relate to
the cognitive problem under investigation. Along these lines, I have
claimed that (mental) contents play an essential role in connecting a
computational model to the cognitive phenomenon or pattern that it
is taken to explain. Otherwise put, in order for a particular computa-
tional model to count as an explanation of a specific cognitive pattern
one must be able to show how certain elements of the model relate to
the features of the explanandum phenomenon which are standardly
characterised in semantic or representational terms. As shown in the
analysis of the three models from vision studies surveyed in chapter
4, the types of contents assigned to the states of particular compu-
tational models can be either broad (externalist) or narrow, depend-
ing on the cognitive task the system is taken to solve. Moreover, I

2 I have pointed out that a version of ‘internal semantics’ would be compatible with
the proposed view of computational individuation, but the latter would in turn be
characterised solely in terms of the internal relationships and organisation of the
elements of the computational system. In other words, internal semantic contents
would fail to have truth or correctness conditions which would be definable indepen-
dently of the internal organisation of the system. Thus, insofar as they impact the
computational-type of a given state or structure they would count merely as formal
or abstract features of the system in question.

202



7.2 arguments and consequences

have claimed that this variability of the types of semantic contents
assigned to the states of particular computational models is perfectly
consistent with the hypothesis that the computational type-identity
of those systems depends entirely on the internal constitution and
organisation of the system.

In brief, I have argued that the assignment of both broad and nar-
row (mental) contents is extrinsic to the constitution and functioning
of a computational system/model. However, unlike other accounts,
the proposed view does not take the extrinsic character of semantic
interpretations of classical computational models/theories to entail
that computational theories/models of cognition are purely internal-
ist or individualistic. In other words, one cannot derive a complete
picture of the explanatory value of classical computational models of
cognitive phenomena solely on the basis of the internalist view of com-
putational individuation. In fact, doing so would be just another way
of conflating the individuation and explanation issues all over again.
What is required in addition is a more precise account of how com-
putational systems/models may be successfully applied in the study
of cognitive phenomena. In relation to the latter task, I have argued
that semantic interpretations (or mental contents) play an essential
bridging role in connecting the explananda of computational theories
of cognition to the proposed potentially explanatory computational
structures.

Moreover, insofar as (some of) the explananda of these compu-
tational theories are characterised (sometimes) in broad externalist
terms, one can also say that computational theories of cognition are ex-
ternalist. However, from this it does not follow that the type-identity
of the computational structures postulated by these theories is deter-
mined by any of the proper semantic features of their explananda.
Thus, defenders of an internalist view of computational individua-
tion need not reject the idea that semantic interpretations (contents)
constitute a proper part of computational theories/models of cogni-
tion. Whilst they are not constitutive of the proposed computational
models, they play a normative role in that they serve to justify why
a given computational system, which is formally individuated, plays
a proper explanatory role with respect to a particular cognitive phe-
nomenon.3

In light of these considerations, I have argued that classical compu-
tational explanations of cognitive capacities typically proceed by de-
composing a complex cognitive task (e.g., visual object recognition)
into a set of more basic cognitive tasks (e.g., edge extraction, feature
construction and ordinal matching, etc.) which in turn are charac-
terised in terms of a series of computing operations defined over

3 In addition, I have suggested that calling this justificatory role played by mental
contents, the ‘informal’ part of the computational theory (Chomsky 1995) or the
‘pragmatic gloss’ (Egan 2010) can distort the analysis of computational models of
cognitive phenomena.
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appropriately typified symbols. Thus, computational explanations
connect, via a number of identifiable steps, the target phenomenon
(which is often, but not always, characterised in semantic terms) to a
computational structure which reveals certain fundamental features
of the cognitive phenomenon in question. These features contribute
to a better understanding of cognitive phenomena by allowing cog-
nitive scientists to test a wider range of counterfactual generalisa-
tions pertaining to them, and to draw connections between the com-
putational characterisations of apparently disparate cognitive capac-
ities. The assignment of mental (semantic) contents plays a crucial
role in the development of these computational models because it
serves to justify (at least in part) why a particular computational
structure/system can be taken to capture something relevant about
the structure of the target cognitive phenomena. I have insisted that
in order to play this sort of normative role in the construction and re-
finement of (good) explanatory models of cognitive phenomena, the
interpretation/assignment function need not be taken to be a one-to-
one mapping between computational states and semantic contents.

In fact, even a cursory glance at the modelling practices of cognitive
scientists shows that semantic interpretations of computational mod-
els are most of the time partial and mixed (i.e., comprising both what
philosophers have identified as broad and narrow contents). Further-
more, I have pointed out that the explanatory adequacy of particular
computational models is usually evaluated by taking into account
additional constraints, developed along the lines of the strong equiv-
alence criterion (Pylyshyn 1984). According to this, the input-output
equivalence of the cognitive system and the computational structure
postulated by a particular computational theory/model may not suf-
fice to guarantee that the latter has a genuine explanatory value. In
addition, one might need to take into consideration measures such as
response times, complexity profiles of the modelling and modelled
systems, and so on, which would further increase the adequacy of
the computational structures postulated by classical computational
models/theories of cognition.

At a more general level, the arguments developed in chapter 4 ad-
vocate a shift of focus within the debates concerning classical com-
putationalism from the metaphysical import of the classical compu-
tationalist thesis and the prospects of a substantive theory of mental
content towards an analysis of the epistemic practices which generate
explanatory models of particular features of cognitive phenomena.

7.2.4 The mechanistic view of computational explanations

The computational account of cognitive explanation analysed in chap-
ter 5 appeals to the main tenets of the mechanistic view of explanation
(e.g., Machamer, Darden, and Craver 2000; Craver 2007b; Bechtel and

204



7.2 arguments and consequences

Richardson 1993/2010) in order to elucidate the structure and scope
of computational models/theories of cognitive capacities. As such,
the account promises to provide a better view of computational ex-
planation which is in line with the principles used by practising scien-
tists in constructing and refining computational theories of cognitive
capacities. The analysis focused on two main features that have been
taken to distinguish the mechanistic view of computational explanations
from the classical computationalist account. First, the mechanistic
account is said to entail a non-semantic view of computational indi-
viduation which avoids some of the problems standardly raised for
classical computational accounts. Second, according to its advocates,
the mechanistic conception provides a principled way of bridging the
gap between the higher-order computational descriptions of cognitive
capacities/processes and their neurobiological characterisations.

According to one of the most elaborated versions of the mechanistic
conception of computationalism (Piccinini 2007a, 2008a; Craver and Pic-
cinini 2011), computational explanations are a sub-species of mecha-
nistic explanations. More precisely, the mechanistic view of compu-
tationalism comprises two purportedly distinct hypotheses: (i) a wide
functional individuation hypothesis, and (ii) a mechanistic explanation
hypothesis. The wide functional individuation hypothesis claims that
computational states are individuated by their wide functional prop-
erties, which in turn are specified by a mechanistic explanation in a
way that need not refer to any semantic properties. As shown in chap-
ter 3, a mechanistic explanation decomposes a given complex sys-
tem into its component parts, their functions, and organisation, and
claims that the system exhibits a particular capacity (or set of capaci-
ties) because it is constituted by the relevant components, their func-
tions, and their organisation. Proponents of mechanism have insisted
that the wide functional individuation strategy differs in significant
respects from the hypothesis that computational states/structures are
individuated in terms of their wide functional contents (cf. Piccinini
2008a). The latter, but not the former, counts as a semantic view of
computational individuation.

There are two main arguments that have been put forward in sup-
port of the idea that wide functional individuation is a non-semantic
individuation schema. The first consists in the criticism of the seman-
tic view of computational individuation (cf. ibid.). The latter is said
to rely on a systematic confusion between computational and con-
tent individuation, imposing a view of computation that is hostage
to a series of metaphysical intuitions about the nature and structure
of cognitive capacities. This is taken to be problematic because it
obscures the fact that computational systems can be characterised in-
dependently of a cognitive context. A closely related criticism is that
the semantic view of computational individuation ignores the wide
range of modelling and theorising practices in which computational
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systems are being used and which do not seem to rely on any seman-
tic individuation schema.

The second argument draws on the connection between compu-
tational individuation and the mechanistic organisation of computa-
tional systems. As suggested above, the positive argument for the
wide functional individuation strategy relies on the fact that compu-
tational systems are amenable to mechanistic decompositional anal-
yses. That is, mechanists have argued that the computational states
of a particular physical system are individuated in terms of the func-
tional properties of the component parts of the system that have been
identified by the relevant decompositional mechanistic analysis. Oth-
erwise put, the mechanistic analysis is taken to establish the func-
tionally relevant properties that play a role in the individuation of
specific types of computational states. However, the problem with
this proposal is that the mechanistic strategy per se cannot guarantee
that the functional properties it is capable of identifying will be com-
putationally relevant as well. If wide functional individuation is to
count as a proper computational individuation schema, mechanists
have to show what distinguishes the functional properties that are
computationally relevant from those that are not.

I have analysed one proposal that attempts to address this sort of
indeterminacy problem which threatens the wide functional view of
computational individuation. In a recent paper, Piccinini and Bahar
(2013) have argued that mechanistic analyses of computational sys-
tems count as computationally relevant only those functional proper-
ties that are essentially related to the characterisation of the system
in terms of a generic computational system. A generic computational
system in turn is defined as a mechanism that comprises a series of
entities (or variables that can change state) which are transformed
or manipulated in accordance with rules that are sensitive only to
certain properties of the system’s component parts. The notion of
generic computation is taken to be the common denominator of a
larger class of computing systems, which includes digital computers,
analog computers, and neural computing systems (cf. ibid.). In the
case of computational models of cognitive capacities, the relevant sub-
species of generic computation is that of neural computation. Thus,
mechanistic analyses of proper neural computational systems will
single out only those functional properties which can be attributed
to the entities over which neural computations are appropriately de-
fined, namely properties of neural spike trains (e.g., firing rate and
spike timing). It is these functional properties which are taken to play
a role in the type-individuation of specific computational systems.

This appeal to the notion of neural computation is supposed to ful-
fil two tasks: (i) to solve the indeterminacy problem by constraining
the range of functional properties which are relevant to the compu-
tational identity of a given system, and (ii) to demonstrate that it is
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possible to circumscribe a neurobiologically plausible notion of com-
putation. Both points have been taken by proponents of the mecha-
nistic view of computational explanation to show the advantages of
their position over the classical computationalist view of cognitive
explanation (Piccinini 2008b; Piccinini and Bahar 2013). In response,
I have argued that the differences between the two views are less
dramatic than advertised in the mechanistic literature. With respect
to the individuation issue, I have argued that the functional view of
computational individuation is perfectly consistent with the internal-
ist conception of classical computationalism, argued for in chapter
4. At most, mechanists can claim that their proposal is less vulnera-
ble to a certain type of ambiguity which derives from the idea that
the computational-type of a particular physical state or structure de-
pends on its intrinsic formal properties and its relations with the other
similar structures. In addition, mechanistic analyses can be taken to
provide a more precise characterisation of these internal properties
and relations.

Concerning the problem of computational explanation, mechanists
claim that a computational model/theory of a given cognitive capac-
ity counts as being genuinely explanatory if and only if it respects
the functional individuation criteria and it is defined over the ap-
propriate types of entities, which they take to be spike trains and
some of their properties, such as firing rates and spike timing (ibid.).
However, I have pointed out that there are good reasons for resist-
ing the adoption of the notion of neural computation as the only
one that can serve as an explanatory structure in the investigation
of cognitive phenomena. On the one hand, the notion seems to be
limited because it can be used to explain and elucidate cognitive pat-
terns/phenomena only at certain levels of organisation or resolution
(e.g., neurobiological levels). That is, given that neural computations
are defined over properties of biological neurones, the explananda
with which these structures might be appropriately connected do not
seem to go beyond the patterns studied in certain branches of neuro-
science. Thus, it is not clear how, and indeed whether, the notion of
neural computation can actually be used to elucidate cognitive phe-
nomena or patterns characterised at higher-levels of abstraction (e.g.,
patterns such as long-distance dependencies and island constraints
in language production, or certain systematic patterns in reasoning
and decision making). More problematically still, there are reasons
to doubt that there are yet any such appropriate mechanistic compu-
tational models of cognitive phenomena at any level of analysis or
abstraction.

On the other hand, if one accepts that not all explanatory accounts
of cognitive capacities need reference their precise neurobiological
make-up, then it is possible to show that mechanism is compatible
with the idea that there are abstract computational characterisations
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of certain cognitive phenomena which advance our understanding
of them by revealing a host of important features of the phenomena
in question. Thus, I have argued for a type of continuity between
the classical computationalist and mechanistic view of cognitive ex-
planation which does not imply that either of the accounts should
be reduced to the other. Instead, the mechanistic view of computa-
tional explanation can be taken to highlight the implicit mechanistic
commitments of classical computationalism. In addition, I have sug-
gested that where the mechanistic model diverges from the classical
one, it makes available potentially new explanatory structures (neu-
ral computations) which can be used to construct additional partial
explanations of specific features of cognitive phenomena.

7.2.5 Connectionist explanations

Connectionism claims that cognitive phenomena/patterns can be ex-
plained in terms of a series of internal computations which are car-
ried out by a set of simple processing units that operate in parallel
and affect each other’s activation states via a network of weighted
connections. Although the core ideas that underlie connectionist ap-
proaches to the study of cognitive phenomena can be traced back to
the work of Alan Turing (Turing 1948/2004; Copeland and Proud-
foot 1996; Teuscher 2002), who also inspired classical computation-
alist views, connectionism has been standardly construed in opposi-
tion with the notion of classical or symbolic computation (Rumelhart,
McClelland, and PDP Research Group 1986; Rumelhart, McClelland,
and PDP Research Group 1988; Bechtel and Abrahamsen 1991; El-
man 1996). A different sort of relationship holds between connec-
tionism and mechanism, with the former claiming to be consistently
committed to mechanistic assumptions on both principled and prag-
matic grounds (Bechtel and Abrahamsen 1991; Bechtel and Richard-
son 1993/2010; McClelland et al. 2010). The primary aim of chapter 6

was to identify the main tenets of connectionism and to elucidate the
view of cognitive explanation associated with this research strategy.

As in the previous two chapters, I have divided the analysis of
connectionism into two distinct strands which reflect the two comple-
mentary perspectives developed throughout the thesis: the theoret-
ical and the practice-based perspective. I started by discussing the
problem of computational individuation in a connectionist setting.
This served not only to get a better grasp of the theoretical principles
underlying much of current connectionist modelling but also created
a substantive base for drawing a more balanced comparison between
classical and connectionist computationalism. With respect to the in-
dividuation issue, I have argued that there are two major strategies
for determining the type-identity of specific connectionist networks:
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(i) an input-output or functional strategy, and (ii) a more fine-grained
architectural strategy.

On the functional individuation strategy, a connectionist network
is individuated in terms of the input-output function (or pairings)
which it computes. Whilst the functional individuation strategy brings
connectionism closer to the classical view of computation, it tends
to reduce the potential diversity of connectionist networks that can
be used in the study of cognition by ignoring a number of features
which are standardly taken to constitute the characteristic marks of
connectionist networks. The architectural strategy on the other hand,
takes into account many more of the intrinsic parameters used to
define a connectionist network, and, in consequence, yields a more
fine-grained taxonomy of connectionist networks that might be used
in the study of particular cognitive phenomena. At a more general
level, what the two individuation strategies suggest is that (as with
symbolic computational systems) neural networks are complex sys-
tems whose functioning and organisation can be understood inde-
pendently of their applications to the study of specific cognitive phe-
nomena. Also, both individuation strategies are consistent with an
internalist point of view, according to which the computational iden-
tity of a particular physical system does not depend on any semantic
interpretation that can be assigned to it in a particular cognitive mod-
elling context.

I have shown that connectionism purports to offer a non-decompo-
sitional style of explanation in which specific cognitive patterns are
said to be the emergent consequence of the controlled propagation of
activation patterns through a network of very simple units. One way
that has been proposed to capture this idea is to conceive of connec-
tionist explanations as a two-step explanatory strategy in which one
first attempts to show that a rather simple network appropriately or-
ganised and trained can yield a particular type of outputs in response
to the relevant class of inputs. Then, the second step of a connection-
ist explanation requires one to extend the positive results observed
in the case of the simple network to scaled-up realistic models of the
nervous system (cf. Matthews 1997; Ramsey 1997). This two-step
model of connectionist explanations is meant to reinforce the idea
that connectionist models are not mere implementational variants of
their classical (symbolic) counterpart models, but provide a genuine
novel way of accounting for a wide range of cognitive phenomena.

By analysing several paradigmatic connectionist models used in
the study of language acquisition and processing, I have attempted
to show that this two-step explanatory strategy does indeed seem
to be presupposed within the connectionist modelling practice. The
proposed analysis has served three additional purposes: (i) to draw
out the limitations of the particular models under discussion, (ii) to
illustrate a range of theoretical claims made by connectionist mod-
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ellers and philosophers, and (iii) to pin down the main challenges
facing current connectionist approaches to cognition. In particular, I
insisted that the radical connectionist position runs into a number of
difficult issues which undermine the very possibility of articulating
a coherent notion of cognitive explanation. For given the strong po-
larisation promoted by resolute connectionists between classical and
connectionist architectures and/or modelling principles, one is led
to believe that connectionist modelling and theorising is not guided
by any steady state description of the cognitive system/phenomenon
being investigated. This further raises the question whether there is
another way in which one might circumscribe the proprietary cogni-
tive explananda of connectionist theories/models.

I have explored one compelling way of characterising the explana-
tory value of connectionist models of cognitive capacities. Connec-
tionists have insisted that neural networks are an appropriate tool
for investigating certain features of learning and development pro-
cesses which lead to the constitution of the cognitive capacities whose
steady-state descriptions are the object of other theoretical approaches
such as classical computationalism or mechanism. For instance, con-
nectionist principles have been said to capture and account for the
gradual character of language acquisition and language change (cf.
Marcus 2001; Yang 2002). In addition, connectionism seems to pro-
vide the appropriate framework for explaining singular or unexpected
patterns in cognitive processing such as certain types of catastrophic
interference phenomena in learning and memory tasks (cf. McClel-
land et al. 2010). Whilst such contributions of connectionist modelling
are indicative of the potential explanatory value of connectionist prin-
ciples in cognitive theorising, they do not support the stronger con-
tention that connectionism provides the unique explanatory frame-
work appropriate for studying cognitive phenomena at all possible
levels of abstraction or analysis.

Moreover, I have pointed out that one objectionable consequence
of radical connectionism is that it reverses the order of cognitive ex-
planation, letting connectionist models determine the cognitive phe-
nomenon to be explained. Whilst this aspect of radical connectionism
might be taken to reflect the bottom-up character of the connectionist
methodology, it also undermines the idea that connectionist networks
are epistemic tools that advance our understanding of specific aspects
of cognitive phenomena which we deem to be problematic. At best,
the strict bottom-up character of connectionist modelling can be taken
to indicate that neural networks might be used for investigative pur-
poses, in order to discover new and perhaps unexpected patterns in
cognitive processing. In addition, I have pointed out that the actual
modelling practices of cognitive scientists show that the applicability
of connectionist models to the study of specific cognitive phenom-
ena depends to a significant degree on the semantic interpretations
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assigned to specific connectionist models. Whilst ‘shallow’, i.e., appli-
cable only to the input-output interface of the connectionist models
themselves, these interpretations play an ineliminable role in secur-
ing that particular neural networks are adequate explanatory models
of specific aspects of cognitive phenomena.

In analysing the premises of the radical connectionist position, I
have also suggested that the other major putative advantage invoked
in support of connectionist theories of cognition concerning their neu-
robiological plausibility should be taken with a grain of salt. As in
the previous chapters of the thesis, I have pointed out that the re-
alisation issue cannot be used to settle definitively the dispute on
the explanatory value of specific computationalist models of cogni-
tion. However, considerations concerning the biological plausibility
of connectionist models/theories of cognitive phenomena have been
taken to align connectionist and mechanistic assumptions. From a
practice-based perspective, one can clearly point to cases where the
connectionist methodology has been used to obtain further evidence
and control over the neurobiological mechanisms underlying specific
cognitive processes (e.g., McClelland 1995; Eliasmith 2007; Thomas
and McClelland 2008; Eliasmith 2010). However, the relationship be-
tween the two frameworks seems more problematic when one con-
siders the structure of connectionist and mechanistic explanations,
respectively. For, on the one hand, connectionism promotes a non-
decompositional explanatory strategy in which one explains a given
cognitive phenomenon as the emergent consequence of the activity
of a huge set of simple units, whereas, on the other, mechanism relies
on a constitutive decompositional strategy.

I propose that the solution to this problem is again the partiality
of cognitive explanation. That is, connectionist networks can be used
to capture important aspects of cognitive phenomena which advance
our understanding of the phenomena in question. In addition, con-
nectionist models sometimes afford a series of insights about the neu-
robiological organisation of the mechanisms which underlie different
cognitive tasks (e.g., memory and learning tasks). Whilst this latter
point supports the idea that connectionist principles have multiple
applications in current cognitive and neuroscientific research, it does
not prove that mechanism and neural networks function as the same
type of explanatory structure and can be used in the same explana-
tory contexts. For instance, I have pointed out that connectionist prin-
ciples and/or concepts seem to be more appropriate than mechanism
to account for highly improbable cognitive effects, in which case the
model of connectionist explanation is a sub-species of the more gen-
eral probabilistic/statistical view of scientific explanation.

In summary, I have claimed that the better policy is to evaluate on
a case by case basis the explanatory contributions of individual con-
nectionist models without holding onto a resolute connectionist per-
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spective according to which all cognitive phenomena will be someday
explainable in a purely connectionist framework.

7.3 cognitive explanations

Drawing on the results of the critical analyses summarised above, in
what follows I propose to outline a pluralistic picture of cognitive ex-
planation. The view of explanatory pluralism that I endorse attempts
to do justice to the multilevel and multicomponent (interdisciplinary)
character of cognitive scientific research. For this purpose, it empha-
sises and expands three general features of the structure and organi-
sation of cognitive science as a field of interrelated disciplines which
investigate, at different levels of analysis and abstraction, various as-
pects of cognitive phenomena.

First, within each explanatory framework (e.g., mechanism, com-
putationalism, connectionism, etc.), there are a series of norms or
principles that guide the construction and evaluation of good mod-
els/theories of cognitive phenomena. They comprise both ontologi-
cal and epistemic constraints which have been crystallised in the ex-
perimental and theoretical activities of the relevant scientific commu-
nity. Second, models/theories of cognitive capacities (from reaching
and grasping, and object recognition, to language processing and de-
cision making) can sometimes be in competition with one another
(such is the case with models of language processing which postu-
late different derivational orders or the existence of innate rules or
probabilistic learning principles). When such substantial disagree-
ments arise, it becomes necessary to decide which of the proposed
accounts constitutes the most adequate model of the cognitive capac-
ity under investigation. Epistemic virtues such as the explanatory
value of the competing models, their empirical adequacy, or unifica-
tory power usually play a crucial role in evaluating the relative value
of competing cognitive theories or models. Third, on occasion, sci-
entific models/theories developed at different levels of analysis or
abstraction can be compatible with one another and, when this hap-
pens, they can be (and typically are) coordinated into a more complex
account of the target cognitive capacities or processes (e.g., Shadmehr
and Wise 2005). In these cases, the explanatory factors which oper-
ate at different levels of analysis or abstraction are combined in order
to yield a mixed-level account of the phenomenon in question (cf.
Mitchell 2003; Wilson 2010).

Thus, one of the major claims I make in this thesis is that different
research programmes in cognitive science give rise to corresponding
distinct explanatory frameworks, each one of which comprises a com-
plex of specific explanatory structures (concepts) which contribute to
advancing our understanding of particular aspects of cognition and
its underlying biophysical mechanisms. In other words, I promote
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the adoption of a form of epistemic explanatory pluralism according
to which different frameworks can be said to contribute in distinct
ways to increasing our understanding of the problems addressed at
different levels of analysis or abstraction in the various branches of
cognitive science and neuroscience.

7.3.1 A pluralist view of cognitive explanation

In what follows, I propose to spell out the main tenets of a plural-
ist conception of cognitive explanation, building on various insights ex-
pressed earlier. However, the proposed account should not be taken
as a direct generalisation from the preceding chapters, but rather as
an articulation of the abstract framework that has been presupposed
by the critical analyses developed so far.

The general model of cognitive explanation that I put forward
draws on the intuition that many different conceptual structures can
play an explanatory role with respect to different types of (empirical)
problems. In order to get this proposal off the ground, I start from the
idea that explanations are sought and offered when certain aspects of
reality are deemed to be problematic. That is, assuming that certain
things are known, other things might be construed as problematic. In
this sort of context, explanations are supposed to create ways (strate-
gies) to resolve the tension between what we know and what we take
to be problematic. For instance, given our knowledge about the prop-
erties and organisation of ganglion cells in the early visual system,
and the complexity of the visual input, the question arises how do
these cells contribute to the extraction of certain patterns or features
of the visual input that are believed to play a role in higher-order
cognitive tasks such as object recognition. Or, given what we know
about the structure of natural languages and children’s early expo-
sure to linguistic environments, how can we account for the gradual
character of language acquisition and/or for the various stable pat-
terns that characterise different stages of language development in
small children.

One important idea that has emerged from analysing the various
explanatory frameworks used in cognitive scientific research is that
explanations impose certain types of conceptual structures on their
explananda which in turn enable a better intellectual grasp of the phe-
nomena under investigation. Otherwise put, an explanation creates
a link between a particular characterisation of a target phenomenon
(the explanandum) which construes it as problematic and another de-
scription (the explanans) which shows how the phenomenon in ques-
tion is to be understood within a given system of scientific knowledge.
This general picture of explanation does not imply that all requests
for explanation are met by appealing to the same well-established
collection of concepts. Sometimes, constructing a good explanation
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requires the creation of new concepts and/or tools which would eluci-
date the phenomenon or problem circumscribed by the explanandum.
For instance, explaining certain unexpected cognitive patterns which
arise in the context of rapid learning tasks has required the develop-
ment of specific probabilistic concepts which have been explored and
refined by various connectionist and dynamicist models (cf. Guastello
and Pincus 2009; McClelland et al. 2010). Similarly, there are certain
neurobiological mechanisms that are arguably amenable to an expla-
nation in terms of computational operations defined over functionally
relevant units such as spike trains and/or firing rates (cf. Dayan and
Abbott 2005; Ermentrout and Terman 2010).

The fact that explanation sometimes requires the construction of
novel explanatory structures/concepts also vindicates the intuition
that sometimes the request for explanation can remain unsatisfied.
This can happen either because the way in which the explanandum is
circumscribed does not enable the creation of an explanatory link, or
because of the failure to provide an explanatory structure that eluci-
dates the problem raised by the explanandum. Furthermore, within
the broadly epistemic perspective in which I have situated the anal-
ysis of the notion of cognitive explanation, it is possible that certain
things are not amenable to explanation at all. In other words, the
view being proposed entails that there are things (aspects of real-
ity) which are ‘partially inscrutable’ (Moravcsik 1998). This remark
should not lead to any form of exaggerated skepticism, subjectivism,
or relativism. For, as noted above, partial inscrutability of cognitive
phenomena is compatible with the idea that it might be possible to
develop conceptual and experimental tools for investigating certain
aspects of cognition that at present are beyond our grasp. This idea
could be strengthened by adding a historical dimension which shows
that ‘there are modes of understanding and patterns of explanation
that at a previous point in time and conceptual context we would
not have regarded as intelligible and yielding insight.’ (ibid.: 191;
cf. Hacking 1982, 2012; Williams 2002). Thus, the point of emphasis-
ing the partial inscrutability of cognition is not to give up the claim
of objectivity, either for our general explanatory schemas or for the
evaluation of what counts as insightful and yielding understanding.
Rather, the underlying thought is that there is no way to determine
in advance (of scientific research or human inquiry more generally)
what can be known and understood about the nature and structure
of cognitive phenomena.

There are two other important features of this pluralist model of
cognitive explanation which help qualify further the sense in which
cognitive explanations are essentially partial. Firstly, as mentioned
above, a key intuition driving the arguments proposed so far is that in
the case of a successful explanation, the explanans is typically taken
to increase the intelligibility of the explanandum, thus making it less
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problematic. Secondly, this way of representing the cognitive effects
of offering a good (adequate) explanation implies that one should be
able to connect the knowledge/information concerning the explanan-
dum with that conveyed by the explanans. That is, I claim that expla-
nation involves selecting, structuring, and organising the information
or knowledge available about a given explanandum with the help of
the conceptual structures made available by the explanans in a way
that would yield further insight and understanding of the target prob-
lem/phenomenon.

Thus, at a very general level, the process of asking and giving ex-
planations can be divided in the following four stages: (i) assume that
certain things are true, (ii) construct some things as being problem-
atic, (iii) take certain structures as having explanatory power, and (iv)
apply these explanatory structures to elucidate the things which are
deemed to be problematic and satisfy the request for explanation (cf.
Moravcsik 1998, p. 161). At this point, a sceptic might argue that the
picture being put forward does not address the issue of what deter-
mines the explanatory power of a particular conceptual structure. In
response I contend that there is no unique factor which can establish
whether a certain structure has an explanatory value or not. If the
arguments against the monist commitments implicit in the existing
accounts of cognitive explanation are on the right track, then a more
fruitful way of addressing the sceptic’s challenge is to critically anal-
yse the various types of norms which govern the day-to-day practice
of constructing good cognitive explanations.

From a pluralistic perspective explanation is viewed as a way of es-
tablishing connections between our different ways of conceptualising
the world, and, as such, is essentially an epistemic activity. Otherwise
put, explanations are primarily concerned with establishing relations
between the concepts we develop in order to think about the world.
However, at this point, one might insist that this notion of explanation
makes sense only if one has already established a hierarchy of con-
cepts. Whilst I think that this intuition is correct, it does not necessar-
ily imply that there is a single way of determining, within a specific
research programme or theory, a hierarchy of explanatory concepts.
Equally, it does not imply that there are an indeterminate number of
ways of specifying such conceptual hierarchies. Rather, I am defend-
ing a moderate view which acknowledges that there might be several
ways in which to order the explanatory structures made available
within a particular theoretical framework (or system of knowledge).
Thus, in what follows, I will characterise explanations in terms of re-
lations between concepts or ways of conceptualising reality, insisting
that this sort of talk is meant to emphasise the epistemic (rather than
the subjective) character of explanation.

However, this general account of what is involved in the process of
constructing good cognitive explanations should not be confounded
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with yet another form of explanatory monism. The idea that success-
ful explanations create links between things that we find problematic
(against the background of a given body of accepted scientific knowl-
edge) and (new) structures which increase our intellectual grasp of
them, merely sets the stage for a more detailed analysis of the various
explanatory schemas proposed by different groups of practicing sci-
entists. It is the careful scrutiny of the epistemic activities of construct-
ing mechanistic, computational, or connectionist models/theories of
cognitive phenomena which reveals the norms that play an essential
role in establishing the explanatory power of the models proposed in
each of these modelling paradigms.

For instance, among the mechanistic models of long term poten-
tiation (Craver 2007b; Ermentrout and Terman 2010), the ones that
are considered to have genuine explanatory power are those that are
appropriately constrained by a series of ontological principles con-
cerning the properties, activities, and organisation of the elements
involved in the transmission of electrical neural signals. These prin-
ciples are in turn reinforced by the available techniques of localisa-
tion, control, and manipulation of elements such as activating and
inactivating molecules. In addition, in the construction of potentially
explanatory models of LTP, one relies on bodies of accepted knowl-
edge concerning processes such as vesicular packaging, the influence
of inhibitors and agonists on the pre- and post-synaptic cells, and so
on. Similarly, in the case of mechanistic models of ganglion cells’ re-
sponse profiles in the early visual pathway (Einevoll and Heggelund
2000; Einevoll and Plesser 2005; Kaplan and Craver 2011), we have
seen that the construction of good mechanistic models is guided by
a series of ontic and epistemic principles that also function as local
norms.

However, against the strong mechanistic contention according to
which these norms should apply to the evaluation of any proposed
model/theory of a cognitive phenomenon, I have argued that cogni-
tive models developed at different levels of analysis and/or abstrac-
tion are constrained by different sets of local norms and principles.
For example, in the case of the computational models of early vi-
sual processing and object recognition, analysed in chapter 4, strong
equivalence criteria such as response time profiles and other complex-
ity measures, as well as the availability of appropriate semantic inter-
pretations of the component computational structures, play an impor-
tant role in establishing the adequacy and explanatory value of par-
ticular computational models of cognitive capacities (Shadmehr and
Wise 2005; Sinha and Balas 2008). A similar conclusion was derived
from the analysis of connectionist approaches to cognition, where the
availability of semantic interpretations of the tasks performed by con-
nectionist networks and considerations pertaining to the complexity
and structure of these networks have been shown to play a crucial
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role in determining the adequacy of particular types of networks for
modelling certain aspects of cognitive processing such as the gradual
character of language acquisition or language change (Thomas and
McClelland 2008).

In brief, in the case of each explanatory framework it was possible
to identify a set of local principles or norms which qualifies what
counts as an explanatory structure with respect to the phenomenon
being investigated (e.g., the molecular mechanisms involved in LTP,
the ratio-template features of object recognition, the learning function
characteristic of the process of linguistic inflection). However, the
discussion of the examples from the mechanistic and computational
modelling literature reinforces a further important point, namely that
the explanatory link established between particular cognitive phe-
nomena/patterns and specific mechanistic, computational or connec-
tionist structures is often not graspable all at once or as a whole. This
further suggests that the evaluation of the explanatory value of a par-
ticular model/theory requires taking into consideration a host of fac-
tors which cannot be reduced to a single category, as suggested by the
philosophical models of cognitive explanation analysed in chapters 3

to 6.
In light of these considerations, I claim that the proposed concep-

tion also satisfies the requirement of accounting for the normative
dimension of cognitive explanation. For on this account, there is a
wide variety of principles and norms (ontic and epistemic) which
guide the specific modelling and theorising activities of practising
cognitive scientists. In particular, I have argued that mental content
ascriptions play a crucial role in connecting abstract (computational
or mathematical) explanatory structures to the explananda of cogni-
tive theories. Given these qualifications concerning the normative di-
mension of cognitive explanation, the pluralist conception being put
forward should be clearly distinguished from any reckless relativism.

According to a strong relativist, there is no point in evaluating the
explanatory value of various scientific hypotheses and/or theories
since these will always be relative to a particular set of aims and goals
which will in turn vary from one scientific community to another.
Thus, strong relativism undermines the very idea of using explana-
tory power as a criterion for comparing alternative theories and/or
models of specific cognitive phenomena. In contrast, the form of ex-
planatory pluralism I defend is incompatible with the renouncement
of critical judgment concerning the explanatory value of alternative
scientific theories. I have shown that, both from a principled and
practice-based perspective, it is possible to identify a series of norms
which guide the activities of constructing and evaluating adequate
explanatory models/theories of cognitive phenomena.

What is being put forward, therefore, is not merely a descriptive ac-
count of the different explanatory practices currently encountered in
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the branches of cognitive science, but a normative view of how these
various practices should be understood and evaluated. I propose two
additional motivations in support of this contention. The first relies
on a general consideration concerning the organisation and structure
of cognitive scientific research. Pluralism can be considered both a
‘fact’, which merely reflects the interdisciplinary and multilevel organ-
isation of the disciplines of cognitive science, and a governance princi-
ple of the epistemic activities pursued by cognitive scientists. Accord-
ing to the second interpretation of pluralism, one should promote
the cultivation of multiple systems of scientific knowledge, i.e., theo-
ries, research programmes (Mitchell 2009; Chang 2012). Along these
lines, explanatory pluralism claims that scientific practice should en-
courage and support the development of a plurality of explanatory
strategies in the investigation of cognitive phenomena. That is not to
say that individual researchers or even research communities should
pursue as many explanatory frameworks as possible, but rather that
the field as a whole should promote the concurrent development of
such schemas.

Second, the adoption of explanatory pluralism can be said to have
a number of practical advantages. For instance, by allowing multi-
ple explanatory strategies to be pursued simultaneously, one is bet-
ter insured against unpredictability, and better poised to compensate
for the limitations of each explanatory strategy when applied to the
study of different aspects of cognition. In addition, explanatory plu-
ralism supports the local integration of different explanatory hypothe-
ses pertaining to specific cognitive phenomena, the co-optation of dif-
ferent elements (concepts) across explanatory schemas, and even the
productive competition between explanatory tools and strategies. At
a more general level, pluralism aims to direct the focus of philosoph-
ical analysis towards exploring the strengths and limitations of indi-
vidual explanatory frameworks rather than constructing arguments
for the ascendancy of one framework over another. This, I claim, will
avoid much unproductive polarisation in the field and will perhaps
even promote a more fruitful dialogue between different paradigms
developed to study cognitive phenomena.

More generally, the conception of cognitive explanation being put
forward can be characterised along broadly coherentist lines. This
is because the view highlights the fact that, in constructing scientific
explanations of cognitive phenomena, one starts from what is known
without requiring that the starting points be absolutely secure. Oth-
erwise put, the proposed pluralist view mirrors the practice of con-
structing and justifying the value of explanatory models/theories of
cognition without insisting that such epistemic activities should end
in an unshakable foundation. The account recognises that one builds
explanatory models/theories of particular cognitive capacities start-
ing from the achievements of some actual past group of cognitive
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researchers. However, this coherentist insight is compatible with the
fact that the same system of scientific knowledge can give rise to
many alternative lines of inquiry and explanatory frameworks which
need not always be judged in relation to each other. This type of
pluralism also reinforces the idea that has surfaced before that dif-
ferent explanatory frameworks provide only partial accounts of the
cognitive phenomena being investigated.

Throughout the thesis I have distinguished two senses in which
proposed explanations of cognitive phenomena can be said to be
partial. Using a spatial metaphor, one could say that explanations
are ‘vertically’ partial if they do not provide the most detailed ac-
counts possible of the fundamental feature revealed by the explanans
(e.g., mechanistic sketches, simplified connectionist models), but they
could be completed in light of further hypotheses and evidence, or
by integrating hypotheses proposed at different levels of analysis or
abstraction. More importantly from a pluralist perspective, explana-
tions can also be partial in a ‘horizontal’ sense because they target
certain problems which will be clarified in light of some specific sys-
tem of knowledge. Granting that there is no ultimate and definitive
way of establishing the unique, best system of knowledge, one must
accept that there are multiple potentially explanatory accounts that
target the same type of cognitive phenomena. Sometimes understand-
ing a given class of phenomena is achieved precisely by applying con-
comitantly different models which generate multiple insights about
various aspects of the phenomena being investigated. In light of these
considerations, I would like to discuss next two further consequences
of adopting pluralism as both a descriptively adequate and normative
position with respect to the problem of cognitive explanation.

7.3.2 Explanatory pluralism, unification, and realism

In introducing the problem of cognitive explanation in chapter 2, I have
pointed out that there are two traditional challenges that have been
raised in relation to it: (i) the idea of a unified theory of cognition
and (ii) the realisation problem. In what follows I aim to show how
the thesis of explanatory pluralism fares with respect to these two
challenges. I start by considering the issue of a unified theory of cog-
nition, and then, in connection with the realisation challenge, discuss
briefly the realist commitments of the account of cognitive explana-
tion articulated above. The unification issue arises in the philosophy
of psychology and cognitive science under a variety of guises. As we
have seen, almost all of the theoretical frameworks claim that they
are in principle able to unify/integrate hypotheses proposed within
various sub-branches of cognitive science. This, it has been argued,
reflects the prevalent monist assumption implicit in much cognitive
scientific theorising and philosophising, according to which there is
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only one ‘right’ framework that can deliver the true or correct the-
ory of cognition. Even more sophisticated conceptions of the integra-
tionist ideal of cognitive science (cf. Craver 2007b) fall into the same
monist temptation and argue that there is a unique framework (e.g.,
mechanism) which guarantees the desired integration of the various
hypotheses developed in different disciplines of cognitive science.

Two very general intuitions seem to drive and motivate the search
for a unified theory of cognition. The first is a form of ‘methodolog-
ical optimism’, according to which once you have found a particular
set of concepts and/or experimental tools that help advance your
investigation in a particular empirical domain, you have good rea-
sons to expect that the strategy would work equally well (i.e., will
deliver interesting results) when applied to another aspect/part of
reality. This intuition can motivate in part the search for local unifica-
tions of different hypotheses developed at distinct levels of analysis
but which target the same empirical (cognitive) phenomenon. More-
over, it is compatible with the proposed view, insofar as one of the
advantages of developing multiple concurrent explanatory strategies
is that, when it comes to it, one can co-opt different elements/tools
across explanatory frameworks in order to obtain a new, more unified
explanation of a particular target phenomenon.

Therefore, explanatory pluralism does not deny the possibility of
local unifications, being consistent with the idea that achieving more
unified theories is one of the multiple aims of scientific inquiry in the
cognitive domain. However, it does insist on the separability (logical
independence) of the two epistemic virtues: the unificatory power
and the explanatory power of cognitive theories. Otherwise put, the
version of explanatory pluralism defended above opposes the adop-
tion of unification (or unificatory power of a theory) as a criterion
for determining the explanatory value of a particular cognitive the-
ory/model. In this way, the account avoids the main problems facing
explanatory unification (Friedman 1974; Kitcher 1981, 1989): spurious
and exclusionary unifications. Spurious unifications trivially reduce
the number of explanatory frameworks without any real epistemic
gain, whereas exclusionary unifications amount to thinking that the
success of a particular scientific theory (e.g., string theory, molecular
neurobiology) would leave no worthwhile scientific questions unan-
swered or would rule out the usefulness of other scientific theories.
In contrast, the account put forward entails that both (local) unifi-
cation as well as the compartmentalisation of scientific inquiry can
and should be pursued for their explanatory value in the domain of
cognitive science.

The second intuition supporting the ideal of a unified science of
cognition is that, despite its apparent complexity, the world is ulti-
mately unified, so that our explanations should in the long run cap-
ture the real unified structure of reality. In response, a number of
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authors (e.g., Anderson 1972; Hacking 1983; Dupré 1993; Cartwright
1999; Laughlin and Pines 2000) have argued that ‘the world is diverse
and disorderly and that, correspondingly, the sciences are many and
particular’ (cf. Kitcher 1999, p. 338). A less radical reading of the
main lesson of the various ‘disunity’ arguments is that it is an open
question how much order or unity there is in nature and how we
ought to proceed if what we are after is a completely unified account
of nature. Explanatory pluralism should not be taken to decide the
question of whether the world (or even a smaller part of it, viz. the
cognitive domain) is ultimately unified or not. Rather, the pluralist
thesis is compatible with the idea that we should seek to unify our
scientific theories and hypotheses only so far as the structure of the
world admits. Thus, by pursuing explanatory pluralism one does not
deny that the world participates in determining what counts as ex-
planatory. But given that we cannot know in advance how unified or
complex the world really is, the best bet seems to be to cultivate mul-
tiple concurrent strategies for explaining and understanding different
aspects of it.

There is yet another way to interpret the unificationist intuition.
Rather than starting from an ontological assumption about the ulti-
mate structure of the world, one might derive the purported unity
of the world from a normative picture of scientific knowledge. For
instance, assuming that scientific knowledge can be organised as a
deductive system in which explanations of both general patterns and
particular phenomena can be derived from first principles seems to
support the idea that the world itself is thus organised and unified.
Although the present investigation does not entail any general picture
of scientific knowledge, the conception of explanation formulated in
the previous section provides good reasons for doubting that it is pos-
sible to derive straightforwardly any unified and orderly picture of
the world from our varied epistemic activities. Moreover, the burden
of proof will fall on those who wish to maintain that the unity of the
world can be derived from a general theory of scientific knowledge,
given that the latter type of account does not seem to be forthcoming.

In summary, explanatory pluralism is neutral with respect to the
prospects of developing a unified theory of cognition. The proposed
analysis of the structure of cognitive explanation is perfectly compat-
ible with the fact that (local) theoretical unifications can be achieved
in a variety of ways, sometimes by reducing explanatory schemas
and at other times by combining them in complex explanatory strate-
gies which elucidate different aspects/features of particular cognitive
phenomena. However, explanatory pluralism cannot and need not
establish in advance how much unification will be achieved in the
study of cognitive phenomena. This line of argument reinforces the
idea that within a pluralistic framework, unification can and should
be conceived as a separate aim of scientific inquiry, i.e., one which is
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relatively independent from the explanatory power of scientific theo-
ries/models.

I turn next to the question of scientific realism. Within philosophy
of cognitive science, this issue standardly takes the form of the so-
called realisation problem, according to which cognitive explanations
must refer to real biological mechanisms that support or maintain the
cognitive phenomena being investigated. I have argued that there are
three major concerns with the way in which the realisation problem
has been framed and discussed in the literature. First, the realisa-
tion problem leaves open the question at which level one is supposed
to find the ‘real’ physical mechanisms responsible for the cognitive
phenomena being investigated. The possible candidates include the
cellular level, the molecular, the biochemical level, and even deeper
physical levels. Although one can postulate metaphysically (a priori)
that there must be an ultimate level comprising the real mechanisms
that underlie cognitive phenomena, from the perspective of our epis-
temic practices this solution will not be helpful at all in determining
whether or not our current theories meet the realisation challenge.
For it will still be indeterminate at what level one must pursue the
construction of realistic cognitive explanations. Second, the realisa-
tion problem is actually too poorly-understood to count as the ulti-
mate criterion for evaluating the merits of alternative theories of cog-
nition (cf. Marcus 2001). And third, the realisation problem, at least
in most of its current formulations, seems to imply that there should
be a unique method of establishing when there is a correspondence
between the theoretical posits of a particular cognitive theory/model
and certain real physical entities or processes. The burden of proof
seems to fall on those who wish to maintain that such a method is at-
tainable given that it is not clear how such a method is to be derived.

However, I do not take this general criticism of the realisation prob-
lem to show that ontological principles (or realist commitments to-
wards the existence of certain entities and/or processes) do not play
any role in constructing (good) explanatory models of cognitive phe-
nomena. On the contrary, as illustrated in the previous chapters of
the thesis, ontological principles do play an important role in devel-
oping adequate explanatory frameworks for the study of cognitive
phenomena. Moreover, I maintain that a careful analysis of these
principles shows that there is a close and intricate relationship be-
tween the explanatory value of cognitive theories and their empirical
adequacy.

The moderate form of scientific realism that underlies the proposed
pluralist account of cognitive explanation amounts to claiming that
ontological considerations should not be formulated in abstracto but
must be founded on the experimental and theorising activities of
the relevant scientific communities. As such they can be shown to
guide/constrain the construction and refinement of explanatory mod-
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els of particular cognitive capacities. This remark concludes the in-
vestigation of the consequences of adopting pluralism as the general
framework for analysing the notion of cognitive explanation. In what
follows, I provide some brief motivation for thinking that explanatory
pluralism might represent an appropriate frame of reference for other
areas of scientific investigation as well.

7.4 explanatory pluralism beyond cognitive science

The general account of cognitive explanation put forward in this the-
sis claims that there is no logical structure or abstract category that by
itself is able to define what counts as explanatory. A careful look at
cognitive scientific practices shows that the elements of the explana-
tory complexes used to elucidate particular aspects of cognitive phe-
nomena change, which in turn supports the idea that we do not have
an adequate way of characterising for all times and contexts the ele-
ments of something explanatory. However, this does not imply any
radical skepticism towards the philosophical project of analysing the
structure of cognitive explanation.

Focusing on the notion of explanatory structure, the analyses devel-
oped in chapters 3 to 6 have remained as neutral as possible with re-
spect to any specific metaphysical hypotheses concerning the nature
and structure of the mind. The model provided in this thesis high-
lights two abstract features of cognitive explanations, namely that: (i)
explanatory structures help to elucidate certain aspects of cognitive
phenomena that are deemed to be problematic, and (ii) explanations
create links between different ways of conceptualising certain parts of
the world, thus yielding new insights and understanding of the phe-
nomena being investigated. I have supported this general proposal
in two different ways. First, I have attempted to prove its cogency by
abstract considerations and arguments. Second, I have demonstrated
the applicability of the account by showing that it can be used to clar-
ify certain aspects of the modelling and theorising practices deployed
in different disciplines of cognitive science. Hence, I have defended
explanatory pluralism as a position that is both theoretically sound
and adequate with regard to the field of cognitive science.4

This characterisation of the process of constructing good explana-
tions does not seem to be restricted solely to the cognitive domain. In
fact, given its abstract character, I claim that the explanatory pluralist
thesis might be productively applied in order to evaluate the explana-
tory strategies utilised in other areas of scientific investigation as well.

However, one might object that whilst explanatory pluralism re-
flects in an appropriate way the diversity of schemas used in the do-

4 An even better sense of the general extent of its applicability would require further
investigation of the explanatory frameworks utilised in other disciplines of cognitive
science.
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main of cognitive science, which is a relatively new and immature
area of scientific inquiry, it would fail to be adequate with respect to
a more mature scientific field such as biology, chemistry or physics.
Appeals to the maturity of a science over another are standardly used
to emphasise something about the stability of the results obtained in
a particular field of inquiry as opposed to some other field (cf. Psillos
1999; Chang 2012). As such, they do not necessarily conflict with the
general commitments of explanatory pluralism. For physics might
be said to be mature in virtue of the stability of its results and still
cultivate a wide range of explanatory frameworks which target phe-
nomena at different levels of analysis or resolution (e.g., in thermody-
namics, statistical mechanics, electromagnetism, quantum mechanics,
etc.).

Nor should explanatory pluralism be taken to downplay the signif-
icant dissimilarities between different areas of scientific investigation.
It is perfectly possible that the diversity of explanatory methods and
tools used in cognitive science is, in some respects, due to the im-
maturity of the field. However, the present account does not saddle
any particular field of scientific inquiry with a specific number of ex-
planatory categories. In fact, such a prescription would go against
the dynamic character of the pluralist account advocated in this the-
sis. Furthermore, this version of explanatory pluralism is consistent
with the idea that, despite a range of relevant variations, different
fields of scientific inquiry do sometimes use very similar conceptual
tools to investigate and explain very different or disparate aspects of
the world.

At the most general level, this view receives prima facie support
from the observation of de facto plurality of models, theoretical ap-
proaches, experimental techniques, and explanations utilised in dif-
ferent areas of scientific inquiry. In fact, pluralism has been defended
within general philosophy of science from various perspectives by a
number of authors (e.g., Hacking 1983, 2012; Dupré 1993; Cartwright
1999; Mitchell 2003; Chang 2012). Beyond these motivational remarks,
further support for the idea that explanatory pluralism applies to
other areas of scientific inquiry besides cognitive science would be
gained through a detailed and rigorous analysis of the relevant theo-
retical and experimental practices. However, this sort of analysis falls
outside the scope of this thesis which has focused on defending ex-
planatory pluralism with respect to the domain of cognitive science.
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