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ABSTRACT 

A synthesis of the guaiane skeleton is presented in my thesis. 

Guaianolides and pseudoguaianolides are sesquiterpene lactones and share a sommon 

backbone: the guaiane skeleton. Hundreds of natural products belong to these families of 

compounds. The guaiane skeleton is characterised by a bicyclo[5.3.0]decane ring system 

(perhydroazulene). Among the guaianolide family, dehydroleucodine was chosen as a target 

example. 

 

The first part of the thesis introduces the guaianolide and pseudoguaianolide families. An 

overview of the biological properties and the biosynthesis are reported. First, structures from 

componds belonging to these families are described. Then, the biological properties of the 

dehydroleucodine are reported and, finally, the syntheses of three sesquiterpene lactones are 

shown. 

The second part of the thesis reports my studies towards the synthesis of the guaiane 

skeleton and dehydroleucodine. The key step of the construction of the perhydroazulene ring 

system 3 is an intramolecular ene reaction. The lactone is build through an inversion of the 

alcohol configuration followed by an allylic oxidation 2 and finished by an oxidation of the 

primary alcohol 1. A proposal of the synthesis of dehydroleucodine is briefly explained. 

 

The final part is the experimental part. 
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INTRODUCTION 

Syntheses of bioactive natural products have always been interesting in medicinal research 

for several reasons. First of all, it provides an elucidation and a verification of the structure 

established directly from the extract of the natural source. Modifications of the actual natural 

compound can be performed by controlling the synthesis and allow the development of new 

properties with studies on the structure-activity relationships. Therefore, a synthesis can widen 

the study of the natural molecule by an easier access to homologues. Indeed, changing the 

different moieties around a molecule, coupled with biological studies, allows us a closer 

understanding of the biological mechanism. The starting natural compound can be modified in 

order to increase its actual properties (absorption, side effects…) and activities. 

Towards that aim, the Page group has been involved in the synthesis of the tigliane and 

diaphnane skeletons characterized by tricyclo[9.3.0.02,7]tetradecane cores (Figure 1).1 Among 

those natural compounds are the esters of phorbol, which are very potent co-carcinogens or 

tumour promoters (Figure 1).2 

 

Figure 1 

More recently, studies of another family, the guaianolides and pseudoguaianolides, had 

been started in our laboratory.3 That family is composed of hundreds of active natural 

compounds and characterized by a simpler bicyclo[5.3.0]decane core, for example the guaiane 

skeleton (Figure 1). The approach to that core may allow us to access several natural products. 

The following chapters briefly introduce the reader to the guaianolide and 

pseudoguaianolide families; describe the actual work performed during this Doctoral research; 

and conclude with the experimental data. 
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I ) Guaianolide and pseudoguaianolide families 

1 ) Generalities 

Sesquiterpene lactones constitute a large and diverse group of biologically active 

chemicals that have been identified in several plant species. For example, in the family 

Compositae (commonly known as the sunflower family), they can cause allergic reactions and 

can be toxic for animals if overdosed, particularly in grazing livestock. Under specific 

administration, they can work as drugs for their anti-inflammatory and anticancer effects.4 Plants 

containing sesquiterpene lactones have been used in modern and old civilizations (People from 

developing countries in rural areas like India or Argentina) to treat certain medical problems 

such as diabete, cancer and peptic ulcer.5 Sesquiterpene lactones number thousands of natural 

compounds.6 Among that family, guaianolides and pseudoguaianolides can be found (Figure 2 

and Figure 3). They are characterized by a bicyclo[5.3.0]decane core with a 5-membered ring 

lactone on the 7-membered ring as shown in Figure 2. A 5-membered ring lactone is generally 

fused on the carbons 2 and 3 or 3 and 4 on the 7-membered ring with the single bond carbon-

oxygen being on the carbon 2 or 4. This α-methylene-γ-lactone moiety in the structure has been 

shown to be essential for a significant cytotoxicity, and in most of the cases, the presence of a 

ketone on the 5-membered ring has proved to enhance this bioactivity.7 The ketone has been 

observed on all the different carbons of the 5-membered ring (carbons 8, 9 and 10). Repin and 

thieleanin are representatives of the guaianolide family as is dehydroleucodin. Aromaticin and 

coronopilin are pseudoguaianolides. 

 
Figure 2 
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2 ) Theory for the biosynthesis of guaianolides and pseudoguaianolides 

Nature has provided a very wide diversity of natural compounds. Most of these products 

are thought to have common origins and a very limited number of routes for their 

biosyntheses.8a,8b For example, terpenes and terpenoids in superior organisms find their origin in 

mevalonic acid, while, in lesser organisms, they derive from 1-deoxy-D-xulose-5-phosphate. For 

the sesquiterpene family used by superior organisms, the common origin was found to be either 

in farnesyl pyrophosphate (FPP in Scheme 1) or nerolidyl pyrophosphate.8a Because of their 

interesting biological activities, several fundamental aspects of the biogenesis of sesquiterpenes 

were studied and are now well known (influence of enzymes and genes that codify for them).8c 

The terminal biogenesis of different natural products responsible for the great structural diversity 

of compounds has been rarely studied and there are still many unanswered questions on the 

mechanism responsible for generating such a diversity of molecules. However, one or two steps 

of the biogenesis process can be performed in vitro. 

 

Scheme 18b 

trans,trans-Germacradiene (1 in Scheme 1) is obtained by direct cyclisation of trans,trans-

FPP which undergoes an enzymatic oxidative modification to afford the corresponding lactone 2 

(Scheme 1). From the first biogenetic stage, four different conformations have been isolated: 1, 

heliangolides (3), melampolides (4) and Z,Z-germacranolides (5). From the second stage, for the 
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trans,trans-germacradiene lactone (2), five different types of skeletons are produced. Scheme 2 

shows the ring closure suffered by an epoxide of trans,trans-germacradiene lactone to afford 

guaianolides on the second stage (6 and 7 in Scheme 2) and the methyl migration-originated 

pseudoguaianolides on the third stage (8 in Scheme 2). 

 
Scheme 28b 

3 ) Biological activities 

Guaianolides and pseudoguaianolides are a very wide group of natural products 

comprising more than 200 varieties known to date. The large variety of that family arises from 

additional functionalities on the five-membered ring and the seven-membered ring (Figure 3). 

Those natural compounds have shown a wide range of biological activities such as 

cytotoxicity,7b,7c,9a,9b and high antitumoural,9c contraceptive,9d allergenic,9c,9e antischistosomal,9f 

anthelmintic,9g anti-inflammatory,9h growth plant regulator activities.9i-9k Studies of 

sesquiterpenes against numerous tumour models have shown that the presence of the α-

methylene-γ-lactone was a condition sine qua non for biological activity and that the exocyclic 

double bond was essential for cytotoxicity.7 However, the presence of cyclopentenone appeared 

to produce enhanced cytotoxicity but on its own, that moiety in sesquiterpenes displayed no 

significant activity.7b,7c 
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4 ) Some guaianolides and pseudoguaianolides 

According to the developed pathway in our group,1 we focused on the trans-fused 

perhydroazulene ring systems. A carbon numbering of the guaiane skeleton was shown on 

Figure 2 (p3). We looked for a trans relative stereochemistry at C1 and C7, and an Alder-ene 

cyclisation would give the framework for a lactone between C2 and C3 (numbering on Figure 2). 

The ketone moiety would be originally at C8.  
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Figure 3 
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II ) Dehydroleucodine 

 
Figure 4 

1 ) Generalities  

Dehydroleucodine (Figure 4), a sesquiterpene lactone, was first extracted by Giordano 

from the aerial part of Artemisia Douglasiana Besser (Picture 110).11 Artemisia Douglasiana 

Besser, from the Asteraceae family, can be found in the northern Baja in California and in 

Argentina.12 In the USA, it is commonly called Douglas’ sagewort or mugwort and in Argentina 

it is known as “matico”.  

A hypothesis on its origin was proposed by Keck et al. in 1946.12 Indeed, Artemisia 

Douglasiana Besser, a hexaploid species of inland valleys and moderate altitudes, would found 

O

O

O

H

dehydroleucodine

Picture 1 
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its origin from amphidiploidy (addition of the chromosomes) of the costal diploid species 

Artemisia Suksdorfii Piper and the interior mountain tetraploid Artemisia Ludoviciana Nutt. 

Artemisia Douglasiana Besser combines the essential characters of its presumed parents, and its 

environment is in an intermediate area between their ranges. 

The first report of its occurrence in Argentina was in 1967 by Ariza Espinar. It was 

probably imported into Argentina through Chile.11,12 

In Argentina, Artemisia Douglasiana Besser is popularly known as “matico”, and is used 

in traditional medicine for stomachache, diarrhoea, intestinal infections and wounds. The 

“matico” is generally used in an infusion of the boiled leaves. Such popular use prompted 

pharmaticological studies of that plant and the extraction of the active molecule, 

dehydroleucodine.13 

2 ) Extraction, isolation and characterisation 

Aerial parts of Artemisia Douglasiana Besser were collected and air-dried. This air-dried 

material was extracted with chloroform by soaking it in the solvent at room temperature for 48 

hours (3 times). The combined organic extracts were concentrated, diluted in 95% ethanol and 

extracted with 4% aqueous lead(IV) acetate solution. The aqueous extract was filtered through a 

pad of celite and concentrated to dryness under vacuum. The crude mixture was re-extracted 

with CHCl3 (3 times) and the solvent was evaporated under reduced pressure. The residue was 

purified by flash column chromatography (ethyl acetate/hexane gradient) and afforded 

dehydroleucodine.14 The purification allowed the isolation of 8 g of dehydroleucodine from 1 kg 

of cell culture.5a  

In 2003, Penissi succeeded in elaborating a new efficient method based on HPLC to detect and 

quantify dehydroleucodine present in plant extracts.15 The air-dried material was extracted with 

acetone (6 times) at room temperature, and concentrated under reduced pressure. A stock 

solution was prepared from the extract by its sonication in DMSO at room temperature for 2 min, 

before its injection in HPLC. The free form of dehydroleucodine was found to be usually weak 

chromophore and electrochemically inactive. Therefore, HPLC was combined with postcolumn 

o-phthalaldehyde automatic derivatization to increase the detectability of the natural compound 
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and fluorescence detection using 360-nm excitation and measuring emission at 450 nm. In 

optimal experimental conditions, dehydroleucodine showed a well-defined chromatographic 

peak with a retention time of 7.73 ± 0.04 min (Figure 5). This method allowed 95% recovery of 

dehydroleucodine. 

 

Figure 5: Chromatographic profiles of dehydroleucodine at different concentrations: (A) Low (B) Medium (C) High 

concentrations. 

The extraction and purification of dehydroleucodine permitted its identification: IR νmax /cm-1 

1780, 1695, 1635, 1625; Mp = 131 oC; 1H NMR (CDCl3) δ 8.6 (m), 7.8 (m), 7.7 (d), 7.6 (s), 7.15 

(m), 6.4 (m), 4.53 (d), 3.9 (dq), 3.88 (d).16 !

3 ) Biological activities 

Artemisia Douglasiana Besser or “Matico” is well known in Argentinean traditional 

medicine to exhibit gastric cytoprotective activity and to treat sores in external applications.13 

After further studies, dehydroleucodine was confirmed as gastric cytoprotective agent but it was 

Stability Studies

The stability of the lactone in solution was
tested by standing standard samples at
24 !C over 24 h, 4 !C over 24 h and
)20 !Cover 24 h. Standard solutionswere
obtained by diluting the stock solution
with Milli Q water or 200 mM KH2PO4

and were always prepared freshly
(10 lg mL)1). The effect of pH on DhL
stability was evaluated in DhL standard
solutions (10 lg mL)1). DhL samples
were treated with: 1) 3 N HCl (pH 2) or 2)
1 NNaOH (pH > 10) or 3) 1 NNaOH+
3 N HCl (pH 2). The stability of DhL
during the actual analysis was also evalu-
ated. Aliquots from DhL standard solu-
tions (10 lg mL)1 in 200 mM KH2PO4)
were treated with: 1) 2 M NaOH/0.2 M
boric acid (pH 12.5–12.75) or 2) 2 M
NaOH/0.2 M boric acid + 0.1% o-
phthalaldehyde (OPA) (pH 12.5–12.75) or
3) 2 MNaOH / 0.2 M boric acid + 0.1%
o-phthalaldehyde (OPA) + 3 M H3PO4

(pH 2.25–2.50). Fluorescence was moni-
tored in a fluorescence spectromonitor
using 360-nm excitation and measuring
emission at 450-nm.

Application

To demonstrate the applicability of the
method, extracts from Artemisia dougla-
siana Besser were analyzed. Extracts were
processed as described above.

The absolute recovery of DhL from
plant extracts were estimated by com-
paring the peak height obtained from
injections of standard solutions with
those obtained from injection of plant
extracts spiked with known concentra-
tions of DhL.

Results

Chromatograms

In the selected optimal experimental
conditions, DhL exhibited a well-defined
chromatographic peak with a retention
time of 7.73 ± 0.04 min. Figure 2 shows
the chromatograms obtained by injection
of standards containing a low (A), an
average (B) and a high (C) DhL concen-
tration.

Calibration Curves

The chromatographic signal shows a lin-
ear dependence with the DhL concentra-

tion enabling the use of this signal for
DhL quantification, according to the
following regression equation:

y ¼ ð2305943:4# 160891:09Þ
þ ð103209:88# 5352:3139Þx

r ¼ 0:9988# 0:0004

y : peak area

x : DhL concentration

For quantification the calibration plot
method for DhL concentration bet-
ween 1 mg mL)1 to 0.51 ng mL)1 was
used. The linearity ranged between
100 ng mL)1 to 500 lg mL)1.

The regression parameters of the cal-
ibration curve are shown in Table I.

Assay Validation

The within-day and inter-day assays were
determinedby injecting 6 replicate samples

of DhL standard at a 10 lg mL)1 level for
over 8months and expressed as the relative
standard deviation (R.S.D.), calculated by
the formula R.S.D.(%) ¼ (standard devi-
ation/mean of the peak areas) · 100
(Table I). Results from these experiments
demonstrated that signals were adequately
reproducible to develop analytical appli-
cations.

The limit of detection (LOD) and limit
of quantitation (LOQ) were defined as
the ratio of signal/noise ‡ 3 and ‡ 10,
respectively. These were determined by
analyses of an extensive calibration curve
in the low concentration range (n ¼ 6).
Detection and quantitation limits are
shown in Table I.

Stability Studies

When DhL solutions were exposed to
both Milli Q water or 200 mM KH2PO4

Figure 2. Chromatographic profiles from dehydroleucodine standards. A: 1.50 lg DhL mL)1.
B: 5.20 lg DhL mL)1. C: 11.20 lg DhL mL)1.

Short Communication Chromatographia 2003, 58, November (No. 9/10) 661
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reported as well for its antidiarrhoeal activity and its inhibition of the enzyme P450 aromatase, 

which belongs to the superfamily of cytochrome P450. This terminal enzyme is responsible for 

the conversion of androgens (e.g. testosterone) into oestrogens by oxidation reactions.  

a. Cytoprotective agent against ulcer 

In Argentina, folk medicine uses matico in an infusion of the boiled leaves to treat peptic 

ulcer. Preliminary studies on the aqueous extract of Artemisia Douglasiana Besser showed 

reproducible cytoprotective activity against ulcerogenic agents such as absolute ethanol in rats. 

Those preliminary results led to the extraction and isolation by Giordano et al. of the active 

molecule, a sesquiterpene lactone of the guaianolide family, dehydroleucodine.14 

Giordano et al. reported dehydroleucodine as having a cytoprotective effect. The 

comparison of the natural compound with different sesquiterpene lactones revealed that the 

presence of α-methylene-γ-lactone is essential for the observed antiulcerologenic activity, while 

the β-unsaturation of the ketone is not necessary. However, this β-substituted cyclopentanone 

moiety is a requirement for other activities such as the antitumour, antimicrobial and antifeedant 

properties.14 

Further studies on the mechanism of the antiulcer action of dehydroleucodine have shown 

that oral administration of this drug provokes a gastrointestinal cytoprotective activity,17a and 

prevents gastric lesions induced by various necrotizing agents such as absolute ethanol.17b This 

protective effect can be partially explain by the ability of the natural molecule to stimulate the 

mucus production. It prevents the depletion of endogenous dopamine and the release of serotonin 

(also called 5-hydroxytryptamine), which are both neurotransmitters involved in pathogenesis of 

peptic ulcers.17c  

Mucus plays an important role in the protection of the gastrointestinal mucosa against 

aggressive environment caused by different factors such as stress or acidic and peptic secretions. 

Dehydroleucodine induces an increase of the thickness of that mucus layer, and therefore 

improves the gastrointestinal protection.17c 
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Mast cells can be considered as ‘alarm’ cells because they are part of an early warning 

system. These cells detect the presence of foreign substances in the mucosa and trigger the 

appropriate inflammatory response.17b Dehydroleucodine has been observed to provoke changes 

in mast cell mechanism. It could prevent the release of histamine and serotonin, two valuable 

markers of mast cell activation, and therefore, reduce the intestinal damages induced by necrosis-

inducing agents.17b 

b. Antidiarrhoeal activity 

Diarrhoea is a major health problem. It remains the second leading cause of death among 

children under five years old, just after pneumonia.18 Most of the drugs, which are useful against 

diarrhoea, are not accessible to everyone, especially in developing countries where it is the most 

needed. Indeed, up to 17% of children deaths in the paediatrics ward are due to diarrhoea 

diseases.19 

In Argentina, Matico is used against diarrhoea. The dehydroleucodine antidiarrhoeal 

activity was explored and confirmed with studies on mice and rats.20 It inhibits the intraluminal 

fluid accumulation and small intestinal motility in mice. This effect is mediated, at least in part, 

through the α2-adrenergic system, which influences adenylate cyclase, enzyme involved in the 

outside-in signaling cascade. However, the exact mechanism remains unclear due to a large 

number of parameters to consider such as the behaviour of sensory nerves or hormones. 

Nevertheless, those results allow the conclusion that dehydroleucodine could represent a useful 

tool in relieving gastrointestinal colic and diarrhoea as reported in folk medicine.11 

c. Aromatase inhibitor 

Some sesquiterpenes lactones have been investigated for their action as aromatase 

inhibitors.21 Aromatase is the enzyme that synthesizes oestrogen. Aromatase inhibitors can be 

used as drugs to treat breast cancer and ovarian cancer before the menopause. It may also treat or 

prevent gynaecomastia (widening of male breast tissue) in men. Aromatase inhibitors are used to 

block oestrogen production or its action on receptors, and are therefore used to treat the diseases 

that require oestrogen to grow. 
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The guaianolides 10-epi-8-deoxycumambrin B, dehydroleucodine and ludartin (Figure 6) 

were found to be the most active among the sesquiterpene lactones screened.21 10-epi-8-

Deoxycumambrin B and dehydroleucodine acted as type II ligands to the heme iron (directly 

bind to the iron atom) present in the active site of aromatase cytochrome P450.21 They failed to 

affect the cholesterol side-chain cleavage enzyme activity on human placental mitochondrias, 

which show a better specificity than aminoglutethimide, an anti-steroid drug currently marketed 

by Novartis to treat breast cancer by inhibiting the synthesis of steroids from cholesterol.22 That 

activity led to further structure-activity relationship studies. α-Methylene-γ-lactone affects the 

cytotoxicity, and reduction of the β-unsaturation of the lactone does not affect the anti-aromatase 

activity, but does eliminate the cytotoxic activity of the molecule. Asymmetric reduction of the 

exo double bond of the α-methylene-γ-lactone moiety of 10-epi-8-deoxycumambrin B by sodium 

borohydride gave 11βH,13-dihydro-10-epi-8-deoxycumambrin B, which shows an activity 

similar to aminoglutethimide.22 

 
Figure 6 

Cytochrome P450 aromatase failed to crystallize because of its solubilisation resistance. 

Consequently, several three-dimensional models were suggested, and one of the most complete 

and detailed models of cytochrome P450 aromatase was proposed by Graham-Lorence in 1995.23 

Figure 7 represents a three-dimensional model of the binding of sesquiterpene lactone 10-epi-

deoxycumambrin (white sphere L) or steroid (black sphere S) with cytochrome P450 aromatase.  
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In that model, Blanco et al. proposed the following interactions:22 

- The lactone at C-12 of L coordinate with the K473 (lysine) of the cytochrome P450 

aromatase; 

 

- The hydroxyl group at C-10 is β-oriented and binds the heme iron present in the 

aromatase active site; 

 

- Reduction of the conjugation of the lactone moiety of L produces a more apolar region, 

which fills the hydrophobic pocket predicted for the aromatase active site. 

 
Figure 723 

The aromatase P450 inhibitory action of dehydroleucodine prompted a study of whether or 

not it affects the reproductive tract in males.24 The results suggested that dehydroleucodine does 

not affect the plasma concentration of testosterone and oestradiol (sexual hormones) and does 

not affect testicular activity, whereas it alters several epididymal parameters. The epididymis, a 

narrow, tightly coiled tube, is a part of the male reproductive system. Spermatozoa are achieved 

and stored in the epididymis.24 

protein that has resisted structure-function analysis by
means of X-ray crystallographic methods because of its resis-
tance to solubilization, and hence, to crystallization. For
these reasons, several three-dimensional models have been
proposed. These models were based on other cytochrome
P450s whose structures have been resolved. One of the most
complete and detailed three-dimensional models of aro-
matase P450 was proposed by Graham-Lorence et al. (1995).
This model was used in our previous work to suggest the
possible interactions between the P450 aromatase active site
and the SQL. Based on this model, the three-dimensional
computer-generated structures of the inhibitor (compound 2)
and substrate (testosterone), and our present data, we sug-
gest that: 1) the carbonyl group at C-12 of compound 2 would
interact with the K473 (lysine) residue in the aromatase
active site analogously to the substrate testosterone; 2) the
C-10 hydroxyl group in ! orientation would coordinate with
the heme iron present in the aromatase active site; and 3) the
reduction of the "-methylene group produces a more apolar
region in the inhibitor that could be better positioned in the
extra hydrophobic pocket predicted for the aromatase active
site (Fig. 7). This pocket is located below the "-face of the
steroidal substrate corresponding to the C-4, C-6, and C-7
positions of its skeleton and can accommodate bulky sub-
stituents (Laughton et al., 1993; Graham-Lorence et al.,
1995; Liu et al., 1995; Kao et al., 1996). This could explain the
minor increase in the inhibitory potency of compound 2 (Ki !
1.5 #M) in comparison with compound 1 (Ki ! 4.0 #M) and
the correlation with the spectral binding constants obtained
for both inhibitors (Ks app. 1 ! 29 #M, Ks app. 2 ! 16 #M). The
loss of the cytotoxic activity observed for compound 2 due to
the reduction of the "-methylene exocyclic group dictated
that we test its potential aromatase inhibitory activity in a
cellular model. According to the results obtained with the
JEG-3 choriocarcinoma cell line, the aromatase inhibitory
activity of compound 2 is significant and similar to the drug

aminoglutethimide, the latter being in agreement with that
reported by Krekels et al. (1991). Compound 2 inhibited
aromatase activity in immature female mice stimulated with
androstenedione. These finding are potentially interesting, but
need further confirmation in other cellular and animal models
suitable for the study of aromatase inhibitors (Dukes, 1997).

SQLs constitute a large group of terpenoids with many
biological activities mediated by ",!-unsaturated carbonyl
structures, such as a "-methylene-$-lactone or an ",!-unsub-
stituted cyclopentenone. We have demonstrated that the
"-methylene-$-lactone group is not necessarily required for
aromatase inhibition and that aromatase inhibition can be
maintained without causing cytotoxicity. The elimination of
this highly reactive and nonspecific chemical moiety from the
original compound would probably improve the general phar-
macological profile of this novel aromatase inhibitor. These
findings open new avenues for future modifications designed
to enhance the activity of these active natural compounds.
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d. Anti-obesity potential 

Obesity is a worldwide health problem, which has exploded over the last decades. The 

World Health Organisation (WHO) considered obesity as the fifth leading risk for global death 

(2008).25 On a global scale, it has reached epidemic proportions with more than 1.4 billion adults 

overweight and up to 500 million of them clinically considered as obese. Overall, more than one 

in ten of the world’s adult population is obese.25 

Numerous studies have tried to assess the impact of obesity on health. Results have shown 

than it can be associated with multiple pathology especially diabetes, hypertension, osteoarthritis 

and heart disease.26 

The main way to treat overweight patients remains a strict diet and physical activities if 

possible.25 Until 2010, obesity was treated by two different types of drugs, in addition to diets 

and physical exercises.26 The first one inhibits pancreatic lipase, which reduces intestinal fat 

absorption. The active chemical is tetrahydrolipstatin also known as orlistat and marketed as 

Xenical® or Alli® (Figure 8). The major side effects are steatorrhea (excess of fat in faeces), 

incontinence, abnormal flatulence and bowel movements. A reduced calory diet, less than 15 

grams of fat per meal, is recommended during the treatment and should minimize those effects. 

The other one, marketed from 1997, is an anorectic or appetite suppressant. The molecule is 

called sibutramine and commercialized under the name of Reductil® in Europe (Figure 8). 

Sibutramine was withdrawn from the market in 2010, in Europe and most other countries, 

because of important cardiovascular side effects (increased risks of heart attacks and strokes). 
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Currently, the only chemical approved by the FDA (US Food and Drug Adminitration) and 

the European Medicines Agency is orlistat. Because of the adverse side effects, its prescription is 

recommended for obesity only when the drug benefits outweigh the risks. 

The high costs and the hazardous side effects of this drug for obesity treatment prompted 

research to explore new potential drugs and especially natural products, oriented through new 

mechanisms of action against obesity.26 

The adipogenesis is the process through which adipocytes, cells responsible for the 

accumulation of fat, and thus, the possible development of obesity, are formed. This process is 

well understood and involves several cell-differentiation steps. Inhibition of this differentiation 

process may prevent or treat obesity. Studies have demonstrated that dehydroleucodine 

significantly blocked it by a dramatic downregulation of the expression of adipogenic 

transcription factors.27 Adipocytes, also called lipocytes or fat cells, function as energy storage 

(fat storage).28 Inhibition of the preadipocyte differentiation process should lead to a decrease of 

adipocyte quantity, and therefore the body should store less fat. 

A significant decrease of lipid droplet accumulation was observed upon addition of 

dehydroleucodine to the medium.27 The mechanism of action of this drug is not clearly 

determined, but an attenuation of the production of transcriptional factors, PPARγ and C-EBPα, 

during adipogenesis has been observed. The inhibition is dose-dependent, but at too high 

concentration (>10 µM), dehydroleucodine causes cell toxicity. Studies have shown the 

importance of the α-methylene-γ-lactone for the preadipocyte differentiation even though 

dehydro-dehydroleucodine (reduction of the conjugated double bond on the lactone moiety) has 

also shown blockade of the formation of adipocytes. However, the dehydroleucodine derivative 

exhibited a 10-fold decrease in this effect. The results suggested that only a specific epimer 

might be responsible for that activity. 

Dehydroleucodine inhibition on adipocyte differentiation suggests that it can be considered 

as potential therapeutic treatment for obesity or as obesity prevention. With regards to those 

results, the scope of obesity drugs may be enlarged to other natural products that inhibit 

adipocyte differentiation.  
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III ) Synthetic approaches towards the bicyclo[5.3.0]decane core 

The wide range of biological activities have motivated synthetic research on the building 

of the bicyclo[5.3.0]decane skeleton (Figure 9) and many routes towards this core were 

developed.29 It is a common framework to several natural products. In the sesquiterpene group, 

eight different subgroups feature this core. 

A plethora of approaches have been published to access the bicyclic terpene ring system, 

often even before completion of the total synthesis. From all those studies, three general 

approaches can be pointed out. The first one is a synthesis based on strategic disconnection 

identifying a linear commercial chemical, followed by a cyclisation (in 1 or 2 times).29b,30 The 

second method is to build around a pre-existing ring, 5- or 7-membered ring, functionalized 

and/or chiral if necessary.29e,31 The last method is rearrangement from another ring system.31f,32 

  
Figure 9 

Figure 3 shows examples of molecules from the guaianolide and pseudoguaianolide 

families. More than 200 natural compounds from those families have been described to date. 

Because of the wide scope of biological activities, guaianolides and pseudoguaianolides have 

aroused great interest from biologists, analytical chemists and synthetic chemists. 
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Syntheses of natural compounds allow biologists better understanding of the studies of 

biomolecular mechanisms of pathologies and of structure-activity relationship (SAR). Moreover, 

natural molecules provide lead structures for drug research and their synthesis allows 

modifications of these structures in order to increase biological properties or to avoid any 

toxicity or undesirable side effects. Besides, configurations of natural compounds are not always 

clearly established, and thus, their synthesis helps with the confirmation of that stereochemistry. 

In the following section some methodologies already used to synthesize guaianolides are 

briefly explored. Syntheses of a pseudoguaianolide (Scheme 4), a guaianolide (Scheme 6 and 

Scheme 7) and the first total synthesis of the phorbol (Scheme 8 and Scheme 9) are discussed. 

1 ) Building around a pre-existing ring 

a. Overview 

Starting from a 5- or 7-membered ring, different cyclisation key steps have been studied. 

Tanis used an electrophilic substitution to close the 7-membered to obtain the 5,7-fused ring 

system with control of the fusion stereochemistry (equation 1 Scheme 3).31 Reiser suggested a 

ring closing metathesis (RCM) to close the 7-membered ring and obtained a 5,7,5-fused ring 

system (equation 2 Scheme 3).40 Many other groups used the RCM approach for the 5,7-fused 

ring system building.29g,31d,31g, Several groups worked on the synthesis of englerin, some of them 

choosing an enolate addition for the cyclisation method. With a different synthon, Nicolaou31h 

(equation 3 Scheme 3) and Lin31i used an enolate addition to cyclise the 5-membered ring, and 

Maier followed a similar key step to create the ring junction from a 10-membered ring.31j Deprès 

published an example of cycloaddition, followed by a ring expansion as the key steps (equation 4 

Scheme 3) in the synthesis of geigerin.31f Majetich synthesized (±)-graveolide and 

(±)-aromaticin:31c the perhydroazulene framework was obtained after Michael cyclisation 

through an allyl silane-based annelation (equation 5 Scheme 3). An elegant hetero-Diels-Alder 

reaction was a key step in the fusion of the 5- and 7-membered rings (equation 6 Scheme 3) in 

the synthesis of (±)-dehydrocostus lactone and (±)-estafiatin by Rigby.31a The methodology we 

used (vide infra), an Alder ene cyclisation to obtain the 7-membered ring, was described in 1993 

by Kuroda.29e 
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Scheme 3 

b. Example: synthesis of damsin by Money 

In 1979, Schlessinger reported a synthesis of damsin from a hindrane ring system.33 Money 

described another approach to afford damsin in 1996 (Scheme 4).2,334 He used a different 

pathway to prepare the synthon 21 from (−)-camphor. Then, he employed Schlessinger’s 

methodology from 21 to damsin 22.33 

The synthesis started from the commercially available (−)-camphor 9. α-Bromination to 

the ketone was first performed, then two further brominations were carried out, and finally the 

bromine α to the ketone was removed using a metal reduction to give 10. An efficient cleavage 

in basic conditions provided the monocyclic hydroxy-ester 11. The primary alcohol was 

protected using a silyl group to give 12. An oxidative cleavage of the carbon-carbon double bond 

afforded the ketone, which was protected with ethylene glycol in 13. The ester 13 underwent a 

stereoselective alkylation with allyl bromide, providing a new ester 14 as a single 
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diastereoisomer in 95% yield. The ester 14 was reduced, and the resulting alcohol 15 was 

converted to the mesylate 16. The mesylate group was displaced by a hydride to yield the methyl 

moiety. The carbon-carbon double bond was converted to the ketone 17 using Wacker-Tsuji 

oxidation. The primary alcohol was deprotected and oxidised using Swern conditions to give the 

aldehyde 18. An aldol addition, followed by a dehydration, provided the α,β-unsaturated ketone 

19. Finally, the ketone was unmasked (20), and a stereoselective reduction was performed to 

afford the desired synthon 21 en route to damsin 22. 

 
Scheme 4 

Reagents and conditions: (a) Br2, HOAc, 80 °C [80%] (b) Br2, ClSO3H, 5h [75%] (c) Br2, ClSO3H, 5 days (d) 

Zn, HOAc:Et2O (1:1), 0 °C [60% over 2 steps] (e) KOH, DMSO-H2O (9:1), 90 °C, [85%] (f) K2CO3, DMF, 

CH3I [94%] (g) TBDPSCl, imidazole, DMF [95%](h) O3, CH2Cl2:MeOH (1:1), −78 °C; Me2S, −78 °C→RT 

[92%] (i) (CH2OH)2, p-TsOH, C6H6, reflux [92%] (j) LDA, THF, −78 °C; H2C=CHCH2Br, −78 °C→RT 

[95%] (k) LiAlH4, THF, 0 °C [96%] (l) MsCl, DMAP, Et3N, CH2Cl2, 0 °C [97%] (m) LiEt3BH, THF; 3M 

NaOH, 30% H2O2 [88%] (n) PdCl2, CuCl, O2, DMF:H2O (9:1) [91%] (o) TBAF, THF, reflux [90%] (p) 

(COCl)2, DMSO, CH2Cl2, −78 °C→RT [95%] (q) 10% KOH, MeOH, 12 days; MsCl, DMAP, Et3N,CH2Cl2, 0 

°C; DBU [70%] (r) 1M HCl, Me2CO [90%] (s) NaBH4, EtOH, −10 °C [87%]. 

The overall yield to the synthon 21, following the route described by Money, was 8% over 

17 steps.34 Damsin was synthesized in 1.6% overall yield following this route. 
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2 ) Rearrangement of other ring systems 

a. Overview 

Ring rearrangements is another way to access the bicyclo[5.3.0]decane framework. Several 

reactions can result in rearrangement of the azulene ring system. One of the first rearrangement 

methods used was the solvolysis of mesylate (equation (7) Scheme 5).32a,32b The 5,7-fused ring 

system can also be accessed through free radical chemistry by ring extension (equation (8) 

Scheme 5)32c or transannular cyclisation (equation (9) Scheme 5). 32d,32e Ring extension through 

addition (equation (4) Scheme 3),31f thermal,32h photochemical (equation (10) Scheme 5)32f and 

basic or acidic (equation (11) Scheme 5)32g conditions were also used to provide access to the 

azulenic ring system. The bicyclo[5.3.0]decane ring system can also be reached through based-

induced rearrangement of perhydronaphthalenes (equation (12) Scheme 5).  
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b. Example: synthesis of arborescin by Ando 

In 1982, Ando reported the synthesis of arborescin from α-santonin 23.35 The synthesis 

started with the alkene reduction of 23 to afford the saturated ketone 24. The carbonyl compound 

24 was α-brominated, and its dehydrobromination gave the α,β-unsaturated ketone 26. The 

Meerwein-Ponndorf-Verley reduction of 26 allowed the formation of a mixture of allylic 

alcohols 27, which underwent an allylic rearrangement under acidic conditions to afford the 

desired allyl alcohol 28. Oxidation to the unsaturated ketone 29 and subsequent ethylene glycol 

protection were performed, enabling a rearrangement of the double bond to a more stable 

trisubstituted one 30. The carbon-carbon double bond was epoxidised stereoselectively, followed 

by a regioselective opening to give the allyl alcohol 32 with an exocyclic carbon-carbon double 

bond. A catalytic hydrogenation of that carbon-carbon double bond provided the methyl group as 

a single isomer in 33. The secondary alcohol was protected using benzoyl group, and the ketone 

was unmasked and subsequently reduced to the alcohol as a 2:1 mixture 36:35 in favour of the 

desired isomer 36. After mesylation, a solvolytic rearrangement gave a 2:1 mixture of 

endo:exocyclic olefins 38:39. This mixture was epoxidised to afford a new mixture of three 

epoxides 40:41:42 and the exocyclic double bond compound 39 from the starting material (a 

total of 4 separable products). The desired β-epoxide 40 was separated: its secondary alcohol 

was deprotected to give 42, converted to 43 and finally dehydrated to afford arborescin 45. The 

overall yield for this synthesis, described by Ando, was 0.2% over 21 steps. 

 
Scheme 6 

Reagents and conditions: (a) H2, Pd/SrCO3, EA [34%] (b) Br2, CHCl3, 0 °C [63%] (c) LiBr, Li2CO3, DMF, 

120 °C [85%] (d) Al(Oi-Pr)3, i-PrOH, reflux; 2M HCl, 0 °C [99%] (e) 2M HCl : THF = 3:2, reflux [79%]  

(f) CrO3.2pyr., CH2Cl2, 0 °C [89%] (g-h) p-TsOH, ethylene glycol, toluene, reflux, Dean-Stark [67%]. 
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Scheme 7 

Reagents and conditions: (i) m-CPBA, CH2Cl2, RT for 5 days [100%] (j) Al(Oi-Pr)3, toluene, reflux; 2M HCl 

[99%] (k) H2, PtO2/C, EA [99%] (l) BzCl, pyr. [100%] (m) 50% aqueous AcOH, reflux [75%] (n) Zn(BH3)2, 

DME [66% of cis reduced product], the trans reduced product [33%] was oxidised and reduced again (o) 

oxidation of trans reduced product : CrO3.pyr., CH2Cl2 [94%] (p) only cis reduced product used, MsCl, pyr. 

[91%] (q) KOAc, AcOH, reflux [mixture of endo:exo = 2:1, 72%] (r) mixture of endo-exo product, m-CPBA, 

CH2Cl2, −1 °C [recovery of exoalkene 40%, respectively 22% of β-epoxide (desired compound), 29% of α-

epoxide and 3% of exo-epoxide] (s) performed on the β-epoxide, 1M aqueous K2CO3:MeOH = 1:1, reflux 

[76%] (t) MsCl, pyr. [84%] (u) Li2CO3, LiBr, DMF, 120 °C [49%]. 
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3 ) Synthesis of phorbol by Wender 

In 1989, Wender reported the first synthesis of phorbol in a racemic form.36a In 1997, he 

reported the first formal asymmetric synthesis of phorbol.36b Several chemists, such as Dauben,37 

Harwood,38 Little,39 McMills,40 Rigby,41 studied also the synthesis of phorbol. 

The strategy of Wender started from furfuryl alcohol 46. The free alcohol was protected 

into 47 and a formylation of the corresponding furyl lithium afforded 48. An aldol reaction 

between the aldehyde 48 and the N-propionyl oxazolidinone 49 was achieved in high selectivity 

(98% de). The oxazalidinone was transformed into a N,O-dimethylhydroxylamine to give the 

Weinreb amide 51 and the 3-butenyl magnesium bromide was added to afford the desired 

hydroxy-ketone 52. The ketone was reduced into 53 with high diastereoselectivity (30.6:1). In 

one pot, the more reactive furfuryl alcohol was protected with a TMS group and the other 

alcohol was acetylated in situ, while the first one was deprotected to afford 54. The conversion 

of the furan moiety into a dihydropyran moiety, an Achmatowicz reaction, was performed and 

followed by the protection of the crude hydroxypiranone with an acetate group to give 55. A 

subsequent intramolecular oxidopyrylium-alkene cycloaddition occurred, leading to the desired 

cycloadduct 56 as a single diastereoisomer. The carbon-carbon double bond of 56 was reduced to 

afford a saturated ketone, which underwent a Wittig olefination and allylic oxygenation to 

produce the Michael precursor 57. Conjugate addition was performed, leading to the desired 

ketone 58 as a single diastereoisomer. Lithium phenylacetylide was then added to the carbonyl 

group and the resulting hydroxide was quenched with TMSCl to lead to the β-adduct 59 only. An 

enyne cyclisation mediated by zircon(II) afforded the 5-membered ring with the acetate 

deprotection in 60. The free alcohol was then oxidised to form the ketone 61, which was 

deprotonated under kinetic control to allow the addition of phenyl sulfenyl chloride to the least 

hindered α-carbon. The sulfur was oxidised and thermal elimination of the resulting sulfoxide 

afforded the acetoxy enone, which underwent a Corey-Chaykovsky reaction of 

diphenylisopropylsulfonium ylide occurring on the β-face stereoselectively, providing the 

desired tigliane 62. Selective deprotection of the primary silyl ether and ozonolysis of the 

carbon-carbon double bond provided the diketone 64. Triflic anhydride was added to activate the 

free alcohol, and cleavage of the ether bridge along with the elimination of the triflate afforded 

the exocyclic carbon-carbon double bond in 65. An allylic oxidation was performed by an 

addition-elimination sequence, leading to the desired allylic acetate 68. The six-membered ring 
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ketone was then selectively and stereoselectively reduced to the β-alcohol, which was protected 

as the acetate 70. Final deprotection of the silyl ether and of acetates yielded phorbol 71.  

The overall yield of this route was 0.1% over 32 steps. 

 
Scheme 8 

Reagents and conditions: (a) TBDMSCl, imidazole, DMF [99%] (b) n-BuLi, THF; DMF; H3O+ [75%] (c) 

Bu2BOTf, Et3N, CH2Cl2, −78 °C→0 °C [98% d.e., 96% yield] (d) Me3Al, Me(MeO)NH-HCl, CH2Cl2 [86%] (e) 

3-butenylMgBr, THF, 60 °C [82%] (f) DIBAL, THF, −78 °C [85%, 30.6/1] (g) TMS-imidazole, THF; AcCl, 

pyr., DMAP; citric acid, MeOH [82%] (h) VO(acac)2, t-BuOOH, CH2Cl2; Ac2O, pyr., DMAP [88%, 2/1] (i) 

DBU, CH3CN [79%, one diastereoisomer] (j) H2, Pd/C, EA [95%] (k) KOt-Bu, Ph3PCH3Br, toluene [79%] (l) 

SeO2, t-BuOOH, CH2Cl2; MnO2, CH2Cl2 [89%] (m) (CH2CH)2Cu(CN)Li2, Et2O [83%, one diastereoisomer] 

(n) PhCCLi, LiBr, THF; HMPA, TMSCl [75%] (o) Cp2ZrCl2, n-BuLi, THF; HOAc [93%] (p) PCC, NaOAc, 

CH2Cl2 [94%] (q) LDA, THF, −78 °C; TMSCl; PhSCl, CH2Cl2, −78 °C [96%] (r) Pb(OAc)4, benzene [84%] 

(s) m-CPBA, CH2Cl2, −20 °C (t) P(OEt)3, benzene [88% on 2 steps] (u) Ph2SC(CH3)2, CH2Cl2, THF, −78 °C 

[80%] (v) 49% HF, CH3CN, 0 °C [96%] (w) O3, CH2Cl2/MeOH, −78 °C; (NH2)2CS [89%]. 
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Scheme 9 

Reagents and conditions: (a) Tf2O, pyr., CH2Cl2, 0 °C (b) n-Bu4NI, CH3CN [67% on 2 steps] (c) Zn, EtOH,  

80 °C [61%] (d) SeO2, t-BuOOH, CH2Cl2 [54%] (e) SOCl2, pyr. Et2O, 0 °C (f) KOAc, 18-Crown-6, AgOAc, 

CH3CN [71% on 2 steps] (g) NaBH(OAc)3, THF [92%] (h) Ac2O, DMAP, pyr., CH2Cl2 [89%] (i) MSTFA, 

DMAP DABCO, CH3CN, 100 °C; NBS, THF [63%] (j) Li2CO3, LiBr, DMF, 130 °C [56%] (k) TBAF, THF, 

−20 °C [88%] (l) Ba(OH)2, MeOH [62%]. 

IV ) Synthetic studies of dehydroleucodine within the Page group 

1 ) Retrosynthesis 

To achieve the synthesis of the guainolide skeleton, we were interested in developing 

further research work previously performed within the group.1,3 The retrosynthetic proposal for 

this project is shown below in Scheme 10. 
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The carbonyl ene precursor 75 was obtained from cyclopentenone 76 through four key 

steps. The 1,4-addition onto cyclopentenone was followed by a conjugated aldol addition 

affording a trans-fused ring system. An intramolecular Alder ene reaction on 75 gave the 

perhydroazulene skeleton 74, a bicyclo[5.3.0]decane framework with a cis-configuration. The α-

methylene-γ-lactone was required to be trans-fused to the 7-membered ring, so an inversion of 

configuration should be performed before any oxidation and lactonisation into 73. The ketone 73 

can be oxidised into an α,β-unsaturated compound and oxidative 1,4-addition will afford the 

desired compound 72: dehydroleucodine. 

2 ) Key steps 

a. Conjugate addition 

The sequence of conjugate addition followed by conjugate aldol addition was developed 

within the group and gave access after two steps to a highly functionalised material that can 

undergo several transformations. A Michael addition of vinyl Grignard reagent onto 

cyclopentenone 76, quenched in situ with trimethyl silyl chloride afforded 77. A Mukaiyama 

aldol reaction of a Michael acceptor onto 77 afforded 78. A range of Michael acceptors can be 

used; the criteria are that C9 needs to be functionalised and the buiding blocks R need to be 

removable. 

 
Scheme 11 

b. Decarboxylation 

The diester moiety incorporated in the second step as a building block could be removed at 

any point during the synthesis. Initially, we proposed to attempt the decarboxylation immediately 

O OTMS O

99
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after the addition of prenyl bromide at C9 as the malonyl moiety was only required for the 

alkylation reaction: from the protected diol 79, our target was the compound 80. 

 
Scheme 12 

c. Alder-ene reaction 

In a previous study, different cyclisation methodologies were attempted. The Diels-Alder 

reaction approach was unsuccessful, whereas initial investigations regarding the carbonyl-ene 

reaction yielded promising results, particularly when the Lewis acids BF3.OEt2 and Yb(OTf)3 

were used.3 The reaction conditions were screened and optimized in order to obtain the racemic 

carbonyl-ene products 82 and 83 in different diastereoisomeric ratios (Scheme 13). The products 

obtained have a trans-fused ring configuration and, the substituents at the C2 and C3 positions 

have a cis relative configuration.  

 
Scheme 13 

d. Configuration inversion 

The lactone moiety of dehydroleucodine is trans-fused to the seven-membered ring, so the 

configuration of the carbon centre bearing the alcohol moiety needed to be inverted to obtain the 

trans relative configuration between C2 and C3. 
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Scheme 14 

e. allylic oxidation 

The lactone moiety would be obtained through an allylic oxidation followed by oxidation 

of the resulting primary alcohol to the corresponding carboxylic acid and then lactonisation. 

 
Scheme 15 
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RESULTS AND DISCUSSION 

This report covers the author’s work towards the synthesis of the guaiane skeleton. The 

proposed route was inspired by the research previously performed within the group (Scheme 1).1 

The reactions in Scheme 1 show the previous work (R = CO2Et) and they have been optimised 

since. 

 

Scheme 1 

Our studies were directed towards the synthesis of the tricyclic skeleton of guaianolides 

such as dehydroleucodine (Figure 1). 
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Figure 1 

Therefore, our studies were directed towards the buiding of the lactone moiety, which was 

trans-fused to the seven-membered ring. The configuration at C2 needed to be inverted, and the 

five-membered ring to be closed (Scheme 2). 

 

Scheme 2 

The diester moiety 87 was used as a building block for the formation of 79, but was not 

present in dehydroleucodine, and therefore needed to be removed (Scheme 3). The 

decarboxylation of the diester was studied, and syntheses using other methylene malonate moiety 

were attempted. 
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Scheme 3 

In this second chapter, the key steps of the synthesis are discussed and the author’s results 

presented. 

I ) Michael addition 

1 ) History 

1,4-Addition, also known as conjugate addition,2 was first observed by T. Komnenos in 

1883 as a side product reaction3 and described by A. Michael in 1887.4 

Arthur Michael was an American chemist, born in Buffalo (1855), New York, 
USA.5 He could not attend Harvard University because of illness and decided 
later to travel around Europe. During this period, he studied in the laboratory 
of A. W. von Hofmann then R. Bunsen in Germany, C. A. Wurtz in France and D. 
Mendeleïev in Russia. Returning to the United States, A. Michael was appointed 
to the chair of Chemistry at Tufts College (1882) where he met and married 
one of his students (1888) Helen Abbott Michael (known for her work on 
chemical properties of plants). He worked in his self-constructed laboratory 
with his wife in the Isle of Wight in England (1889), came back to Tufts 
College (1894) and became Professor of Chemistry at Harvard University (1912). 
He died in 1942. Even though Arthur Michael was working with some of the 
greatest chemists of his time and got excellent positions, he never obtained 
any university degrees. 
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Scheme 4 

The Michael addition was first reported as the addition of an enolate to an α,β-unsaturated 

carbonyl compound at the β-carbon (Equation 1 Scheme 4). More generally, it is referred as the 

addition of a nucleophile to an activated alkene or alkyne (Equation 2 Scheme 4). The Michael 

donor (nucleophile) can be derived from the deprotonation of an activated C-H bond such as in α 

position of nitrile and carbonyl (aldehyde, ketone, malonate) compounds, or from organometallic 

compounds, deprotonated heteroatoms, etc. The Michael acceptor is an α,β-unsaturated electron 

withdrawing group. The unsaturation can be an alkene or an alkyne and the electron withdrawing 

group, an ester, an amide, a nitro compound, etc.6 This reaction is a very convenient process for 

the creation of C-C bond and is commonly used in total syntheses. 

In this section, the conjugate addition of organometallic nucleophiles is discussed, in 

particular the copper-catalysed conjugate addition of Grignard reagents.  

2 ) Conjugate addition of organometallic compounds 

1,4-Addition can be promoted by principally three parameters: 

(1) Deactivation towards 1,2-addition; 

(2) Steric hindrance and reaction conditions; 

(3) Oriented by coordination. 

OMe

O COCH3

CO2EtNa
OMe

O

H3COC
CO2Et

(1)

R2

R1 EWG

R3
or

R1 EWG

Nu

Nu EWG

R3

R1 R2

or

Nu EWG
R1

(2)

R1, R2, R3 = H, alkyl, aryl
EWG = aldehyde, ketone, ester, amide, nitrile, nitro, sulfoxide, sulfone, phosphine, phosphonate, heteroaryl



Studies towards the Synthesis of Guaianolide and Pseudoguaianolide Skeleton. 

 
39 

a. Deactivation of 1,2-addition 

→ Towards 1,4-addition 

1,2-Addition and 1,4-addition are two different types of nucleophilic addition. 1,2-

Addition is the common pathway and generally occurs on carbonyls. Simple alkenes are not 

reactive but can be activated with a carbonyl group whose nature can favour one pathway over 

the over. Generally, highly activated carbonyls react in 1,2-additions, whereas less reactive 

carbonyls mainly afford 1,4-additions. Therefore, the compounds containing carbonyl groups 

and reacting in 1,4-additions follow the order below: 

Amides < esters < nitriles < ketones << aldehydes.2 

1,4-addition                                                  1,2-addition 

For example, addition of organolithiums to α,β-unsaturated aldehydes led only to 1,2-

additions, whereas addition of the same organolithiums to α,β-unsaturated ketones or nitriles 

could give both 1,2- and 1,4-additions. 

  

Scheme 5 

In 1941, early studies from Kharasch and Tawney showed that addition of a catalytic 

amount of metallic halide could change the result of the reaction (Scheme 6).7 They reported that 

the addition of methylmagnesium bromide to isophorone with a catalytic amount of copper(I) 

chloride (1%) afforded principally the 1,4-addition product (82.5%). Twenty years later, the 

reactive species was demonstrated to be the organocopper.8 In 1941, a screening study found that 

several metals (R3Al, R2Cd, R2Zn) provide exclusively 1,4-addition adducts.9 Since those 

studies, conjugate addition of organometallic compounds has been extensively used to create 

carbon-carbon σ bonds. 
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Scheme 6 

→ Reaction conditions 

1,4-Addition usually generates kinetic products, while 1,2-addition forms thermodynamic 

products. Kinetic conditions such as higher temperatures and excess of organometallic reagent 

increase the rate of formation of the 1,4-adducts over the 1,2-adducts.10 The use of more polar or 

more basic solvents and the addition of polar co-solvent can also favour the Michael addition. 

Minimizing the counterion effect promotes the formation of solvent-separated ion pairs, so an 

electron transfer effect takes place, thus promoting 1,4-additions.11 

  

Scheme 7 
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→ HSAB theory 

The HSAB theory, which means Hard and Soft Acid and Base, is used to explain the 

stability of compounds, reaction mechanisms and pathways where other theories failed to give 

explanations. The notion of acid/base refers to the Lewis acid/base properties and not the 

Brönsted acid/base ones. The soft/hard properties are not to be confused with strong/weak 

properties of acids and bases. Pearson introduced the theory from 1960 to unify the reactions of 

organic and inorganic chemistry.12 

 

Figure 2 

The principle of the theory is that soft acids or sites react faster and form stronger bonds 

with soft bases or sites, and hard acids or sites react faster and form stronger bonds with hard 

bases or sites.13 Hard acids and bases are characterized by a small atomic radius, high 

electronegativity or positivity and difficulty of oxidation or reduction. Soft acids and bases are 

characterized by a large radius, low electronegativity or positivity, and ready oxidation or 

reduction. The HSAB theory is especially employed to explain organometallic reactions such as 

metathesis reactions. 

In the case of 1,4-addition, the chemoselectivity can be partially explained by HSAB 

theory. According to this theory, lithium cation is a stronger acid than magnesium cation, which 

is stronger than copper one (soft acid); an α,β-unsaturated carbonyl compound is considered as a 

hard site (base) at C-1 position (carbonyl carbon) and a soft site (base) at C-3. Experiments 

proved that hard acids (organolithium or magnesium species) mainly attack at the hard base sites 

(C-1), while the soft acids (organocopper species) attack preferentially the soft base sites (C-3). 

Examples of hard acids are H+, Li+, Na+, K+, Mg2+, Ti4+; 

Examples of soft acids are Pt2+, Pd2+, Ag+, Cu+, Au+. 

O
RMgBr = Hard carbon nucleophile

R2CuLi = Soft carbon nucleophile

Hard electrophile site

Soft electrophile site
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b. Steric effect and steric hindrance 

1,4-Adducts can be obtained when Michael acceptors are sterically hindered at C-1, the 

carbonyl carbon. Trityl enones 95 undergo 1,4-addition even with organolithium compounds.14 

Deactivation of the Michael acceptor coupled with steric hindrance allow the use of more 

reactive organometallic species. Five-membered ring formation is preferred to seven-membered 

ring in intramolecular reactions.15 

 

Scheme 8 

c. Coordination 

Conjugate addition may be oriented by coordination of the organometallic compound and 

can afford a regioselective and enantioselective addition, as shown in the example below 

(Scheme 9 and Table 1).16 
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Entry R R’ Yield % ee 

1 Cyclohexyl n-Bn 79 % 99 

2 Me n-Bu 38 % 91 

4 Et Et 73 % 99 

Table 1 

3 ) Overview of organometallic conjugate additions 

1,4-Addition has seen a renewed interest with the development of tandem 1,4-addition-

electrophile trapping protocols (Equation 1 Scheme 10),16c,17 and Michael initiated ring closure 

(MIRC) protocols (Equation 2 Scheme 10).18,19 Additional organometallic reagents have been 

considered in order to allow a wider range of functionalities on either Michael acceptor or donor. 

 

Scheme 10 

Organometallic reagents generally react in both 1,2- and 1,4-additions; the ratio of 1,2- 

over 1,4-adducts depends on their reactivity. The more reactive ones are from group IA and IIA 

(RLi, RNa, RMgBr, R2Mg) and favour the formation of 1,2-addition products. However, less 

ionic organometallic species from group IB, IIB, IIIB (RCu, R2CuLi, R2Zn) are less reactive and 

thus more likely to undergo conjugate additions. This is a general observation, and more criteria 

must be considered (e.g. additives, catalysts, reaction conditions). 
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a. Organocoppers 

Organocopper species are the most common reagents among the organometallic 

compounds to undergo 1,4-addition. The organocopper reagents that are commonly used are 

generally commercially available, but other organometallic reagents can be also employed such 

as organomagnesium reagents, which generate in situ reactive catalytic quantities of 

organocopper(I) species when catalysed by copper(I) salts. This discussion is developed below 

(p.49). 

b. Organozincs 

Organozincs can be divided into four groups: organozinc halides (RZnX), diorganozincs 

(R2Zn), triorganozincates (LiR3Zn) and α-(alkoxycarbonyl)alkylzinc halides, known as 

Reformatsky reagents. 

 

Scheme 11 

Due to their thermal instability, organozinc halides are usually produced in situ from metal 

insertion with halides, which also provide the less reactive diorganozincs. Organozinc halides are 

inert towards various functionalities and react exclusively with enones in 1,4-additions.17 

  

Scheme 12 
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Entry R1 R2, R3 Yield 

1 (CH3)2CH R2 = R3 = Me 98 

2 C6H10 R2 = R3 = Me 38 % 

4 (CH3)2CH R2 = C6H5, R3 = H 73 % 

Table 2 

Dialkyl and diarylzincs have low reactivity towards α,β-unsaturated carbonyls, while 

diallyl, dibenzyl and dipropargylzinc compounds are highly reactive. Addition of a [Ni(acac)2] 

catalyst enhances the reactivity of organozinc species (even dialkyl and diarylzincs), which react 

easily with α,β-unsaturated aldehydes and enones, even with β,β-disubstituted carbonyls that are 

inert to organocoppers.20 

 

Scheme 13 

 

Table 3 

Knowledge of triorganozincate chemistry and their use are rather limited, although they are 

more reactive than diorganozincs. Asymmetrical triorganozincate compounds (transmetallation 

from diorganozinc) enables overcoming ligand wastage by using two methyl substituents that are 

inert or at least much less reactive than most ligands. Triorganozincate reactivity is decreased 
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compared to diorganozincs in the presence of β-substituents, but is not influenced by catalysis 

with transition metals.21 

 

Scheme 14 

Entry R X Yield 

1 Me Cl 92% 

2 Me I 68% 

3 n-Bu Cl 92% 

Table 4 

Reformatsky reagents were demonstrated to react with α,β-unsaturated carbonyls in 

conjugate additions. These reactions were reported as anormalous Reformatsky reactions by 

Kohler in 1910.22 In fact, they can afford both 1,2- and 1,4-additions, depending on the steric 

hindrance, but conjugate addition is preferred under thermodynamic conditions. 

 

Scheme 15 

  

LiR3Zn, 2LiX +
O O

R

O

AcO AcO

O
O

CO2Et
ZnBr+

1) 68 oC, THF

2) HO-, H3O+

75%

H

H H

H

H H



Studies towards the Synthesis of Guaianolide and Pseudoguaianolide Skeleton. 

 
47 

c. Organocadmiums 

Diorganocadmium reactivity depends on the nature of the substituents. Diorganocadmium 

compounds bearing allylic and benzylic ligands react exclusively in 1,2-additions.23 However, 

dialkyl and diarylcadmium compounds react by conjugate addition.24 Diorganocadmium 

reactivity is increased by the presence of magnesium dihalides (MgX2), which are byproducts 

generated by the formation of organocadmiums. That enhanced reactivity decreases the rate of 

1,4-addition in favour of 1,2-addition. These metal halides (MgX2) disfavour conjugate addition, 

so diorganocadmiums should be purified after synthesis to remove traces of magnesium salt. 

 

Scheme 16 

d. Organomanganese 

Organomanganese reagents are rarely used in syntheses.9 However, these latter compounds 

react more efficiently when they are catalysed by copper(I), and tolerate β,β-substitution when 

organocopper species and copper-catalysed Grignard reagents are not reactive.25 The synthesis of 

(±)-citronellol by Cahiez illustrated the efficiency of organomanganates in conjugate additions. 

The three substituents attached to manganese were transferred. Me3SiCl was used to quench in 

situ the enolate formed from the conjugate addition to avoid side reactions such as aldol 

reaction.25b 
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Scheme 17 

e. Organosilanes 

Addition of organosilane reagents to α,β-unsaturated carbonyls occurs exclusively under 

the reaction conditions of silyl cleavage. Organosilane species afford both 1,2- and 1,4-addition 

products. The use of a Michael acceptor with low electrophilicity and of a Lewis acid such as 

CsF or TBAF in HMPA increases the conjugate addition product yield.26 

 

Scheme 18 

f. Other organometallic species 

Conjugate additions have been observed with other organometallic nucleophiles such as 

diorganoberrylium, triorganoaluminium in isolated reactions but not in general methodology.8 

  

MnMgBr
3

CO2Et OH

(±)-citronellol
overall yield: 83%

CuClcat
1.2 eq Me3SiCl

86%

LiAlH4

(±)

CO2Et
MgBr

MnCl2
LiCl

O

n

O

OAc
n
H

O

OAcH

(±)-syn (±)-anti

++
OAc

SiMe3

TBAF

n = 1 : 54% 4 : 1
2.5 : 1n = 2 : 59%



Studies towards the Synthesis of Guaianolide and Pseudoguaianolide Skeleton. 

 
49 

4 ) Michael addition of Grignard reagents catalysed by copper(I) 

In 1941, Kharasch observed that Grignard reagents react in 1,4-additions with α,β-

unsaturated ketones when catalysed by copper(I) salt conditions (Scheme 19).7 In 1952, Gilman 

reported that the stoichiometric reaction of MeMgBr or MeLi with a copper(I) salt gave a yellow 

precipitate of a methylcopper species that was highly air unstable and decomposed into copper 

metal and methane.27 The yellow solid was shown to be soluble in an ether solution of MeLi. 

Later, the formula of this organocopper species in solution was determined to be R2CuLi and 

was called a Gilman reagent or Gilman cuprate. From 1966, organocopper chemistry started to 

be developed. That year, House reported evidence of the conjugate addition reactivity of 

organocopper reagents and other organometallic species when they were catalysed by copper(I) 

salts.8 The results from House experiments suggested the formation in situ of catalytic 

organocopper species as the reactive reagents from a small amount of copper(I) and a large 

amount of organomagnesium and organolithium. 

 

Scheme 19 

Organocopper(I) reagents are not limited to nucleophilic addition reaction and have been 

successfully applied to other reactions involving Cu(I)/Cu(III) such as: 

- Carbocupration of alkynes:28 

 

Scheme 20 
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- Substitution reactions:29 

 

Scheme 21 

- C–N bond formation - Ulmann type coupling reaction:30 

 

Scheme 22 

- Olefin cyclopropanation:31 

 

Scheme 23 
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- Click chemistry:32 

 

Scheme 24 

a. Copper(I) catalysts 

Various copper(I) salts have been used to prepare organocopper(I) reagents or to catalyse 

organometallic compounds for conjugate additions with α,β-unsaturated carbonyls. The most 

employed copper(I) salts appear to be CuBr.DMS and CuCN, but other source of copper(I) can 

be found such as CuX (X = Cl, Br, I), CuOAc, CuOt-Bu, CuSPh, CuSCN.33 In some examples of 

conjugate addition reactions, copper(II) salts can be used with conjugate addition selectivity but 

it is believed that the reduction of the salts operates in situ.8 But in most cases, copper(II) salts, 

issued from copper(I) decomposition, are believed to poison conjugate addition reactions. 

Copper(I) bromide-dimethyl sulfide complex is relatively stable and is easily prepared.34 It is a 

pale whitish solid that becomes brownish when it oxidizes to copper(II). The best results are 

obtained when copper(I) bromide-dimethyl sulfide complex is freshly used. 

b. Catalytic cycle 

 

Scheme 25 
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The mechanism of copper(I)-catalysed conjugate addition is believed to follow the same 

principles as the stoichiometric organocopper version of the reaction. The catalytic cycle consists 

of transmetalation, oxidative addition and reductive elimination.35 The oxidative addition is 

suggested to be reversible, and so the rate-limiting step is considered to be the reductive 

elimination. The reaction operates on the Cu(I)/Cu(III) based catalytic cycle, so in the case that 

the precatalyst used is a copper(II) salt, the mechanism includes a preliminary catalyst reduction 

step that occurs in situ. Poor results from early studies of the copper-catalysed reaction were 

believed to be due to the presence of copper(II) salt that oxidizes the reaction intermediate, and 

due to the poor solubility of the copper(I) salt, which leads to heterogenous reactions. 

c. Organocopper(I) complex 

The simplest organocopper(I) molecule, formulated RCu, is polymeric in ethereal solvents 

and unreactive if not aggregated with additional copper and metal atoms.36 The nucleophilic 

reactivity of organocopper(I) reagents originates from the organocopper(I) ate complexes, 

empirically described as R2CuM (homocuprate) or RXCuM (heterocuprate). 

In solution, catalytic copper(I) salts can form two different types of complexes from 

organometallic species, depending on the concentrations and the presence of additives:36 

- [RCuX(L*)]-: Monoorganocuprate if organozinc and organoaluminium species are used 

or if Grignard reagent is added in low concentration or with external 

(chiral) ligands (L*) like phosphines and N-heterocyclic carbenes; 

- [R2Cu]-: Homocuprate if Grignard reagent is used in excess without external 

ligands. 
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In solution, organocopper(I) complexes were observed to form a dynamic equilibrium of 

two principle structures. These structures are based on the linear array C–Cu–C that needs a 

countercation charge of +1 per [R2Cu]- unit. Studies performed using NMR spectroscopy have 

shown the fast chemical exchange of the countercation, and the covalent and static character of 

the C–Cu bond.37 Organocopper(I) structures are classified into two types38 (Scheme 26), 

depending on the solvent, the nature of the cuprate and the presence of Lewis acids: 

- CIP: Contact Ion Pair: a cyclic dimeric structure composed of two copper(I) atoms, two 

countercations and four organic ligands (R). Carbon-copper bonds are covalent, 

whereas carbon-lithium bonds are principally ionic. This basic cyclic structure can 

be monomeric or polymeric with the presence of additives such as salts. 

- SSIP: Solvent-Separated Ion Pair: a monomeric linear C–CuI–C ion unit where the 

countercation is separated from the ion and coordinated by solvent molecules. 

 

Scheme 26 

The two structures are in a constant dynamic equilibrium in solution. In weakly 

coordinating solvents like Et2O, organocopper(I) species prefer CIP structures, while in strongly 

coordinating solvents like THF, in the presence of a Lewis acid or with a crown ether that 

coordinates the countercation, SSIP structures are dominant. The nature of the salt does not 

influence the type of structures but can favour the polymerization of the CIP structure. 

d. Organocopper(III) complex 

NMR spectroscopic evidence suggested that a plausible mechanism for conjugate addition 

of organocuprate compounds passed through an organocopper(III) species.39 Organocopper(III) 

complexes have been recognised to be important intermediates in nucleophilic organocopper(I) 

reactions. 
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They result from the oxidative addition of an electrophile to an organocopper(I) complex. 

Computational studies have revealed that organocopper(III) species were very unstable and 

characterized by a T-shaped geometry. Generally, T-shaped organocopper(III) complexes 

undergo reductive elimination without any further activation energy. Addition of a ligand 

stabilizes them with formation of a tetracoordinated square planar complex. By stabilizing the 

organocopper(III) complex, detection and in some cases isolation, can be performed, but energy 

input may be needed for the reductive elimination step to overcome the activation barrier 

 

Scheme 27 

e. Influence of parameters 

→ Solvent 

Most of the cuprates are salts and insoluble. Etheral solvents are usually used in 

organocuprate conjugate additions. The solvent will have an influence on the nature of the 

organocuprate complex. However, the influence on the reactivity is limited.38b Common solvents 

for the reaction are Et2O or THF; sometimes, DME and DMS can be also employed. 

Organocuprate compounds such as Gilman reagents are soluble in etheral solutions, but 

copper(I) salts have a low solubility that leads to heterogenous reactions. 

→ Lewis acid 

Addition of Lewis acid such as BF3 can change the selectivity of conjugate addition and 

increase the reaction activity. Experimental studies suggested that the Lewis acid is increasing 

the reactivity of the copper reagent rather than activating the α,β-unsaturated carbonyl.40 

The nature of the complex formed changed from [(CuMe3)(BF3)] into 

[(CuFMe2)(MeBF2)].41 Standard organocopper or copper-catalysed Michael additions operate 

poorly with β,β-disubstituted α,β-unsaturated carbonyls without any additives, and does not 
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occur with α,β-unsaturated carboxylic acids, whereas addition of a Lewis acid such as BF3 can 

lead to satisfying results.40,42 

 

Scheme 28 

→ Addition of TMSCl 

In 1980, for a study of the lithium alkylcuprate action on α,β-enals, Normant et al. used 

TMSCl to trap the enolate intermediate.43 He reported that during his research he obtained better 

yields than those published before, and the selectivity was changed in favour of the 1,4-addition. 

In 1984, Nakamura and Kuwajima published a study in which they wanted to show the synthetic 

utility of homoenolate on 1,4-additions.44 Trimethylsilyl chloride was generated in situ during 

the formation of the homoenolate. They discovered that, if the TMSCl is removed before the 

following step, a copper-catalysed 1,4-addition of zinc homoenolate, the reaction is slower, and 

for some substrates no reaction occurred at all. 
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Just after, Corey45 and Alexakis46 published their own independent results with Gilman 

reagent with a TMSCl additive. They both concluded that addition of TMSCl was accelerating 

the reaction and increasing the yield of organocopper species conjugate addition products. 

Corey also showed that no isomerization was occurring with TMSCl. Those results gave 

clues about a mechanism involving Cu(I)/Cu(III) and suggested that the O-silylation was 

removing a possible reversibility of the organocopper(III) complex formation. This effect could 

affect the stereoselectivity of the reaction in some cases.45a Corey showed that using TMSCl for 

organocopper compound addition accelerated the reaction and improved the yield of 1,4-adducts 

by preventing side reactions involving enolates.45b 

Alexakis reported similar effects concerning the utility of TMSCl to improve conjugate 

addition of organocopper compounds. He also noted that the O-silylation was accelerated by 

addition of Et3N or HMPT along with TMSCl.46 In their absence, almost no silyl enol ether was 

isolated, but the reaction was still accelerated by the presence of TMSCl. 

f. Copper(I)-catalysed addition of vinylmagnesium bromide to 2-cyclopentenone 

The Page group has developed and used a methodology in two steps. The first step led to 

the preparation of silyl 3-vinylcyclopentenol ether 77, a relatively stable, reactive and convenient 

starting material.1,47 It was obtained through a copper(I)-catalysed conjugate addition of vinyl 

Grignard reagent to 2-cyclopentenone 76 (Scheme 30). 

 

Scheme 30 

It was found to be important to handle this reaction meticulously in order to optimize the 
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synthesis of the diethyl malonate analogue and the preparation of the diethyl methylenemalonate 

product to be performed in parallel, as the latter compound was not stable and it was necessary to 

know the precise quantities that we would expect to obtain for the next step.  

A solution of vinylmagnesium bromide in THF was slowly added to a solution of copper(I) 

bromide-dimethyl sulfide complex in THF at −78 °C. The best results were obtained with freshly 

prepared copper(I) bromide-dimethyl sulfide salt (white powder). Vinylmagnesium bromide was 

added with caution, slowly and directly into the solution. The mixture was allowed to 

homogenize and the temperature to stabilize at −78 °C. The yield was lowered by loss of reagent 

when it crystallized on the flask sides due to the addition or to the too vigorous stirring. Best 

results were obtained with a slow addition. The starting copper(I) salt was a pale whitish solid, 

which was insoluble in THF. The result of the vinyl Grignard reagent addition was a clear brown 

red solution that turned first to a yellow colour and then green. A mixture of DMPU, TMSCl and 

cyclopentenone 76 was prepared directly in the addition flask. This solution was added very 

slowly to the reaction mixture with strict controls on the temperature, not to exceeding −70 °C, 

and on the stirring. 

Indeed, two parameters have to be particularly considered: the temperature had to be 

controlled precisely. The 1,4-addition on cyclopentenone was an exothermic reaction, and thus, 

had to be slow to avoid the temperature to rise above −70 °C. When the temperature was too 

high, a significant amount of deprotected product 77sp was observed. The stirring also needed to 

be cautiously monitored: when the mixture was stirred too vigorously during the preparation of 

the copper reagent, crystallization of the Grignard reagent on the side of the flask occured. 

However, a firm stirring was necessary during the addition of the solution containing the 

cyclopentenone to avoid the agglomeration of a solid that caused a serious loss in the reaction 

yield. 

With these parameters well controlled, the yield could reach 91% from 5 g of starting 

material (9.8 g of product). On a bigger scale, parameters were hardly controllable (main 

problems were due to the stirring), and parallel smaller reactions were preferred. The observed 

side reactions were principally 1,2-additions and deprotection of the silyl enol ether. The 

addition of DMPU is known to promote the silylation of the enol in the Michael addition. 
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At the end of the addition, the solution was allowed to reach −55 °C for about 3 hours; then 

Et3N was added to quench the acidity and to prevent the loss of the silyl group. The work-up and 

Kügelrohr distillation were immediately performed to prevent any degradation of the product. 

The next step was attempted on the crude compound without distillation, but this gave poor 

results. 

The crude compound is a dark brown oil, while the pure compound 77 is colourless. The 

silyl enol ether 77 can be safely stored under argon at low temperature (freezer: −20 °C) in a dry 

flask for months without significant degradation. However, it decomposed in few hours under 

other conditions. 

g. Asymmetric conjugate addition catalysed by copper(I) 

Organocopper(I) reagents generally show no stereospecificity. Chirality in the 1,4-adducts 

can be created by intramolecular induction or by the use of chiral ligands.35b 

Chiral centres in 1,4-additions can be introduced by intramolecular induction. Hanessian 

studied 1,2-induction with γ-alkoxy-α,β-unsaturated esters with good diastereoselectivity (up to 

96% ee, equation (1) Scheme 31).48 The chirality of the sp3 carbon depends on the 

stereochemistry already existing on the molecule, and control over this asymmetry depends on 

the steric hindrance and is hard to obtain. Another option is the use of a chiral auxiliary that can 

be attached and removed easily, giving the desired adduct with an efficient diastereocontrol, and 

thus the final product after removal of the auxiliary in high enantioselectivity. This method is 

principally applicable with unsaturated esters and amides. Auxiliaries such as camphor-based 

esters or ephedrine-based amides have shown interesting results. Tadano investigated the use of 

sugars as chiral auxiliaries and obtained good results (equation (2) Scheme 31 and Table 5).49 
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Scheme 31 

Entry R R’ Yield R : S 

1 Bn Bn 82 % 14 : 86 

2 Bn Bz 82 % 97 : 3 

3 Me Piv 80 % 94 : 6 

4 Bn Piv 94 % 98 : 2 

Table 5 

Optically active ligands have demonstrated the ability to direct copper-catalysed conjugate 

addition. A full range of chiral ligands, which could be applied to Michael addition and are 

catalysed by copper(I) salts, was developed. Ligands can be divided into two different classes: 

- Non-transferable ligands that share a covalent bond with the copper(I) (L1,50 L2,51 

L352 and L453: Scheme 32); 

- External (transferable) ligands that are (catalytic) reagents added to the reaction (L5,54 

L6,55 L7,35b L835b and L935b: Scheme 33). 
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Scheme 32 

 

Scheme 33 

Entry RMgX CuX (equiv) L* (equiv) Yield ee Major 

1 n-BuMgCl CuI (8 %) L5 (32 %) 70 % 42 % S 

2 n-BuMgCl CuI (10 %) L6 (12 %) 82 % 65 % R 

3 EtMgBr CuCl (5 %) L7 (6 %) 69 % 6 % S 

4 EtMgBr CuCl (5 %) L8 (6 %) 99 % 92 % R 

5 EtMgBr CuCl (5 %) L9 (6 %) 99 % 82 % R 

Table 6 
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In a future work on the subject, asymmetric Michael addition to our starting material, 2-

cyclopentenone should be considered. It would allow us the control of the whole stereochemistry 

throughout almost the entire synthesis. To date, it has not been studied in our laboratory because 

of the need for more and more material for the study of the later steps of the synthesis. We know 

the relative configuration and preferred to concentrate on the study of the later steps.  

II ) Conjugate aldol-type addition 

1 ) Aldol addition 

a. Introduction 

An aldol reaction is the formation of a carbon-carbon bond between two carbonyl 

compounds, one is acting as a nucleophile under the form of an enol or enolate and the other one 

is acting as an electrophile. It was first observed and reported independently in 1872 by 

Alexander Borodin and Charles-Adolphe Wurtz.56 The new species was named “aldol” by Wurtz 

as it shared the properties of both aldehyde and alcohol moieties.77 

Alexander Borodin (1833-1887) was a Russian scientist and a romantic 
composer. He was the illegitime son of a Caucasian prince, but officially 
recognised as the son of one of the prince’s serfs. He received a good education 
and he entered the Medico-Surgical Academy in 1850. He obtained his diploma 
in medicine and pursued his career in chemistry. In 1869, he reported the 
bromodecarboxylation of silver salts of carboxylic acids that was wrongly 
attributed to the Hunsdieckers 70 years later. The Soviet Union promoted the 
“Hunsdiecker reaction”, patented in 1939, as the Borodin reaction. Borodin 
worked on alkaline condensation of aldehydes and observed the aldol reaction in 
1872. He noted some similarities with Wurtz’s work published the same year. 
In fact Borodin is more popular for his musical contribution with his 
symphonies, his two string quartets and his opera Prince Igor. The French 
composer, Ravel, wrote a piano piece entitled “A la manière de Borodine” in 
homage to him. Some of his compositions were adapted for an American 
musical, Kismet, in 1953. 
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Charles-Adolphe Wurtz (1817-1884) was one the greatest French organic 
chemist of the 19th century.5 Wurtz’s name appears among the 72 names of 
French scientists engraved on the Eiffel tower. Born in Alsace (France), at the 
border between Germany and France, he studied medicine at the university of 
Strasbourg and specialized in the chemical section. In 1839, he was appointed 
“Chef des travaux chimiques” at the medical faculty of Strasbourg and, in 
1842, he worked under the supervision of Justus von Liebig in Germany. In 
1845, he became the assistant professor of Dumas, his mentor, and received his 
first chair in 1850 in Versailles. He is well known for the Wurtz reaction, 
which is the coupling of alkyl halides in the presence of sodium to create a 
new carbon-carbon bond. In 1872, he published his observations about the 
autocondensation of acetaldehyde with HCl to afford a compound with the 
properties of both an aldehyde and an alcohol, and hence called it aldol. He 
also discovered triethylamine, ethylene glycol and the first epoxide, ethylene 
oxide. He was a fierce defender of the new concept of valence against the 
equivalence theory. Indeed, at the time, the accepted theory was the 
equivalence theory where water was formulated as OH (with O = 8). In 
contrast, the valence theory suggested a water formula as H2O (with O = 16). 
Even though that concept was more developed by Dalton, Avogadro and 
Cannizzaro, he is well remembered for his advocacy of the theory of atoms. 

Originally, the aldol reaction consisted of the reaction of two aldehydes catalysed by a 

Brönsted acid to produce a β-hydroxyaldehyde, an aldol. The reaction was extended to other 

types of carbonyls bearing an acidic proton at the α-position with respect to the carbonyl, and the 

reaction was developed under both acidic and basic conditions. The product, a β-

hydroxycarbonyl, can undergo in situ dehydration to afford an α,β-unsaturated carbonyl product. 

Aldol reactions were performed under acidic conditions but were lacking in efficiency and 

control. The standard reaction conditions involved the mixing of the two carbonyl reagents along 

with a Brönsted acid that triggered an equilibrium between the carbonyl species and their 

reactive enol forms, and the subsequent formation of the adduct. However, side products such as 

self-condensed or polymerized products were also observed, and problems of reactivity and 

control of the formation of the desired product were often encountered. 
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Scheme 34 

Crucial progress and renewed interest appeared with the use of a preformed enolate prior to 

the addition of the electrophile. 

Hauser investigated new conditions for a Reformatsky-like reaction in order to mimic the 

Reformatsky intermediate (Scheme 35).57 In this study, he tried to form the Reformatsky reactive 

species under basic conditions. Indeed, instead of employing an α-haloester as starting material 

and generating the organozinc bromide in situ from zinc(0) metal (Reformatsky conditions), he 

attempted to deprotonate the ester at the α-position and directly exchange the metal with zinc 

dichloride. He obtained the desired compound, a β-hydroxycarbonyl, but the zinc(II) salt was 

found not to be necessary, and best results were obtained when using only a base such as lithium 

amide. 
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In 1951, Hauser reported the use of a preformed enolate in an aldol reaction.57 This report 

marked the start of a rising interest towards this attractive reaction, showing the possibility for 

high yields with flexibility in the conditions and control over the stereochemistry. 

Since the 1970’s, the aldol reaction has emerged as a key tool in providing stereocontrolled 

chemistry.58 The great power of this reaction lies in the possibility to control the stereochemistry 

of the product through several parameters: solvents, the stereocontrolled formation of the enol or 

enolate, the use of different metals as countercations, the use of chiral ligands and/or the use of 

chiral auxiliaries. 

b. Zimmerman-Traxler model 

In 1957, Zimmerman and Traxler studied the stereochemistry of an aldol reaction, the 

Ivanov reaction.59 The Ivanov reaction is the addition of a preformed dianion enolate of a 

carboxylic acid to a carbonyl electrophile.  Zimmerman and Traxler suggested a transition state 

involving a six-membered ring in a chair conformation that could rationalize the stereoselectivity 

observed (Scheme 36). 

The priority for the Z/E enolate assignment follows the Cahn-Ingold-Prelog rule.60 

Although, the alkoxy metal moiety is always considered as highest priority, regardless of the 

nature of the metal. For more clarity, the enol ether/enolate (the nucleophile) was drawn with 

only one methyl substituent, and an aldehyde was chosen as the electrophile in order to 

accentuate the selectivity order between the hydrogen (small group) and the substituent (large 

group). 

The most favoured chair transition state prefers the biggest substituents at the equatorial 

positions, thus avoiding 1,3-diaxial interactions. The model drawn (Scheme 36) provides only an 

example of how to correctly place substituents in a Zimmerman-Traxler model and which 

interactions can influence the product stereochemistry. In this example, an E-enolate gives an 

anti-product, and a Z-enolate a syn-product. This model was used to predict or explain outcomes 

in many aldol reactions, and is particularly reliable with small coordinating metal counterions 

such as lithium, boron and magnesium. Boron is particularly good because of the tight regular 

transition state it forms. However, the selectivity cannot be always explained using Zimmerman-

Traxler model, especially for bigger coordinating metals. Irrespective of the enolate geometry, 
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titanium enolates usually afford the syn-product with high stereoselectivity, whereas zinc 

enolates give preferentially the anti-product.61 

 

Scheme 36 

c. Enol/enolate 

A range of bases was investigated for the enolate formation; dialkyl- and disilylamine 

bases have shown to be the most convenient ones.62 They are relatively strong bases and poor 

nucleophiles. The most commonly used bases are lithium diisopropylamide (LDA) and lithium 

hexamethyldisilazide (LiHMDS lithium bis(trimethylsilyl)amide). Other bases, including more 

hindered bases such as lithium 2,2,6,6-tetramethyl piperidide (LiTMP) or lithium t-butyl-t-

octylamide, were examined but did not demonstrate more selectivity in generating the enolate. 

MO
H

H
R'

Me O

R

MO
R'

H
H

Me O

R

MO
H

Me
R'

H O

R
R

O
Me

R

OM

Me

R

OM
Me

favoured

favoured

disfavoured

disfavoured

R R'

R R'

O OH

Me

O

Me

OH

O

R' H

O

R' H

unfavourable 1,3-diaxial interaction

unfavourable 1,3-diaxial interaction

MX

anti-product favoured

syn-product favoured

E-enolate

Z-enolate MO
R'

Me
H

H O

R



Studies towards the Synthesis of Guaianolide and Pseudoguaianolide Skeleton. 

 
66 

D’Angelo published a study on enolate formation in 1976.62 The stereochemistry of enolates 

enolates may be influenced by parameters such as the reaction conditions, thermodynamic 

(Equation 1  

Scheme 37) or kinetic controls (Equation 2 

 

Scheme 37) and steric hindrance (Equation 3 

 

Scheme 37). In general, smaller R substituents (see Scheme 36 for notation) and/or bigger 

bases provide E-enolates, while bulkier R substituents and smaller bases give preferentially Z-

enolates. 
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Scheme 37 

Enolates can be trapped as silyl enol ethers63 or enol esters.64 Trapped enolates may be 

separated, and the enolate with the unwanted configuration of the double bond could be then 

recycled. Methods were developed to engage those silyl enol ethers and enol esters directly in 

aldol reactions.61b,65 These processes enabled increased selectivities and yields; they were also a 

good method to avoid self-aldolization with highly electrophilic compounds such as aldehydes.66 

A silyl enol ether is one of the starting materials in the Mukaiyama aldol addition. 

Michael additions of copper-catalysed Grignard reagents or Gilman reagents to α,β-

unsaturated carbonyls provide enolate intermediates that can undergo aldol reactions in situ upon 

addition of the electrophile. Another method to generate regio-defined enolates is the reduction 

of α,β-unsaturated carbonyl species with lithium metal in liquid ammonia.67 Indeed, the 

reduction of the carbon-carbon double bond generates an enolate that can react in an aldol 

addition under specific conditions to avoid any equilibration of the enolate.68 However, better 

results are obtained when trapping the enolate with trimethylchlorosilane. 

d. Stereoselectivity through chiral auxiliaries 

Clayton Heathcock wrote a review in 1981 regarding the possibilities of aldol reaction: 

“For the scientist who wishes to synthesize complex organic compounds, the most difficult 

problem is often establishing the correct configuration at the various chiral centers as the 

synthesis is being carried out. One of the oldest organic reactions, the aldol condensation, is 

emerging as a powerful tool for use in achieving such stereocontrol.”58  
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In 1957, Zimmerman and Traxler rationalized the stereochemistry obtained through aldol 

reactions,59 but it was only from the 1970’s that Dubois showed that relative configuration could 

be controlled by the enolate configuration and the size of the substituents (Scheme 38).58,69 A 

range of substituents was screened to study the stereochemical outcome of the reaction, and an 

influence on the diastereoselectivity was observed. Also, some metals proved to improve the 

diastereoselectivity through additional chelation to another function on the enolate or the 

aldehyde such as a chiral auxiliary.70 

Those methods permitted the reduction of the number of isomers from four 

diastereoisomers to only two enantiomers. The number of products could be in turn reduced to 

one major isomer if the R and/or R’ substituents (Scheme 38) possessed chiral centres that could 

influence the selectivity. 

  

Scheme 38 

In 1981, Evans introduced the notion of a removable and recyclable chiral auxiliary that 

could control both diastereoselectivity and enantioselectivity (Scheme 39).71 Chiral 2-
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Scheme 39 

With one equivalent of n-BuOTf, the boron is chelated to the two carbonyls from the 

oxazolidinone and the enolate 102 (Scheme 40). This chelation is broken by the approach of the 

aldehyde, and a new chelation is formed between the aldehyde and the carbonyl group. In the 

model TS1, the carbonyl function of the oxazolidinone is in anti from the other carbonyl groups 

and the boron. The i-propyl group is directed towards the back, so the aldehyde attacks from the 

front, affording the syn product 97. With an analogue chiral auxiliary presenting an opposite 

configuration like Y, the other syn adduct 99 is obtained. 

With an excess of boron base or a Lewis acid, the transition state is different. The Lewis 

acid chelates the two carbonyls, and the transition state with the aldehyde compound is opened 

like TS2. TS2 shows that the chiral auxiliary is still directing the approach: the benzyl 

substituent is directed towards the front, so the aldehyde attacks from behind. The steric 

hindrance is minimized by placing the substituent of the aldehyde on the less hindered side 

(Scheme 40). This reaction affords the anti product 101. The other anti product can be obtained 

with a chiral auxiliary presenting an opposite configuration at the asymmetric carbon. 
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Scheme 40 

Evans auxiliaries showed to be highly useful in asymmetric synthesis as great 

enantioselectivities were obtained.72 Each of the diastereoisomers can be produced in good yields 

and selectivity. However, the scope of substrates remained limited, and the chiral oxazolidinone 

auxiliaries expensive. 

Crimmins reported similar auxiliaries that can overcome some limitations of Evans 

auxiliaries.73 Other groups worked on the synthesis and development of new chiral auxiliaries. A 

carbohydrate-based synthetic method was developed by Pearson. The key step of this strategy 

was the spiro-fusion of a chiral cyclohexanone with α-hydroxycarboxylic acid.74 Pearson used 

Seebach’s concept published in 1981, but without any further investigations from him.75 Page 

developed an aldol reaction of 1,2-diketones, masked as a non-racemic 2-acyl dithiane oxide, 

with lithium enolates from esters or lactones: in this methodology, the removable chiral auxiliary 

was attached to the electrophilic compound of the aldol reaction.76 
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2 ) Preparation of the Mukaiyama-Michael acceptor 

a. Diethyl methylenemalonate 

In our synthetic strategy, we were looking for Michael acceptors bearing functionalities 

that could allow further homologation at a later step. The first one we chose to study was the 

long-known diethyl methylenemalonate 105.77 It was prepared in one step from diethyl malonate 

104 in reasonable yield (53%). 

Bachman screened different conditions and reported the great importance of an acidic 

medium, copper(II) salts, sodium salts and an excess of paraformaldehyde. The use of acetic acid 

as solvent gave the best results. The excess of paraformaldehyde eliminated completely malonate 

ester from the reaction mixture (the latter substrate could combine with methylene malonic ester 

to form ethyl propanetetracarboxylate). Potassium acetate served for the hydrolysis. The use of 

copper(II) acetate was not clearly determined, but yields were significantly lower in the absence 

of this salt. 

 

Scheme 41 

Diethyl methylenemalonate 105 was prepared through a Knoevenagel condensation, which 

is a modification of the aldol reaction where the nucleophilic addition is followed by 

dehydration. We supposed that the dehydration was occurring during the distillation step as no 

polymerization was observed in the concentrated crude mixture prior to the purification process 

(no solidification of the concentrated crude mixture was observed). On the other hand, the pure 

compound was highly sensitive and polymerized quickly. Therefore, the distillation apparatus 

was pre-washed with acid and dried in the oven in order to avoid its polymerization. The 

distillate was kept at low temperature during the distillation (−78 °C) and stored under argon in a 

freezer (−20 °C). Even when all those precautions were taken, it could generally not be kept for 
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more than a week before the polymerization started. At −78 °C, diethyl methylenemalonate 105 

was solid. At −20 °C, it was very viscous, and it was liquid at room temperature.  

The polymer could be cracked through distillation, and the methylene malonate 105 was 

recovered, but only in low yields (30%) and polymerization could still re-occur later. 

Our primary synthetic route with diethyl methylenemalonate 105 showed limitations, 

notably upon decarboxylation, so we chose to explore the synthesis of two other malonate 

moieties: 

- Dibenzyl methylenemalonate: it presented the same properties as diethyl 

methylenemalonate and the benzyl groups could be easily removed through a simple 

palladium-catalysed hydrogenolysis. 

 

- 2,2-Bis(phenylsulfonyl)ethene: the α-carbon between the two sulfone moieties could 

be easily functionalized and removal of the sulfone was possible. 

b. Dibenzyl methylenemalonate 

The synthesis of dibenzyl methylene malonate 107 presented many advantages compared 

to the other: readily prepared, no purifications needed, possibility of high scale preparation (up to 

17.8 g of product).  

After heating a mixture of paraformaldehyde and dibenzyl malonate 106 with 

diisopropylamine and TFA for 48 h and a simple work-up, dibenzyl methylenemalonate was 

isolated in quantative yield with only few traces of impurities (Scheme 42).78 Dehydration 

occurred in situ, certainly promoted by the presence of the amine group. The 1H NMR 

spectroscopic data showed only traces of diisopropylamine, but the viscous oil was pure enough 

to be used in the following step and was characterized. The synthesis could be performed in 

relatively high quantities (17.8 g). The product seemed to be less sensitive to polymerization and 

could be stored in a freezer for weeks. However, purification by chromatography on silica gel led 

to the decomposition of the product. 
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The use of dibenzyl methylene malonate 107 in the synthesis presented the best results and 

was also more advantageous as the adduct was readily observable under UV-light. 

 

Scheme 42 

c. 1,1-Bis(phenylsulfonyl)ethylene 

Preparation of 1,1-bis(phenylsulfonyl)ethylene 111 proved to be more laborious than 

expected:79 the synthesis required four steps and afforded the product from thiophenol in an 

average overall yield of 60% (Scheme 43). 

 

Scheme 43 
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iminium intermediate that was attacked by the deprotonated carbon α to both sulfones to give 

110. In a second step, elimination of the piperidine afforded the desired compound 111 under 

strong acidic conditions. 

The product 111 was a colourless powder that could be stored for months. At first, the 

route using this adduct 111 and the sulfone analogues seemed very promising, providing solid 

products instead of viscous liquids, which were obtained before with the other Michael acceptors 

105 and 107, the possibility of recrystallisation, and the compounds were visible under UV-light. 

Unfortunately, this route was shown to have several limitations: 

− Lower yields were obtained in most of the reactions; 

− The simplicity in the purification of the product 111 (crystallization) was not 

encountered in the next steps; 

− The addition reaction to the α-carbon of the sulfone analogue 89c failed. 

 

For all these reasons, this route had to be discontinued. These points are further discussed 

below. 

3 ) Mukaiyama reaction 

In 1973, Mukaiyama reported that, in the presence of TiCl4, silyl enol ethers of ketones 

reacted smoothly with ketones or aldehydes to yield the corresponding aldol products in good 

yields.80 This new methodology offered new possibilities such as different conditions (Lewis 

acidic conditions) and the control over the relative stereochemistry. More generally, it has 

greatly developed the synthetic use of Lewis acids and bases. 

Teruaki Mukaiyama (1927-) is a Japanese organic chemist.81 He received his 
PhD from the University of Tokyo in 1957. He was appointed full Professor at 
the Tokyo Institute of Technology in 1963 and Distinguished Professor in 1992. 
His research covered organic syntheses and synthetic methodologies: sugar 
chemistry, aldol reaction, coupling reaction (Mukaiyama reagent), 
oxidation/reduction, Lewis acid/base catalysis, dehydration reaction, 
asymmetric and total syntheses… His illustrious career has led to more than 
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900 publications and he has received many rewards and honours. In 1972, he 
founded the Japanese journal Chemistry Letters. He is a member of the Japan 
Academy and is also a Foreign Member of the Polish Academy of Sciences, the 
French Academy of Sciences, as well as a member of the National Academy of 
Sciences (USA). Oyo Mitsunobu (1934-2003) was one of his notable students. 
The Society of Synthetic Organic Chemistry of Japan (SSOCJ) established the 
Mukaiyama award in 2005 to reward each year a young chemist (less than 45 
years old) for his contribution to synthetic organic chemistry. 

The originality of the Mukaiyama aldol reaction is due to the use of Lewis acidic 

conditions, leading to good stereocontrol.65,80,82 Prior to this work, the best way to control the 

stereochemical outcome of an aldol reaction was to perform the reaction under basic conditions, 

which could induce several undesired side reactions, and in some cases, low yields. The 

Mukaiyama approach offered chemo- and regioselectivity in carbon-carbon bond formation. 

Under Mukaiyama reaction conditions, the Lewis acid is used in order to activate the 

electrophilicity of the carbonyl, while the silyl moiety activates the nucleophilicity of the enol. A 

halide ion is released as the oxocarbenium is formed from the attack of the oxygen atom of the 

carbonyl group onto the Lewis acid. The released anion attacks the silyl group, and the enolate 

and activated group react through an aldol reaction mechanism (Scheme 44). 

 

Scheme 44 

The original reaction was performed using TiCl4 in stoichiometric quantities, but later 

other Lewis acids were applied in the reaction (SnCl4, AlCl3, BCl3.OEt2, ZnCl2, etc…).82a The 

silyl enol ethers can be unsubstituted, mono- and disubstituted, and prepared from aldehydes, 

ketones, esters or thioesters. Electrophilic carbonyl compounds such as aldehydes, ketones and 

even acetals have been used successfully in the reaction.6  
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The diastereoselectivity of the Mukaiyama aldol reaction can be directed when the 

substrates are carefully chosen. However, control of the stereoselectivity is generally relative, 

unless a chiral Lewis acid is chosen or internal induction is present in the molecule. Contrary to 

the direct aldol addition, no cyclic intermediate between the enol and the carbonyl can be 

described, so the stereochemistry cannot be predicted by following the Zimmerman-Traxler 

chelation model. Mukaiyama reaction intermediates can be represented as open intermediates 

following the Felkin-Ahn model (Scheme 45). 

General rules for the determination of diastereoselectivity can be drawn as follow (Scheme 

45):6  

- Stereochemistry of the double bond does not affect the product diastereoselectivity; 

- If R2 is small and R3 bulky, the anti-product is usually the major product; 

- If R2 is large, syn diastereoselection is favoured; 

- Syn product is also predominant when the aldehyde can be chelated. 

Transition states are represented in Newman projections in Scheme 45. We assume that the 

Lewis acid occupies a coordination site that is cis to the hydrogen of the aldehyde. In the 

Newman projections (Scheme 45), models A and C are the most favoured with less dipole-dipole 

interactions. Models B and D are the results of an anticlockwise rotation: model B bears non-

bonded interactions between R1 and R3 plus unfavourable dipole-dipole interactions of the two 

carbon-oxygen bonds. Model D shows non-bonded interactions between oxygen and R3. A 

clockwise rotation of models A and B would give similar unfavourable interaction and Lewis 

acid interactions with R3 or silyl.83  

Control of the absolute stereochemistry of the Mukaiyama aldol product can be achieved 

through the use of chiral enol ethers, chiral aldehydes84 or even chiral Lewis acid complexes and 

Lewis bases.82d  

Catalytic Lewis acid/base conditions have been since developed for the Mukaiyama aldol 

reaction.82d,85 Now, it is possible to obtain chiral aldol products from achiral starting materials, 

using a chiral Lewis acid or base in catalytic quantity.86  
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Scheme 45 

4 ) Mukaiyama-Michael reaction 

a. Introduction 

A Mukaiyama-Michael reaction is the Lewis acid-mediated conjugate addition of silyl enol 

ether to a Michael acceptor. The first example of conjugate addition of silyl enol ether to an α,β-

unsaturated carbonyl was published by Mukaiyama in 1974.65,87 This methodology was 

considered as a useful tool for the creation of 1,5-dicarbonyl moieties.82c,88 

Hitchcock performed a screening of reactions of silyl enol ethers and α,β-unsaturated 

carbonyls that revealed several general tendencies (Scheme 46):83 

− Anti selectivity is favoured when using a silyl enol ether derived from a ketone; 

− Syn selectivity generally prevails when the silyl enol ether is derived from an ester; 

− The configuration of the enol does not affect the product configuration; 

− Bulkier substituents give higher selectivities. 
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In some cases, a loss of selectivity was observed. Otera explained this loss of selectivity by 

a radical mechanism through electron transfer from ketene silyl acetal to Lewis acid.89 

According to the radical mechanism, both the carbon-carbon double bond of the silyl enol ether 

and the carbon-carbon double bond of the α-enone are free to rotate due to the potential 

formation of a radical cation. Otera suggested that the use of highly oxophilic Lewis acid such as 

TiCl4, and bulky silyl and/or bulky alkoxy could avoid the formation of or limit the influence of 

the radical.89b  

Chiral Lewis acids have also exhibited the ability to induce stereoselectivities in 

Mukaiyama reactions with a Michael acceptor.90 MacMillan provided the first enantioselective 

Mukaiyama-Michael reaction with an unsaturated aldehyde using chiral imidazolidinone as 

organocatalyst (Scheme 47).91 

 

Scheme 47 
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Scheme 48 

The solution of the silyl enol ether 77 and the Michael acceptor 87 (105, 107 and 111) 

were prepared cautiously to avoid side reactions (due to the remaining traces of acid or base in 

the starting material). Indeed, diethyl methylenemalonate 105 is moisture and base sensitive, and 

thus polymerizes quickly. Therefore, the glassware used for the preparation and the storage was 

previously washed with acid to avoid this polymerization. Silyl enol ether 77 is acid sensitive 

(removal of the silyl protection in acidic conditions to afford 77sp, Scheme 30) so during its 

preparation, the reaction was quenched with an excess of base (Et3N). 

Silyl enol ether 77 was first diluted in dichloromethane at room temperature and was then 

cooled down to −78 °C. Diethyl methylenemalonate 105 or dibenzyl methylenemalonate 107 

was added at low temperature to avoid polymerization, followed by the addition of SnCl4. No 

polymerization was observed with dibenzyl methylenemalonate 107, but we preferred to process 

in this way to prevent this behaviour. 

However, 1,1-bis(phenylsulfonyl)ethylene 111 was not soluble in dichloromethane at low 

temperature, so the addition order was reversed. 1,1-bis(phenylsulfonyl)ethylene 111 was 

dissolved at room temperature in dichloromethane and the solution temperature was lowered to  

−78 °C. Fortunately, 1,1-bis(phenylsulfonyl)ethylene 111 did not crystallize at −78 °C in 

dichloromethane, so the reaction could be performed at this temperature. The silyl enol ether 77 

was then added at −78 °C. Tin tetrachloride was diluted in dichloromethane before addition and 

added to the reaction mixture dropwise, very slowly. The reaction was highly exothermic. Lower 

yields were obtained when the SnCl4 addition was too quick or when the reaction temperature 

rose above −72 °C; the main isolated product in such event was exclusively the unprotected 3-
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vinylcylopentenone 77sp (Scheme 30). The addition was performed over a minimum of two 

hours. The product was purified by column chromatography on silica gel. 

Satisfactory results were obtained when starting from dibenzyl methylenemalonate 107 

(67% yield) and diethyl methylenemalonate 105 (64% yield).  

The yield was slightly lower when using 1,1-bis(phenylsulfonyl)ethylene 111 (54%) and 

the product was difficult to purify. Indeed, the desired product was found to co-elute with the 

starting material 111 upon purification by column chromatography, while this did not happen 

with the two other methylenemalonate esters 105 and 107 because unreacted material 

decomposed during the reaction. 

The reduced yield in the preparation of 78c (R = SO2Ph) was believed to result from an 

activation problem of the α,β-unsaturated sulfone 111, so stronger Lewis acids were screened. 

However, the best results were still obtained using SnCl4. We performed the reaction with SnCl4, 

TiCl4 and BF3.OEt2 on the three different analogues (R = CO2Et, CO2Bn, SO2Ph). When 

BF3.OEt2 was used, lower yields were observed for compounds 78a (21%) and 78b (14%) from 

the diester compounds 105 and 107, and no reaction occurred with the disulfone 111. Titanium 

tetrachloride led to the decomposition of the starting materials when starting from diesters 105 

and 107, and low yields were described with the disulfone 111 (16% yield).  

A possible mechanism is shown below for the conjugate addition of our starting materials 

77 and 87 (Scheme 49). In the suggested transition state, one can clearly observe the steric 

influence of the vinyl moiety that would direct the addition in anti with respect to the vinyl 

moiety. The product obtained is a mixture of barely separable isomers (5.4:1, anti:syn).1 
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Scheme 49 

III ) Optimization of the initial proposal 

1 ) Introduction 

In this chapter, the optimization of the original synthetic route that was previously 

elaborated in our laboratories (Scheme 50 with R = CO2Et)1 and the extension of this 

methodology to the synthesis of new analogues is discussed. 

This previous work, which seemed simple and promising, led to the synthesis of the 

perhydroazulene ring system, obtained from the analogues of the diethyl ester only (R = CO2Et). 

Syntheses through a similar route, using analogues of dibenzyl ester (R = CO2Bn) and diphenyl 

sulfone (R = SO2Ph), were developed during this project and are described below. 

Firstly, the preparation of the pro-Alder-ene compound 81 is discussed. 

The first task was to repeat the former student’s synthesis and to collect the data for the 

synthesized compounds. The work from his thesis was repeated carefully, but the results were 

rather disappointing. The overall yield was similar, but for some reactions, satisfying yields were 

not retrieved (compounds 88 and 79) or the yields were not reproducible (compound 89). 
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Scheme 50 

The yields written in black are the original yields obtained from the published and laboratory work of the 

former PhD student, while the yields in green are those obtained in our hands when following this original 

pathway. 

The aldehyde 81 (R = CO2Et) was previously synthesized in seven steps from the 2-

cyclopenten-1-one 76 in a 2.6% overall yield. A similar yield (2.9%) was obtained when this 

work was repeated rigorously. Therefore, this methodology was highly limited by these low 

yields, as the planned total synthesis requires at least twice as many steps. Moreover, a decrease 

of those yields was observed when scaling up the synthesis. 

Therefore, an optimization of the reaction conditions or modifications to the synthetic 

strategy was clearly needed. Yields had to be improved and reactions had to be scaled up as 

much as possible. The most challenging issues occurred during the first steps, i.e. the 

dihydroxylation, the protection and the addition reactions. 

a. Previous work 

The absence of optimization of this approach by the previous PhD student can be partly 

explained by the fact that this strategy was not included in his initial project. Indeed, his original 

route was based on the 7-membered ring formation occurring through an intramolecular hetero-

Diels-Alder reaction in order to reach the guaianolide skeleton (Scheme 51). 
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Scheme 51 

This strategy was the result of investigations previously carried out within the Page group 

(Scheme 52).47a,b,d,e The key step of this methodology was an intramolecular-Diels-Alder 

reaction forming the fused [6-7]-bicyclic ring system in one step.  

 

Scheme 52 
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three steps from 89: a palladium-catalysed nucleophilic addition, followed by the removal of the 

acetate protecting group and the oxidative cleavage of the gem-dihydroxyl moiety. 

Entry Catalyst Solvent Temperature Result 

1 - Toluene 70 °C Starting material 

2 - Toluene 160 °C Decomposition 

3 Microwaves Toluene 80/120 °C Starting material 

4 ZnCl2 THF Room Temperature Partial desylilation 

5 ZnCl2 THF reflux Decomposition 

6 BF3.OEt2 Et2O or THF −78 °C Starting material 

7 BF3.OEt2 THF −78 °C to 20 °C Desylilation 

8 Yb(OTf)3 or Sc(OTf)3 THF 0 °C to 20 °C Starting material 

9 Yb(OTf)3 or Sc(OTf)3 THF −78 °C to 20 °C Desylilation 

10 Microwaves, 19Kbar Toluene 120 °C Decomposition 

Table 7 

All the attempted intramolecular hetero-Diels-Alder cyclizations were unsuccessful: under 

Lewis acid-catalysis, microwave irradiation or conventional heating (Table 7). If the Diels-Alder 

reaction had been successful, rearrangement of the 6-membered ring of compound 113 through a 

Bayer-Villiger oxidation rearrangement into a 5-membered ring lactone to obtain the guaianolide 

ring system 114 would have been targeted. 

Despite all the work achieved by the former student, this line of investigation had to be 

aborted and a new strategy had to be considered. So, a [3+2] cycloaddition (Alder-ene reaction) 

was briefly developed. A range of conditions for this Alder-ene reaction were screened and good 

results were obtained using BF3.OEt2 or Yb(OTf)3 in THF at −78 °C. 
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Time constraints prevented further investigations towards the optimization of the synthesis 

of the pro-Alder ene compound 81. 

b. Issues of the former methodology 

The reproducibility issues encountered with this protection reaction and the different 

problems with the other steps caused us to reconsider the study from the beginning. 

We attempted the dihydroxylation reaction using the former methodology and obtained 

reasonable results (67%). However, the purity of the product was rather limited, and NMR 

spectroscopic analyses were not clear. Indeed, the desired compound was coloured, suggesting 

that some osmium catalyst was remaining even after several columns. Therefore, we decided not 

only to decrease the amount of catalyst used in the reaction, but also to find a more efficient 

work-up that would eliminate the remaining traces of osmium as the columns could not perform 

it. 

Concerning the protection reaction, it had to be entirely revised because we could not reach 

a reproducible yield. The corresponding yield was generally between 10% and 45%, and a good 

yield of 64% was observed only once on more than a gram scale. After realising that the problem 

was due to reproducibility issues and not to mis-manipulation, we decided to explore other 

methodologies, which would allow us to obtain reproducible yields, followed by an optimization. 

The nucleophilic substitution reaction using the previous methodology gave limited results 

in our hands (42%) and the yields dropped when the reaction was scaled up. Side reactions such 

as addition to the ketone moiety were also observed. This method afforded a complex mixture, 

which was difficult to purify due to the presence of compounds with similar retention factor 

values to the actual product. The optimization of this reaction focused on reducing the enolate 

formation and favouring the formation of the compound deprotonated α to the two esters, the 

malonate acidic site (Scheme 53). 
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Scheme 53 

The optimization of the deprotection reaction and the oxidative cleavage step concentrated 

on adjusting the best quantities and the reaction time to obtain the highest yield and purity. 

The problems encountered during the decarboxylation reaction also persuaded us to extend 

the synthesis to dibenzyl ester (Scheme 50, R = CO2Bn) and diphenyl sulphone (Scheme 50, R = 

SO2Ph) analogues. 

2 ) Dihydroxylation reaction 

The vinyl moiety, present in the molecule 77, masks the aldehyde function that is an 

important part of the pro-intramolecular-Alder-ene adducts 81. The aldehyde group is too 

reactive to be placed at the beginning of the synthesis (and should be introduced last). Another 

carbon-carbon double bond, which is present in the other part of the pro-intramolecular-Alder-

ene adduct 81, is also introduced later in the structure. 

The vinyl carbon-carbon double bond, present in 78, would be converted selectively into 

an aldehyde in five steps. The double bond would be converted into a diol that would be 

protected. At this stage, we would be able to introduce the prenyl, which contains the other 

carbon-carbon double bond with no risk for this function to interfere in the next steps, followed 

by the deprotection of the diol and the conversion into an aldehyde to obtain the pro-

intramolecular-Alder-ene adduct 81 (Scheme 54). 
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Scheme 54 

The first step for this transformation is thus a dihydroxylation reaction of the carbon-

carbon double of the vinyl moiety of 78. 

Several dihydroxylation reactions are known to date. They can be divided into two types: 

reactions affording the syn-dihydroxylation products, and reactions affording anti-

dihydroxylation adducts.92 

a. syn-Dihydroxylation methods 

→ Osmium tetroxide 

OsO4 is the most used reagent, with KMnO4, for the syn-dihydroxylation of alkenes, and 

generally gives good results. OsO4 can be used either in stoichiometric quantities or in catalytic 

quantities.93 OsO4 is very expensive, hazardous and toxic, and thus, the method of choice is 

generally the employment of a catalytic amount of this metal with a secondary oxidant. 
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The catalytic conditions of this reaction, known as the Upjohn dihydroxylation, were 

developed by VanRheenen et al.94a Other osmium species can be used as catalyst such as 

OsIIICl3.xH2O or OsVIK2O2(OH)4 and are oxidized in situ into OsVIII. Re-oxidant sources can be 

found in NMO, H2O2, t-BuOOH, K2Fe(CN)6, and metal chlorates such as NaClO3, Ba(ClO3)2, 

NaClO4. Use of NaIO4 affords the formation of aldehydes or ketone from in situ oxidative 

cleavage, whereas O2 affords principally over-oxidation and decomposition to CO2.95 The best 

results are obtained by using NMO, t-BuOOH or K2Fe(CN)6 as reoxidants, with which the over-

oxidation is generally avoided. 

The combination of OsO4 with NMO is probably the most general and effective procedure 

for alkene syn-dihydroxylation. Reactions performed in the presence of trimethylamine N-oxide 

as reoxidant and pyridine lead to better results with hindered alkenes.94 

The reaction is believed to proceed through a [3+2] cycloaddition mechanism with the 

formation of a 5-membered ring osmium ester that was isolated.93 The catalytic cycle is shown in 

Scheme 56. Syn-hydroxylation is generally favoured on the less hindered face of the π-system.92  
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In general, a racemic product is obtained. Diastereoselective dihydroxylation can be 

obtained with chiral non-racemic secondary allylic alcohol product by using osmium tetroxide in 

stoichiometric or catalytic quantities.96 Chiral auxiliaries can be also introduced into the alkene 

to direct the addition to form diastereoisomers.97 

Sharpless et al. developed an asymmetric dihydroxylation method using a chiral quinine 

ligand to direct the addition.98 His work on stereoselective oxidation reactions (epoxidation, 

dihydroxylation and oxyamination reactions) brought him the Nobel Prize in Chemistry in 2001, 

(shared with Knowles and Noyori for their work on asymmetrically catalysed hydrogenation 

reactions). 

→ Potassium permanganate 

Potassium permanganate used to be the common oxidant for the syn-hydroxylation of 

alkenes.92 It has the advantage of being relatively cheap, less toxic and hazardous. However, this 

reaction is barely controllable and encounters many side reactions such as overoxidation and 

alternative oxidation pathways leading to other undesirable side products. Phase transfer 

catalysis allows better control. Typical conditions are the dilution of the alkene in 

dichloromethane and aqueous potassium permanganate, stirred vigorously with a phase transfer 

agent such as benzyltriethylammonium chloride. Solid-liquid phase transfer is also used. The 

reaction is believed to proceed through a [3+2] cycloaddition mechanism to form the 5-

membered ring manganate ester (Figure 4). 
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→ Palladium-catalysed olefin dioxygenation 

Recently, a palladium-catalysed dihydroxylation was developed by different groups to give 

direct access to the cis-diol monoacetate or diacetate.99 Different catalytic cycles were suggested 

but none was confirmed yet. This methodology has shown good results on mono- to 

trisubstituted alkenes and a tolerance for some functional groups such as cyanide, carboxylic 

acid. A high stereoselectivity was observed for this procedure (Scheme 57), a syn/anti ratio from 

8/1 to 15/1. 

 

Scheme 57 

→ Other syn-hydroxylation methods 

syn-Hydroxylation is also obtained through indirect synthetic approaches such as the 

formation of halohydrin ester as intermediate. Woodward developed a procedure whereby iodine 

and silver acetate are added to a solution of an alkene in acetic acid (Scheme 58).100a The acetyl 

hypoiodite, MeCO2I, formed in situ, attacks the alkene carbon-carbon double bond to form a 

trans-halohydrin ester on which the halogen is displaced in the presence of silver(I) into a 

cationic cyclic acetal. The rearrangement induced by the cation allows the formation of two cis-

diol monoacetates. Tetrasubstituted alkenes generally afford an approximative cis/trans-diol 

ratio of about 3:2. Other procedures, avoiding the use of the expensive silver(I) salt, have been 

reported.100b The replacement of the silver(I) acetate by a combination of iodine-potassium with 

iodide-potassium acetate or by the thallium(I) acetate in Woodward’s procedure allows an 

equivalent result.100c 
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Scheme 58 

A novel metal-free methodology has also been developed by Li et al., using an aryl iodide 

as organocatalyst, and an oxidant such as H2O2 or m-CPBA with an acid additive (Lewis or 

Brönsted acid).101 It has been shown to work on a broad range of olefins with a tolerance of 

functional groups bearing electron-rich or electron-poor substrates under relatively mild 

conditions (room temperature). Besides being environmentally friendly, the reaction has shown 

high diastereoselectivity for syn-dihydroxylation (from 4.3:1 and up to >19:1 dr). 

 

Scheme 59 

b. Anti-dihydroxylation reaction 

→ Epoxide opening 
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industrial anti-dihydroxylation method is the addition of H2SO4 to a mixture of alkene and 

NaBO3 in acetic anhydride to obtain the corresponding trans-1-hydroxy-2-acetoxy derivative.102 

Epoxides formed from the reaction of an alkene with H2O2 are opened in situ with the addition of 

an oxide catalyst such WO3, H2WO4 or SeO2.103 
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Scheme 60 

→ The Prévost reaction 

The mechanism of the Prévost reaction is similar to the Woodward reaction but the 

opening of the cationic ring is performed through an anti nucleophilic attack of the carboxylic 

acid in excess (Scheme 61).92 

 

Scheme 61 

c. Application of the osmium dihydroxylation 

After studying the different methodologies for dihydroxylation, it clearly appeared to us 

that the method of choice was the osmium-catalysed procedure: no specific configuration is 

needed in our case, excellent results are reported in the literature, a good tolerance for functional 

groups is realised. 

The results obtained with the former methodology did not satisfy us: the corresponding 

yield was reasonable even though we expected better results, but the purity of the compound was 

not satisfactory. NMR spectra were neither resolved nor well defined (broad peaks). The final 

product kept a dark colour even after several columns. This absence of definition in the NMR 

spectra and the dark colour were believed to come from the osmium traces remaining in the final 
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compound (OsCl3 is a black powder). A more appropriate purification processes was therefore 

needed because the previous work-up or the columns were not efficient. 

  

Scheme 62 

Indeed, quenching the solution with a reducing agent such as Na2SO3 and washing the 

solution reaction with an HCl aqueous solution (2M) several times gave a pale-yellow product 

(without any dark tint). NMR spectra were clean and resolved. A better yield was also obtained 

using this process (up to 80% for both diester analogues 88a and 88b) and the next step would be 

carried out with this work-up as the only purification, avoiding the column chromatography step. 

We obtained a yield slightly lower (69%) but still reasonable when working with the disulfone 

analogue 88c. 

→ Palladium diacetoxylation attempts 

In the search for the best dihydroxylation method, we were also interested in a palladium 

oxidation. Several publications have reported that some olefins could be converted in one step 

into a diacetoxy product through a palladium-catalysed reaction.99 This reaction would be 

interesting for our strategy as it would afford the diacetoxy product in only one step instead of 

two. Jung et al. have developed an interesting process using Pd(OAc)2 as catalyst and AcOOH as 

oxidant with Ac2O in AcOH at room temperature. We attempted to apply these conditions to our 

synthesis and the results are summarized in Table 8. 
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Scheme 63 

Entry Catalyst (10% mol) Oxidant (eq) Temperature Solvent Result 

1 Pd(OAc)2 AcO2H (2 eq) 20 °C AcOH SM 

2 Pd(OAc)2 AcO2H (4 eq) 20 °C AcOH SM 

3 Pd(OAc)2 AcO2H (2 eq) 20 °C hexane SM 

4 Pd(OAc)2 AcO2H (4 eq) 60 °C AcOH SM 

5 Pd(OAc)2 AcO2H (4 eq) 60 °C hexane SM 

6 Pd(OAc)2 H2O2 (4 eq) 20 °C hexane SM 

7 Pd(OAc)2 H2O2 (4 eq) 20 °C H2O:THF SM 

8 Pd(OAc)2 H2O2 (4 eq) 60 °C H2O:THF SM 

9 Pd(OAc)2 H2O2 (4 eq) 60 °C hexane SM 

10 Pd(OAc)2 PhI(OAc)2 (4 eq) 20 °C H2O:AcOH SM 

11 Pd(OAc)2 PhI(OAc)2 (4 eq) 60 °C H2O:AcOH SM 

12 Pd(dppp)(H2O)2(OTf)2 PhI(OAc)2 (4 eq) 60 °C H2O:AcOH SM 

Table 8 

Unfortunately, all our attempts were unsuccessful. No traces of diacetoxy compound 89 

were observed, and the starting material was generally quantitatively recovered. We also looked 

for monoacetoxy alcohols but did not find any. The reaction was performed with a range of 

oxidizing agents (Entries 2, 6 and 10, Table 8): AcO2H, H2O2 and PhI(OAc)2, increased reaction 
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temperature of 60 °C (Entries 4, 5, 8, 11 and 12, Table 8) and with different palladium catalysts 

(Entries 1 and 12, Table 8). 

The reaction was also attempted with the compounds 78a and 78c in the same conditions 

as for entry 2, but no desired product was isolated.  

No traces of diacetoxy or even monoacetoxy products were observed, and so this line of 

investigation was discontinued. 

3 ) Protection of the diol moiety 

Several methodologies have been developed to convert alcohol moieties into acetoxy 

groups.104 

The most common method for the introduction of an acetyl group consists of the addition 

of the alcohol to a solution of Ac2O in pyridine. Verley and Bölsing first developed this method 

of esterification in 1901.105 Primary and secondary alcohols are generally O-acylated through 

that method without any problems.106 In 1969, Steglich and Höfle reported the strong catalytic 

effect of 4-dimethylaminopyridine (DMAP) and 4-pyrrolidinopyridine (PPY) in the increase of 

the reaction rate of the acylation.107 This report contributed to the development of DMAP as a 

catalytic transesterification agent. The use of DMAP allows the O-acylation of many alcohols 

including tertiary alcohols and hindered alcohols that were not acylated in the presence of 

pyridine only. 

Other methodologies can selectively O-acylate primary alcohols in the presence of 

secondary alcohols such as AcCl and collidine in dichloromethane.108 The acetyl group can be 

introduced onto highly hindered alcohols using Ac2O in dichloromethane under high pressure 

(15 kbar).109 Lewis acids such as Al2O3 or BF3.OEt2 or Sc(OTf)3 can afford selective results on 

polyol compounds.110 Similar selective results can be also obtained through biocatalysis.111 
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→ Application 

Some problems were encountered when attempting the protection reaction with the 

previously developed reaction conditions. However, the acetyl protecting group was an 

interesting protecting function to keep as it is easily removed. 

 

Scheme 64 

The previous methodology, which included the addition of a catalytic amount of DMAP to 

a solution of diol in a 1:1 mixture of Ac2O:pyridine, was low-yielding and not reproducible: 

yields below 40% were generally obtained and the remainder was a dark liquid of a complex 

mixture of degradation products. Despite several attempts to perform the reaction under these 

conditions or by modifiying the temperature, the time or the quantities of each reagent, we could 

not reach reproducible results. 

Therefore, a methodology giving reproducible and better yields was sought. A large 

number of bases, from weak (pyridine, Et3N, NaHCO3), medium (K2CO3) to strong bases (NaH, 

t-BuLi, LDA), were screened in different solvents (dichloromethane, toluene, Et2O, THF, 

EtOAc, AcOH) (Table 9). 

Pyridine and triethylamine gave good results with a slight preference for pyridine (Entries 

6 and 7, Table 9). An excess of 10 equivalents of base was added when using medium (NaHCO3 

Entry 5, K2CO3 Entry 4, Table 9) and weak (pyridine Entry 7, Et3N Entry 6, Table 9) bases, 

whereas only 2.2 equivalents were employed with strong bases (NaH Entry 1, t-BuLi Entry 2, 

LDA Entry 3, Table 9). The best solvent for this reaction was dichloromethane (Entry 6, Table 9) 

at low temperature (0 °C) (Entry 12, Table 9). However, a degradation of the product was 

observed in the reaction solution over time. The reaction mixture was stirred for no more than 15 

min and directly worked up to avoid degradation. 
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Entry a Reagent DMAP Base Temperature Solvent Result b 

1 Ac2O Yes NaH 20 °C CH2Cl2 15% 

2 Ac2O Yes t-BuLi 20 °C CH2Cl2 10% 

3 Ac2O Yes LDA 20 °C CH2Cl2 8% 

4 Ac2O Yes K2CO3 20 °C CH2Cl2 - 

5 Ac2O Yes NaHCO3 20 °C CH2Cl2 - 

6 Ac2O Yes Et3N 20 °C CH2Cl2 40% 

7 Ac2O Yes Pyridine 20 °C CH2Cl2 42% 

8 Tf2O Yes Pyridine 20 °C CH2Cl2 - 

9 Ac2O Yes Pyridine 20 °C AcOH SM 

10 Ac2O Yes Pyridine 20 °C Et2O SM 

11 Ac2O Yes Pyridine 60 °C CH2Cl2 - 

12 Ac2O Yes Pyridine 0 °C CH2Cl2 66% 

13 Ac2O No Pyridine 0 °C CH2Cl2 30% 

14 c Ac2O Yes Pyridine 0 °C CH2Cl2 64% 

15 d Ac2O Yes Pyridine 0 °C CH2Cl2 95% 

Table 9 

(a): All the reactions were performed using 88a (R = CO2Et), except for Entries 14 and 15 where 88b was used (R = 

CO2Bn); (b): No starting material was recovered and only decomposition was generally observed; (c): The reaction 

was performed on a 6 g scale of starting material 88b (R = CO2Bn); (d): The 6 g of starting material 88b (R = 

CO2Bn) were split into 4 portions of around 1.5 g each. 

The reaction was also performed with trifluoroacetic anhydride in order to afford the 

corresponding diester derivative. The reaction seemed to work (new spot on the TLC plate), but 

the protecting group was probably too unstable and was lost during the purification process, only 

degradation products being observed after column chromatography (Entry 8, Table 9). 
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Scheme 65 

Finally, after many tests, we established the best reaction conditions: the scale of the 

reaction should be limited to 1.5 g of diol 88, the temperature has to be carefully monitored and 

kept between −10 oC and 0 oC, and the reaction should not last more than 15 min. Pyridine, 

DMAP and acetic anhydride were successively added to a solution of diol in dichloromethane at 

−10 oC. After 15 min, the reaction was directly quenched with H2O and worked up. Purification 

through silica gel chromatography afforded the desired compound 89 as a colourless oil in a 

yield of up to 99% (66% for 89a R = CO2Et, 95% for 89b R = CO2Bn and 99% for 89c R= 

SO2Ph). This yield was reproducible and the compounds obtained were pure; chromatography 

was mainly used to remove the remaining traces of puridine. The lower yield for compound 89a 

(R = CO2Et), compared to 89b, can be explained by the fact that the optimized reaction scale of 

1.5 g of diol was established after the synthesis of 89a was discontinued. 

4 ) Nucleophilic substitution of prenyl bromide 

The nucleophile, formed in situ from compound 89 through the removal of the proton of 

malonyl moiety, attacks the prenyl bromide 90 to afford 79 (Scheme 66). 
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Scheme 66 

An allylic rearrangement or allylic shift is sometimes observed in the presence of allylic 

halides and analogous substrates. This reaction is generally referred as SN1’ or SN2’, depending 

on the reaction mechanism.112 

The reaction of prenyl bromide with a malonate moiety has been often described in the 

literature with a wide range of solvents, bases and conditions.113 
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→ Application 

The procedure described in the initial work involved the slow addition of n-butyllithium to 

a solution of the compound 89 and prenyl bromide 90 (3-methylbut-2-enyl bromide) in dry THF 

at −78 oC (Scheme 66). This methodology gave relatively moderate yields (42-57%) and the 

purification was difficult. We first thought that some allylic rearrangement may also occur but it 

was not observed in our hands probably due to the steric hindrance. However, one of the side 

products isolated resulted from the addition of n-butyllithium to the carbonyl moiety. So, we 

could deduce that the base used was not adequate as it might be too nucleophilic and tended to 

react in an addition reaction instead of reacting as a base.  

 

Scheme 68 

Thus, the main problem seemed to be the nature of the chosen base. The base had to be 

basic enough to deprotonate the malonate moiety (pKa = 13.3 in DMSO for dimethyl 

malonate114) but not too nucleophilic, to avoid the addition onto carbonyls. We should only use a 

slight excess of base (1.1 equivalents) to avoid the formation of the enolate derived from the 

ketone moiety (pKa = 25.8 in DMSO for cyclopentanone114), and thus avoid the formation of the 

corresponding alkylated products. Therefore, a range of bases was screened and new conditions 

were established (Table 10). 

In the literature, most of the nucleophilic substitutions of a malonic ester moiety onto alkyl 

bromide involve NaH as a base.114b,115 K2CO3 should also be strong enough to remove the 

malonic proton. However, the use of K2CO3 as a base did not work in that reaction, and the 

starting material 89b (R = CO2Bn) was fully recovered (Entries 4-7, Table 10). 
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Entry Base Solvent Temperature Reaction yield (79b*) 

1 n-BuLi THF −78 °C 42% 

2 LDA THF −78 °C 35% 

3 KHMDS THF −78 °C 30% 

4 K2CO3 THF 0 °C − 

5 K2CO3 Acetone Room temperature − 

6 K2CO3 THF Room temperature − 

7 K2CO3 Acetone Room temperature − 

8 NaH THF −78 °C 64% 

9 NaH Et2O −78 °C 59% 

10 NaH CH2Cl2 −78 °C 30% 

11 NaH THF 0 °C 80% 

12 NaH Et2O 0 °C 71% 

13 NaH CH2Cl2 0 °C 33% 

Table 10 (*: for compound 79b R = CO2Bn) 

A range of bases was screened, and the best results were obtained using NaH in THF at  

0 °C (Entry 11, Table 10). 

 

Scheme 69 
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NaH was added to a solution of the malonate ester 89 in dry THF under nitrogen 

atmosphere at 0 oC and the reaction was stirred for 24 h at room temperature. The deprotonation 

reaction was followed using a gas bubbler: the reaction ends when no (hydrogen) gas is formed 

anymore. At the end of the deprotonation, the grey NaH suspension disappeared and the original 

colourless mixture became pale yellow. Prenyl bromide 90 was then added to the reaction 

mixture at 0 oC and the solution was stirred overnight at room temperature. When the diethyl 

malonate ester compound 89a (R = CO2Et) was used, the reaction was performed at −78 °C and 

left overnight to warm-up (the dry ice/ethyl acetate bath was not refilled with dry ice after the 

prenyl bromide addition) and the desired product 79a (R = CO2Et) was obtained in 64% yield. In 

the case of the synthesis of the dibenzyl malonate ester analogues (R = CO2Bn), we observed 

that the reaction seemed to work better at 0 °C. The desired compound 79b (R = CO2Bn) was 

obtained in 80% yield. 

For unknown reasons, the substitution reaction was unsuccessful with the disulphone 

analogue 89c (R = SO2Ph). On paper, the synthesis of the sulfonyl analogues was the most 

promising one: we should obtain solid products that are generally easier to handle and UV-

visible due to the presence of the aromatic substituents on the sulfones. And the most important 

part is the hypothetically facile removal of the sulfonyl group. Unfortunately, we could not 

verify this last point. 

The first steps of the sulfonyl analogue synthesis were only slightly optimized, as our first 

aim was to reach the desulfonylation step. This substitution reaction was crucial, being partly the 

purpose of this sulfonyl function (activation of the α proton): if we could insert the prenyl group, 

we would be able either to attempt the desulfonylation reaction or to carry out the synthesis on 

the same pathway. 

The starting material 89c was recovered and the desired product 79c was never isolated. 

All the conditions shown in table 9 were also screened without better results. Unfortunately, no 

product was obtained from the prenyl bromide addition reaction with 89c as starting material. 

This absence of reaction is probably due to the steric hindrance of the two sufonyl that are a lot 

bigger than carbonyl. However, the syntheses with the dibenzyl ester analogues were working 

with good yields and the decarboxylated analogues were produced with success. 
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1H NMR spectroscopic analysis (see Appendix) of compound 89c revealed the presence of 

the signals of the acidic proton in α to the sulfone moieties at around 5.75 ppm (we can see two 

signals because we had an inseparable mixture of four stereoisomers: two pairs of enantiomers). 

The analysis of the 1H NMR spectrum of compound 79b allowed the observation of the new 

signals that we were expecting from the prenyl bromide substitution reaction: the most 

characteristic peaks are the alkene signal at around 4.85 ppm and the two terminal methyl signals 

at around 1.55 ppm. The acidic proton peak (around 5.75 ppm) disappeared on the 1H NMR 

spectrum while the new signals corresponding to the two terminal methyl (around 1.55 ppm) 

appeared. The two latter peaks were the most recognizable as they were the most intense signals 

(two signals integrating for three protons). However, we never observed these signals on any 

isolated product when we worked on this reaction with compound 89c (R = SO2Ph) as starting 

material. 

Therefore, the investigations conducted with disulphone analogues were discontinued in 

favour of the dibenzyl ester analogues. 

5 ) Protection removal 

The removal of the acyl group is generally performed under basic conditions. Many 

methodologies have been developed in order to reach that goal:104 

- K2CO3, MeOH, H2O;116 

- NaOMe (catalytic), MeOH, H2O (Zemplen de-O-acetylation); 

- KCN, EtOH (for acidic or base sensitive substrates);117 

- Enzymes can afford the resolution of a racemic or meso-substrate with excellent 

enantioselectivity;118 

- Different methodologies have been designed to be compatible with other protecting 

groups such as Mg and MeOH (benzoate and pivaloate are not cleaved).119 

We decided to use a supported base: Amberlite® 400 Cl. The commercial chloride form of 

this Amberlite® was activated in an aqueous solution of NaOH (2 M). Amberlite® 400 Cl is a 

strong basic anion exchange resin with a styrene/divinyl benzene gel matrix and quaternary 

ammonium functional groups. 
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→ Application 

 

Scheme 70 

The diacetyloxy compound 79 was deprotected to give the corresponding diol product 91 

by treatment with a supported base, Amberlite® 400 OH (Activated form of Amberlite® 400 Cl) 

in MeOH under vigorous stirring at room temperature for one day. This pathway afforded the 

desired product 91 in high yield after filtration through a pad of celite to remove traces of 

crushed Amberlite® without the need for further purification: 91a (R = CO2Et) in 95% and 91b 

(R = CO2Bn) in 86%. 

6 ) Oxidative cleavage 

Oxidative carbon-carbon bond cleavage of vicinal diols is a common synthetic procedure 

that can be achieved using various reagents such as calcium hypochlorite,120 manganic 

pyrophosphate,121 iodine triacetate122 or sodium bismuthate.123 However, the most common 

reagents for this reaction are sodium metaperiodate124 and lead(IV) acetate. Sodium 

metaperiodate is more effective with substrates that are soluble in aqueous solutions because of 

the insolubility of the salt in organic solvents, while lead tetraacetate is used in organic solvents. 

Generally, sodium metaperiodate is preferred to lead acetate, as this latter compound is difficult 

to store and to handle. Further, it is a toxic reagent and over-oxidation can occur. 

Sodium metaperiodate forms a 5-membered ring iodate ester (Scheme 70), which is 

opened to give two carbonyl moieties: primary alcohols afford aldehydes, while secondary 

alcohols produce ketones.125 
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Scheme 71 

Sodium metaperiodate cleaves vicinal alcohols, α-hydroxyketones and related 

functionalities. Carbon-carbon alkene double bonds can be directly cleaved into two carbonyl 

moieties using sodium metaperiodate with osmium catalyst. 

→ Application: 

 

Scheme 72 

An aqueous solution of sodium metaperiodate was added to a solution of the diol 91 in 

THF. The reaction was stirred at room temperature for 4 to 5 hours. The reaction was monitored 

by thin layer chromatography, and quenched as soon as the starting material disappeared. We 

observed that the product started to decompose after the total consumption of the starting 

material.  

The improvements of the reaction conditions from the previous work were principally on 

the reaction time (4.5 hours instead of overnight) and on the quantities of oxidizing agent (10 

equivalents instead of only 5 equivalents). This optimization allowed us to obtain compound 81 

in excellent yields: we reached 98% yield of 81a (R = CO2Et) formation and a yield of 97% in 

the preparation of 81b (R = CO2Bn). 
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7 ) Conclusion 

Other routes have also been explored without success. We attempted addition of prenyl 

bromide to compound 78 to avoid the protection step, but the substitution reaction worked in 

poor yields, and the dihydroxylation-oxidative cleavage reactions gave a complex mixture. 

Scheme 73 shows the new methodology with the reaction yields obtained for diethyl 

malonate analogues in green (R = CO2Et) and dibenzyl malonate analogues in red (R = CO2Bn). 

 

Scheme 73 

Finally, we obtained reactions affording rather clean mixtures and products in good yields. 

The new methodology presented reactions with reproducible yields and more controlled 

conditions. We have also prepared an analogue by replacing the original diethyl malonate moiety 

with the corresponding dibenzyl ester. The original methodology gave the aldehyde 81a  

(R = CO2Et) in less than 3% yield over seven steps. After optimization, the aldehyde 81a  

(R = CO2Et) was obtained in 19% yield and the aldehyde 81b (R = CO2Bn) in 31% yield over 

seven steps. 
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IV ) Decarboxylation 

1 ) Introduction 

A decarboxylation reaction results in the elimination of a carboxyl group, releasing carbon 

dioxide. The carboxylic acid moiety can be replaced by a proton, a halogen atom or otherwise 

functionalized, depending on the reaction conditions and the mechanisms.92 

Different processes of decarboxylation have been developed. The most common procedure 

for decarboxylation is the loss of carbon dioxide from the β-position of another carbonyl moiety, 

catalysed under acidic or basic conditions. A cyclic mechanism is generally involved in this case. 

Other decarboxylation methods usually involve radical mechanisms and are applicable to a 

large scope of substrates. 

However, decarboxylations catalysed by transition metals are emerging. It is a good 

method for aryl cross-coupling decarboxylation, but limited for reductive decarboxylation.126  

Biologically, aerobic decomposition generally proceeds through oxidation (if needed) and 

decarboxylation. The enzymes that catalyse the biochemical process of decarboxylation are 

called decarboxylases or carboxyl-lyases.127 Those enzymes can add or remove a carboxyl group 

from an organic compound. An important example is the enzyme ribulose-1,5-bisphosphate 

carboxylase oxygenase, commonly abbreviated RuBisCO.128 It is the enzyme responsible for the 

conversion of atmospheric carbon dioxide into organic material during photosynthesis. It is 

believed to be the most abundant protein on earth.128 

2 ) Ionic mechanism 

a. Introduction 

The decarboxylation reaction is an old reaction, resulting in decomposition through 

pyrolysis and loss of carbon dioxide. Malonic acids and esters were used early in organic 

syntheses and their decarboxylation has been thoroughly explored.128 Decarboxylation reactions 

usually require heating. β-Keto acids, α,β-unsaturated acids, α-phenyl, α-nitro, and α-cyanoacids 
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can readily release carbon dioxide under acidic or basic conditions in a protic solvent (Scheme 

74).129 Metal salts have also been shown to promote the reaction.130 In a few cases, 

decarboxylation can occur spontaneously.131 The reaction is more likely to proceed if the enol 

intermediate is stabilized (Scheme 74).  

 

Scheme 74 

Decarboxylation of esters is possible under basic conditions (saponification conditions) 

and heating, but generally it leads to poor yields (Scheme 75).132 

 

Scheme 75 

Krapcho developed a method from methyl (or ethyl)-β-ketoesters, which yielded better 

results. It can also be applied to decarboxylation reactions that would work under basic or acidic 

conditions (related to the stability of the enol intermediate, Scheme 76). Krapcho’s conditions 

consist of heating the reaction mixture in the presence of LiCl in DMSO with a proton donor 

(Scheme 77).133 NaCl or MgCl2 salts have also been shown to give good results.134 
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Scheme 76 

 

Scheme 77 

b. Application 

We attempted the reaction on the product from the addition to the malonate moiety 79a (R 

= CO2Et) and 79b (R = CO2Bn) (Equation 1 Scheme 78), and on the bicyclo[5.3.0]decane 82a  

(R = CO2Et) (Equation 2 Scheme 78). In both cases, only decomposition products were observed 

under acidic conditions. 

The protected diol compounds 79a (R = CO2Et) and 79b (R = CO2Bn) afforded the diacid 

115 with removal of the alcohol protection after 24 hours. The conditions were stronger (KOH in 

1:1 THF:H2O) than the simple deprotection of the diol (discussed above), and the reaction was 

carried out for longer reaction times (24 hours). We obtained 115 only as impure traces (5% 

yield from 79a and 4% yield from 79b), and purification of the reaction mixtures was difficult to 

perform due to the presence decomposed products. 

Decomposition of the diacid compounds was observed when heating was applied 

(Equation 1 Scheme 78). In the case of the bicyclic compound 82a (R = CO2Et), the reaction 

conditions conducted to its degradation only (Equation 2 Scheme 78). No attempts were made 
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with the compound 82b (R = CO2Bn) as we expected similar results as the one obtained with 

82a, and we preferred to concentrate on the study of other methodologies. 

The use of LiCl generated the same results of degradation. 

 

Scheme 78 

3 ) Radical mechanism 

Decarboxylation can be achieved through cleavage of a carbon-carbon single bond by 

fragmentation of a carboxylic radical. Different methods have been developed to form the 

carboxylic radical, which decomposed into an alkyl radical and carbon dioxide (Equation 1 

Scheme 79). The alkyl radical may be trapped with a variety of radical-trapping reagents, 

depending on the tolerance of the radical precursor. However, we were only interested in a 

reductive decarboxylation where the carboxyl group was replaced by a proton (Equation 2 

Scheme 79). 
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a. Hunsdiecker reaction 

The Hunsdiecker reaction is sometimes also called Borodin reaction because Borodin was 

the first chemist to report the reaction of carboxylate silver salts with bromine to afford alkyl 

halide (Equation 1 Scheme 80).135 It was used for the preparation of aliphatic halides.136 The 

Hunsdiecker couple, Heinz and Cläre, patented the forgotten reaction in France and the UK in 

1937, then in the USA (1940) and Germany (1941).137 The first publication of the reaction 

occurred in 1942.137 However, the original reaction suffered several limitations.6 Silver salts, that 

were heat sensitive, were required to be scrupulously dried in order to obtain good yields. 

Substrates, which can react with molecular bromine, are incompatible with the reaction. 

The reaction was greatly limited by the preparation of the silver carboxylate, but many 

improvements were introduced. The silver carboxylate salt is preferentially prepared in situ 

through addition of an acyl chloride to a mixture of silver oxide and bromine in CCl4.138 

Thallium(I) and mercury(I) salts show good results as well (Equation 2 Scheme 80).139  

Great improvements were made with the development of new methodologies for the 

formation of radicals from carbonyl compounds. The Kochi reaction and the Barton 

decarboxylation have shown a relatively wide scope of applications. Other methods such as 

pyrolysis of peroxy esters or persulfate silver ion decarboxylation are also known, but only a 

limited number of examples have been studied.140 
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Scheme 81 

b. Kochi modification 

Kochi reported the use of lead(IV) acetate.141 The weak carboxyl-lead(IV) bond can be 

cleaved to form the carboxyl radical, and decarboxylation of aliphatic carboxylic acids can be 

achieved (Scheme 82). However, aromatic carboxylic acids fail to undergo decarboxylation 

under Kochi’s conditions.142  
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c. Barton decarboxylation 

→ introduction 

Barton developed radical chemistry with the discovery of new reactions working through 

free radical mechanisms: the Barton reaction, the Barton decarboxylation and the Barton-

McCombie deoxygenation. 

Sir Derek Barton (1918-1998) was an English organic chemist who received 
the Nobel Prize for chemistry in 1969 with Odd Hassel for their contribution to 
the development of the concept of conformational analysis in organic 
chemistry.5 He received his PhD from Imperial College in 1942 and was 
appointed Professor in 1953. In 1978, he went to France to become Director of 
the “Institut de Chimie des Substances Naturelles” (near Paris). He retired 
from the research institute and traveled to the USA where he taught at the 
University of Station College (Texas) from 1986. Born the son of a carpenter, 
Barton was knighted Sir Derek in 1972. Over his career, more than 300 people 
worked for Barton and he published more than a thousand papers. He described 
the structure of many natural compounds (alkaloids, terpenoids, steroids). He 
worked on several natural product syntheses and developed in parallel new 
reactions (Barton reaction, Barton decarboxylation, Barton-McCombie 
deoxygenation). He married three times. His first wife was English, his second 
wife French and the last American. He finished his career as a Distinguished 
Professor at Texas A&M University where he carried on his work until his last 
breath. He died at the University at College Station in 1998. 

The Barton decarboxylation found its innovative advantage in the scope of applications 

due to the tolerance of functional groups to the reaction conditions. Barton developed a method 

using O-acyl thiohydroxamate reagents. The carboxyl radical was formed through homolytic 

cleavage of the weak N-carboxyl single bond. This radical generation method has a great 

potential because neither strong oxidant nor strongly electrophilic species is required. Many 

methods were devised for the preparation of the radical ester precursor O-acyl thiohydroxamate 

(Scheme 83).143 This precursor can be prepared even without protecting indoles, phenols, 

secondary and tertiary alcohols when using isobutyl chloroformate to promote the esterification. 
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Scheme 83 

An appropriate thiophilic radical induces the fragmentation of the N-carboxyl bond, thus 

forming the carboxyl radical (detailed mechanism shown in Scheme 84). The latter loses carbon 

dioxide and evolves into an alkyl or aryl radical that can be trapped with a hydrogen radical 

donor or another radical trapping reagent (general equation in Scheme 84). 

 

Scheme 84 
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moiety, forming a strong sulfur-tin bond. The N-carboxyl bond undergoes a homolytic cleavage 

that forms the carboxylic radical. The carboxylic radical produces an alkyl or aryl radical with 

release of carbon dioxide. The alkyl radical is finally trapped with a hydrogen radical from the 

tri-n-butyltin hydride. Tri-n-butyltin radical generated propagates the radical chain reaction until 
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Scheme 85 

A variety of radical trapping reagents can be used instead of tri-n-butyltin hydride (Scheme 

86 and Table 11). The best results take place when the radical trapping reagent releases a 

thiophilic radical that can carry out the chain reaction.6 The trap must also be efficient in order to 

have the desired pathway, prevailing on the side reactions. The other possible side reaction could 

be the dimerization of the formed radical or the formation of thioether (Entry 2 Table 11). 
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Entry Trapping reagent Y Yield 

1 t-BuSH H 60% 

2 none SPy 90% 

3 BrCCl3 Br 93% 

4 (PhSe)2 PhSe 94% 

Table 11 

→ Decarboxylation attempts 

After failure of our route using acidic or basic decarboxylation, we decided to explore the 

methodology developed by Barton. For practical reasons, we worked on the product 79 of the 

addition of prenyl bromide to the malonate moiety (Scheme 87) rather than on the 

bicyclo[5.3.0]decane compound. Indeed, the molecule 79 was more accessible (it was 

synthesized with a shorter number of steps). The malonate moiety was in place in order to help 

for the addition of the prenyl group and was then removed. Barton decarboxylation seemed to be 

the methodology of choice: it was extensively studied and proved its efficiency in synthesis. 

 

Scheme 87 

We had to convert the ester into the corresponding diacid to generate the O-acyl 

thiohydroxamate ester and to react the product in a radical reductive decarboxylation (Scheme 

90). 
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Saponification of the diethyl ester 79a (R = CO2Et) or dibenzyl ester 79b (R = CO2Bn) 

afforded the diacid 115 with removal of both diol protections (Scheme 88). Purification of this 

product through silica gel chromatography was complicated and yielded impure material in very 

low yields (5% yield from 79a and 4% yield from 79b). 

 

Scheme 88 

Use of dibenzyl malonate moiety 79b (R = CO2Bn) offered the possibility of removing 

only the benzyl group to give 117 through hydrogenolysis catalysed by palladium(II) acetate.144 

Coleman reported a mild hydrogenolysis methodology that could remove only the two benzyl 

groups without reducing double bonds.144a This method used triethylsilane in the presence of 

catalytic palladium(II) acetate. In these conditions, the benzyl group was replaced by the 

triethylsilyl group to form the triethylsilyl ester 79d (R = SiEt3).144b The latter was very unstable 

and cleaved under usual work-up (addition of saturated aqueous NH4Cl) to afford the diacid 117. 

The reaction needed only filtration through a pad of celite without any further purification and 

gave the diacid 117 in 73% yield (Scheme 89). 
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simple work-up (neutral washing and extraction) and was subsequently submitted to the radical 

reaction conditions as the unpurified mixture. 

 

Scheme 90 

We used tri-n-butyltin hydride as hydrogen radical donor. 1,1'-

Azobis(cyclohexanecarbonitrile) (ABCN) was employed as initiator. A mixture of the crude 

thiohydroxamate diester, ABCN, and tri-n-butyltin hydride was heated under reflux for 4 hours 

until the total consumption of the starting material. Purification gave the product 80 in 38% 

yield. The rest of the mixture contained mainly compounds issued from the decomposition of the 

starting material.  

In summary, the Barton decarboxylation afforded the expected compound 80 from the 

dibenzyl ester 79 over three steps in 28% yield. 

We proved through these reactions that decarboxylation could be obtained using Barton 

methodology. In theory, the same procedure should be applicable to a later stage molecule such 

as the bicyclic structure. The benzyl malonate compound 79b (R = CO2Bn) was demonstrated to 

be more convenient as promising results were obtained in the sequence of reactions. No 

optimization of the reaction conditions was attempted because we focused on building the third 

ring, the lactone. 
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V ) Carbonyl-ene cyclization 

1 ) Alder ene reaction 

The Alder ene reaction, also known as the ene reaction, is a pericyclic reaction involving 

an alkene bearing an allylic proton (the ene component) and a multiple bond (the enophile 

component), resulting in the formation of a carbon-carbon σ-bond and [1,5]-proton shift. Early 

examples were reported by Treibs (1927),146 and Grignard (1930),147 but this reaction was named 

after Alder who was the first to recognise the reaction and to investigate it.148 

Kurt Alder (1902-1958) was a German organic chemist. He was the joint 
recipient of the Nobel Prize of chemistry in 1950 with his teacher Otto Diels 
“for their discovery and development of the diene synthesis”. Alder obtained 
his PhD in 1926 under the supervision of Otto Diels. He was appointed reader in 
1930 then lecturer in 1934 at Kiel University (Germany). In 1936, he became 
head of the department of the science laboratories of I G Farben-Industrie. 
His research in the company was concentrated on the development of Buna 
(discovered in 1935), a synthetic rubber. This rubber was called Buna for the 
chemical compounds used for its preparation: the copolymer is based on 
butadiene that polymerized under radical conditions originally initiated by 
sodium (natrium in German). Nowadays, about 50% of car tyres are made from 
Buna S (styrene butadiene rubber), which derives from the original Buna. In 
1940, he was appointed to the Chair of Experimental Chemistry and Chemical 
Technology at Cologne University where he taught until his death in 1958. 

The general mechanism of the Alder ene reaction is related to the Diels-Alder reaction 

mechanism (Scheme 91). Instead of the four π-electrons from the diene moiety, four electrons 

from the ene moiety are involved: the two π-electrons from the double bond and the two σ-

electrons from the allylic carbon-hydrogen bond (Scheme 97). This accounts in part for the 

higher activation energy needed in the Alder ene reaction compared to the Diels-Alder reaction. 

Indeed, an Alder ene reaction requires energy for the activation of a carbon-hydrogen σ-bond, 

while a Diels-Alder reaction needs to activate a carbon-carbon π-bond, thus higher temperature 

and pressure are necessary. Harsh conditions are a limitation to the scope of substrates in the 

thermal Alder ene reaction.149 
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Scheme 91 

The “ene” moiety is a molecule with a π-bond bearing an allylic proton. It can be an 

alkene, alkyne, allene, aromatic, or even cyclopropyl compounds. Some examples were even 

reported where carbon-heteroatom multiple bond can be used as the “ene” moiety.150 

The enophile is generally an electron-poor multiple bond. In the case of a carbon-carbon 

bond, the ene can be activated through an electron-withdrawing group. The enophile moiety can 

be an alkene, alkyne, carbonyl, or azo compounds, or singlet oxygen.151 The selenium dioxide-

catalysed allylic oxidation is believed to proceed partly through an ene reaction mechanism. 

Alder ene reactions were originally thermally promoted, and the reaction required high 

temperatures, therefore reducing the range of possible substrates for the reaction (Scheme 92).151 

The development of Lewis acid-promoted ene reactions in the late 1970’s has opened up new 

scope for the Alder ene reaction. 
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2 ) Carbonyl-ene reaction 

The carbonyl-ene reaction is an Alder-ene reaction where the enophile is a carbonyl 

moiety. Before the 1970’s, development of the carbonyl-ene reaction was hindered by the high 

activation energy needed. The activation energy could be lowered by Lewis acid catalysis: 

examples of carbonyl-ene reactions catalysed by Lewis acids such as these were originally 

restricted to formaldehyde (Equation 1 Scheme 93),152 chloral or bromal (Equation 2 Scheme 

93),153 and glyoxylates (Equation 3 Scheme 93).154 

 

Scheme 93 

The use of other Lewis acids enabled further development of the carbonyl-ene reaction. It 

could be presented as an alternative to the addition of allylic metals to carbonyls.155 A number of 
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lowering the temperature required to achieve the reaction (Scheme 94).156 Therefore, under 
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as substituents on enes and enophiles could be employed. 
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Scheme 94 

Chiral Lewis acids have also been developed to induce high levels of enantioselectivity 

(Scheme 95 and Scheme 96).157 Some of them have also proven their efficiency in asymmetric 

desymmetrization. Asymmetric desymmetrization is the ability of a reagent or an enzyme to 

form a chiral product when starting from a symmetrical molecule such as a meso compound 

(Scheme 96).158 
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Scheme 96 

1 ) Mechanistic aspects 

Concerted or stepwise mechanisms can be considered, depending on the starting materials 

and reaction conditions. In both cases, frontier orbital interactions between the HOMO (highest 

occupied molecular orbital) of the ene compound and the LUMO (lowest unoccupied molecular 

orbital) of the enophile component have an impact on the mechanistic and synthetic point of 

view. Lowering the energy of the LUMO (electron-withdrawing substituent on the enophile) 

favours the ene reaction and decreases the activation energy needed.150 

a. Concerted mechanism 

The carbonyl-ene reaction (and the ene reaction) is mechanistically related to the Diels-

Alder reaction: the prevalent mechanism is a concerted pathway via a cyclic six-electron 

transition state. The Diels-Alder transition state is a six-membered ring where the terminal π-

orbitals of the diene overlaps the dienophile π-orbitals (Scheme 97). In the ene mechanism, 

orientation of the σ-orbital of the allylic carbon-proton bond parallel to the π-orbitals of the 

neighbouring carbon-carbon double bond maximizes the allylic resonance: one π-orbital of the 

enophile overlaps the terminal π-orbital of the ene and the other enophile π-orbital overlaps the 

σ-orbital of the allylic carbon-proton bond of the ene (Scheme 97). 
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Calculation studies supported this transition state geometry, although the carbon-hydrogen-

carbon bond was determined to be at 156° instead of the postulated 180°.159 

 

Scheme 97 

Studies have shown evidence in favour of a concerted mechanism for most thermal ene 

reactions: no deuterium transfer to the product from deuteriated solvent, high activation energy 

needed and lack of isomerization of both products and reagents are consistent with a concerted 

process.160 A cis-addition of ene and proton to the enophile double bond is another piece of 

evidence for a concerted mechanism (Scheme 98).161 

 

Scheme 98 
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determine. Concerted mechanisms are single-energy barrier processes, whereas stepwise 

mechanisms have more energy barriers to cross in order to complete the reaction.150 

In 1984, Salomon reported modifications to the selectivity and reactivity of the Lewis acid-

catalysed ene reaction. The most important difference was the preference for an attack at the less 

hindered carbon of the enophile for a thermal ene reaction, while the Lewis acid-catalysed ene 

reaction was directed by another effect. The results suggested an electronic influence of the 

Lewis acid.163 Many studies have reported the impact of Lewis acids on the ene reactions, but no 

conclusive proof of an ionic intermediate has been found. 

In 1996, Achmatowicz examined the reactions of allylbenzene and 3-phenylbut-1-ene with 

oxomalonic ester (Scheme 99).164 The reactions were previously reported by Stephenson in 

1981165 and Kwart in 1982.166 The contradictory results were an interesting point to clarify. 

Stephenson reported a carbonyl-ene reaction product, whereas Kwart obtained cyclized products 

from the same reactions. Achmatowicz decided to study deeper in order to clarify the mechanism 

behind these reactions. He showed that both sets of reagents underwent an ene reaction under 

thermal conditions (Scheme 99). 

 

Scheme 99 
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Scheme 100 

The same reaction was performed using 3-phenylbut-1-ene with oxomalonate ester. A 

similar result was expected but only one product, a cyclic compound, arising from the migration 

of the phenyl group, was obtained (Scheme 101).  

 

Scheme 101 
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Scheme 102 

c. Thermal vs Lewis acid-promoted reaction 

Frequently, the Lewis acid-promoted ene reaction mechanism is seen as a continuum from 

concerted to stepwise mechanisms.150 A concerted mechanism is a single-energy barrier process, 

so only one activation energy should be considered. A stepwise process such as an ionic 

mechanism requires each step to be pushed forward. The rate-limiting step is the slowest one. In 

this cationic process, the rate-determining step can be either the formation of the ionic 

intermediate when the cationic intermediate formation is slow and reversible, and the hydrogen 

transfer fast, or the hydrogen transfer. 

In general, thermal reactions are limited by the steric hindrance of the ene component 

and/or the steric accessibility of the allylic hydrogen. In the Lewis acid-promoted reaction, 

stability of the ionic intermediate favours the reaction and directs it. Therefore, 1,1-disubstituted 

alkenes are more reactive ene components because the positive charge is more stabilized when 

the carbon is more substituted (Scheme 103).164 Further, thermal reactions show a small 

enhancement of reactivity with the addition of an electron-donating substituent on the ene 

component, whereas the Lewis acid-promoted reaction demonstrates a strong enhancement.164 
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The envelope model could not explain some results obtained with the Lewis acid-promoted 

reaction. Therefore, Mikami suggested a six-membered ring chair-like transition state that would 

occur at a late stage of the reaction mechanism (Scheme 104).155b 

 

Scheme 104 

d. Radical mechanism 

A limited number of examples of ene reactions involving a radical mechanism can be 

found in the literature. Franzus reported that a free-radical initiator could catalyse reactions of 

cyclic olefins with ethyl azodicarboxylate.167 

2 ) Carbonyl-ene cyclization: towards the perhydroazulene ring 

a. Perhydroazulene synthesis by Kuroda et al. 

In 1993, Kuroda reported the synthesis of α-methylene-γ-lactones fused to a 

perhydroazulene carbon framework through intramolecular allylsilane cyclization (Scheme 

105).168 The mechanism involved is a Lewis acid-catalysed intramolecular nucleophilic addition 

of an allyl silane to an aldehyde, followed by a lactonization. 

The stereochemistry of the products depends on the configuration of the double bond of the 
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despite the low yields, the most interesting results for the synthesis of guaianolide and pseudo-

guaianolide skeletons would be obtained using BF3.OEt2 as the catalyst (Entry 1 and 4 Table 12).  

Results using TiCl4 indicated an isomerization of one of the bridge carbons (Entry 5 Table 12) or 

lower yields without lactonization (Entry 2 Table 12). Results using TBAF can also be 

interesting but not applicable to our methodology, an Alder ene reaction. 

 

Scheme 105 

Entry Substrate Reagent Product(s) (ratio) Yield (%) 

1 119 BF3.OEt2 121 14 

2 119 TiCl4 125 + 126 (53:47) 13 

3 119 TBAF — — 

4 120 BF3.OEt2 121 + 122 (44:56) 19 

5 120 TiCl4 124 45 

6 120 TBAF 122 + 123 (41:59) 32 

Table 12 

b. Reaction 

The perhydroazulene skeleton was synthesized through an intramolecular Alder ene 

reaction. The 1,8-unsaturated aldehyde Alder ene precursor 81 was cyclized using the Lewis acid 

BF3.OEt2 at −78 °C in THF for 48 hours. The product was obtained as a mixture of two 

diastereoisomers with a trans relative stereochemistry at the C1-C7 ring junction and a cis 
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relative stereochemistry between the substituents borne by C2 and C3 (Scheme 106). The 

relative configuration was determined using NMR spectroscopy studies.1 

  

Scheme 106 

A previous study investigated a range of Lewis acid catalysts and conditions such as 

BF3.OEt2, ZnI2, Sc(OTf)3, Yb(OTf)3, InCl3, solvent screening and microwave irradiation.1 Most 

of these conditions were ineffective and only starting material was recovered. However, the 

Lewis acids BF3.OEt2 and Yb(OTf)3 yielded the desired cyclized compounds 82 and 83 that have 

a guaianolide skeleton. 

In this former study, the Alder ene precursor 81a (R = CO2Et) was cyclized in the presence 

of BF3.OEt2 in dry THF under argon at −78 °C and stirred for 22 h at room temperature to yield 

the perhydroazulene compounds as a mixture of 82a (R = CO2Et) in 10% yield and 83a  

(R = CO2Et) in 41% yield.1 When the intramolecular carbonyl-ene cyclization of 81a was 

catalysed by Yb(OTf)3 in dry THF under argon at 0 °C and stirred at room temperature for 5 

days, only the isomer 83a was observed in 46% yield (56% when the starting material recovery 

was accounted for).1 

The stereochemistry should result from a concerted carbonyl-ene reaction mechanism. 

Indeed, if a cationic intermediate was involved, an ion with a carbocation at C11 (see Scheme 

106) would be the intermediate, and thus, proton abstraction at C2 would be observed. 

Therefore, an ionic mechanism would involve a side product with a double bond between C3 and 
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observed. These observations corroborate our concerted mechanism hypothesis.  
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The cis relative configuration could be rationalized by a mechanism operating through a 

chair-like transition state (Scheme 107). In the transition state TS4, we can see that the Lewis 

acid (noted LA in Scheme 107) is more hindered than in TS3. This could be an explanation for 

the selectivity of the reaction, especially when using the Lewis acid Yb(OTf)3, which is even 

bulkier than BF3.OEt2.  

 

Scheme 107 

We chose to focus on the Alder ene reaction catalysed by BF3.OEt2 in order to obtain the 

perhydroazulene ring system. This decision was motivated by the fact that the reaction catalysed 

by Yb(OTf)3 afforded a slightly lower yield than the one catalysed by BF3.OEt2. 

Conditions were screened to optimize the yields: solvent, Lewis acid quantity, temperature 

and reaction time. 

The best solvent for the reaction was THF. In diethyl ether, lower yields were obtained, 

and in dichloromethane, the starting material decomposed. 

The best results were obtained when the aldehyde-ene precursor 81 was treated with 10 
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R 
Eq of 

BF3.OEt2 
Temperature 

Reaction 

time 

Yield of 82 

(on recovery) 

Yield of 83 

(on recovery) 

Overall 

yield 

CO2Et 5 −78 °C to r.t. 1 day 15% 25% 40% 

CO2Et 5 −78 °C to −50 °C 1 day 13% (24%) 22% (40%) 35% (64%) 

CO2Et 10 −78 °C to r.t. 2 days 17% 37% 54% 

CO2Et 10 −78 °C to −50 °C 2 days 44% 42% 86% 

CO2Bn 10 −78 °C to r.t. 2 days 30% 35% 65% 

CO2Bn 10 −78 °C to −50 °C 2 days 48% (58%) 25% (30%) 73% (88%) 

CO2Bn 10 −78 °C to −50 °C 5 days 49% 26% 75% 

Table 13 

The formation of the cyclic compound 82 seemed to be favoured by the presence of the 

benzyl esters (ratio 2:1 for 82b (S,S):83b (R,R)), whereas the cyclization (cis configuration: (S,S) 

82a or (R,R) 83a) ratio is 1:1 in the presence of ethyl esters. 

The yield of the compound 83 appeared to remain constant (30% yield), while the yield of 

compound 82 varied (up to 48% yield). 

Less decomposition of the product seemed to occur when the reaction mixture was kept at 

low temperature, but the reaction was slightly slower. After 48 hours, the highest ratio was 

obtained, and after five days, only marginally better results were obtained (lower yields when the 

recovery of the starting material was accounted for). 

Obtaining both isomers expanded the number of potential target molecules, as guaianolides 

with both skeletons exist. 
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VI ) Inversion of configuration 

In asymmetric synthesis, the inversion of configuration at a carbon bearing an alcohol 

moiety is often required. Commonly used methodologies include nucleophilic substitution or 

oxidation of the alcohol function, followed by reduction. 

1 ) Nucleophilic substitution 

a. Introduction 

Nucleophilic substitution is a fundamental reaction in organic chemistry. The reaction 

results in the displacement of an electron rich moiety (nucleofuge) by another electron rich group 

(nucleophile). Ingold and Edward D. Hugues studied the substitution mechanism. 

Sir Christopher Kelk Ingold (1893-1970) was a British chemist, considered as 
a pioneer in physical organic chemistry.5 He has rationalised many general 
mechanisms such as nucleophilic substitution and elimination, electrophilic 
addition and substitution, and other mechanisms. In 1934, Ingold published a 
revolutionary paper on the “Principle of an Electronic Theory of Organic 
Reaction”.169 He was the first to suggest the presence in solution of organic 
ions to explain some mechanisms. It was only in 1951 that the manual Ingold 
wrote became a reference about organic reaction mechanisms. Ingold obtained 
his PhD in 1918 and a DSc in 1921 from Imperial College. At 31, he was 
appointed a chair of Organic Chemistry at Leeds University. In 1930, he came 
back to London where he served as the Head of the Chemistry Department of 
University College of London until his retirement in 1961. Ingold was knighted in 
1958. 

Ingold proposed two different mechanisms that can be characterized by their kinetic order 

(Scheme 108): the nucleophilic substitutions of the first and second orders are termed SN1 and 

SN2, respectively. A SN1 reaction involves an ionic mechanism, in two steps with the formation 

of a carbocation intermediate (Scheme 108); the SN1 rate depends only on the substituted alkyl 

concentration. In the SN2 reaction, the elimination of the leaving group (nucleofuge) occurs with 

a concomitant addition of the nucleophile (Scheme 108). Therefore, SN2 involves a concerted 
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mechanism and the reaction rate depends on the concentration of both the product and the 

nucleophile. 

 

Scheme 108 

The two mechanisms compete. The SN2 reaction is characterized by an anti-attack of the 

nucleophile, which inverts the configuration of the reactive centre; whereas, in the SN1 reaction, 

after the formation of a planar carbocation intermediate, a nucleophilic attack can occur from 

both faces, generally generating a racemic mixture, unless a chiral substituent favours a 

particular stereochemical outcome.170 

The SN1 reaction is favoured when the carbocation intermediate is stabilized, for example 

in the presence of more substituted alkyl and stabilizing substituents in a polar protic solvent. 

The SN2 reaction is favoured in aprotic solvents, when the substituents borne by the reactive 

centre are unhindered primary and secondary alkyl, and when the group attacking is highly 

nucleophilic.171 

Depending on the reaction conditions, elimination (E1 and E2) can take place instead of 

the SN1 and SN2 reactions. 

b. Alcohol inversion 

The inversion of configuration of an alcohol requires the activation of the carbon-oxygen 

bond in order to generate a good leaving group, which is subsequently displaced by a 

nucleophile such as an oxyanion (Scheme 109). The Mitsunobu reaction is further discussed in a 

separate section. 
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The SN2 reaction mechanism must be favoured in order to obtain complete inversion of 

configuration at the chiral carbon centre bearing the alcohol moiety. The bulk of R1 and R2 

(Scheme 109) should be minimized and potential elimination of the sulfonate moiety should be 

avoided. 

The carbon-oxygen bond is generally activated through the formation of a sulfonyl ester 

(noted Su on Scheme 109). Examples of sulfonyl esters, used as leaving groups, are tosylate 

(Ts), mesylate (Ms), triflate (Tf), and pyridyl sulfonate (PyrSO2) esters.171 

  

Scheme 109 

The leaving group is generally displaced by a metal carboxylate. Metals such as sodium 

and potassium carboxylates have shown reasonable results for nucleophilic substitution with 

inversion of configuration.172 A tetraalkylammonium carboxylate salt can be also used instead of 

metal carboxylate to operate the substitution. However, elimination products were observed to 

some extent with secondary alcohols.173 Use of salts of cesium carboxylate showed the best 

results in the inversion reaction and in the suppression of the elimination reaction.174 The 

addition of 18-crown-6 to the substitution reaction can also reduce the amount of elimination 

products.175 The subsequent hydrolysis of the carboxylate allows the preparation of the free 

inverted alcohol with an inverted configuration. 

Other methodologies, using different nucleophiles for the substitution such as nitrate, 

superoxide or nitrite ions, have also been reported.167,174,175a These methodologies are not general 
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and, in some cases, they afforded the corresponding inverted alcohol. However, side reactions 

such as racemization, elimination, oxidation or nitration gave undesired products.172,176 

Another methodology is the esterification of a secondary alcohol via the corresponding 

isourea ether. The alcohol is converted into an isourea using a carbodiimide such as N,N’-

dicyclohexylcarbodiimide (DCC), which is not isolated. The isourea ether formed is displaced in 

situ with a carboxylic acid to form a carboxylic ester. This ester can be hydrolysed to provide the 

alcohol with an inverted configuration.177 

Mitsunobu developed a methodology that is widely used in total synthesis for the inversion 

of configuration of alcohols, using azocarboxylate compounds and phosphines as reagents in one 

step (vide infra). 

c. Application 

We attempted the substitution of the alcohol function of compound 82b (R = CO2Bn). The 

first step was the conversion of the alcohol moiety into a sulfonyl ester 127, a good leaving 

group (Scheme 110). The alcohol sulfonylation attempts were unsuccessful; even when the 

reaction solution was heated for several days, no new products appeared, only compound 82b 

was recovered in 65 to 85% yield (Entries 1, 4, 5, 6 and 7, Table 14). 

  

Scheme 110 

When trifluoromethanesulfonic anhydride was used as the sulfonylation reagent, 

compound 82 was consumed (Entries 2 and 3, Table 14). However, no triflate ester was observed 

in the resulting product mixture (19F NMR spectroscopy). Two new sp2 carbons were observed 
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proton H2 was correlated to proton H1 at the ring junction (COSY NMR experiment). Therefore, 

we deduced the structure of compound 128, which matched an expected side reaction. A 

spontaneous elimination of the triflate could have occurred, yielding the corresponding alkene 

128 (Entries 2 and 3, Table 14; Scheme 111). When the quantity of pyridine and triflic anhydride 

was reduced, the same elimination reaction was observed (Entry 3, Table 14). The latter took 

place at 0 °C, but no reaction occurred at −30 °C; however, when the temperature was allowed to 

increase slowly from −30 °C to 0 °C, only the elimination product was observed. 

  

Scheme 111 

The use of methanesulfonyl chloride was also unsuccessful as the starting material was 

recovered (Entries 4 and 5, Table 14). The same disappointing outcome was observed when 

sodium hydride and tosyl anhydride were used (Entry 7, Table 14). 

Entry Sulfonate (equiv) Base (equiv) DMAP Product 

1 Ts2O (1.2) Pyr (2.4) — SM 

2 Tf2O (2.6) Pyr (5) — Elimination 

3 Tf2O (1.2) Pyr (1) — Elimination 

4 MsCl (1.2) Pyr (1.5) Catalytic SM 

5 MsCl (2) Pyr (1.5) Catalytic SM 

6 TsCl (2) Pyr (2) Catalytic SM 

7 Ts2O (1.1) NaH (2.5) — SM 

Table 14 
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We also attempted to protect the alcohol moiety with a silyl protecting group and we 

observed that the first reaction that occurred was the formation and the trapping of the enolate 

(Scheme 112). One equivalent of t-butyldiphenylsilyl chloride (TBDPSCl) with one equivalent 

of Et3N yielded either compound 129 or 130 depending on the reaction temperature (Scheme 

112). 

 

Scheme 112 

Therefore, two equivalents of reagents were required to protect the alcohol moiety. 

Depending on the reaction temperature, a different enolate was obtained: at −78 °C, the less 
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These observations were confirmed by NMR spectra analysis. Consequently, larger excesses of 
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reaction proceeded with an inversion of configuration if optically active secondary alcohols were 

used.179 The substitution of an alcohol by a nucleophile in the presence of an azodicarboxylate 

and a phosphine is generally termed as Mitsunobu reaction (Scheme 113).180 

 

Scheme 113 

Mukaiyama has developed the conditions to perform the reaction successfully even on 

tertiary alcohols with an inversion of configuration.181 

A carboxylate ion is generally used as nucleophile for the displacement of the 

oxyphosphonium function (inversion of the carbon configuration), although phenol or 

hydroxybenzothiazole can also be employed. However, a large range of nucleophiles can also 

substitute the oxyphosphonium group, provided the pKa of the nucleophile is lower than 15.181,182 

Other possible nucleophiles are thiols, thiophenols, imides, hydroxamates, some nitrogen 

heterocycles and hydrazoic acids. A few cases of carbon-carbon bond formation have been 

reported with β-diketones or β-ketoesters, but β-diesters are not reactive enough for the 

reaction.6 Intramolecular Mitsunobu reactions are also possible.183 

The preferred phosphine is generally Ph3P, but n-Bu3P (or Bu3P) is also commonly used.183 

The principal limitation of the Mitsunobu reaction is the purification, and particularly the 

removal of the unreacted phosphine and the formed phosphine oxide. A large range of 

phosphines has been successfully tested such as Me3P, Ph2(2-Pyr)P, (p-NMe3Ph)3P and DPPE 

(1,2-diphenylphosphinoethane). Phosphines supported on polymer have been developed and 

chromatography-free separation methodologies have been explored.184  

DEAD (diethyl azodicarboxylate) or DIAD (diisopropyl azodicarboxylate) are the 

common azodicarboxylates used for the Mitsunobu reaction. In general, they can be employed 

interchangeably. Good yields are obtained if the pKa of the nucleophile is lower than 11. When 

the pKa of the nucleophile is higher than 11, more reactive azodicarboxylates are preferred such 

as ADDP ((1,1’-azodicarbonyl)dipiperidine), and TMAD (N,N,N’,N’-tetramethyl 
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azodicarboxamide).183 Me3P or n-Bu3P, combined with these more reactive azodicarboxylates, 

afforded better results than Ph3P. New azodicarboxylates have been also devised, facilitating 

chromatography separation.185 DMEAD (di-2-methoxyethyl azodicarboxylate) and the reduced 

product, the hydrazine, are readily separated from the expected Mitsunobu product and are easier 

to prepare than DEAD.183 

A general procedure for the Mitsunobu reaction is the slow addition of DEAD or DIAD to 

a solution of Ph3P, followed by the addition of the alcohol, and finally, the acidic nucleophile is 

added to the mixture. However, homocoupling of the alcohol can be observed, and the addition 

can be performed in other orders. 

b. Mechanism 

The mechanism of the Mitsunobu reaction is fairly complex and still subject to studies.183 

Mitsunobu proposed the mechanism shown below (Scheme 114).181 It can be considered overall 

as an oxidation/reduction reaction where the phosphine is oxidized to the phosphine oxide and 

the azodicarboxylate 131 reduced to the hydrazine dicarboxylate. Triphenyl phosphine is added 

to diethyl azodicarboxylate 131 to yield the betaine 132, which is protonated. After the formation 

of the alkoxyphosphonium salt 133, the SN2 reaction can take place and yields the resulting 

species 134 with an inversion of the configuration. The carboxylate can be removed to afford the 

desired inverted alcohol 135. 

  

Scheme 114 
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c. Application 

All of our different attempts at performing Mitsunobu reaction with 82b and 83b were 

unsuccessful (Table 15). A range of combinations of azodicarboxylates, phosphines and 

nucleophiles were tried, but they all resulted in the recovery of the starting material (Table 15). 

 

Scheme 115 

Entry Azodicarboxylate Phosphine Nucleophile* Product 

1 DIAD Ph3P PNBA SM 

2 DIAD Bu3P PNBA SM 

3 DEAD Ph3P PNBA SM 

4 DEAD Bu3P PNBA SM 

5 DEAD Bu3P AcOH SM 

6 DEAD Ph3P PMBA SM 

(* PNBA: para-nitrobenzoic acid; PMBA: para-methoxybenzoic acid) 
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We attempted to limit the effect of steric hindrance: Bu3P and acetic acid (a small 

nucleophile) were used with DEAD (Entry 5, Table 15). The reaction mixtures were heated to 

reflux. THF, diethyl ether, dichloromethane and toluene were tested as the reaction solvents. The 

conditions, shown in the Table 15, are the ones when THF was used as reaction solvent. Dioxane 

was also employed as solvent to allow higher reflux temperatures. A reaction using a large 

excess of reactants was also attempted. All the modifications to the reaction conditions, 

described above, only led to the recovery of the starting material. 

3 ) Oxidation/reduction 

a. Introduction 

The oxidation-reduction reaction sequence is often used in asymmetric synthesis to provide 

a racemic mixture of both alcohol epimers. The unwanted epimer can be re-engaged in the same 

sequence of oxidation and reduction reactions. 

A plethora of oxidation reactions, that convert a primary or secondary alcohol into an 

aldehyde or a ketone, is available such as: chromium oxidations (Jones, PDC, PCC, etc), DMSO 

oxidations (Swern, Pfizner-Moffat, etc), hypervalent iodine oxidations (Dess-Martin, IBX, etc), 

ruthenium oxidations, TEMPO oxidations, etc. The most commonly used oxidation reagents 

contain chromium; high yields are normally obtained. One drawback is that these reagents are 

strong oxidizing reagents, resulting in poor selectivity such as the selectivity between primary 

and secondary alcohols. However, PDC (pyridinium dichromate) and PCC (pyridinium 

chlorochromate) are less acidic and moderately less reactive reagents than the Jones reagent, 

which enlarges the scope of reactions for chromium reagents. 

Many reduction reactions, that convert a ketone into an alcohol, are also available. The 

chemo- and stereoselective reduction of a ketone without reduction or isomerization of a carbon-

carbon double bond is required in our case. A hydride donor should be suitable. Metal hydride 

reagents generally lead to racemic mixtures, but chiral metal hydride reagents have been 

developed to induce enantioselectivity. If the reaction proceeds in good yield with an achiral 

metal hydride and the diastereoisomers can be readily separated, a chiral metal hydride might not 

be required as the undesired compound can be recycled in an oxidation-reduction reaction 

sequence. 
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b. Application 

Before any oxidation or reduction, the ketone moiety of the starting material 82b was 

protected as an acetal 137 (Scheme 116). In the same way, 83b was converted into 137’. 

Unfortunately, this protection proceeded in moderate yields (58% yield for the (S,S) analogue 

137 from 82b and 37% yield for the (R,R) analogue 137’ from 83b). 

 

Scheme 116 

The oxidation of the alcohol 137, followed by the reduction of 138, provided at last a 

mixture of the C2 epimers that included the compound 139 with the desired stereochemistry, a 

trans-relative configuration at C2 and C3 (Scheme 117). The alcohol 137 was quantitatively 

oxidized into 138 using pyridinium dichromate in dichloromethane. The obtained ketone 138 

was subsequently reduced into 139 and 137 using sodium borohydride in iso-propanol. The 

oxidation-reduction reaction sequence proceeded in good yields, 81% and 76% yields 

respectively, using the (R,R) and the (S,S) starting materials. The epimers were formed in a ratio 

close to 1:1 and were readily separated by silica gel flash column chromatography: NMR, IR and 

mass spectrometry data were consistent with our expected results and allowed us to conclude 

that formation of the desired epimer 139 had occurred. 
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Scheme 117 

Finally, the inversion of configuration at the carbon centre bearing the alcohol moiety has 

been successfully achieved and the desired isomer was isolated. We obtained the desired epimer 

139 in only 40% yield. The other epimer 137 was obtained in 36% yield and can be re-engaged 

in an oxidation-reduction sequence, and therefore increasing the yield of the product 139. 

However, the sequence of reactions suffered a drawback: the protection step. This 

protection reaction would need to be optimized or avoided. Another optimization of the current 

work would be to selectively reduce 138 into only one epimer: 139. This should be included in 

any future study on the subject. 

− Other route in perspective 

In future work, we could potentially perform this oxidation-reduction sequence directly on 

82b with omission of the protection step (Scheme 118). The ketone at C8 would be also reduced 

but it should not interfere with the next steps. The omission of the protection step might avoid 

the loss of a high quantity of material, which is dramatic at such an advanced stage of the 

synthesis. 
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Scheme 118 

In theory, the isomers 141b and 141d could be synthesized selectively. If we could isolate 

any (or both) of these isomers, we should be able to carry out the synthesis using the diols 141b 

and 141d (Scheme 119). The allylic oxidation should proceed in a similar manner to afford the 

triol 142. The primary alcohol function of 142 could be selectively oxidized to form the 

carboxylid acid 143, which should readily cyclize (lactonization) into the lactone 144. Oxidation 

of the latter would yield the desired compound 73, which is the skeleton we aimed for. This 

pathway would avoid the protection and deprotection steps of the ketone, which proceeded (for 

the protection) in moderate yield. These two limited steps would be replaced with one oxidation 

step that should proceed in a good yield. 
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Scheme 119 

VII ) Allylic oxidation 

1 ) Overview of allylic oxidation methodologies 

Allylic oxidation is a useful reaction in organic chemistry. It can yield an allylic alcohol or 

an α,β-unsaturated carbonyl from a carbon-carbon π-bond. In this part, we focused on the 

formation of allylic alcohols from alkenes.92 Selenium dioxide is commonly considered as the 

most efficient reagent for such an oxidation. The selenium dioxide methodology is discussed 

separately. 

A radical reaction was developed by Karasch and Sosnovsky to achieve allylic oxidation 

from an alkene and a peroxyester in the presence of a catalytic amount of a copper(I) salt 

(Scheme 120).186 The main drawback of this methodology is that numerous undesired 

rearrangements can take place; as a consequence, the reaction is now rarely used.92 
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Scheme 120 

Some metal acetates such as mercury(II) or palladium(II) acetates react with alkenes to 

afford the corresponding allylic acetates; a mixture of the expected allylic acetate and a product 

from a [1,3] rearrangement are generally observed (Scheme 121).187 

 

Scheme 121 

Allylic metals can undergo a transmetallation with a fluorodimethoxyborane. The 

corresponding allylic alcohol is usually obtained in low yields with unwanted by-products after 

oxidation of the boronic acid using hydrogen peroxide (Scheme 122).188 

 

Scheme 122 

2 ) Selenium oxidation mechanism 

Oxidation using selenium dioxide is the most common procedure for the insertion of an 

oxygen atom into an allylic carbon-hydrogen bond.189 It is generally a predictable reaction and 

provides the corresponding (E)-allylic alcohol (Scheme 123).92 
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The reaction mechanism has been shown by Sharpless to proceed through an ene reaction 

mechanism, followed by a [2,3]-sigmatropic rearrangement (Scheme 123).190 

 

Scheme 123 

Stephenson showed that an ionic intermediate could also be involved, which allows a 

rationalization of the stereoselective addition of the selenium dioxide to the π-bond (Scheme 

124).191 He reported that this ionic mechanism was suppressed in basic media. 

 

Scheme 124 

In 1977, Sharpless reported a novel procedure involving selenium dioxide and tert-butyl 

hydroperoxide.192 The reoxidation of the reduced selenium(II) regenerated the selenium(IV) 

dioxide, thus avoiding purification problems due to selenium(II) compounds and organoselenium 

side-products. He observed that the reaction was cleaner when using tert-butyl hydroperoxide 

with a catalytic amount of selenium dioxide, and reactions were faster in non-coordinating 

solvents such as dichloromethane. Side products of the selenium dioxide oxidation were 

principally dienes and over-oxidation of the allylic alcohol into enone, α,β-unsaturated acid or 

ether. In general, the best results were obtained when the reaction run to about 75% of 

conversion and stopped.193,193 

3 ) Application 

In our study towards the synthesis of the lactone moiety, we were interested in the 

oxidation of the iso-propene moiety into the allylic primary alcohol (Scheme 125). 
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Scheme 125 

The allylic oxidation conditions were then screened (Table 16). 

Entry SeO2  Oxidant (equiv) Solvent Conditions Time Yield 

1 1 equiv — EtOH r.t. to 80 °C 12 h — 

2 5 equiv — EtOH r.t. to 80 °C 24 h — 

3 0.5 equiv t-BuOOH aq (10 equiv) CH2Cl2 0 °C to r.t. 5 d — 

4 0.5 equiv t-BuOOH org (2 equiv) CH2Cl2 0 °C to r.t. 2 d 21% 

5 0.5 equiv t-BuOOH org (2 equiv) CH2Cl2 0 °C to r.t. 24 h 39% 

Table 16 

The best result is highlighted in the table (Entry 5, Table 16): tert-butyl hydroperoxide was 

slowly added to a suspension of selenium dioxide in dichloromethane at 0 °C. The suspension 

was solubilized upon addition of the peroxide. The alkene 82 was added at 0 °C, and the solution 

was stirred at room temperature for a day (Scheme 125). The reaction was stopped before 

completion of the reaction and 28% of the starting material 82 was recovered (Entry 5, Table 

16). Accounting for the recovery of the starting material, the desired compound 142 was 

obtained in 56% yield. Longer reaction times only led to an increase of starting material 

decomposition. 

The allylic alcohol 142 was then oxidized. A complex mixture, which we believed was a 

mixture of the corresponding aldehyde 143 and lactol 144, was obtained. Interpretation of the 1H 
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NMR spectrum of the crude mixture revealed that an aldehyde was present in low quantity, and 

the mass spectrum was consistent with the two products suggested (Scheme 126). 

 

Scheme 126 

VIII ) Future work 

The work I have done and described herein should allow the synthesis of the guaianolide 

skeleton (Scheme 127). 

The keto diacetate molecule 80 was synthesized from the cyclopentenone 76. The 

deprotection of the molecule 80, followed by an oxidative cleavage of the diol and an Alder ene 

cyclization of the unsaturated keto aldehyde compound would afford 74. These reactions were 

optimized for the compounds bearing the dibenzyl and diethyl malonate moieties. The inversion 

of the alcohol configuration was studied, and the allylic oxidation conditions were optimized, so 

the compound 144 should be readily accessible. Allylic oxidation of 144 should provide 145, and 

further oxidation of the bicyclic compound 145 should yield the tricyclic guaianolide skeleton 

73. All the tools are in place to permit the synthesis of the guaianolide skeleton, and the synthesis 

can be further explored, towards natural compounds. 
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Scheme 127 

The natural product dehydroleucodine could be a target. The oxidation of the carbon-

carbon bonds in the α-position with respect to the ketone would afford the α,β-unsaturated 

compound 146, and two consecutive 1,4-oxidative additions would provide the natural product: 

dehydroleucodine 72 (Scheme 128). 
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EXPERIMENTAL 

I ) General experimental methods and materials 

1 ) Generalities 

Air sensitive reactions were carried out in flame-dried glassware under an argon 

atmosphere. Extractions were performed using the commercial solvent without further 

purifications except for petroleum ether, fractions 40/60, which was distilled from the 

commercial solvent. Reaction solvents were freshly distilled under an argon or nitrogen 

atmosphere before use from calcium hydride for dichloromethane, from sodium metal and 

benzophenone for THF, and from sodium for toluene. For reaction using DMS, the commercial 

dry solvent was used. 

Compounds were purified by recrystallization when possible, but most of the purifications 

were run on flash column chromatography. Purified compounds were dried in vacuo at room 

temperature. 

2 ) Chromatography procedures 

Silica gel flash column chromatography were carried out using Merck Kieselgel 60, 40-63 

µm particule size. Pressure was applied with hand bellows when needed. Crude materials were 

introduced as liquid when possible or as solid deposit, pre-absorbed onto silica gel. Thin layer 

chromatography was performed using Merck aluminium-backed plates coated with Kieselgel 60 

F254 silica. Plates were visualized by U.V. irradiation at a wavelength of 254 nm, when 

compounds were U.V. active, or by dipping the plate in an acidic ethanolic solution of vanillin. 

3 ) Analytical tools 

Fourier transformation infrared spectroscopy was recorded using a Perkin Elmer System 

2000 FT-IR spectrophotometer in the range 4000-400 cm−1. All samples, solid or liquid, were 

run neat. 
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1H and 13C NMR spectra were recorded at 400.13 and 100.62 MHz using a Varian Unity 

Plus (400 MHz) spectrometer, or at 300.05 and 75.45 MHz using a Varian Gemini 200 (300 

MHz) instrument respectively in CDCl3. Chemical shifts are reported in ppm and referenced to 

the residual solvent CHCl3 present in CDCl3 at δH = 7.26 ppm and δC = 77.16 ppm. When 

possible, coupling constants (J) are shown denoting the multiplicity as: singlet (s), doublet (d), 

triplet (t), quarter (q), multiplet (m) or any combination of those such as doublet of doublet (dd), 

triplet of doublet (dt).  

Melting points were recorded using an Electrothermal-IA 9100 melting point instrument. 

High Resolution Mass Spectrometry (HRMS) was carried out by the EPSRC national mass 

spectrometry service at the University of Wales, Swansea, utilizing electrospray ionization (ESI) 

at times coupled with gas chromatography (GC-ESI), Atmospheric Solids Analysis Probe 

(ASAP). 
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II ) Preparation of the silyl enol ether 

1 ) Copper(I) bromide dimethyl sulfide complex 

 

Sodium sulfite (< 1 g) was added to a solution of commercial copper(I) bromide (dark grey 

powder, 4.0 g, 27.9 mmol) in conc. HBr (10 mL) until the solution changed colour, from purple 

to brown. The resulting brown solution was poured into water, filtered through a Büchner funnel 

and the residue was washed with ethanol and diethyl ether. The colourless powder was collected 

and dried at room temperature under reduced pressure for 1h. The dry solid was dissolved in 

DMS (15 mL) and heated under reflux for 20 min under a nitrogen atmosphere. The solution was 

poured into petroleum ether to afford a colourless precipitate that was collected by filtration, 

dried under reduced pressure and stored at room temperature in a desiccator (82%, 4.70g). 

2 ) (±)-3-Ethenyl-1-trimethylsilyloxycyclopent-1-ene 771 

  

A solution of vinyl magnesium bromide (1 M in THF, 75.0 mL, 75.0 mmol, 1.25 equiv.) 

was added over 30 min at −78 °C to a solution of CuBr.DMS (1.23 g, 5.97 mmol, 0.1 equiv.) in 

THF (150 mL) under an argon atmosphere. The solution was stirred at −78 °C for 1 h. A mixture 

of DMPU (14.4 mL, 119 mmol, 2 equiv.), TMSCl (15.2 mL, 119 mmol, 2 equiv.) and 

cyclopentenone (5.0 mL, 59.7 mmol, 1 equiv.) was prepared directly in the addition funnel and 

this mixture was added slowly to the solution of copper(I) reagent previously prepared. The 

temperature was carefully controlled during the addition (not higher than −70 °C). The solution 

CuBr CuBr.DMS

O
88

88

88

55

77

O
11

Si

22

3344
66
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was stirred at −78 °C for 1h, and allowed to reach −55 °C over 3 h. At −55 °C, triethylamine 

(16.6 mL, 119 mmol, 2 equiv.) was added to the solution, which was subsequently diluted with 

petroleum ether (100 mL), allowed to reach room temperature and petroleum ether (100 mL) 

added. The mixture was washed with water (3 x 150 mL), and the combined aqueous layers were 

extracted with petroleum ether (3 x 200 mL). The organic layers were collected, dried over 

anhydrous magnesium sulfate and concentrated to dryness to give a brown oil. The crude 

material was purified using a Kügelrohr distillation apparatus under reduced pressure (60-70 °C; 

10 mbar) to afford (±)-3-ethenyl-1-trimethylsilyloxycyclopent-1-ene 77 as a colourless oil (9.88 

g 91%). The pure compound must be stored under an argon atmosphere in the freezer to slow 

down any decomposition. b.p. = 62-65 °C (10 mbar); IR νmax (neat) /cm−1 1652 (C=C-OSi), 

1635 (C=C), 1252 (Si-CH3); 1H NMR (300 MHz, CDCl3) δ 5.55 (1 H, ddd, J = 17.1, 9.9, 7.0 Hz, 

H6), 4.75 (1 H, dd, J = 17.1, 2.0 Hz, H7trans), 4.64 (1 H, dd, J = 9.9, 2.0 Hz, H7cis), 4.34 (1 H, d,  

J = 1.9 Hz, H2), 3.03 (1 H, m, H3), 2.05 (2 H, m, H5), 1.88 (1 H, m, H4a), 1.36 (1 H, m, H4b), 0.00 

(9 H, s, H8); 13C NMR (75 MHz, CDCl3) δ 156.2 (C1), 144.2 (C6), 112.3 (C7), 105.5 (C2), 46.2 

(C3), 33.4 (C5), 28.9 (C4), 0.0 (C8); HRMS (ESI) calcd for C10H18OSi ([M+]) 182.1127. Found: 

182.1128. 
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III ) Towards the synthesis of the trans-bicyclo[5,3,0]decane skeleton 

using the diethyl malonate moiety 

1 ) Diethyl methylidene malonate 1052 

 

A mixture of paraformaldehyde (12.0 g, 395 mmol, 2 equiv.), diethyl malonate ester (30.0 

mL, 198 mmol, 1 equiv.), copper(II) acetate (2.0 g, 10.9 mmol, 0.16 equiv.) and potassium 

acetate (2.20 g, 21.7 mmol, 0.13 equiv.) in acetic acid (100 mL) was heated at 90 °C with a 

reflux condenser for 1.5 h, and allowed to reach room temperature and concentrated to dryness 

under reduced pressure (55 °C, 10 mbar). For the purification, all the distillation apparatus was 

previously washed with an acidic solution and rinsed with acetone to reduce the polymerization 

risks. The distillation was performed under reduced pressure (10 mbar) first at 100 °C to remove 

the last traces of solvent. At 150 °C, the products started distilling and the temperature was 

increased to 180 °C. Purification via vacuum distillation afforded diethyl methylidene malonate 

105 as a colourless oil (18.0 g, 53%). To avoid polymerization, the pure product needs to be 

stored under an argon atmosphere in the freezer. b.p.= 82-87 °C, 10 mbar; IR νmax (neat) /cm−1 

1735 (3 C=O), 1250 (2 O-C); 1H NMR (300 MHz, CDCl3) δ 6.50 (2 H, s, H1), 4.27 (4 H, q, J = 

7.1 Hz, H4), 1.31 (6 H, t, J = 7.1 Hz, H5); 13C NMR (75 MHz, CDCl3) δ 164.3 (C3), 135.4 (C1), 

134.3 (C2), 61.6 (C4), 14.1 (C5). 
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2 ) (±)-trans-2-((Diethyl malonate)methyl)-3-vinyl-cyclopentanone 78a  

(R = CO2Et)1 

 

A solution of tin tetrachloride (6.35 mL, 54.2 mmol, 1 equiv.) in dry dichloromethane (55 

mL) was added at −78 °C over 2 h to a solution of (±)-3-ethenyl-1-trimethylsilyloxycyclopent-1-

ene 77 (9.88 g, 54.2 mmol, 1 equiv.) and diethyl methylidene malonate 105 (9.33 g, 54.2 mmol, 

1 equiv.) in dry dichloromethane (271 mL) under an argon atmosphere. After addition, the 

solution was stirred at −78 °C for 3 h. The solution was poured into water (200 mL) and filtered 

through a pad of Celite®. The Celite® was thoroughly washed with dichloromethane (200 mL). 

The aqueous layer was extracted with dichloromethane (3 x 200 mL). The combined organic 

layers were dried over anhydrous magnesium sulfate and concentrated to dryness under reduced 

pressure. Purification by silica gel flash column chromatography, eluent: petroleum ether/ethyl 

acetate (9:1), afforded (±)-trans-2-((diethyl malonate)methyl)-3-vinyl-cyclopentanone 78a (R = 

CO2Et) as a pale yellow oil (9.94 g, 65%). IR νmax (neat) /cm−1 1732 (3 C=O), 1250 (2 O-C); 1H 

NMR (300 MHz, CDCl3) δ 5.76 (1 H, ddd, J = 7.9, 10.1, 18.0 Hz, H6), 5.15 (1 H, d, J = 17.0 Hz, 

H7trans), 5.09 (1 H, d, J = 10.1 Hz, H7cis), 4.17 (4 H, q, J = 7.1 Hz, H11), 3.92 (1 H, t, J = 7.5 Hz, 

H9), 2.46-2.27 (2 H, m, H3, H5a), 2.23-2.02 (4 H, m, H4a, H5b, H8), 1.99-1.89 (1 H, m, H2), 1.71-

1.53 (1 H, m, H4b), 1.24 (6 H, 2 t, J = 7.1 Hz, H12); 13C NMR (75 MHz, CDCl3) δ 218.8 (C1), 

169.4 (C10), 169.3 (C10), 139.8 (C6), 116.1 (C7), 61.3 (2 C11), 51.1 (C2), 49.1 (C9), 47.6 (C3), 37.1 

(C5), 27.5 (C4), 27.0 (C8), 13.9 (2 C12); HRMS (ESI) calcd for C15H26O5N ([M+NH4]+) 

300.1805. Found: 300.1798. 
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3 ) (±)-trans-2-((Diethyl malonate)methyl)-3-(1’,2’-dihydroxyethyl)-

cyclopentanone 88a (R = CO2Et)1 

 

! Without optimization 

N-Methyl morpholine N-oxide monohydrate (1.25 g, 10.6 mmol, 3 equiv.) and osmium 

trichloride monohydrate 78 (R = CO2Et) (55 mg, 177 µmol, 0.05 equiv.) were added at 0 °C to a 

solution of (±)-trans-2-((diethyl malonate)methyl)-3-vinyl-cyclopentanone 78a (R = CO2Et) (1 g, 

3.54 mmol, 1 equiv.) in THF/water (1:1) (70:70 mL). The solution was stirred at room 

temperature for 24 h. The reaction mixture was diluted with dichloromethane (300 mL) and 

washed with an aqueous solution of HCl (1 M, 1 x 200 mL). The organic layer was dried over 

anhydrous sodium sulfate and concentrated to dryness under reduced pressure. Purification by 

silica gel flash column chromatography, eluent: petroleum ether/ethyl acetate (6:4), afforded (±)-

trans-2-((diethyl malonate)methyl)-3-(1’,2’-dihydroxyethyl)-cyclopentanone 88a (R = CO2Et) as 

a pale grey oil (0.75 g, 67%). 

! After optimization 

N-Methyl morpholine N-oxide monohydrate (3.47 g, 25.6 mmol, 3 equiv.) and osmium 

trichloride monohydrate 78 (R = CO2Et) (40 mg, 128 µmol, 0.015 equiv.) were added at 0 °C to 

a solution of (±)-trans-2-((diethyl malonate)methyl)-3-vinyl-cyclopentanone 78a (R = CO2Et) 

(2.41 g, 8.54 mmol, 1 equiv.) in THF/water (1:1) (70:70 mL). The solution was stirred at room 

temperature for 20 h. The reaction mixture was quenched at 0 °C with sodium sulfite (3.23 g, 

25.6 mmol, 3 equiv.), diluted with dichloromethane (300 mL) and washed with an aqueous 

solution of HCl (2 M, 2 x 200 mL). The organic layer was dried over anhydrous sodium sulfate 

and concentrated to dryness under reduced pressure. Purification by silica gel flash column 

chromatography, eluent: petroleum ether/ethyl acetate (6:4), afforded (±)-trans-2-((diethyl 
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malonate)methyl)-3-(1’,2’-dihydroxyethyl)-cyclopentanone 88a (R = CO2Et) as a pale yellow oil 

(1.82 g, 80%). IR νmax (neat) /cm−1 3450 (2 O-H), 1735 (3 C=O) 1243 (2 O-C); 1H NMR (300 

MHz, CDCl3) δ 4.35-4.10 (4 H, m, H11), 4.05-3.87 (2 H, m, H6, H9), 3.74-3.55 (2 H, m, H7), 

2.43-1.77 (8 H, m, H2, H3, H4, H5, H8), 1.30-1.22 (6 H, m, H12); 13C NMR (75 MHz, CDCl3) δ 

219.5 (C1), 170.1 (C10), 169.7 (C10), 70.1 (C6), 64.8 (C7), 61.8 (C11), 61.6 (C11), 49.6 (C9), 47.5 

(C2), 44.4 (C3), 36.7 (C8), 26.3 (C5), 19.7 (C4), 13.9 (C12), 13.8 (C12); HRMS (ESI) calcd for 

C15H25O7 ([M+H]+) 317.1595. Found: 317.1597. 

4 ) (±)-trans-2-((Diethyl malonate)methyl)-3-((1’RS),2’-diacetoxyethyl)-

cyclopentanone 89a (R = CO2Et)1 

 

! Without optimization 

(±)-trans-2-((Diethyl malonate)methyl)-3-(1’,2’-dihydroxyethyl)-cyclopentanone 88a (R = 

CO2Et) (2 g, 6.33 mmol, 1 equiv.) was added to a 1:1 solution of acetic anhydride : pyridine 

(150:150 mL). The reaction mixture was stirred at room temperature overnight, quenched with 

50 mL of water, extracted with dichloromethane (3 x 100 mL) and washed with a saturated 

aqueous solution of CuSO4 (2 x 150 mL). The organic layer was dried over anhydrous sodium 

sulfate and concentrated to dryness under reduced pressure. Purification by silica gel flash 

column chromatography, eluent: petroleum ether/ethyl acetate (8:2 to 7:3), afforded (±)-trans-2-

((diethyl malonate)methyl)-3-((1’RS),2’-diacetoxyethyl)-cyclopentanone 89a (R = CO2Et) as a 

colourless oil (1.62 g, 64%). 
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! After optimization 

Pyridine (12.4 mL, 153 mmol, 10 equiv.) was added at 0 °C to a solution of (±)-trans-2-

((diethyl malonate)methyl)-3-(1’,2’-dihydroxyethyl)-cyclopentanone 88a (R = CO2Et) (4.84 g, 

15.3 mmol, 1 equiv.) in dichloromethane (500 mL), and dimethylaminopyridine (1.12 g, 9.18 

mmol, 0.6 equiv.) and acetic anhydride (6.4 mL, 67.3 mmol, 4.4 equiv.) were added. The 

reaction mixture was stirred at 0 °C for 30 min, quenched with 50 mL of water, extracted with 

dichloromethane (3 x 100 mL) and washed with a saturated aqueous solution of CuSO4 (2 x 150 

mL). The organic layer was dried over anhydrous sodium sulfate and concentrated to dryness 

under reduced pressure. Purification by silica gel flash column chromatography, eluent: 

petroleum ether/ethyl acetate (8:2 to 7:3), afforded (±)-trans-2-((diethyl malonate)methyl)-3-

((1’RS),2’-diacetoxyethyl)-cyclopentanone 89a (R = CO2Et) as a colourless oil (4.03 g, 66%). IR 

νmax (neat) /cm−1 1735 (5 C=O), 1241 (4 C-O); 1H NMR (300 MHz, CDCl3) δ 5.30-5.05 (1 H, m, 

H6), 4.45-3.85 (7 H, m, H7, H9, H11), 2.45-1.70 (14 H, m, H2, H3, H4, H5, H8, H14), 1.30-1.20 (6H, 

t, J = 7.0, 11.0 Hz, H12); 13C NMR (75 MHz, CDCl3) δ 218.5 (C1), 170.8 (C13), 170.6 (C13), 

169.4 (C10), 169.2 (C10), 69.7 (C6), 63.4 (C7), 61.4 (C11), 48.7 (C9), 47.0 (C2), 42.0 (C3), 37.1 

(C8), 27.1 (C5), 20.9 (C4), 20.8 (C14), 20.6 (C14), 13.9 (C12), 13.8 (C12); HRMS (ESI) calcd for 

C19H32O9N ([M+NH4]+) 418.2072. Found: 418.2059. 

5 ) (±)-trans-2-(6’-(5’,5’-Bis(ethylcarboxylate)-hex-2’-ene))-3-((1”RS),2”-

diacetoxyethyl)-cyclopentanone 79a (R = CO2Et)1 
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! Without optimization 

n-BuLi (140 µL, 1.5 mmol, 1.2 equiv.) was slowly added at −78 °C a solution of (±)-trans-

2-((diethyl malonate)methyl)-3-((1’RS),2’-diacetoxyethyl)-cyclopentanone 89a (R = CO2Et) (0.5 

g, 1.25 mmol, 1 equiv.) in dry THF (150 mL) under an argon atmosphere and the solution was 

stirred for 4 h at −78 °C. Prenyl bromide (120 µL, 1.5 mmol, 1.2 equiv.)  was subsequently 

added at −78 °C and the reaction mixture was allowed to reach room temperature overnight. The 

reaction mixture was quenched at 0°C with water (30 mL), extracted with dichloromethane (3 x 

200 mL) and washed with saturated aqueous NH4Cl (200 mL). The organic layer was dried over 

anhydrous magnesium sulfate and concentrated to dryness under reduced pressure. Purification 

by silica gel flash column chromatography, eluent: petroleum ether/ethyl acetate (8:2), afforded 

(±)-trans-2-(6’-(5’,5’-bis(ethylcarboxylate)-hex-2’-ene))-3-((1”RS),2”-diacetoxyethyl)-

cyclopentanone 79a (R = CO2Et) as colourless oils (0.25 g, 42%). 

! After optimization 

Solid NaH (95%, 230 mg, 9.10 mmol, 1.2 equiv.) was added at −78 °C in two portions to a 

solution of (±)-trans-2-((diethyl malonate)methyl)-3-((1’RS),2’-diacetoxyethyl)-cyclopentanone 

89a (R = CO2Et) (3.04 g, 7.59 mmol, 1 equiv.) in dry THF (150 mL) under an argon atmosphere 

and the solution was stirred for 4 h at −78 °C. Prenyl bromide (750 µL, 9.10 mmol, 1.2 equiv.) 

was subsequently added at −78 °C and the reaction mixture was allowed to reach room 

temperature overnight. The reaction mixture was quenched at 0°C with water (30 mL), extracted 

with dichloromethane (3 x 200 mL) and washed with saturated aqueous NH4Cl (200 mL). The 

organic layer was dried over anhydrous magnesium sulfate and concentrated to dryness under 

reduced pressure. Purification by silica gel flash column chromatography, eluent: petroleum 

ether/ethyl acetate (8:2), afforded (±)-trans-2-(6’-(5’,5’-bis(ethylcarboxylate)-hex-2’-ene))-3-

((1”RS),2”-diacetoxyethyl)-cyclopentanone 79a (R = CO2Et) as a separable mixture of 

diastereoisomers (55:45), as colourless oils (2.27 g, 64%). 

First isomer eluting from the column: IR νmax (neat) /cm−1 1740 (5 C=O), 1244 (4 C-O); 1H 

NMR (300 MHz, CDCl3) δ  5.18 (1 H, m, H6), 4.91 (1 H, m, H11), 4.20 (1 H, dd, J = 11.6, 5.1 

Hz, H7a), 4.15-4.02 (5 H, m, H7b, H15), 2.65-2.46 (2 H, m, H10), 2.30-1.95 (14 H, m, H2, H3, H4, 

H5, H8, H18), 1.61 (3 H, s, H13 or H13’), 1.53 (3 H, s, H13 or H13’), 1.22-1.11 (6 H, m, H16); 13C 
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NMR (75 MHz, CDCl3) δ 218.4 (C1), 171.4 (C17), 171.2 (C17), 170.6 (C14), 170.4 (C14), 135.5 

(C12), 117.6 (C11), 70.5 (C6), 63.3 (C7), 61.3 (C15) 61.1 (C15), 56.4 (C9), 46.7 (C2), 42.9 (C3), 36.1 

(C5), 32.5 (C10), 31.8 (C8), 25.8 (C4), 20.7 (C17), 20.6 (C17), 17.8 (C13 and C13’), 13.7 (2 x C16); 

HRMS (ESI) calcd for C24H40O9N ([M+NH4]+) 486.2698. Found: 486.2689. 

Second isomer eluting from the column: IR νmax (neat) /cm−1 1740 (5 C=O), 1244 (4 C-O); 
1H NMR (300 MHz, CDCl3) δ 5.18-5.10 (1 H, m, H6) 5.02-4.92 (1 H, m, H11), 4.39 (1 H, dd,  

J = 12.1, 3.1 Hz, H7a), 4.25-4.05 (5 H, m, H15, H7b), 2.67 (2 H, d, J = 7.51 Hz, H10), 2.33-1.86 

(13 H, m, H2, H3, H4a, H5, H8, H18), 1.70-1.55 (7 H, m, H13, H13’, H4b), 1.29-1.55 (6 H, m, H16); 
13C NMR (75 MHz, CDCl3) δ 218.5 (C1), 171.6 (C17), 171.4 (C17), 171.0 (C14), 170.7 (C14), 

135.8 (C12), 118.0 (C11), 74.1 (C6), 63.4 (C7), 61.5 (C15), 61.3 (C15), 57.0 (C9), 47.8 (C2), 43.2 

(C3), 36.0 (C5), 32.8 (C10), 32.4 (C8), 23.3 (C4), 21.1 (C17), 20.8 (C17), 18.0 (C13 and C13’), 14.0 

(C16), 13.97 (C16); HRMS (ESI) calcd for C24H40O9N ([M+NH4]+) 486.2698. Found: 486.2689. 

6 ) (±)-trans-2-(6’-(5’,5’-Bis(ethylcarboxylate)-hex-2’-ene))-3-((1”RS),2”-

dihydroxyethyl)-cyclopentanone 91a (R = CO2Et)1 

 

Amberlite® 400 Cl (10 g) was activated by stirring for 3 h in an aqueous solution of NaOH 

(2 M, 200 mL). The resin was filtered, and washed with ethanol and diethyl ether. 

The activated Amberlite® 400 Cl was added to a solution of the mixture of both  

isomers (±)-trans-2-(6’-(5’,5’-bis(ethylcarboxylate)-hex-2’-ene))-3-((1”RS),2”-diacetoxyethyl)-

cyclopentanone 79a (R = CO2Et) (2.27 g, 4.85 mmol) in methanol (100 mL). The solution was 

stirred for 2 days. The solution was filtered through a pad of Celite® to remove all the 

Amberlite®, and the residue was washed with methanol. The filtrate was dried over anhydrous 
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sodium sulfate and concentrated to dryness to afford (±)-trans-2-(6’-(5’,5’-bis(ethylcarboxylate)-

hex-2’-ene))-3-((1”RS),2”-dihydroxyethyl)-cyclopentanone as a colourless 91a (R = CO2Et) oil 

in 95% yield (1.76 g) as a mixture of isomers. The ratio was not precisely determined because 

most of the mixture was hardly separable. However, a small sample of each isomer was isolated 

for the characterisation. 

First isomer eluting from the column: IR νmax (neat) /cm−1 3459 (2 O-H), 1732 (3 C=O), 

1297 (2 C-O); 1H NMR (300 MHz, CDCl3) δ 4.92 (1 H, m, H11), 4.28-4.00 (5 H, m, H6, H15), 

3.75 (1 H, dd, J = 11.1, 9.0 Hz, H7a), 3.59 (1 H, dd, J = 11.1, 3.4 Hz, H7b), 2.74 (1 H, dd, J = 

14.7, 7.3 Hz, H10a), 2.61 (1 H, dd, J = 14.7, 8.6 Hz, H10b), 2.53-2.46 (1 H, m, H2), 2.36-2.29 (1 H, 

m, H5a), 2.08-1.86 (4 H, m, H4, H5b, H8a), 1.80-1.71 (2 H, m, H3, H8b), 1.70 (3 H, s, H13 or H13’), 

1.61 (3 H, s, H13 or H13’), 1.27-1.17 (6 H, m, H16); 13C NMR (75 MHz, CDCl3) δ 216.0 (C1), 

174.4 (C14), 171.7 (C14), 136.8 (C12), 117.6 (C11), 65.0 (C6), 62.2 (C15), 62.1 (C15), 60.7 (C7), 

58.5 (C9), 51.0 (C2), 45.6 (C3), 36.4 (C5), 34.4 (C10), 33.2 (C4), 29.9 (C8), 23.7 (C13 or C13’), 18.3 

(C13 or C13’), 14.3 (C16), 14.2 (C16); 

Second isomer eluting from the column: IR νmax (neat) /cm−1 3459 (2 O-H), 1732 (3 C=O), 

1297 (2 C-O); 1H NMR (300 MHz, CDCl3) δ 4.93 (1 H, m, H11), 4.28-4.05 (5 H, m, H6, H15), 

3.77 (1 H, m, H7a), 3.55 (1 H, m, H7b), 2.72 (1 H, dd, J = 7.6 Hz, H10a), 2.58 (1 H, dd,  J = 7.6 

Hz, H10b), 2.50-2.29 (3 H, m, H2, H5), 2.15-1.89 (5 H, m, H3, H4, H8), 1.69 (3 H, s, H13 or H13’), 

1.60 (3 H, s, H13 or H13’), 1.37-1.22 (6 H, m, H16); 13C NMR (75 MHz, CDCl3) δ 219.5 (C1), 

174.0 (C14), 171.3 (C14), 136.4 (C12), 117.3 (C11), 64.6 (C6), 61.8 (C15), 61.7 (C15), 60.3 (C7), 

58.1 (C9), 50.6 (C2), 45.2 (C3), 36.0 (C5), 34.6 (C10), 32.8 (C4), 29.6 (C8), 25.9 (C13 or C13’), 17.9 

(C13 or C13’), 13.9 (C16), 13.8 (C16); HRMS (ESI) calcd for C20H33O7 ([M+H]+) 385.2224. Found: 

385.2221. 
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7 ) (±)-trans-2-(6’-(5’,5’-Bis(ethylcarboxylate)-hex-2’-ene))-3-formyl-

cyclopentanone 81a (R = CO2Et)1 

 

Sodium metaperiodate (18.6 g, 86.5 mmol, 10 equiv.) was added at 0 °C to a solution  

of (±)-trans-2-(6’-(5’,5’-bis(ethylcarboxylate)-hex-2’-ene))-3-((1”RS),2”-dihydroxyethyl)-cyclo-

pentanone 91a (R = CO2Et) (3.33 g, 8.65 mmol, 1 equiv.) in THF/water (1:1) (440 mL). The 

reaction mixture was stirred at room temperature for 4.5 h at room temperature, and diluted with 

dichloromethane (500 mL) and washed with brine (2 x 300 mL). The organic layer was dried 

over anhydrous sodium sulfate and concentrated to dryness under reduced pressure. Purification 

by silica gel flash column chromatography, eluent petroleum ether/ethyl acetate (8:2),  

afforded (±)-trans-2-(6’-(5’,5’-bis(ethylcarboxylate)-hex-2’-ene))-3-formyl-cyclopentanone 81a 

(R = CO2Et) as a colourless oil (2.97 g, 98%).  IR νmax (neat) /cm−1 1727 (4 C=O), 1221 (2 C-O); 
1H NMR (400 MHz, CDCl3) δ 9.68 (1 H, d, J = 3.9 Hz, H6), 4.97 (1 H, m, H10), 4.25-4.05 (4 H, 

m, H14), 2.91-2.80 (1 H, m, H3), 2.71-2.53 (3 H, m, H2, H9), 2.44-2.30 (1 H, m, H5a), 2.29-2.08 (3 

H, m, H4a, H5b, H7a), 2.04-1.89 (2 H, m, H4b, H7b), 1.67 (3 H, s, H12 or H12’), 1.60 (3 H, s, H12 or 

H12’), 1.24 (6 H, t, J = 9.5 Hz, H15); 13C NMR (75 MHz, CDCl3) δ 216.3 (C1), 201.3 (C6), 171.4 

(C13), 171.3 (C13), 135.9 (C11), 117.4 (C10), 61.5 (C14), 61.3 (C14), 56.9 (C8), 54.9 (C3), 46.0 (C2), 

35.7 (C5), 32.0 (C9), 31.5 (C7), 25.9 (C12 or C12’) 21.1 (C4) 17.8 (C12 or C12’) 13.80 (2 x C15); 

HRMS (ESI) calcd for C19H27O6 ([M+H+]) 352.1886. Found: 352.1891. 
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8 ) (±)-(2R)-Hydroxy-(3R)-isopropenyl-5,5-bis(ethylcarboxylate)-8-oxo-trans-

bicyclo[5,3,0]decane  83a (R = CO2Et) and (±)-(2S)-hydroxy-(3S)-isopropenyl-5,5-

bis(ethylcarboxylate)-8-oxo-trans-bicyclo[5,3,0]decane 82a (R = CO2Et)1 

 

Boron trifluoride diethyl etherate (10.7 mL, 84.2 mmol, 10 equiv.) was added at −78 °C to 

a solution of (±)-trans-2-(6’-(5’,5’-bis(ethylcarboxylate)-hex-2’-ene))-3-formyl-cyclopentanone  

81a (R = CO2Et) (2.97 g, 8.42 mmol, 1 equiv.) in dry THF (170 mL) under an argon atmosphere. 

The solution was allowed to reach room temperature and stirred for 2 days. The solution was 

diluted with dichloromethane (300 mL) and washed with a saturated solution of NaHCO3 (3 x 

200 mL). The organic layer was dried over anhydrous magnesium sulfate and concentrated under 

reduced pressure to give a crude yellow oil. Purification by silica gel flash column 

chromatography, eluent: petroleum ether/ethyl acetate (8:2 to 6:4), afforded (±)-(2R)-hydroxy-

(3R)-isopropenyl-5,5-bis(ethylcarboxylate)-8-oxo-trans-bicyclo [5,3,0]decane 83a (R = CO2Et) 

(1.25 g, 42%) and (±)-(2S)-hydroxy-(3S)-isopropenyl-5,5-bis(ethylcarboxylate)-8-oxo-trans-

bicyclo[5,3,0]decane  82a (R = CO2Et) (1.29 g, 44%). 

(±)-(2R)-Hydroxy-(3R)-isopropenyl-5,5-bis(ethylcarboxylate)-8-oxo-trans-bicyclo[5,3,0] 

decane 83 (R = CO2Et): IR νmax (neat) /cm−1 3542 (O-H), 1730 (3 C=O), 1245 (2 C-O); 1H NMR 

(300 MHz, CDCl3) δ 4.95 (1 H, m, H12a), 4.82 (1 H, s, H12b), 4.22-4.05 (4 H, m, H15), 3.86 (1 H, 

s, H2), 2.66 (1 H, dd, J = 15.2, 2.9 Hz, H6a), 2.51-2.35 (3 H, m, H4a, H7, H9a), 2.21-2.10 (3 H, m, 

H3, H4b, H9b), 2.06-1.90 (4 H, m, H1, H6b, H10), 1.82 (3 H, s, H13), 1.22 (6 H, m, H16); 13C NMR 

(75 MHz, CDCl3) δ 219.0 (C8), 172.8 (C14), 172.8 (C14), 149.2 (C11), 111.6 (C12), 68.1 (C2), 61.7 

(C15), 61.5 (C15), 55.5 (C5), 50.2 (C1), 47.3 (C3), 45.2 (C7) 37.5 (C9), 32.9 (C6), 29.4 (C4), 23.6 

(C13), 22.7 (C10), 14.1 (C16), 14.1 (C16); HRMS (ASAP) calcd for C19H29O6 ([M+H]+) 353.1959. 

Found: 353.1959. 
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(±)-(2S)-Hydroxy-(3S)-isopropenyl-5,5-bis(ethylcarboxylate)-8-oxo-trans-bicyclo[5,3,0] 

decane 82 (R = CO2Et): IR νmax (neat) /cm−1 3533 (O-H), 1731 (3 C=O), 1255 (2 C-O); 1H NMR 

(300 MHz, CDCl3) δ 4.96 (1 H, m, H12a), 4.85 (1 H, s, H12b), 4.20-4.11 (4 H, m, H15), 3.36 (1 H, 

t, J = 9.5 Hz, H2), 2.73 (1 H, d, J = 13.1 Hz, H6a), 2.51-2.39 (2 H, m, H9a, H10a), 2.29 (1 H, m, 

H4a) 2.24-2.19 (2 H, m, H3, H9b), 2.16-2.09 (3 H, m, H4b, H6b, H7), 1.77 (3 H, s, H13), 1.74 (1 H, 

m, H1), 1.57 (1 H, m, H10b), 1.23 (6 H, m, H16); 13C NMR (75 MHz, CDCl3) δ 217.5 (C8), 172.4 

(C14), 171.9 (C14), 146.6 (C11), 113.7 (C12), 77.3 (C2), 61.6 (C15), 61.5 (C15), 54.9 (C5), 51.7 (C1), 

49.4 (C3), 47.7 (C7), 36.6 (C9), 34.2 (C4), 31.5 (C6), 26.2 (C13), 19.1 (C10), 13.9 (C16), 13.8 (C16); 

HRMS (ASAP) calcd for C19H29O6 ([M+H]+) 353.1959. Found: 353.1959. 
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IV ) Towards the synthesis of the trans-bicyclo[5,3,0]decane skeleton 

using the dibenzyl malonate moiety 

1 ) Dibenzyl methylidene malonate 1073 

 

Diisopropyl amine (12.7 mL, 90.0 mmol, 1.5 equiv.), half of the paraformaldehyde (in total 

7.20 g, 240 mmol, 4 equiv.) and TFA (7.4 mL, 96.0 mmol, 1.6 equiv.) were added to a solution 

of dibenzyl malonate ester 106 (15 mL, 60.0 mmol, 1 equiv.) in THF (500 mL) under an argon 

atmosphere. The mixture was heated to reflux. When the solution was at reflux, the other half of 

the paraformaldehyde was added to the mixture and the solution was stirred under reflux for 2 

days. The solution was cooled down to room temperature, concentrated under reduced pressure, 

diluted with dichloromethane (600 mL), washed with saturated aqueous CuSO4 (2 x 350 mL), 

dried over MgSO4 and concentrated to dryness under reduced pressure to afford quantitatively 

dibenzyl methylidene malonate 107 (17.8 g) as a colourless oil. The product was enough pure to 

be used in the next reaction without any further purification. 1H NMR (300 MHz, CDCl3) 

δ 7.35 (10 H, m, H6), 6.60 (2 H, s, H1), 5.26 (4 H, s, H4); 13C NMR (75 MHz, CDCl3) δ 163.7 

(C5), 135.7 (C1), 135.4 (C3), 134.5 (C2), 128.7 (C6), 128.6 (C6), 128.5 (C6), 128.4 (C6), 128.3 

(C6), 128.2 (C6), 67.3 (C4); HRMS (ESI) calcd for C18H16O4Na ([M+Na]+) 319.0941. Found: 

319.0940. 
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2 ) (±)-trans-2-(Dibenzyl malonate)methyl-3-vinyl-cyclopentanone 78b  

(R = CO2Bn) 

  

Dibenzyl methylidene malonate 107 (17.8 g, 60.0 mmol, 1 equiv.) was added at −20 °C to 

a solution of (±)-3-ethenyl-1-trimethylsilyloxycyclopent-1-ene 77 (12.0 g, 66.0 mmol, 1.1 equiv.) 

in dichloromethane (150 mL) under an argon atmosphere. At −78°C, a solution of SnCl4 (7.1 

mL, 60.0 mmol, 1 equiv.) in dichloromethane (10 mL) was added over 2 h to the reaction 

mixture. After the addition, the reaction mixture was stirred at −78 °C for 2.5 h and poured onto 

water (200 mL). The resulting mixture was filtered through a pad of Celite® and the Celite® was 

thoroughly washed with dichloromethane (200 mL). The aqueous layer was extracted with 

dichloromethane (3 x 200 mL). The combined organic layers were dried over anhydrous 

magnesium sulfate and concentrated to dryness under reduced pressure. Purification by silica gel 

flash column chromatography, eluent: petroleum ether/ethyl acetate (9:1), afforded (±)-trans-2-

((dibenzyl malonate)methyl)-3-vinyl-cyclopentanone 78b (R = CO2Bn) as a colourless oil (16.1 

g, 67%); IR νmax (neat) /cm−1 1732 (3 C=O), 1247 (2 O-C); 1H NMR (300 MHz, CDCl3) δ 7.33-

7.26 (10 H, m, H13), 5.63 (1 H, ddd, J = 8, 10.2, 17.1 Hz, H6), 5.15-5.10 (4 H, m, H11), 5.09-5.01 

(2 H, m, H7), 4.07 (1 H, dd, J = 7.4, 7.9 Hz, H9), 2.43-2.26 (2 H, m, H3, H5a), 2.20-2.02 (4 H, m, 

H4a, H5b, H8), 1.94-1.83 (1 H, m, H2), 1.61-1.51 (1 H, m, H4b); 13C NMR (75 MHz, CDCl3) δ 

218.7 (C1), 169.2 (C10), 169.1 (C10), 139.7 (C6), 135.4 (C12), 128.5 (C13), 128.4 (C13), 128.3 

(C13), 128.3 (C13), 128.2 (C13), 116.2 (C7), 67.3 (C11), 67.0 (C11), 51.1 (C2), 49.1 (C9), 47.6 (C3), 

37.1 (C5), 27.5 (C4), 27.1 (C8); HRMS (ASAP) calcd for C25H27O5 ([M+H]+) 407.1853. Found: 

407.1849. 
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3 ) (±)-trans-2-((Dibenzyl malonate)methyl)-3-(1’,2’-dihydroxyethyl)-

cyclopentanone 88b (R = CO2Bn) 

  

(±)-trans-2-((Dibenzyl malonate)methyl)-3-vinyl-cyclopentanone (14.4 g, 35.4 mmol, 1 

equiv.) was divided in two similar portions in two different flasks. 

N-Methyl morpholine oxide (14.4 g, 106 mmol, 3 equiv.) and osmium trichloride 

monohydrate (249 mg, 0.71 mmol, 0.02 equiv.) were added at 0 °C to the solutions of (±)-trans-

2-((dibenzyl malonate)methyl)-3-vinyl-cyclopentanone 78b (R = CO2Bn) (14.4 g, 35.4 mmol, 1 

equiv.) in THF/water (1:1) (600 mL). The solutions were stirred overnight at room temperature. 

The reaction mixtures were quenched at 0 °C with Na2SO3 (13.4 g, 106 mmol, 3 equiv.) and 

diluted with dichloromethane (250 mL each one) and collected together for the work up and the 

purification. The mixture was extracted with dichloromethane (3 x 400 mL), washed with an 

aqueous solution of HCl 2 M (3 x 400 mL) and brine (400 mL), dried over Na2SO4 and 

concentrated to dryness under reduced pressure to afford a pale yellow oil. Purification  

by silica gel flash column chromatography, eluent: petroleum ether/ethyl acetate (3:7),  

afforded an inseparable mixture of isomers (±)-trans-2-((dibenzyl malonate)methyl)-3-(1’,2’-

dihydroxyethyl)-cyclopentanone 88b (R = CO2Bn)as colourless oil (12.4 g, 80%); IR νmax (neat) 

/cm−1 3425 (2 O-H), 1725 (3 C=O), 1152 (2 O-C); 1H NMR (300 MHz, CDCl3) δ 7.29 (10 H, m, 

H13), 5.12 (4 H, m, H11), 4.06 (1 H, m, H9), 3.89-3.51 (3 H, m, H6, H7), 3.27 (1 H, b, C6-O-H), 

2.76 (1 H, b, C7-O-H), 2.39-1.78 (8 H, m, H2, H3, H4, H5, H8); 13C NMR (75 MHz, CDCl3) δ 

220.2 (C1), 219.9 (C1), 170.3 (C10), 169.9 (C10), 169.6 (C10), 169.5 (C10), 134.4 (C12), 128.8 

(C13), 128.6 (C13), 128.5 (C13), 128.5 (C13), 128.4 (C13), 76.8 (C6), 70.4 (C6), 67.6 (C11), 67.5 

(C11), 65.1 (C7), 64.8 (C7), 50.0 (C9), 49.6 (C9), 49.9 (C2), 47.5 (C2), 44.9 (C3), 44.5 (C3), 37.4 
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(C8), 37.0 (C8), 29.1 (C5), 26.8 (C5), 23.8 (C4), 19.9 (C4); HRMS (ESI) calcd for C25H29O7 

([M+H]+) 441.1908. Found: 441.1908. 

4 ) (±)-trans-2-((Dibenzyl malonate)methyl)-3-(1’,2’-diacetoxyethyl)-

cyclopentanone 89b (R = CO2Bn) 

 

(±)-trans-2-((Dibenzyl malonate)methyl)-3-(1’,2’-diacetoxyethyl)-cyclopentanone 88b (R 

= CO2Bn) (9.79 g, 22.2 mmol, 1 equiv.) was divided in six similar portions (around 1.5 g) in six 

different flasks. When the reaction was attempted on larger scale, the yield would drop to 30%. 

Pyridine (17.9 mL, 222 mmol, 10 equiv.), DMAP (1.60 g, 13.1 mmol, 0.6 equiv.) and 

acetic anhydride (9.2 mL, 97.5 mmol, 4.4 equiv.) were added at 0 °C to the solutions of (±)-

trans-2-((dibenzyl malonate)methyl)-3-(1’,2’-dihydroxyethyl)-cyclopentanone 88b (R = CO2Bn) 

(9.79 g, 22.2 mmol, 1 equiv.) in dichloromethane (200 mL). The reaction mixtures were stirred 

at 0 °C for 15 min and quenched with water. All the reaction mixtures were collected together 

for the work-up and the purification. The mixture was extracted with dichloromethane (3 x 250 

mL), washed with a saturated solution of CuSO4 (2 x 150 mL), dried over Na2SO4 and 

concentrated to dryness to afford a colourless oil. Purification by silica gel flash column 

chromatography, eluent: petroleum ether/ethyl acetate (7:3), afforded an inseparable mixture 

(ratio 6:4) of isomers (±)-trans-2-((dibenzyl malonate)methyl)-3-(1’,2’-diacetoxyethyl)-

cyclopentanone 89b (R = CO2Bn) as a colourless oil (11.0 g, 95%) ; IR νmax (neat) /cm−1 1732 (5 

C=O), 1220 (4 O-C); 1H NMR (300 MHz, CDCl3) δ 7.27-7.23 (10 H, m, H13), 5.24-5.20 (0.6 H, 

m, H6), 5.13-5.08 (4 H, m, H11), 5.04-5.01 (0.4 H, m, H6’), 4.33 (0.4 H, dd, J = 2.8, 12.1 Hz, 

H7a’), 4.24 (0.6 H, dd, J = 4.5, 11.7 Hz, H7a), 4.12-3.99 (2 H, m, H7b, H9), 2.40-1.94 (13 H, m, H2, 

H3, H4a, H5, H8, H15), 1.80-1.70 (0.6 H, m, H4b), 1.54-1.49 (0.4 H, m, H4b’); 13C NMR (75 MHz, 
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CDCl3) δ 218.6 (C1), 218.4 (C1), 171.0 (C14), 170.9 (C14), 170.8 (C14), 170.5 (C14), 169.3 (C10), 

169.3 (C10), 169.2 (C10), 169.1 (C10), 135.6 (C12), 135.5 (C12), 128.7 (C13), 128.5 (C13), 128.4 

(C13), 74.9 (C6), 69.8 (C6), 67.4 (C11), 67.3 (C11), 63.7 (C7), 63.5 (C7), 49.1 (C9), 49.0 (C9), 49.0 

(C2), 47.1 (C2), 43.2 (C3), 42.0 (C3), 37.2 (C8), 37.0 (C8), 29.3 (C5), 27.3 (C5), 23.9 (C4), 21.2 

(C4), 21.0 (C15), 20.8 (C15); HRMS (ESI) calcd for C29H36O9N ([M+NH4]+) 542.2385. Found: 

542.2377. 

5 ) (±)-trans-2-(6’-(5’,5’-Bis(benzylcarboxylate)-hex-2’-ene))-3-(1”,2”-

diacetoxyethyl)-cyclopentanone 79b (R = CO2Bn) 

  

NaH (784 mg, 31.0 mmol, 1.2 equiv.) was added at 0 °C to a solution of (±)-trans-2-

((dibenzyl malonate)methyl)-3-(1’,2’-diacetoxyethyl)-cyclopentanone 89b (R = CO2Bn) (13.6 g, 

25.8 mmol, 1 equiv.) in THF (520 mL) under an argon atmosphere. The resulting colourless 

suspension was stirred for 24 h at room temperature to afford a clear yellow solution. Prenyl 

bromide (3.3 mL, 28.4 mmol, 1.1 equiv.) was added at 0 °C to the reaction mixture and the crude 

solution was stirred at room temperature overnight. The reaction mixture was quenched at 0°C 

with water (200 mL), extracted with dichloromethane (3 x 250 mL), washed with a saturated 

aqueous solution of saturated aqueous NH4Cl (200 mL), dried over Na2SO4 and concentrated to 

dryness under reduced pressure to afford a yellow oil. Purification by silica gel flash column 

chromatography, eluent: petroleum ether/ethyl acetate (75:25), afforded an inseparable mixture 

(ratio 6:4) of isomers (±)-trans-2-(6’-(5’,5’-bis(benzylcarboxylate)-hex-2’-ene))-3-(1”,2”-

diacetoxyethyl)-cyclopentanone 79b (R = CO2Bn) as a colourless oil (12.3 g, 80%); IR νmax 
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(neat) /cm−1 1741 (5 C=O), 1221 (4 O-C); 1H NMR (400 MHz, CDCl3) δ 7.26-7.20 (10 H, m, 

H17), 5.22-5.18 (0.6 H, m, H6), 5.10-4.98 (4.4 H, m, H15, H6’), 4.90-4.83 (1 H, m, H11), 4.36 (0.4 

H, dd, J = 2.9, 12.1 Hz, H7a’), 4.20 (0.6 H, dd, J = 5.2, 11.6 Hz, H7a), 4.20 (0.6 H, dd, J = 6.1, 

11.4 Hz, H7b), 4.04 (0.4 H, dd, J = 5.6, 12.2 Hz, H7b’), 2.71-2.57 (2 H, m, H10), 2.34-1.92 (13 H, 

m, H2, H3, H4a, H5, H8, H19), 1.86-1.75 (1 H, m, H4b), 1.59-1.57 (3 H, m, H13 or H13’), 1.50-1.48 

(3 H, m, H13 or H13’); 13C NMR (75 MHz, CDCl3) δ 218.7 (C1), 218.6 (C1), 171.3 (C14 or C18), 

171.3 (C14 or C18), 171.2 (C14 or C18), 171.1 (C14 or C18), 171.0 (C14 or C18), 170.8 (C14 or C18), 

170.7 (C14 or C18), 170.6 (C14 or C18), 136.2 (C12), 135.8 (C16), 135.8 (C16), 135.7 (C16), 135.7 

(C16), 128.7 (C17), 128.7 (C17), 128.7 (C17), 128.6 (C17), 128.5 (C17), 128.4 (C17), 128.4 (C17), 

128.3 (C17), 128.1 (C17), 117.8 (C11), 117.5 (C11), 74.4 (C6), 70.6 (C6), 67.4 (C15), 67.2 (C15), 

63.5 (C7), 63.4 (C7), 57.2 (C9), 56.9 (C8), 48.3 (C2), 46.8 (C2), 43.2 (C3), 43.0 (C3), 36.2 (C5), 

36.0 (C5), 33.0 (C10), 32.8 (C10), 32.1 (C8), 26.0 (C13 or C13’), 21.1 (C19), 20.9 (C19), 20.8 (C4), 

18.0 (C13 or C13’); HRMS (ESI) calcd for C34H44O9N ([M+NH4]+) 610.3011. Found: 610.3003. 

6 ) (±)-trans-2-(6’-(5’,5’-Bis(benzylcarboxylate)-hex-2’-ene))-3-(1”,2”-

dihydroxyethyl)-cyclopentanone 91b (R = CO2Bn) 

 

Amberlite® 400 Cl (10 g) was activated by stirring for 3 h in an aqueous solution of NaOH 

(2 M, 200 mL). The resin was filtered, and washed with ethanol and diethyl ether. 

The activated Amberlite® 400 Cl was added to a solution of (±)-trans-2-(6’-(5’,5’-

bis(benzylcarboxylate)-hex-2’-ene))-3-(1”,2”-diacetoxyethyl)-cyclopentanone 79b (R = CO2Bn) 

(12.1 g, 20.3 mmol) in methanol (400 mL). The solution was stirred for 1 day. The solution was 
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filtered through a pad of Celite® to remove all the Amberlite® and the residue was washed with 

methanol. The organic layer was dried over anhydrous sodium sulfate and concentrated to 

dryness to afford an inseparable mixture (ratio 6:4) of (±)-trans-2-(6’-(5’,5’-

bis(benzylcarboxylate)-hex-2’-ene))-3-(1”,2”-dihydroxyethyl)-cyclopentanone 91b (R = CO2Bn) 

as a colourless oil in 86% yield (8.91 g). IR νmax (neat) /cm−1 3456 (2 O-H), 1732 (3 C=O), 1217 

(2 C-O); 1H NMR (400 MHz, CDCl3) δ 7.35-7.18 (10 H, m, H17), 5.16-4.95 (4 H, m, H15), 4.92-

4.84 (1 H, m, H11), 4.13-4.09 (0.6 H, m, H6), 3.74-3.66 (1 H, m, H6’, H7a’), 3.59-3.53 (1.6 H, m, 

H7a, H7b), 2.80-2.73 (1 H, m, H10a), 2.68-2.59 (1 H, m, H10b), 2.51-2.46 (1 H, m, H2), 2.40-2.13 (2 

H, m, H5), 2.08-1.69 (5 H, m, H3, H4, H8), 1.62-1.60 (3 H, m, H13 or H13’), 1.50-1.49 (3 H, m, H13 

or H13’); 13C NMR (75 MHz, CDCl3) δ 218.9 (C1), 172.8 (C14), 170.9 (C14), 136.7 (C12), 135.5 

(C16), 135.0 (C16), 128.6 (C17), 128.5 (C17), 128.4 (C17), 128.2 (C17), 117.1 (C11), 69.3 (C6), 67.6 

(C15), 58.3 (C7), 57.5 (C9), 47.4 (C2), 45.4 (C3), 35.9 (C5), 35.5 (C10), 30.2 (C8), 25.9 (C4), 18.9 

(C13 or C13’), 17.9 (C13 or C13’); HRMS (ESI) calcd for C30H37O7 ([M+H]+) 509.2534. Found: 

509.2529. 

7 ) (±)-trans-2-(6’-(5’,5’-Bis(benzylcarboxylate)-hex-2’-ene))-3-formyl-

cyclopentanone 81b (R = CO2Bn) 

  

Sodium metaperiodate (4.0 g, 18.4 mmol, 10 equiv.) was added at 0 °C to a solution of (±)-

trans-2-(6’-(5’,5’-bis(benzylcarboxylate)-hex-2’-ene))-3-(1”,2”-dihydroxyethyl)-cyclopentanone 

91b (R = CO2Bn) (0.94 g, 1.84 mmol, 1 equiv.) in THF/water (1:1) (95 mL). The reaction 

mixture was stirred at room temperature for 4.5 h at room temperature, and diluted with 

dichloromethane (200 mL) and washed with brine (2 x 100 mL). The organic layer was dried 
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over anhydrous sodium sulfate and concentrated to dryness under reduced pressure. Purification 

by silica gel flash column chromatography, eluent petroleum ether/ethyl acetate (8:2), afforded 

(±)-trans-2-(6’-(5’,5’-bis(benzylcarboxylate)-hex-2’-ene))-3-formyl-cyclopentanone 81b (R = 

CO2Bn) as a colourless oil (846 mg, 97%).  IR νmax (neat) /cm−1 1725 (4 C=O), 1216 (2 C-O); 1H 

NMR (400 MHz, CDCl3) δ 9.56 (1 H, d, J = 4.1 Hz, H6), 7.30-7.26 (10 H, m, H16), 5.12-5.07 (4 

H, m, H14), 4.90 (1 H, tt, J = 1.5, 9.9 Hz), 2.78-2.56 (4 H, m, H2, H3, H9), 2.33-1.98 (5 H, m, H4a, 

H5, H7), 1.94-1.82 (1 H, m, H4b), 1.61 (3 H, s, H12 or H12’), 1.51 (3 H, s, H12 or H12’); 13C NMR 

(75 MHz, CDCl3) δ 216.3 (C1), 201.3 (C6), 171.1 (C13), 171.0 (C13), 136.2 (C11), 135.4 (C15), 

135.4 (C15), 128.5 (C16), 128.5 (C16), 128.4 (C16), 128.4 (C16), 128.3 (C16), 117.1 (C10), 67.3 

(C14), 67.1 (C14), 57.0 (C8), 54.6 (C3), 45.8 (C2), 35.6 (C5), 32.8 (C9), 32.1 (C7), 25.8 (C12 or C12’) 

21.0 (C4) 17.8 (C12 or C12’); HRMS (ESI) calcd for C29H33O6 ([M+H+]) 477.2272. Found: 

477.2269. 

8 ) (±)-(2R)-Hydroxy-(3R)-isopropenyl-5,5-bis(benzylcarboxylate)-8-oxo-trans-

bicyclo[5,3,0]decane 83b (R = CO2Bn) and (±)-(2S)-hydroxy-(3S)-isopropenyl-5,5-

bis(benzylcarboxylate)-8-oxo-trans-bicyclo[5,3,0]decane 82b (R = CO2Bn) 

 

Boron trifluoride diethyl etherate (5.5 mL, 43.5 mmol, 10 equiv.) was added at  

−78 °C to a solution of (±)-trans-2-(6’-(5’,5’-bis(benzylylcarboxylate)-hex-2’-ene))-3-formyl-

cyclopentanone 81b (R = CO2Bn) (2.07 g, 4.35 mmol, 1 equiv.) in dry THF (90 mL) under an 

argon atmosphere. The solution was allowed to reach room temperature and stirred for 2 days. 

The solution was diluted with dichloromethane (200 mL) and washed with a saturated solution 

of NaHCO3 (3 x 100 mL). The organic layer was dried over anhydrous magnesium sulfate and 
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concentrated under reduced pressure to give a crude yellow oil. Purification by silica gel flash 

column chromatography, eluent: petroleum ether/ethyl acetate (8:2 to 6:4), afforded (±)-(2R)-

hydroxy-(3R)-isopropenyl-5,5-bis(benzylcarboxylate)-8-oxo-trans-bicyclo [5,3,0]decane 83b (R 

= CO2Bn) (418 mg, 25% or 30% based on starting material recovery) and (±)-(2S)-hydroxy-(3S)-

isopropenyl-5,5-bis(benzyl carboxylate)-8-oxo-trans-bicyclo[5,3,0]decane 82b (R = CO2Bn) 

(827 mg, 48% or 58% based on starting material recovery). After purification, 16% of starting 

material (±)-trans-2-(6’-(5’,5’-bis(benzylylcarboxylate)-hex-2’-ene))-3-formyl-cyclopentanone 

was recovered. 

(±)-(2R)-Hydroxy-(3R)-isopropenyl-5,5-bis(benzylcarboxylate)-8-oxo-trans-bicyclo[5,3,0] 

decane 83b (R = CO2Bn):  IR νmax (neat) /cm−1 3424 (O-H), 1722 (3 C=O), 1254 (2 C-O); 1H 

NMR (300 MHz, CDCl3) δ 7.28-7.16 (10 H, m, H17), 5.13-4.92 (4 H, m, H15), 4.88 (1 H, t, J = 

1.4 Hz, H12a), 4.74 (1 H, s, H12b), 3.78 (1 H, s, H2), 2.69 (1 H, dd, J = 3, 15.2 Hz, H6a), 2.48 (1 H, 

dd, J = 10.6, 14.9 Hz, H4a), 2.43-2.34 (2 H, m, H7, H9a) 2.17-2.15 (1 H, m, H4b), 2.13-2.11 (1 H, 

m, H9b), 2.04 (1 H, d, J = 10.6 Hz, H3), 2.01-1.95 (2 H, m, H6b, H10a), 1.91-1.83 (2 H, m, H10b, 

H1), 1.66 (3 H, s, H13); 13C NMR (75 MHz, CDCl3) δ 218.8 (C8), 172.2 (C14), 172.1 (C14), 148.8 

(C11), 135.5 (C16), 135.4 (C16), 128.6 (C17), 128.6 (C17), 128.4 (C17), 128.3 (C17), 128.2 (C17), 

128.0 (C17), 111.5 (C12), 67.8 (C2), 67.3 (C15), 67.2 (C15), 55.6 (C5), 50.0 (C1), 47.1 (C3), 45.0 

(C7), 37.5 (C9), 32.9 (C6), 29.8 (C4), 23.5 (C13), 22.9 (C10); HRMS (ESI) calcd for C29H36O6N 

([M+NH4]+) 494.2537. Found: 494.2531. 

(±)-(2S)-Hydroxy-(3S)-isopropenyl-5,5-bis(benzylcarboxylate)-8-oxo-trans-bicyclo[5,3,0] 

decane 82b (R = CO2Bn): IR νmax (neat) /cm−1 3543 (O-H), 1725 (3 C=O), 1217 (2 C-O); 1H 

NMR (300 MHz, CDCl3) δ 7.30-7.15 (10 H, m, H17), 5.10-4.95 (4 H, m, H15), 4.86 (1 H, d, J = 

1.2 Hz, H12a), 4.70 (1 H, s, H12b), 3.30 (1 H, t, J = 9.6 Hz, H2), 2.77 (1 H, m, H6a), 2.43-2.36 (2 

H, m, H4a, H10a), 2.26 (1 H, d, J = 15.2 Hz, H9a) 2.08-2.14 (2 H, m, H3, H10b), 1.93-1.96 (2 H, m, 

H6b, H7), 1.86 (1 H, dd, J = 10, 15.2 Hz, H9b), 1.76-1.68 (1 H, m, H1), 1.66 (3 H, m, H13), 1.53-

1.48 (1 H, m, H7b); 13C NMR (75 MHz, CDCl3) δ 217.3 (C8), 172.1 (C14), 171.6 (C14), 146.4 

(C11), 135.4 (C16), 135.3 (C16), 128.7 (C17), 128.7 (C17), 128.6 (C17), 128.5 (C17), 128.1 (C17), 

113.9 (C12), 77.2 (C2), 67.6 (C15), 67.5 (C15), 55.3 (C5), 51.9 (C1), 49.5 (C3), 47.9 (C7), 36.9 

(C10), 34.5 (C9), 31.9 (C6), 26.5 (C4), 19.3 (C13); HRMS (ESI) calcd for C29H36O6N ([M+NH4]+) 

494.2537. Found: 494.2533. 
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V ) Attempt of the synthesis of the trans-bicyclo[5,3,0]decane 

skeleton using the bis(phenylsulfonyl) malonate moiety 

1 ) Bis(phenylthio)methane 1084 

 

A mixture of K2CO3 (30.0 g, 218 mmol, 1 equiv.), dichloromethane (25 mL, 391 mmol, 2 

equiv.) and thiophenol (22 mL, 215 mmol, 1 equiv.) in ethylene glycol (110 mL) was refluxed at 

80 °C for 3 h. The solution was allowed to reach room temperature and poured onto water (500 

mL), extracted with toluene (2 x 200 mL), washed with water (3 x 150 mL), dried over 

anhydrous magnesium sulfate and concentrated to dryness under reduced pressure. The crude 

material was purified by reduced pressure distillation (196-203 °C, 10 mbar) to afford 

bis(phenylthio)methane 108 as a pale yellow solid in 88% yield (21.8 g); 1H NMR (400 MHz, 

CDCl3) δ 7.45-7.42 (4 H, m, H3), 7.34-7.30 (4 H, m, H4), 7.28-7.23 (2 H, m, H5), 4.35 (2 H, s, 

H1); 13C NMR (100 MHz, CDCl3) δ 135.0 (C2), 130.7 (C5), 129.1 (C4), 127.2 (C3), 40.6 (C1); 

HRMS (GC-ESI) calcd for C13H12S2 (M+) 232.0376. Found: 232.0390. 
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2 ) Bis(phenylsulfonyl)methane 1094 

 

Hydrogen peroxide (28.1 mL, 916 mmol, 5 equiv.) was added at 0 °C to a solution of 

bis(phenylthio)methane 108 (42.5 g, 183 mmol, 1 equiv.) in AcOH/Ac2O (4:1) (500 mL) and 

stirred at 0 °C for 2 h, allowed to reach room temperature and stirred at room temperature for 24 

h. The reaction mixture was poured onto cold water. The resulting precipitate was collected and 

washed with cold water. The crude product was recrystallised in toluene to afford 

bis(phenylsulfonyl)methane 109 as a colourless solid in 78% yield (42.2 g); m.p.: 120.5-121.1 

°C; 1H NMR (400 MHz, CDCl3) δ 7.98-7.95 (4 H, m, H3), 7.74-7.70 (2 H, m, H5), 7.62-7.58 (4 

H, m, H4), 4.74 (2 H, s, H1); 13C NMR (100 MHz, CDCl3) δ 138.5 (C2), 135.0 (C5), 129.5 (C4), 

129.0 (C3), 74.6 (C1); HRMS (ESI) calcd for C13H16O4S2N ([M+NH4]+) 314.0515. Found: 

314.0516. 

3 ) 1-(2,2-Bis(phenylsulfonyl)ethyl)piperidine 1104 

 

Piperidine (80 mL, 844 mmol, 10 equiv.) was added dropwise at −5 °C to 

paraformaldehyde (10.2 g, 337 mmol, 4 equiv.) in dry methanol (260 mL). The reaction 

temperature should not be higher than 5 °C. A solution of bis(phenylsulfonyl)methane 109 (25.0 
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g, 84 mmol, 1 equiv.) in dioxane (120 mL) was slowly added to the reaction mixture at −5 °C. 

After 45 min at 0 °C, a mixture of cold water/ice (200 mL) was added and the mixture was 

stirred for 15 min. The resulting solid was filtered to afford 1-(2,2-

bis(phenylsulfonyl)ethyl)piperidine 110 as a pale yellow solid that was dried overnight in a 

vacuum oven at 50 °C. the solid, which was not fully dried, was used in the next step; m.p.: 

140.0-142.0 °C; 1H NMR (400 MHz, CDCl3) δ 7.99-7.97 (4 H, m, H7), 7.70-7.66 (2 H, m, H9), 

7.58-7.54 (4 H, m, H8), 4.60 (1 H, t, J = 5.9 Hz, H5), 3.06 (2 H, d, J = 6.2 Hz, H4), 2.44 (4 H, s, 

H3), 1.56 (4 H, q, J = 5.6 Hz, H2), 1.42 (2 H, q, J = 5.6 Hz, H1); 13C NMR (100 MHz, CDCl3) δ 

139.0 (C6), 134.5 (C9), 129.7 (C7), 129.0 (C8), 54.4 (C5), 53.9 (C4), 53.1 (C3), 25.6 (C2), 23.9 

(C1); HRMS (ESI) calcd for C19H23O4S2N ([M+H]+) 394.1141. Found: 394.1142. 

4 ) 2,2-Bis(phenylsulfonyl)ethane 1114 

 

A vigorously stirred suspension of crude 1-(2,2-bis(phenylsulfonyl)ethyl)piperidine 110 

(around 35 g) in toluene (400 mL) was treated with a stream of HCl gas (resulting in a dropping 

of concentrated H2SO4 onto NaCl solid). After 6 h of a fast stream of HCl gas into the solution, 

the suspension was heated to reflux to afford a clear colourless solution (no suspension). The 

solution was refluxed for 4 h. The solution was allowed to cool down to room temperature 

overnight. The reaction mixture was filtered to remove the colourless precipitate, piperidine 

hydrochloride and the precipitate was washed with toluene (400 mL). The solution was dried 

over anhydrous magnesium sulfate and concentrated to dryness under reduced pressure. The 

crude material was recrystallised in toluene to afford 2,2-bis(phenylsulfonyl)ethane as a pale 

yellow solid in 87% yield 111 over 2 steps (22.5 g). The desired 2,2-bis(phenylsulfonyl)ethane 

was obtained in 60% yield over 4 steps from the commercial thiophenol; m.p.: 123.4-125.1 °C 

[lit.5 120-125 °C]; 1H NMR (400 MHz, CDCl3) δ 7.97-7.95 (4 H, m, H4), 7.69-7.66 (2 H, m, H6), 
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7.57-7.54 (4 H, m, H5), 7.23 (1 H, m, H1); 13C NMR (100 MHz, CDCl3) δ 153.6 (C2), 139.2 (C1), 

139.0 (C3), 134.6 (C4), 129.3 (C5), 129.1 (C6); HRMS (ASAP) calcd for C14H16O4S2N 

([M+NH4]+) 326.0515. Found: 326.0509. 

5 )  (±)-trans-2-(2’(1’,1’-Bis(phenylsulfonyl)ethyl))-3-vinyl-cyclopentanone 78b (R 

= SO2Ph) 

 

(±)-3-Ethenyl-1-trimethylsilyloxycyclopent-1-ene (8.64 g, 47.4 mmol, 1 equiv.) was added 

at −40 °C to a solution 2,2-bis(phenylsulfonyl)ethene 77 (14.6 g, 47.4 mmol, 1 equiv.) in 

dichloromethane (120 mL) under an argon atmosphere. At −78°C, a solution of SnCl4 (5.6 mL, 

47.4 mmol, 1 equiv.) in dichloromethane (8 mL) was added drop by drop over 2 h to the reaction 

mixture. After the addition, the reaction mixture was stirred at −78 °C for 2.5 h and poured onto 

water (200 mL). The resulting mixture was filtered through a pad of Celite® and the Celite® was 

thoroughly washed with dichloromethane (200 mL). The aqueous layer was extracted with 

dichloromethane (3 x 200 mL). The combined organic layers were dried over anhydrous 

magnesium sulfate and concentrated to dryness under reduced pressure. Purification by silica gel 

flash column chromatography, eluent: petroleum ether/ethyl acetate (9:1), afforded (±)-trans-2-

(2’(1’,1’-bis(phenylsulfonyl)ethyl))-3-vinyl-cyclopentanone 78b (R = SO2Ph) as a pale yellow 

solid (10.6 g, 54%); m.p.: 166.5-168.8 °C; IR νmax (neat) /cm−1 1728 (C=O), 1371 (S=O), 1152 

(S=O),; 1H NMR (300 MHz, CDCl3) δ 7.97-7.92 (4 H, m, H13), 7.73-7.66 (2 H, m, H13), 7.54-

7.53 (4 H, m, H13), 5.82 (1 H, ddd, J = 8.4, 10.2, 17.1 Hz, H6), 5.65 (1 H, dd, J = 4.1, 7.9 Hz, 

H9), 5.17 (2 H, dd, J = 8.5, 9.9 Hz, H7), 2.66-2.56 (1 H, m, H9), 2.46-2.31 (3 H, m, H3, H5a), 

2.29-2.08 (3 H, m, H4a, H5b, H8), 1.76-1.64 (1 H, m, H2); 13C NMR (75 MHz, CDCl3) δ 218.5 

(C1), 139.7 (C6), 137.8 (C10), 137.8 (C10), 134.7 (C13), 134.6 (C13), 129.9 (C11), 129.5 (C11), 
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129.1 (C12), 129.1 (C12), 12.0 (C12), 117.1 (C7), 79.1 (C9), 50.0 (C8), 48.8 (C2), 37.3 (C3), 27.5 

(C5), 24.8 (C4); HRMS (ESI) calcd for C21H26O5S2N ([M+NH4]+) 436.1247. Found: 436.1241. 

6 ) (±)-trans-2-(2’(1’,1’-Bis(phenylsulfonyl)ethyl))-3-(1’,2’-dihydroxyethyl)-

cyclopentanone 88b (R = SO2Ph) 

 

N-Methyl morpholine oxide in water (2.0 g, 14.3 mmol, 3 equiv.) and a solution of osmium 

trichloride monohydrate (7 mL, 5 mg/mL, 0.02 equiv.) were added at 0 °C to a solution of (±)-

trans-2-(2’(1’,1’-bis(phenylsulfonyl)ethyl))-3-vinyl-cyclopentanone 78b (R = SO2Ph) (2.0 g, 

4,78 mmol, 1 equiv.) in THF/water (1:1) (80 mL). The solutions were stirred for 4 days at room 

temperature. The reaction mixture was quenched at 0 °C with Na2SO3 (1.90 g, 14.3 mmol, 3 

equiv.) then diluted with dichloromethane (75 mL). The mixture was extracted with 

dichloromethane (2 x 75 mL), washed with a solution of HCl 2 M (2 x 100 mL) dried over 

Na2SO4 and concentrated to dryness under reduced pressure to afford a yellow solid. Purification 

by silica gel flash column chromatography, eluent: petroleum ether/ethyl acetate (3:7), afforded 

an inseparable mixture of isomers (±)-trans-2-(2’(1’,1’-bis(phenylsulfonyl)ethyl))-3-(1’,2’-

dihydroxyethyl)-cyclopentanone 88b (R = SO2Ph) as a colourless solid in 69% yield (1.48 g); IR 

νmax (neat) /cm−1 3437 (O-H), 1727 (C=O), 1371 (S=O), 1171 (S=O), 1H NMR (300 MHz, 

CDCl3) δ 7.97-7.92 (4 H, m, H13), 7.73-7.66 (2 H, m, H13), 7.54-7.53 (4 H, m, H13), 5.82 (1 H, 

ddd, J = 8.4, 10.2, 17.1 Hz, H6), 5.65 (1 H, dd, J = 4.1, 7.9 Hz, H9), 5.17 (2 H, dd, J = 8.5, 9.9 

Hz, H7), 2.66-2.56 (1 H, m, H9), 2.46-2.31 (3 H, m, H3, H5a), 2.29-2.08 (3 H, m, H4a, H5b, H8), 

1.76-1.64 (1 H, m, H2); 13C NMR (75 MHz, CDCl3) HRMS (ESI) calcd for C21H28O7S2N 

([M+H]+) 470.1302. Found: 470.1299. 
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7 ) (±)-trans-2-(2’(1’,1’-Bis(phenylsulfonyl)ethyl))-3-(1’,2’-diacetoxyethyl)-

cyclopentanone 89c (R = SO2Ph) 

 

The protection reaction was done on small amount (no more than 1.5 g) or the yield 

reaction decreased a lot. We performed the reaction in parallele batches of 1.5 g of starting 

material 88b. 

In order, pyridine (1.1 mL, 13.6 mmol, 10 equiv.), DMAP (100 mg, 0.818 mmol, 0.6 

equiv.) and acetic anhydride (570 µL, 7.80 mmol, 5.7 equiv.) were added at 0 °C to the solutions 

of (±)-trans-2-(2’(1’,1’-bis(phenylsulfonyl)ethyl))-3-(1’,2’-dihydroxyethyl)-cyclopentanone 88b 

(R = SO2Ph) (617 mg, 1.36 mmol, 1 equiv.) in dichloromethane (45 mL). The reaction mixtures 

were stirred at 0 °C for 5-10 min and quenched at 0 °C with water. The mixture was extracted 

with dichloromethane (3 x 50 mL), washed with a saturated solution of CuSO4 (3 x 50 mL), 

dried over Na2SO4 and concentrated to dryness to afford a colourless oil. Purification by silica 

gel flash column chromatography, eluent: petroleum ether/ethyl acetate (1:1), afforded an 

inseparable mixture (65(*):35(’)) of isomers (±)-trans-2-(2’(1’,1’-bis(phenylsulfonyl)ethyl))-3-

(1’,2’-diacetoxyethyl)-cyclopentanone 89b (R = SO2Ph) as a colourless powder (720 mg, 99%) ; 

IR νmax (neat) /cm−1 1735 (3 C=O), 1378 (S=O), 1280 (2 O-C), 1174 (S=O); 1H NMR (300 

MHz, CDCl3) δ 7.97-7.79 (4 H, m, H11), 7.71-7.61 (2 H, m, H13), 7.59-7.47 (4 H, m, H12), 5.80 

(0.35 H, dd, J = 1.9, 9.4 Hz, H9’), 5.73 (0.65 H, t, J = 5.7 Hz, H9*), 5.31-5.28 (0.65 H, m, H6*), 

5.11-5.07 (0.35 H, m, H6’), 4.41 (0.35 H, dd, J = 2.9, 12.3 Hz, H7a’), 4.30 (0.65 H, dd, J = 4.7, 

11.7 Hz, H7a*), 4.17-4.07 (1 H, m, H7b), 2.81-2.72 (0.35 H, m, H5a’), 2.70-2.59 (1 H, m, H2), 

2.44-2.01 (12.3 H, m, H3, H4a*, H4b*, H4a’, H5a*, H5b*, H5b’, H8, H15), 1.61 (0.35 H, m, H4b’); 13C 

NMR (75 MHz, CDCl3) δ 218.1 (C1), 170.7 (C14), 170.7 (C14), 134.7 (C10), 134.6 (C10), 134.5 

(±) (±)
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(C13), 134.5 (C13), 130.0 (C11), 129.6 (C11), 129.5 (C11), 129.2 (C12), 129.2 (C12), 129.2 (C12), 

78.9 (C9’), 78.3 (C9*), 74.9 (C6’), 69.0 (C6*), 63.5 (C7*), 63.4 (C7’), 47.7 (C2’), 46.4 (C2*), 44.6 

(C3*), 43.1 (C3’), 37.7 (C8’), 37.1 (C8*), 26.7 (C5’), 26.7 (C5*), 25.0 (C4*), 23.9 (C4’), 21.0 (C15), 

20.8 (C15); HRMS (ESI) calcd for C25H32O9S2N ([M+NH4]+) 554.1513. Found: 554.1508. 

VI ) Allylic oxidation 

1 ) (±)-(2R)-Hydroxy-(3R)-(2’-(prop-2’-en-1’-ol))-5,5-bis(ethylcarboxylate)-8-oxo-

trans-bicyclo[5,3,0]decane 

 

tert-Butyl hydroperoxide (70% aqueous solution, 540 µL, 4.17 mmol, 10 equiv.) was 

added dropwise at 0 °C to selenium dioxide (24 mg, 0.204 mmol, 0.5 equiv.) in dichloromethane 

(0.1 M) and stirred for 1 h. A solution of (±)-(2R)-hydroxy-(3R)-isopropenyl-5,5-

bis(ethylcarboxylate)-8-oxo-trans-bicyclo [5,3,0]decane (727 mg, 2.06 mmol, 1 equiv.) in 

dichloromethane (20 mL) was added to the previously prepared mixture at room temperature and 

stirred for 21 h at room temperature. The reaction mixture was quenched with MeOH (6 mL) and 

an aqueous solution of NaOH (0.2 M, 4 mL) and stirred for 2 h. The solution was treated with 

water (20 mL), extracted with petroleum ether (3 x 30 mL) washed with brine (30 mL), dried 

over anhydrous sodium sulfate and concentrated to dryness under reduced pressure. The residue 

was purified by flash column chromatography, eluent petroleum ether/ethyl acetate (6:4 to 4:6), 

to afford the desired compound (±)-(2R)-hydroxy-(3R)-(2’-(prop-2’-en-1’-ol))-5,5-

bis(ethylcarboxylate)-8-oxo-trans-bicyclo [5,3,0]decane as a colourless oil (20 mg; 13%); IR 

νmax (neat) /cm−1 3040 (O-H) 1735 (3 C=O) 1238 (2 C-O); 1H NMR (300 MHz, CDCl3) δ 5.10 

(1 H, d, J = 1 Hz, H12a), 5.02 (1 H, s, H12b), 4.21-4.10 (6 H, m, H13, H15), 3.92 (1 H, s, H2), 2.80 

(1 H, dd, J = 2, 15.2 Hz, H6a), 2.56 (1 H, dd, J = 10.1, 14.4 Hz, H4a), 2.48-2.37 (3 H, m, H3, H7, 
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H9a), 2.23-2.10 (1 H, m, H9b), 2.30 (3 H, d, J = 14.5 Hz, H4b), 2.20 (1 H, d, J = 13.5 Hz, H10a), 

1.95-1.84 (2 H, m, H1, H10b), 1.78 (1 H, dd, J = 10.7, 15.2 Hz, H6b), 1.25-1.18 (6 H, m, H16); 13C 

NMR (75 MHz, CDCl3) δ 218.9 (C8), 172.9 (C14), 172.7 (C14), 151.8 (C11), 114.5 (C12), 70.3 

(C2), 65.2 (C13), 61.7 (C15), 61.6 (C15), 55.5 (C5), 51.2 (C1), 45.6 (C3), 45.3 (C7) 37.5 (C9), 33.0 

(C6), 29.3 (C4), 22.5 (C10), 14.1 (C16), 14.0 (C16); HRMS (ESI) calcd for C19H32O7N ([M+NH4]+) 

386.2173. Found: 386.2176. 

2 ) (±)-(2S)-Hydroxy-(3S)-(2’-(prop-2’-en-1’-ol))-5,5-bis(ethylcarboxylate)-8-oxo-

trans-bicyclo[5,3,0]decane 142 (R = CO2Et)6 

 

tert-Butyl hydroperoxide (5 M in decane, 825 µL, 4.13 mmol, 2 equiv.) was added 

dropwise at room temperature to selenium dioxide (79 mg, 0.709 mmol, 0.5 equiv.) in 

dichloromethane (0.7 M) and stirred for 30 min. A solution of (±)-(2S)-hydroxy-(3S)-

isopropenyl-5,5-bis(ethylcarboxylate)-8-oxo-trans-bicyclo [5,3,0]decane 82 (R = CO2Et) (147 

mg, 0.417 mmol, 1 equiv.) in dichloromethane (8 mL) was added to the previously prepared 

mixture at room temperature and stirred for 5 days at room temperature. The reaction mixture 

was quenched with water (5 mL), extracted with dichloromethane (3 x 20 mL) and concentrated 

to dryness under reduced pressure. Purification by silica gel flash column chromatography, 

eluent: petroleum ether/ethyl acetate (3:7), afforded some starting material (±)-(2S)-hydroxy-

(3S)-isopropenyl-5,5-bis(ethylcarboxylate)-8-oxo-trans-bicyclo[5,3,0]decane 82 (R = CO2Et) 

(201 mg, 28%) and the desired compound (±)-(2S)-hydroxy-(3S)-(2’-(prop-2’-en-1’-ol))-5,5-

bis(ethylcarboxylate)-8-oxo-trans-bicyclo[5,3,0]decane 142 (R = CO2Et) as a colourless oil (295 

mg, 39% or 54% on material recovery); IR νmax (neat) /cm−1 3034 (O-H) 1725 (3 C=O) 1217 (2 

C-O); 1H NMR (300 MHz, CDCl3) δ 5.20 (1 H, s, H12a), 4.99 (1 H, s, H12b), 4.19-4.05 (6 H, m, 

H13, H15), 3.46 (1 H, t, J = 9.5 Hz, H2), 2.77 (1 H, d, J = 15.1 Hz, H6a), 2.46-2.36 (2 H, m, H9a, 
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H10a), 2.29-2.04 (3 H, m, H3, H4a, H9b), 1.98 (1 H, d, J = 11.3 Hz, H7), 1.86 (1 H, dd, J = 9.8, 

15.3 Hz, H4b), 1.76 (1 H, dd, J = 10.5, 15.2 Hz, H6b), 1.74-1.65 (1 H, m, H1), 1.58-1.43 (1 H, m, 

H10b), 1.24-1.16 (6 H, m, H16); 13C NMR (75 MHz, CDCl3) δ 217.6 (C8), 172.4 (C14), 172.3 

(C14), 151.2 (C11), 113.2 (C12), 79.3 (C2), 65.2 (C13), 61.8 (C15), 55.0 (C5), 51.9 (C1), 48.1 (C7), 

45.7 (C3) 36.7 (C9), 35.8 (C4), 31.5 (C6), 26.2 (C10), 14.0 (C16), 13.9 (C16); HRMS (ESI) calcd for 

C19H32O7N ([M+NH4]+) 386.2173. Found: 386.2175. 

VII ) Inversion of the alcohol configuration 

1 ) (±)-(2S)-Hydroxy-(3S)-isopropenyl-5,5-bis(benzylcarboxylate)-8-(1’,4’-

dioxaspiro)-trans-bicyclo[5,3,0]decane 137 (R = CO2Bn) 

 

In a Dean-Stark apparatus, ethylene glycol (2.2 mL, 38.2 mmol, 25 equiv.) and p-

toluenesulfonic acid (29 mg, 0.152 mmol, 0.1 equiv.) was added to a solution of (±)-(2S)-

hydroxy-(3S)-isopropenyl-5,5-bis(benzylcarboxylate)-8-oxo-trans-bicyclo[5,3,0]decane 82b (R 

= CO2Bn) (728 mg, 1.53 mmol, 1 equiv.) in toluene (31 mL) and the solution was heated to 

reflux for 5 h. The solution was cooled down to room temperature, diluted with dichloromethane 

(20 ml), washed with NaHCO3 (10 mL), extracted with dichloromethane (3 x 30 mL), dried over 

anhydrous magnesium sulphate and concentrated to dryness under reduced pressure. Purification 

by silica gel flash column chromatography, eluent: petroleum ether/ethyl acetate (8:2-75:25),  

afforded (±)-(2S)-hydroxy-(3S)-isopropenyl-5,5-bis(benzyl carboxylate)-8-(1’,4’-dioxaspiro)-

trans-bicyclo[5,3,0]decane 137 (R = CO2Bn) as a pale yellow oil (454 mg, 58%); IR νmax (neat) 

/cm−1 3540 (O-H) 1725 (2 C=O) 1218 (2 C-O); 1H NMR (400 MHz, CDCl3) δ 7.23-7.19 (10 H, 
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m, H17), 5.14-4.99 (4 H, m, H15), 4.82 (1 H, d, J = 1.5 Hz, H12a), 4.69 (1 H, s, H12b), 3.86-3.79 (4 

H, m, H18), 3.19 (1 H, t, J = 9.6 Hz, H2), 2.29 (1 H, d, J = 15.0 Hz, H6a), 2.21-2.14 (2 H, m, H4a, 

H3), 2.11-2.05 (1 H, m, H10a), 2.00 (1 H, dd, J = 10.7, 15.0 Hz, H6b), 1.95-1.87 (1 H, m, H4b), 

1.82 (1 H, d, J = 10.7 Hz, H7), 1.79-1.74 (1 H, m, H9), 1.72-1.66 (1 H, m, H1), 1.65 (3 H, s, H13), 

1.48-1.38 (1 H, m, H10b); 13C NMR (100 MHz, CDCl3) δ 172.2 (C14), 172.1 (C14), 147.0 (C11), 

135.7 (C16), 135.6 (C16), 128.7 (C17), 128.5 (C17), 128.4 (C17), 128.3 (C17), 118.0 (C8), 113.5 

(C12), 78.0 (C2), 67.3 (C15), 67.2 (C15), 65.1 (C18), 64.9 (C18), 55.4 (C5), 51.8 (C1), 48.9 (C3), 43.9 

(C7) 34.7 (C9), 34.2 (C4), 30.9 (C6), 27.4 (C10), 19.2 (C13); HRMS (ESI) calcd for C31H40O7N 

([M+NH4]+) 538.2799. Found: 538.2791. 

2 ) (±)-2-Oxo-(3S)-isopropenyl-5,5-bis(benzylcarboxylate)-8-(1’,4’-dioxaspiro)-

trans-bicyclo[5,3,0]decane 138 (R = CO2Bn) 

 

Pyridinium dichromate (951 mg, 2.53 mmol, 4 equiv.) was added to a solution of (±)-(2S)-

hydroxy-(3S)-isopropenyl-5,5-bis(benzylcarboxylate)-8-(1’,4’-dioxaspiro)-trans-bicyclo[5,3,0] 

decane 137 (R = CO2Bn) (329 mg, 0.632 mmol, 1 equiv.) in dichloromethane (1.3 mL) under an 

argon atmosphere and the solution was refluxed for 3 h. The mixture was diluted with diethyl 

ether (30 mL), filtered through a pad of Celite® and the Celite® was washed thoroughly with 

diethyl ether, dried over anhydrous magnesium sulphate and concentrated to dryness under 

reduced pressure. The desired compound (±)-2-oxo-(3S)-isopropenyl-5,5-bis 

(benzylcarboxylate)-8-(1’,4’-dioxaspiro)-trans-bicyclo[5,3,0]decane 138 (R = CO2Bn) (328 mg) 

was obtained quantitatively without any further purification; IR νmax (neat) /cm−1 1729 (2 C=O) 

1224 (2 C-O); 1H NMR (400 MHz, CDCl3) δ 7.28-7.20 (10 H, m, H17), 5.14-5.03 (4 H, m, H15), 
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4.87 (1 H, d, J = 1.3 Hz, H12a), 4.64 (1 H, s, H12b), 3.87-3.81 (4 H, m, H18), 3.15 (1 H, d, J = 10.5 

Hz, H3), 2.73-2.65 (1 H, m, H1), 2.48 (2 H, d, H4a, H6a), 2.33 (1 H, dd, J = 10.9, 15.1 Hz, H6b), 

2.13 (1 H, dd, J = 10.8, 15.4 Hz, H4b), 2.05-1.95 (2 H, m, H10a, H7), 1.76-1.72 (2 H, m, H9), 1.70 

(4 H, m, H10b, H13); 13C NMR (100 MHz, CDCl3) δ 208.6 (C2), 171.6 (C14), 171.3 (C14), 143.4 

(C11), 135.2 (C16), 135.2 (C16), 128.5 (C17), 128.5 (C17), 128.2 (C17), 128.2 (C17), 128.1 (C17), 

117.2 (C8), 113.1 (C12), 67.4 (C15), 67.3 (C15), 65.5 (C18), 64.4 (C18), 56.6 (C1), 55.2 (C5), 53.4 

(C3), 44.3 (C7) 33.8 (C9), 32.2 (C4), 30.5 (C6), 21.6 (C13), 20.2 (C10); HRMS (ESI) calcd for 

C31H38O7N ([M+NH4]+) 536.2643. Found: 536.2638. 

3 ) (±)-(2R)-Hydroxy-(3S)-isopropenyl-5,5-bis(benzylcarboxylate)-8-(1’,4’-

dioxaspiro)-trans-bicyclo[5,3,0]decane 139 (R = CO2Bn) 

 

Sodium borohydride (17 mg, 0.441 mmol, 2.2 equiv.) was added at 0 °C to a solution of 

(±)-2-oxo-(3S)-isopropenyl-5,5-bis(benzylcarboxylate)-8-(1’,4’-dioxaspiro)-trans-bicyclo[5,3,0] 

138 (R = CO2Bn) decane (104 mg, 0.201 mmol, 1 equiv.) in i-PrOH (2 mL). The reation was 

stirred at room temperature overnight and heated at 50 °C for 2 h. No starting material appeared 

on the TLC so the reaction was stopped, quenched at 0 °C with water (3 mL), extracted with 

dichloromethane (3 x 15 mL), dried over anhydrous sodium sulphate and concentrated to dryness 

under reduced pressure. Purification by silica gel flash column chromatography, eluent: 

petroleum ether/ethyl acetate (8:2 to 6:4), afforded the unwanted isomer (±)-(2S)-hydroxy-(3S)-

isopropenyl-5,5-bis(benzylcarboxylate)-8-(1’,4’-dioxaspiro)-trans-bicyclo[5,3,0]decane 137 (R 

= CO2Bn) (38 mg, 36%) and the desired compound (±)-(2R)-hydroxy-(3S)-isopropenyl-5,5-

bis(benzylcarboxylate)-8-(1’,4’-dioxaspiro)-trans-bicyclo [5,3,0]decane 139 (R = CO2Bn) (42 

mg, 40%); IR νmax (neat) /cm−1 3547 (O-H) 1728 (2 C=O) 1231 (2 C-O); 1H NMR (400 MHz, 
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CDCl3) δ 7.38-7.21 (10 H, m, H17), 5.17-5.00 (4 H, m, H15), 4.86 (1 H, d,J = 1.3 Hz, H12a), 4.75 

(1 H, s, H12b), 3.92-3.84 (4 H, m, H18), 3.71 (1 H, s, H2), 2.59 (1 H, dd,J = 10.3, 14.9 Hz, H6a), 

2.30 (1 H, d, J = 14.8 Hz, H10a), 2.23 (1 H, t, J = 10.9 Hz, H3), 2.16 (1 H, d, J = 10.4 Hz, H7), 

2.10 (1 H, d, J = 15.0 Hz, H6b), 2.05-1.98 (1 H, m, H10b), 1.89-1.72 (4 H, m, H4, H9), 1.59 (3 H, 

m, H13); 13C NMR (100 MHz, CDCl3) δ 172.7 (C14), 172.6 (C14), 149.5 (C11), 135.7 (C16), 135.7 

(C16), 128.6 (C17), 128.6 (C17), 128.3 (C17), 128.3 (C17), 128.2 (C17), 128.1 (C17), 118.3 (C8), 

111.0 (C12), 68.7 (C2), 67.1 (C15), 67.1 (C15), 65.2 (C18), 64.5 (C18), 55.8 (C5), 50.0 (C1), 46.8 

(C7), 41.0 (C3) 35.0 (C9), 31.8 (C10), 29.5 (C6), 23.6 (C13), 23.4 (C4); HRMS (ASAP) calcd for 

C31H37O7 ([M+H]+) 521.2534. Found: 536.2526. 

4 ) (±)-(2R)-Hydroxy-(3R)-isopropenyl-5,5-bis(benzylcarboxylate)-8-(1’,4’-

dioxaspiro)-trans-bicyclo[5,3,0]decane 

 

In a Dean-Stark apparatus, ethylene glycol (2.4 mL, 42.5 mmol, 25 equiv.) and p-

toluenesulfonic acid (32 mg, 0.170 mmol, 0.1 equiv.) was added to a solution of (±)-(2R)-

hydroxy-(3R)-isopropenyl-5,5-bis(benzylcarboxylate)-8-oxo-trans-bicyclo[5,3,0]decane 83 (R = 

CO2Bn) (810 mg, 1.70 mmol, 1 equiv.) in toluene (34 mL) and the solution was heated to reflux 

for 6 h. The solution was cooled down to room temperature, diluted with dichloromethane (20 

ml), washed with NaHCO3 (10 mL), extracted with dichloromethane (3 x 20 mL), dried over 

anhydrous magnesium sulphate and concentrated to dryness under reduced pressure. Purification 

by silica gel flash column chromatography, eluent petroleum ether/ethyl acetate (85:15),  

afforded (±)-(2R)-hydroxy-(3R)-isopropenyl-5,5-bis(benzylcarboxylate)-8-(1’,4’-dioxaspiro)-

trans-bicyclo[5,3,0]decane as a colourless oil (325 mg, 37%). IR νmax (neat) /cm−1 3464 (O-H), 

1725 (2 C=O), 1216 (2 C-O); 1H NMR (400 MHz, CDCl3) δ 7.40-7.24 (10 H, m, H17), 5.20-5.02 
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(4 H, m, H15), 4.88 (1 H, d, J = 1.3 Hz, H12a), 4.77 (1 H, s, H12b), 3.93-3.80 (4 H, m, H18), 3.74 (1 

H, s, H2), 2.62 (1 H, dd, J = 10.4, 14.8 Hz, H6a), 2.35-2.30 (1 H, m, H4a), 2.28-2.22 (1 H, m, H7), 

2.18 (1 H, d, J = 10.3 Hz, H3), 2.13 (1 H, d, J = 15.0 Hz, H6b), 2.06 (1 H, t, J = 5.4 Hz, H4b), 

1.90-1.82 (2 H, m, H1, H10a), 1.82-1.76 (3 H, m, H9, H10b), 1.72 (3 H, s, H13); 13C NMR (75 MHz, 

CDCl3) δ 172.5 (C14), 172.5 (C14), 149.4 (C11), 135.6 (C16), 135.6 (C16), 128.5 (C17), 128.5 (C17), 

128.2 (C17), 128.1 (C17), 128.1 (C17), 128.0 (C17), 118.2 (C8), 110.9 (C12), 68.7 (C2), 67.0 (C15), 

66.9 (C15), 65.1 (C18), 64.4 (C18), 55.7 (C5), 46.7 (C1), 40.9 (C7) 34.9 (C9), 31.7 (C4), 29.3 (C6), 

23.4 (C13), 23.3 (C10); HRMS (ESI) calcd for C31H40O7N ([M+NH4]+) 538.2799. Found: 

538.2793. 

5 ) (±)-2-Oxo-(3R)-isopropenyl-5,5-bis(benzylcarboxylate)-8-(1’,4’-dioxaspiro)-

trans-bicyclo[5,3,0]decane 

 

Pyridinium dichromate (103 mg, 0.276 mmol, 2 equiv.) was added to a  

solution of (±)-(2R)-hydroxy-(3R)-isopropenyl-5,5-bis(benzylcarboxylate)-8-(1’,4’-dioxaspiro)-

trans-bicyclo[5,3,0] decane (72 mg, 0.138 mmol, 1 equiv.) in dichloromethane (1.4 mL) and the 

solution was heated to reflux for 4 h. The reaction mixture was diluted with diethyl ether (50 

mL) and filtered through a pad of Celite® and the Celite® was washed thoroughly with diethyl 

ether. The filtrate was concentrated to dryness under reduced pressure to afford quantitatively 

(±)-2-oxo-(3R)-isopropenyl-5,5-bis(benzylcarboxylate)-8-(1’,4’-dioxaspiro)-trans-bicyclo[5,3,0] 

decane as yellow oil (72 mg).  IR νmax (neat) /cm−1 1725 (2 C=O) 1220 (2 C-O); 1H NMR (400 

MHz, CDCl3) δ 7.32-7.24 (10 H, m, H17), 5.25-5.00 (4 H, m, H15), 4.90 (1 H, s, H12a), 4.67 (1 H, 

s, H12b), 3.91-3.76 (4 H, m, H18), 3.18 (1 H, d, J = 10.6 Hz, H3), 2.73-2.68 (1 H, m, H1), 2.53-
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1.49 (2 H, m, H4a, H6a), 2.38-2.25 (1 H, m, H6b), 2.20-1.95 (3 H, m, H4b, H7, H9a), 1.83-1.66 (6 H, 

m, H9b, H10, H13); 13C NMR (75 MHz, CDCl3) δ 209.0 (C2), 171.9 (C14), 171.6 (C14), 143.6 (C11), 

135.5 (C16), 128.7 (C17), 128.7 (C17), 128.5 (C17), 128.4 (C17), 128.3 (C17), 117.4 (C8), 113.3 

(C12), 67.5 (C15), 65.6 (C18), 64.3 (C18), 56.7 (C1), 55.3 (C3), 44.5 (C7) 33.8 (C10), 32.9 (C4), 30.6 

(C6), 21.6 (C13), 20.3 (C9); HRMS (ESI) calcd for C31H38O7N ([M+NH4]+) 536.2643. Found: 

536.2638. 

VIII ) Decarboxylation 

1 ) (±)-trans-2-(6’-(5’,5’-Bis(carboxylic acid)-hex-2’-ene))-3-(1”,2”-

diacetoxyethyl)-cyclopentanone 117 (R = CO2Bn)7 

 

Et3N (22 µL, 0.16 mmol, 0.28 equiv.) and Pd(OAc)2 (13 mg, 0.056 mmol, 0.1 equiv.) were 

added to a solution of Et3SiH (250 µL, 1.56 mmol, 2.7 equiv.) in dichloromethane (4 mL). The 

solution was stirred for 15 min. A solution of (±)-trans-2-(6’-(5’,5’-bis(benzylcarboxylate)-hex-

2’-ene))-3-(1”,2”-diacetoxyethyl)-cyclopentanone 79 (R = CO2Bn) (335 mg, 0.565 mmol, 1 

equiv.) in dichloromethane (0.5 mL) was slowly added to the reaction mixture. The solution was 

stirred for 18 h at room temperature. The reaction mixture was quenched with saturated aqueous 

NH4Cl (15 mL), extracted with diethyl ether (3 x 20 mL) and washed with brine. The organic 

layer was dried over anhydrous sodium sulphate, filtered through a pad of Celite®, and  

concentrated to dryness to afford (±)-trans-2-(6’-(5’,5’-bis(carboxylic acid)-hex-2’-ene))-3-

(1”,2”-diacetoxyethyl)-cyclopentanone 117 (R = CO2Bn) as a colourless oil (171 mg, 73%). IR 
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νmax (neat) /cm−1 3540 (O-H) 1725 (5 C=O) 1450 (O-H) 1240 (2 C-O) 1215 (C-O); 1H NMR 

(400 MHz, CDCl3) δ 5.26-5.22 (0.6 H, m, H6), 5.12 (0.4 H, td, J = 3.1, 6.2 Hz, H6), 5.00-4.94 (1 

H, m, H11), 4.36 (0.4 H, dd, J = 3.1, 12 Hz, H7a), 4.25 (0.6 H, dd, J = 4.8,11.7 Hz, H7a), 4.16 (0.6 

H, dd, J = 6.2, 11.7 Hz, H7b), 4.07 (0.4 H, dd, J = 6.2, 12.0 Hz, H7b), 2.72-2.57 (2 H, m, H2, H3), 

2.25-1.87 (14 H, m, H4, H5, H8, H10, H16), 1,68 (3 H, s, H13 or H13’), 1.62 (3 H, m, H13 or H13’); 

13C NMR (100 MHz, CDCl3) δ 218.4 (C1), 171.8, 171.4 (C14), 170.8, 166.1 (C15), 135.1, 135.0 

(C12), 118.1, 114.6 (C11), 73.3, 71.0 (C6), 63.5 (C7), 58.9 (C9), 58.5 (C8), 47.2, 47.0 (C2), 43.0 

(C3), 35.9 (C5), 33.0, 32.9 (C10), 25.8 (C13 or C13’) 23.2 (C4), 20.7, 20.6 (C16), 18.0 (C13 or C13’); 

HRMS (ASAP) calcd for C20H28O9N ([M+H]+) 430.2072. Found: 430.2067. 

2 ) (±)-trans-2-(6’-(Hex-2’-ene))-3-(1”,2”-diacetoxyethyl)-cyclopentanone 80 (R = 

CO2Bn) 

  

Oxalyl chloride (110 µL, 1.24 mmol, 3 equiv.) was added to a solution of (±)-trans-2-(6’-

(5’,5’-bis(carboxylic acid)-hex-2’-ene))-3-(1”,2”-diacetoxyethyl)-cyclopentanone 117 (R = 

CO2Bn) (171 mg, 0.415 mmol, 1 equiv.) in dichloromethane (4 mL) followed by the addition of 

a drop of dimethylformamide. 2-Mercaptopyridine-N-oxide sodium salt (186 mg, 1.24 mmol, 3 

equiv.) was added when no more gas was formed. The reaction was stirred for 1h and 

concentrated to dryness under reduced pressure to afford (±)-trans-2-(6’-(5’,5’-

bis(thiohydroxamylcarboxylate)-hex-2’-ene))-3-(1”,2”-diacetoxyethyl)-cyclopentanone 118 (R = 

CO2Bn) as a crude mixture. The crude mixture was directly used in the next step: the Barton 

decarboxylation reaction. 
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A solution of Bu3SnH (920 µL, 3.39 mmol, 8.2 equiv.) and 1,1'-

Azobis(cyclohexanecarbonitrile) (9 mg, 0.035 mmol, 0.08 equiv.) in dry toluene (10 mL) was 

added to a solution of the crude mixture of (±)-trans-2-(6’-(5’,5’-

bis(thiohydroxamylcarboxylate)-hex-2’-ene))-3-(1”,2”-diacetoxyethyl)-cyclopentanone 118 (R = 

CO2Bn) (all the crude mixture from the previous step was engaged) in dry toluene (12 mL) under 

an argon atmosphere at room temperature. The reaction was heated under reflux for 4 h, cooled 

down to room temperature, quenched with water (10 mL), extracted with dichloromethane (3 x 

30 mL) and washed with brine (20 mL). Organic layers were dried over anhydrous sodium 

sulphate and concentrated to dryness under reduced pressure. Purification by silica gel flash 

column chromatography, eluent petroleum ether/ethyl acetate (9:1), afforded (±)-trans-2-(6’-

(hex-2’-ene))-3-(1”,2”-diacetoxyethyl)-cyclopentanone 80 (R = CO2Bn) (51 mg, 38% over two 

steps); IR νmax (neat) /cm−1 1741 (3 C=O) 1222 (2 C-O); 1H NMR (400 MHz, CDCl3) δ 5.27-

5.16 (0.6 H, m, H6), 5.11-4.98 (1.4 H, m, H6, H11), 4.26 (0.4 H, td, J = 2.8, 12.5 Hz, H7a), 4.75 

(0.6 H, dd, J = 3.7, 11.9 Hz, H7a), 4.08-3.95 (1 H, m, H7b), 2.98-2.80 (1 H, m, H3), 2.59-2.16 (6 

H, m, H2, H5, H10, H4a), 2.08-1.87 (7 H, m, H4b, H15), 1.79-1.70 (0.4 H, m, H8a), 1.68 (3 H, s, H13 

or H13’), 1.57 (3 H, s, H13 or H13’), 1.55-1.48 (0.6 H, m, H8a), 1.38-1.1.07 (3 H, m, H8b, H9); 13C 

NMR (100 MHz, CDCl3) δ 218.6 (C1); 171.5, 171.2, 170.8, 170.3 (C14); 134.8, 134.9 (C12); 

121.1, 120.1 (C11); 74.3, 74.1, 71.3, 71.1 (C6), 64.1, 64.0, 63.4, 63.4 (C7); 44.9, 44.7, 44.2, 43.9 

(C3); 38.9, 38.8, 38.7, 38.7 (C2); 29.5, 29.4, 29.1, 28.9, 28.8, 28.7, 28.6 (C5, C10, C8, C9); 25.7 

(C13); 23.6 (C4); 21.2, 20.9, 20.8 (C13); HRMS (ASAP) calcd for C18H32O5N ([M+NH4]+) 

342.2275. Found: 342.2282. 
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