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Abstract 
Salmonella is the cause of millions of food- and water-borne infections 

worldwide. Systemic infection and gastroenteritis are the main diseases and 

often prove fatal to immunocompromised patients.  

Key to Salmonella’s pathogenicity is the survival of several components of the 

innate immune system encountered during infection. Reactive oxygen and 

nitrogen species (ROS and RNS) are an integral part of this antibacterial 

defence of the immune system. Exposure to ROS and RNS occurs within 

phagocytic immune cells such as macrophages, where such generation of 

radicals is used to combat pathogens. NO is a radical belonging to the group of 

RNS that damages bacterial DNA and proteins. Detoxification of NO is essential 

during infection to allow Salmonella to survive and replicate within 

macrophages. Three enzymes are currently known to help Salmonella to 

detoxify NO, but their deletion, however, does not eliminate Salmonella’s 

survival. Therefore, it is predicted that further mechanisms for NO detoxification 

exist. 

In this study, the core NO regulon has been identified: Expression of nine genes 

is significantly increased during endogenous and exogenous NO exposure of S. 

Typhimurium. Their functions range from carbon starvation, cytochrome 

oxidation, iron-sulphur repair and NO reduction to putative proteins with 

unknown function, some of which contain domains for tellurite resistance. Single 

and combination deletion strains have shown that these genes are important to 

decrease anaerobic NO sensitivity of S. Typhimurium and for intracellular 

survival in murine macrophages. Furthermore, we have shown for the first time 

that the core NO regulon also provides protection against tellurite. Tellurite is 

toxic and requires detoxification when encountered. Reducing tellurite to yield 

the elemental tellurium results in the release of ROS, which then need to be 

detoxified further. Deletion strains sensitive to tellurite have also shown 

increased sensitivity to NO. Concurrently, tellurite resistance genes also 

facilitate the defence against NO. 
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1.1 Salmonella  

1.1.1 Nomenclature 
The bacterium Salmonella belongs to the class of γ-proteobacteria and is a 

member of the Enterobacteriaceae family (Le Minor & Popoff, 1987). There are 

only two Salmonella species, namely S. bongori and S. enterica, but the genus 

of S. enterica comprises a vast list of more than 2500 different serovars 

(Andrews-Polymenis et al, 2010; Popoff et al, 2003). Most commonly 

associated with infection in humans are the serovars Salmonella enterica ssp. 

enterica serovar Typhi (S. Typhi), Salmonella enterica ssp. enterica serovar 

Paratyphi (S. Paratyphi), Salmonella enterica ssp. enterica serovar 

Typhimurium (S. Typhimurium) and Salmonella enterica ssp. enterica serovar 

Enteritidis (S. Enteritidis). Serovars are often differentiated by adaption or 

restriction to certain hosts, e.g. to pigs (S. Dublin) and poultry (S. Gallinarum). 

For humans, host-restricted serovars include S. Typhi, S. Paratyphi A and S. 

Paratyphi C. Most serovars, however, are not host-restricted as they infect a 

broad range of animals, often causing self-limiting infections (Rabsch et al, 

2002). The serovar S. Typhimurium has been isolated from humans, cattle pigs 

and poultry where it either causes gastroenteritis or results in asymptomatic 

carrying. However, certain serotype variants of S. Typhimurium have been 

shown to cause paratyphoid in pigeons (Milnes et al, 2008; Rabsch et al, 2002; 

Snow et al, 2007). Hence it has to be noted that Salmonella is the causative 

agent for infection of a range of animals and leads to enteric fever. 

 

1.1.2 Epidemiology of Salmonellosis 
In humans Salmonella infection results in two major disease outcomes, 

gastroenteritis and enteric fever. Enteric fever is a systemic infection caused by 

S. Typhi then referred to as typhoid fever, and by S. Paratyphi, leading to 

paratyphoid fever. As these serovars are host-restricted, humans serve as 

reservoirs with an infection spreading via the faecal-oral route (Okoro et al, 

2012). The genome of S. Typhi is approximately 10% different to that of the 

non-typhoidal Salmonella (NTS) strain S. Typhimurium, mostly due to the 

accumulation of pseudogenes in S. Typhi (Young et al, 2002), but also due to 
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the acquisition of pathogenicity islands (SPI) by horizontal gene transfer (HGT) 

such as SPI-VII which encodes for the Vi capsule. The S. Typhi genome also 

contains genes for a type IV pilus, a putative type IV secretion system as well 

as a phage encoding for the sopE effector gene of SPI-1 (Deng et al, 2003; 

McClelland et al, 2001; Parkhill et al, 2001). A genome comparison between S. 

Typhi and S. Typhimurium also revealed the inactivation of 5% of genes in S. 

Typhi, including genes important for intestinal persistence (ratB and shdA) and 

other genes from several SPIs (Baker & Dougan, 2007). This provides an 

explanation to why S. Typhi infection differs from S. Typhimurium infection and 

e.g. is restricted to the human host and can infect other organs such as the 

gallbladder.  

S. Typhimurium, unlike S. Typhi, is a non-human restricted serovar and infects 

a range of animals from chickens and other poultry, to mice and pigs (Milnes et 

al, 2008; Okoro et al, 2012). Infection of humans by NTS strains normally 

results in a self-limiting gastroenteritis, whereas infection of mice leads to 

typhoid-like symptoms and a high fatality rate, providing us with an excellent 

animal model for Typhoid fever (Prior et al, 2009). 

The highest risk of Typhoid infection is in south-central and south-east Asia, 

with medium risk for African, other Asian, Latin American, Caribbean countries 

and Oceania excluding Australia and New Zealand (Crump et al, 2004). In the 

year 2000, an estimated total of more than 26 million cases of enteric fever 

caused by S. Typhi and S. Paratyphi occurred, leading to 200,000 - 500,000 

deaths each year (Crump et al, 2004; Everest et al, 2001). Although incidence 

rates have decreased in some countries, such as Vietnam, due to improved 

sanitation, in other countries such as Indonesia and Pakistan there has been 

little impact on the number of infections recorded (Andrews-Polymenis et al, 

2010; Pang et al, 1998). This also coincides with a fatality rate of up to 7% in 

Pakistan, compared to an average of 0-5% in other countries (Pang et al, 1998). 

 

According to the World Health Organisation (WHO) approximately 1.3 billion 

cases of gastroenteritis per annum are caused by Salmonella (Pang et al, 

1995). Every year, more than ten thousand individuals in England and Wales 

are diagnosed with Salmonellosis of this type, making it the second most 

common cause of food poisoning in these regions (Health Protection Agency, 
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2009). S. Enteritidis and S. Typhimurium have been reported as the two most 

common serovars causing the infections in England and Wales. Prevalence of 

NTS cases is high in sub-Saharan Africa, but not limited to this geographical 

area (Kingsley et al, 2009). Approximately 3 million deaths are estimated to 

occur every year as a result of infection with NTS (Pang et al, 1995). Most of 

these deaths are linked to the immunocompromised population, suffering from 

Malaria or infection with HIV (Gilks et al, 1990; Gordon et al, 2002; Hohmann, 

2001; Vugia et al, 1993). As the symptoms of Salmonella-caused gastroenteritis 

are similar to those caused by other food poisoning micro-organisms, along with 

the fact that the disease is usually self-limiting, make this an under-reported 

disease (Prior et al, 2009). The economic burden of this disease remains high; 

the cost for the National Health Service (NHS) for treatment of Salmonellosis 

has been estimated to lie between £1,000 to £1,200 per case in the UK (Santos 

et al, 2011). Laboratory tests of samples alone cost the NHS £6.5 million each 

year and in countries with weaker health infrastructures, cases are further 

underreported as health care is less available to the particularly vulnerable 

young children and the elderly (Parry et al, 2002; Prior et al, 2009).  

 

1.2 Infection biology of Salmonella 

1.2.1 Route of infection 
Human infection with Salmonella ssp. occurs after the ingestion of bacteria from 

contaminated food or water. The bacteria reach the acidic environment of the 

stomach before being transported into the intestine. From here Salmonella 

causes infection of enterocytes, intestinal epithelial cells, and subsequent 

replication within macrophages takes place. 

1.2.1.1 Sources of contamination 
The consumption of meat, eggs or poultry from infected animals is the most 

common source of NTS infection in Europe (Adak et al, 2005). Cross-

contamination of meat products post slaughter is an additional risk. Another 

source is the contamination of drinking water. Especially in countries where the 

supply of clean drinking water is not secured, contamination with human faecal 



 
1 Introduction 
 

21 

content can also lead to an infection (Parry et al, 2002; Tischler & McKinney, 

2010). 

 

If animal manure is used as a fertilizer during fruit and vegetable production, 

Salmonella readily adheres to the surface of the plant and even invades plant 

tissue (Gu et al, 2011; Klerks et al, 2007). An increasing number of outbreaks of 

foodborne illnesses caused by S. Typhimurium have been reported in the 

United States that originate from contaminated fruit and vegetables (Andrews-

Polymenis et al, 2010). These are the result of using contaminated manure or 

irrigation water or the result of contamination during post harvest processes. S. 

enterica serovars Montevideo, Newport and Javiana have been most commonly 

linked with such outbreaks from produce (Shi et al, 2007). In comparison with 

serovars linked to meat-associated Salmonellosis, e.g. Enteritidis and 

Typhimurium, Montevideo and Newport have a higher attachment and infection 

rate of tomato and lettuce plants (Gu et al, 2011; Klerks et al, 2007; Shi et al, 

2007; Zheng et al, 2013). It has determined that Salmonella can be found in ripe 

and unripe tomato fruits and that internalization presumably takes place via the 

stomata in the leaves. Infection of plants has a higher success rate when the 

blossom or leaves of the plants are exposed to the bacterial cells, in 

comparison with low infection rates via the soil-root interface (Klerks et al, 2007; 

Zheng et al, 2013). Low intracellular rates of S. Typhimurium have been 

measured in several studies and contamination of fruit products with this 

serovar is linked to food processing rather than contamination during crop 

growth. Investigation of a S. Newport mutant library has identified a number of 

genes including agfBD and rpoS that are particularly important during the 

attachment of S. Newport to alfalfa sprouts (Barak et al, 2005). The rdar 

morphotype is characterised by the formation of dry and rough colonies and 

plays an important role for environmental persistence (Gu et al, 2011). The 

transcription factor AgfD regulates the expression of agfB (fimbriae), yihO (O 

antigen capsule formation) and bscA (cellulose synthesis), which are key for the 

rdar morphotype (Barak et al, 2005; Gu et al, 2011). Mutations within agfD or its 

deletion results in significantly decreased attachment properties of the strains 

tested (Gu et al, 2011). It has been concluded that this morphotype is beneficial 



 
1 Introduction 
 

22 

for the survival on the surface of leaves, but does not provide any benefits once 

the bacteria are inside the leaves.  

However, several food preparation techniques significantly reduce the number 

of bacteria in food products and these include thorough cooking of meat and 

vegetables and boiling of drinking water (Adak et al, 2005). This is of course 

more problematic with salad crops or other vegetables intended to be eaten 

raw; washing these products is not always sufficient to remove Salmonella 

when they are residing within plant cells. The increase in Salmonella infections 

associated with such products correlates with dietary advice on increasing fruit 

and vegetable consumption, and subsequent mass production of these 

products.  

1.2.1.2 Gastric passage and gut commensals 
After ingestion of contaminated food or water, the next step during infection is 

the transport of Salmonella into the stomach, where the low pH of the gastric 

juice provides an effective barrier for a range of pathogens. Salmonella uses the 

acid tolerance response (ATR) to counteract and adapt to this environment 

(Garcia-del Portillo et al, 1993). Via the regulators σS and Fur, the expression of 

more than fifty acid shock proteins, including the proton-translocating ATPase 

(Atp), is induced that protects Salmonella against extreme low pH values such 

as pH 3.0 to 4.0 (Foster, 1991; Gahan & Hill, 1999; Hall & Foster, 1996). The 

ferric uptake regulator Fur and σS have been identified to initiate the ATR in log 

phase cells, as a response to the increased level in organic acids. Additional 

regulators include the two-component systems PhoPQ and OmpR-EnvZ 

(Rychlik & Barrow, 2005). PhoPQ initiates the ATR when inorganic acids have 

lowered the pH. Protection of stationary phase cells is provided through the 

activation of the ATR by the OmpR-EnvZ sensory system. 

After passage through the stomach, Salmonella reaches the small intestine. 

Here, the commensal gut flora reduces pathogenicity of intruding infectious 

bacteria by competing for available nutrients and adhesion receptors, but also 

through the production of antibacterial metabolites, such as bacteriocins and 

short chain fatty acids (Álvarez-Ordóñez et al, 2011). Goblet cells, located in the 

intestinal epithelium, produce a layer of mucus that protects the enterocytes. 

The inner layer of this mucus layer is dense and lacks microbiota, whereas the 
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outer layer is looser and houses commensal bacteria (Gill et al, 2011). The 

short chain fatty acid butyrate produced by commensals triggers an increase in 

mucus production and further increases the protection of enterocytes against 

pathogens. It has been shown that Salmonella requires chemotaxis and flagella 

to be able to penetrate the mucus layer (Stecher et al, 2004). During Salmonella 

infection, the levels of commensal bacteria decrease significantly due to the 

stimulation of the host inflammation response (Deatherage Kaiser et al, 2013). 

This allows increased proliferation of S. Typhimurium in the infected gut and 

increases the invasion rate. In addition, Salmonella stimulates the expression of 

RegIIIβ, a bactericidal compound, by host cells that reduces the growth of 

commensal bacteria (Stelter et al, 2011). Protection of S. Typhimurium against 

the bactericidal activity of RegIIIβ was shown to result from the presence of O-

antigens in the bacterial cell wall.  

Recognition of the cystic fibrosis transmembrane conductance regulator (CFTR) 

found in the membrane of intestinal mucosal cells has been associated with 

enhanced invasion of enterocytes by S. Typhi, but not S. Typhimurium (Lyczak, 

2003; Pier et al, 1998). This is another indicator for differences between the 

course of infection of S. Typhi and S. Typhimurium that lead to two major 

disease types of enteric fever and gastroenteritis.  

 

 

1.2.2 Gastroenteritis 
S. Typhi triggers a systemic infection of the human body, whereas S. 

Typhimurium infections is stopped at the mesenteric lymph nodes, leading to a 

localised intestinal inflammation that manifests itself through diarrhoea (Young 

et al, 2002). Salmonella-specific mechanisms such as the type three secretion 

systems (TTSS) encoded on Salmonella-pathogenicity islands-1 (SPI-1) and -2 

(SPI-2) are important during stages of infection of both serovars and are 

discussed here. 

S. Typhimurium multiplies in the intestinal lumen and like S. Typhi also uses the 

gut filtering properties of microfold cells (M cells) to reach the basolateral side of 

the epithelial tissue of the intestine. In addition, it also invades enterocytes to 

avoid antibacterial enzymes (Figure 1).  
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Figure 1: Intestinal entry of S. Typhimurium (Young et al, 2002) 

S. Typhimurium replicates within the gut lumen and reaches the basolateral 

surface of the intestinal epithelial layer through passage of M cells or by the 

active invasion of enterocytes, where they are taken up by phagocytic cells 

such as neutrophils and the infection is controlled at the mesenteric lymph 

nodes. Infiltration of neutrophils into the intestinal lumen contributes to the 

inflammation of the tissue and leads to diarrhoea.  
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1.2.2.1 Role of SPI-1 
Active invasion is made possible by the expression of a needle-like complex 

and subsequent secretion of so-called effector proteins from a set of genes 

belonging to SPI-1. This region on the S. Typhimurium genome comprises more 

than 30 genes (Collazo & Galán, 1997; Marcus et al, 2000; McGhie et al, 2009). 

Regulation of SPI-1 is complex and a range of environmental factors and 

transcriptional regulators have been identified, which influence SPI-1 

expression (Figure 2). 

One regulatory trigger is the change in hydrogen ions (pH) that occurs during 

the passage of bacteria from the stomach to the small intestine. This change in 

proton concentration is sensed by PhoP-PhoQ, Fur and OmpR-EnvZ (López-

Garrido & Casadesús, 2012; Rychlik & Barrow, 2005). These regulators modify 

the levels of the transcriptional regulators HilA, HilC, HilD and InvF that results 

in the expression of SPI-1 genes. Other environmental signals for SPI-1 

activation include low oxygen concentrations and changes in nutrient levels 

(Darwin & Miller, 1999; Marcus et al, 2000). 

The SPI-1 proteins fulfil a range of functions. Some are structural components, 

forming a needle-like complex of inner and outer membrane proteins that form a 

hollow tube and span across both the bacterial and eukaryotic membranes 

(Kubori et al, 1998). Another function is fulfilled by chaperones such as SicA 

that ensure correct folding of the proteins such as SipB and SipC (Tucker & 

Galán, 2000). Some components are effector proteins that are translocated 

from the bacteria into the eukaryotic host cell. These effector proteins, such as 

SopB, SipA and SipC, interact with the actin component of the host cell 

cytoskeleton (Finlay et al, 1991; Haraga et al, 2008). The subsequent 

rearrangement of actin induces the ruffling of the eukaryotic cell membrane and 

results in the uptake of the bacterial cell into the host cell in a vesicular 

compartment (Marcus et al, 2000; Stevens et al, 2009). Once membrane ruffling 

has led to the intracellular uptake of bacteria, the Salmonella protein tyrosine 

phosphatase SptP reverses the actin rearrangements caused by SopB (Fu & 

Galán, 1998; Fu & Galán, 1999; Humphreys et al, 2009; Patel & Galán, 2006). 

SptP mimics GTPase-activating proteins and hence deactivates the GTPases 

Cdc42 and Rac that are responsible for the actin modulation.   
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Figure 2: SPI-1 regulation (López-Garrido & Casadesús, 2012) 

Regulatory input determining the levels of the SPI-1 regulators HilA, HilC, HilD 

and InvF (grey). Dashed lines indicate indirect, solid lines indicate direct 

regulation of genes (rectangular boxes) or proteins (circles), where blunt ends 

symbolize repression and arrows activation. 
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Therefore, Salmonella induces the rearrangement of the actin cytoskeleton of 

the host cell for invasion, but also reverses the effects post invasion. Other 

effectors (SopE, SopE2 and SopB) trigger the release of the signaling molecule 

interleukin-8 (IL-8) via the interference with MAPK pathways (Darwin & Miller, 

1999; Haraga et al, 2008; Young et al, 2002). In turn, IL-8 stimulates the 

migration of polymorphonuclear leukocytes (PMN), white blood cells,  into the 

lumen, resulting in intestinal inflammation and diarrhoea (Galyov et al, 1997). 

Such migration of PMN is not observed for S. Typhi or S. Paratyphi infections 

and hence their primary infection does not cause inflammation of the small 

intestine. 

Once neutrophils, one type of white blood cells, have been recruited in 

response to a S. Typhimurium infection, they release prostaglandins which 

increase the activity of adenylate cyclases in enterocytes (Darwin & Miller, 

1999). This enzyme then no longer regulates the absorption of sodium ions, but 

increasingly leads to the secretion of chloride ions into the intestinal lumen. This 

results in diarrhoea that cannot be easily distinguished from the symptoms 

caused by other enteric pathogens. 

Furthermore, it has been shown that the SPI-1 effector SipB causes the 

formation of multi-membrane structures within the host cell which disrupt 

mitochondria (Hernandez et al, 2003). This induces autophagy leading to cell 

death and high cell toxicity of S. Typhimurium invading epithelial cells that has 

been reported in the literature (Hautefort et al, 2008; Hernandez et al, 2003; 

Jones et al, 1994). 

Deletions of SPI-1 have highlighted that SPI-1 plays a role during oral infection, 

but is not required for the systemic phase of infection (Galán & Curtiss, 1989a; 

Jones & Falkow, 1994; Jones et al, 1994; Marcus et al, 2000). 

 

1.2.2.2 Role of SPI-2 
The invasion of epithelial and phagocytic cells results in Salmonella being 

present intracellularly within a vesicle or spacious phagosome (Haraga et al, 

2008; Stevens et al, 2009). Within minutes, the vacuole shrinks and gives rise 

to the Salmonella-containing vacuole (SCV). Once Salmonella has invaded host 

cells, the transcription of a second SPI is induced (Cirillo et al, 1998; Hautefort 
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et al, 2008). SPI-2, like SPI-1, also encodes for a needle-like complex and 

effector proteins. Similarly, the pore structure allows translocation of effectors 

from the SCV into the host cell cytosol (Figueira & Holden, 2012). The role of 

SPI-2 includes four tasks (Figure 3). Firstly, it allows the acquisition of proteins 

from the cytosol of the host cell. Secondly, it allows the movement of the SCV 

towards the nucleus and the Golgi apparatus.  

Thirdly, it allows bacterial multiplication within the SCV. Fourthly, it has been 

shown that SPI-2 can prevent the fusion of the inducible nitric oxide synthase 

(iNOS) with the SCV, thus reducing the exposure of Salmonella to RNS 

(Chakravortty et al, 2002). A more acidic pH and the low nutrient composition of 

phosphate and magnesium in the SCV are inducing conditions for SPI-2 

expression and are sensed by the two-component systems SsrAB and OmpR-

EnvZ (Cirillo et al, 1998; Eriksson et al, 2003; Feng et al, 2004; Figueira & 

Holden, 2012; Garmendia et al, 2003; Lee et al, 2000). 

The identification of SPI-2 effectors has been more difficult than identifying SPI-

1 effectors as they are scattered across the genome, outside of the 

pathogenicity island. Similar to SPI-1, SPI-2 also contains effectors that modify 

the host cytoskeleton. In particular the effector proteins SteC, SspH2 and SrfH 

have been shown to polymerise actin, to assemble an actin meshwork and to 

co-localise to the meshwork, respectively (Figueira & Holden, 2012). The 

effector proteins SseF and SseG recruit the cell motor protein dynein to the 

SCV and in combination with actin polymerisation, the SCV moves closer to the 

nucleus and to the Golgi apparatus. The reason for the benefits of a SCV 

closely associated with the microtubule organizing centre and the Golgi 

apparatus remains unknown (Ramsden et al, 2007). 

Other effectors function mainly in the maintenance of the SCV membrane 

integrity (SifA, PipB2, SseJ, SopD2), but also modify signalling processes within 

the host cell and hence modify the immune signalling of cells (SpvC, SspH1). 

The environment within the SCV allows bacterial replication and it has been 

proposed that the formation of Salmonella-induced filaments (Sif) by the SPI-2 

effector SifA might allow for the expansion of the SCV (Haraga et al, 2008). 
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Figure 3: Entry of Salmonella into macrophages & survival within the 

Salmonella-containing vacuole (Haraga et al, 2008) 

Salmonella cells are taken up into an intracellular compartment of 

macrophages, the spacious phagosome. This structure shrinks and forms the 

SCV. Several genes clustered on SPI-2 allow the acquisition of proteins from 

the cytosol of the macrophage, enable multiplication with the SCV and through 

movement of the SCV along microtubules, allow the close association of SCV to 

the Golgi apparatus and the nucleus. The fusion of the lysosome with the SCV 

acidifies the environment and exposes the cells to antimicrobial peptides and 

the toxicity of reactive oxygen and nitrogen species. SPI-2 effectors allow 

Salmonella spp. to avoid these bactericidal effects and ensure the successful 

survival and the further multiplication of the bacteria within the SCV.  
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Similarly to SPI-1, SPI-2 also has the ability to induce apoptosis of host cells, 

possibly by the activity of the effector SlrP as well as through the activation of 

caspase-1 activity (Figueira & Holden, 2012; Monack et al, 2001). Apoptosis of 

for example macrophages provides a way of escaping a further immune system 

attack once the macrophages reach the mesenteric lymph nodes. Transport of 

Salmonella-containing phagocytes to the mesenteric lymph nodes allows the 

presentation of antigens to B and T cells, hence stimulating the adaptive 

immune system and the production of antibodies. 

Further protection for Salmonella is provided by partially preventing the fusion of 

lysosomes with the SCV, avoiding antimicrobial enzymes (Uchiya et al, 1999). 

The assembly of NAPDH oxidase is also disrupted, decreasing the exposure to 

reactive oxygen species (ROS) as the enzyme activity levels are low (Gallois et 

al, 2001; Vazquez-Torres & Fang, 2001b). Furthermore, the fusion of vesicles 

containing iNOS is furthermore inhibited, reducing the exposure to nitric oxide 

(NO) and other reactive nitrogen species (RNS) (Chakravortty et al, 2002). 

Salmonella has enough defence mechanisms to detoxify the antibacterial 

radicals encountered within the SCV and survives in this environment. These 

detoxification mechanisms are described in more detail in section 1.5. 

 

The uptake of pathogens into macrophages generally occurs via a process 

called phagocytosis. Phagocytosis depends on the recognition of pathogen-

associated molecular patterns (PAMP), e.g. flagellin and lipopolysaccharides 

(LPS) by specific receptors on the surface of macrophages (Buckner & Finlay, 

2011; Mathur et al, 2012). Recognition of PAMPs allows the uptake of 

pathogens within a vesicular compartment, called the phagosome, into the 

inside of the cell. In the case of a Salmonella infection, the spacious 

phagosome shrinks to a tighter fitting vacuole, the SCV, over the time course of 

minutes to hours (Haraga et al, 2008). The SCV fuses with the lysosome, which 

contains antimicrobial peptides, reactive oxygen and nitrogen species, the latter 

generating the toxic gas nitric oxide (Steele-Mortimer, 2008). As outlined above, 

SPI-2 effectors have been shown to influence the fusion between the SCV and 

the lysosome, limiting the exposure to potentially bactericidal compounds.  

At this stage, the further course of infection differentiates between typhoid and 

non-typhoid strains. Non-typhoid strains cause a localised inflammatory 
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response involving the local inflammation of the intestinal epithelium as well as 

the infiltration of PMN into the gut lumen (Haraga et al, 2008). Chemokines 

released by PMN increase the stress on epithelial cells and cause the loss of 

fluid and cells from the intestines through diarrhoea. 

Typhoidal infections include the invasion of, as well as the multiplication within, 

macrophages followed by the spread of the bacteria via the reticulo-endothelial 

system, infecting organs such as the spleen, liver and gallbladder (Mastroeni, 

2002).  

In recent years, an increasing number of studies have reported the occurrence 

of invasive NTS (iNTS) strains across the world. It has been observed that not 

all strains are equally invasive in each country, hence strains particularly 

dominant in the United States are not necessarily the most important ones in 

European countries (Langridge et al, 2009a). Although they currently only 

contribute to a low number of NTS cases in America, they are a particular 

concern as they cause more severe infection than other NTS strains and have 

higher fatality rates (Jones et al, 2008). 

In sub-Saharan Africa, cases of NTS presenting invasive symptoms have been 

increasing (Kingsley et al, 2009). Symptoms include bacteraemia, meningitis 

and septic arthritis rather than diarrhoea. A study by Kingsley et al. has shown 

that the genome of iNTS strains is degraded and that they are more similar to 

the genome of S. Typhi than before. Several risk factors such as malnutrition, 

anaemia, HIV infection and malaria make children particularly vulnerable, 

resulting in fatality rates between 20% and 25% (Gordon et al, 2008). In adults, 

fatal iNTS cases are closely associated with HIV infection and result in nearly 

50% fatality (Gordon et al, 2002). In combination with the emergence of multi-

drug resistant strains, this form of Salmonellosis poses an increasing threat 

(Kariuki et al, 2010). 

 

1.2.3 Typhoid fever  
Typhoid fever is characterised by the systemic spread of S. Typhi or S. 

Paratyphi serovars from the lymph nodes into the bloodstream, dissemination to 

organs such as the liver, colonisation of the gall bladder, discharge of bacteria 
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into the intestines via bile, secretion of bacteria in faeces and secondary 

infection of the intestine that leads to potentially fatal tissue damage (Figure 4). 

Once the bacteria have reached the small intestine, they are taken up by M 

cells whose physiological function is to filter the gut lumen for foreign antigen or 

they induce uptake (Figure 5). M cells allow the passage of foreign particles 

through the epithelium into the Peyer’s patches, where they are taken up by 

macrophages. Peyer’s patches are gut-associated lymphoid tissue, functioning 

to recognize and present antigens as part of the intestine’s immune system, 

initiating the adaptive immune response (Gill et al, 2011). 

Removal from the gut lumen allows Salmonella to avoid the antimicrobial 

activity of the bile salts, low pH values, secreted immunoglobin A and digestive 

enzymes. Consequently, Salmonella are transported to the mesenteric lymph 

nodes, where they are able to multiply within phagocytic cells (Everest et al, 

2001; Parry et al, 2002). The Salmonella-induced apoptosis of phagocytic cells 

leads to the release of bacteria into the bloodstream. Within two hours, the 

majority of Salmonella cells are cleared from the bloodstream. The complement 

factor C1q binds to the rough- and smooth-types of LPS on the surface of the 

bacteria, allowing for the recognition and internalisation of Salmonella into 

macrophages, dendritic cells and PMN (Mastroeni, 2002). Within the immune 

cells, Salmonella replicates whilst the immune cells transport it to the liver and 

spleen.  

They re-enter the bloodstream, causing a secondary infection. Most clinical 

symptoms become apparent after this second round of infection approximately 

two weeks after the initial infection, when Salmonella infects the gall bladder, 

liver, spleen, bone marrow and re-infect the intestine (Everest et al, 2001; Parry 

et al, 2002). The infiltration of bone-marrow derived macrophages (BMDM) in 

the spleen and liver results in BMDM-rich granulomas causing organ swelling 

(Mastroeni, 2002). Re-infection of the intestine causes inflammation, ulceration 

and necrosis of the tissue. Inflammation is enhanced by the increased release 

of cytokines as a result of the re-exposure of the immune system to the 

pathogen, which may lead to necrosis (Parry et al, 2002). 
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Figure 4 : Infection cycle of S. Typhi and chronic infective state (Tischler & 
McKinney, 2010) 
Salmonella is taken up by ingestion (1) and reaches the small intestine after 
passing through the stomach. The invasion of the mucosa of the small intestine 
(2) and passage through M cells allow the uptake of bacterial cells into 
phagocytic immune cells. Due to several detoxification mechanisms, Salmonella 
survives the antibacterial activity of macrophages and multiplies within these 
immune cells. This is followed by the spread throughout the reticulo-endothelial 
system via the bloodstream (3), where Salmonella reaches organs such as the 
liver and the spleen as well as the bone marrow. Once it has colonised the gall 
bladder possibly causing the establishment of the chronic carrier state (4), 
bacteria re-enter the intestine via the discharge of bile through the bile duct (5). 
This shedding of bacteria into the intestine causes a secondary infection, 
leading to intestinal inflammation and damage to the blood vessels supplying 
the Peyer’s patches. Perforation and haemorrhage from damaged tissue lead to 
peritonitis and septicaemia. Secretion of Salmonella via faeces (6) is the 
possible cause of infection of another or the re-infection of the same individual 
via the faecal-oral route. 
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Figure 5: Intestinal entry of S. Typhi and route of re-infection (Young et al, 2002) 

S. Typhi reaches the basolateral surface of the intestinal epithelial layer through 

passage or invasion of M cells. They are phagocytised by, for example, 

macrophages and are disseminated to the bone marrow, spleen and liver via 

the blood stream. When they reach the gall bladder, bacteria can re-enter the 

intestine via the discharge of bile through the bile duct. This shedding of 

bacteria causes a secondary infection, leading to intestinal inflammation and 

damage to the blood vessels supplying the Peyer’s patches. Perforation and 

haemorrhage from damaged tissue can lead to peritonitis and septicaemia.  
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These more severe symptoms are only observed around three weeks after the 

initial infection with Salmonella. In severe cases, blood vessels that supply the 

Peyer’s patches perforate, causing internal bleeding or perforation of ulcerated 

tissue occurs. Inflammation of the peritoneum or septicaemia by Salmonella is 

then potentially life-threatening. Without treatment within 96 hours of the first 

symptoms, between 60% and 90% of the infected patients die, whereas 

treatment with antibiotics such as Ciprofloxacin reduces the fatality rate to 

values below 5% (Everest et al, 2001; Parry et al, 2002). 

S. Typhimurium infection of mice is used as a murine typhoid model as this 

serovar causes a systemic infection in mice, similar to S. Typhi observed in 

humans. Additionally, mice with different genotypic backgrounds can be used, 

allowing investigation into the cause of infection if, for example, the host 

immune system cannot produce NO or if it lacks the enzyme phagocytic 

oxidase Phox, also called NADPH oxidase that generates oxygen radicals. 

These animals can also be used to develop respective macrophage cell lines. 

Such models have highlighted that S. Typhimurium strains without SPI-2 genes 

are not able to replicate and survive within macrophages (Cirillo et al, 1998; 

Gallois et al, 2001). 

In addition, the colonization of liver and spleen has been shown to be impaired 

for deletion strains (Silva et al, 2012). Therefore, SPI-2 is required to establish 

persistent infection. Comparative studies using S. Typhi in human macrophages 

and S. Typhimurium in mice, however, have highlighted phenotypic differences 

(Forest et al, 2010).  

The Toll-like receptor TLR11 enables the recognition of S. Typhimurium in mice, 

but not S. Typhi, resulting in the inability of S. Typhi to infect mice (Mathur et al, 

2012). The creation of a mouse TLR11 mutant has not only increased the 

susceptibility of the mice to S. Typhimurium infection, but also allowed S. Typhi 

to establish an infection.  
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1.2.4 Chronic carrier stage 
After multiplication within the macrophage, typhoidal Salmonella spreads 

through the reticulo-endothelial system. This allows Salmonella to infect the 

spleen and the gall bladder of their host where they reside inside epithelial cells 

of the gall bladder or form biofilms on the surface of gall stones. Invading the 

epithelial cells as well as forming a biofilm allows Salmonella to remain 

undetected by the immune system (Tischler & McKinney, 2010). This stage can, 

in some patients, lead to either a chronic infection or to the perforation of tissue 

leading to a systemic wide spread of the bacteria resulting in peritonitis, sepsis 

and eventual death of the affected individual (Everest et al, 2001). 

Chronic infections by Salmonella are characterised by the colonization of 

organs such as the gall bladder, gall stones, the liver or the spleen and affect 

humans, but systemic infection of pigs, chicken and other poultry is also 

common (Hohmann, 2001; Lai et al, 1992; Milnes et al, 2008). The serovar 

particularly associated with chronic infection in pigs is S. Choleraesuis (Rabsch 

et al, 2002). Carriers do not have any overt clinical symptoms, but often shed 

bacteria through their faeces as bacteria are secreted into the intestines with 

the discharge of bile. The lack of clinical symptoms poses a problem as human 

chronic carriers are often not aware of the potential contamination hazard they 

cause. Similarly, infected animals are not detected and their meat is then 

potentially used further for the production of food or their excrements are used 

to fertilise the soil for agricultural purposes. Such use of contaminated 

excrements causes the contamination of vegetables with Salmonella and 

provides another source of infection for human beings. 

Although the chronic carrier itself is not at risk directly, a chronic infection 

should be closely monitored and avoided in the agricultural environment. 

Carriers should be treated to prevent the spread of Salmonella from animals to 

humans or from infected humans to other individuals. Shedding of bacteria 

through the faeces occurs for a prolonged period of time and antibiotic therapy 

is only effective if the infection is not localised within human tissue cells 

(Crawford et al, 2010). If the source of the chronic carriage has been located to 

gallstones, cholecystectomy is recommended. 
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1.3 Treatment of Salmonella infections 
In case of an infection with non-typhoidal Salmonella, gastroenteritis is often a 

self-clearing infection and mostly does not require the administration of 

antibiotics in non-risk groups. In immunocompromised hosts; the elderly, 

children and patients with immune diseases, the use of antibiotics has to be 

considered. However, it has been shown that children infected with multi-drug 

resistant (MDR) NTS are more likely to need treatment for diarrhoea and 

bacteraemia (Kariuki et al, 2006; Varma et al, 2005). 

Typhoid fever requires medical attention and is treated with antibiotics. The 

choice of treatment has changed over the years due to the emergence of multi-

drug resistance and this limits the treatment options drastically. 

Chloramphenicol has first been used for treatment of typhoid fever and has 

been the antibiotic of choice until the 1980s (Anderson & Smith, 1972) when 

significant levels of resistance have been observed. Then, a combination of 

Ampicillin with Trimethoprim-Sulfamethoxazole has been introduced, although 

this also has been retracted due to increasing cases of resistance (Butler et al, 

1977; McHugh et al, 1975). Since the 1990s, first- and second-generation 

quinolones (Nalidixic acid; Ciprofloxacin and Ofloxacin, respectively) have been 

used to treat typhoid fever patients (Uwaydah et al, 1991; Wang et al, 1989). 

Another reason for concern regarding the emerging of drug-resistant strains has 

been reported: S. Typhi strains that have showed a decreased Ciprofloxacin 

susceptibility increase the patient’s recovery time from the fever and also 

increase the number of cases where treatment failed (Crump et al, 2008). 

 

1.4 Antibiotic resistance 
Antibiotic resistance of S. Typhi strains has been reported in individuals since 

the 1950s and has resulted in a first outbreak caused by an endemic strain in 

Mexico in 1972 (Anderson & Smith, 1972). The particular strain has been 

shown to contain Vi phages types A or 46, known resistance factors originating 

from E. coli that confer Chloramphenicol resistance to the S. Typhi strain. Other 

epidemics caused by Chloramphenicol-resistant S. Typhi strains have followed 

in South-East Asia, highlighting the fast emergence of drug resistance and the 

danger for causing epidemics (Anderson, 1975). The use of Ampicillin and 
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Trimethoprim-Sulfamethoxazole has since been recommended, but Ampicillin 

resistance in S. Typhimurium has already been reported in the mid-1970s 

(McHugh et al, 1975). This has been followed by the identification of widely 

distributed multi-drug resistant S. Typhi and S. Typhimurium strains 

characterised by their resistance to Ampicillin, Chloramphenicol, Streptomycin, 

Sulfonamide and Tetracycline (ACSSuT) (Helms et al, 2005; Jesudasan et al, 

1990; Ng et al, 1999; Threlfall et al, 1993; Threlfall et al, 1992). Three different 

phage-types of S. Typhimurium have been identified which resulted in ACSSuT 

resistance, including DT104. DT104 is the Definite type 104 that contains a 

P22-like phage insert and a 43 kb insertion of a Salmonella genomic island 1 

(SGI1), containing genes for Ampicillin (pse), Chloramphenicol (floR), 

Streptomycin (str or aad), Sulfonamide (sulI) and Tetracycline (tetG or tetR) 

resistance (Chiu et al, 2006).  

As a result, quinolones such as Nalidixic acid have initially been recommended 

for treatment, but cases of resistance have been reported following the isolation 

of strains from poultry and other animals (Griggs et al, 1994). Although second-

generation fluoroquinolones like Ciprofloxacin have been in use, cases 

reporting resistant strains of S. Typhimurium isolated from humans have 

followed shortly (Piddock et al, 1993). Such incidences are reported regularly 

and usually involve mutations in genes encoding for the DNA gyrase (gyrAB) or 

the topoisomerase IV (parCE) (Chiu et al, 2002; Fey et al, 2000; Glynn et al, 

2004). A new type of quinolone-resistant genotype mediated by qnr genes on a 

plasmid has also been reported (Gunell et al, 2009; Lindgren et al, 2009). 

 

1.4.1 Vaccination 
Currently, two types of licensed vaccines are available to protect against S. 

Typhi infection. One is a live attenuated vaccine based on S. Typhi Ty21a, the 

other is based on the administration of a conjugate vaccine containing the Vi 

antigen (Berna-Biotech, 2006; GlaxoSmithKline, 2009; Sanofi-Pasteur, 2009). 

The live attenuated vaccine has been recommended for oral administration in 

acid-resistant capsules and four doses have to be taken on alternate days 

(Berna-Biotech, 2006). The vaccine efficacy has been determined to be 69% 

and protection of individuals aged six or higher against infection by S. Typhi 
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lasts for at least five years. The other type of vaccine is a conjugate vaccine 

containing the virulence capsular polysaccharide of S. Typhi (Vi) 

(GlaxoSmithKline, 2009; Sanofi-Pasteur, 2009). The vaccine is used to protect 

individuals from the age of two after a single injection, providing an efficacy rate 

of over 70%, but a booster is required every three years.  

Comparing the indicators for successful immunization of individuals, several 

points have to be noticed: Firstly, both vaccines do not offer protection for 

children under the age of two years. However, babies in particular are at risk of 

death from typhoid fever. Secondly, in rural areas of sub-Saharan Africa, where 

the incidence rate of typhoid fever is high, access to health care is often limited 

and and booster vaccinations are not practical. Thirdly, refrigeration of vaccines 

is particularly difficult in the non-moderate climate of sub-Saharan Africa. Lastly, 

the vaccines only confer protection against the infection by S. Typhi, but do not 

protect against S. Paratyphi A, B or C infections. Therefore, there is potential for 

the improvement of currently available vaccines to cover more serovars causing 

enteric fever, to allow storage at higher temperatures as well as to reduce the 

need of booster vaccinations due to impracticality.  

Research for the discovery of new vaccines and antibiotics is needed as 

treatment of typhoid fever and iNTS become more difficult due to a rise in multi-

drug resistance in Salmonella. One possibility is the use of oral live attenuated 

strains that are administered via the natural route, elicit a protective immune 

response, but have minimal side effects. Potential new strains have been 

created over the years that have the potential to either be used as live oral 

vaccines or to serve for large-scale purification of potential antigens. One 

example is the S. Typhi CVD908-htrA strain developed by Chatfield and 

colleagues (Chatfield et al, 1993; Tacket et al, 2000; Tacket et al, 1997). It lacks 

the gene for the heat-shock protein HtrA as well as the genes aroC and aroD, 

involved in amino acid synthesis. Clinical trials of phase I and II have shown 

that the strain has very low toxicity, but sufficiently expresses e.g. the fragment 

C of tetanus toxin to elicit effective and protective levels of antibodies against 

the tetanus toxin after a single oral dose (Tacket et al, 2000). This strain is then 

also used to express Salmonella-specific proteins for the use as a Typhoid fever 

or NTS vaccine. More recently, a S. Typhi Ty2 aroC- ssaV- strain has been used 
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in a study with human volunteers (Kirkpatrick et al, 2006). With the deletion of 

the SPI-2 gene ssaV and the aroC important for aromatic biosynthesis, 

systemic spread of S. Typhi is prevented and oral administration of a single 

dose is well tolerated by the volunteers. In addition, significant levels of S. Typhi 

LPS IgA have been measured, making this strain a promising candidate for 

future vaccines.  

Although NTS do not cause typhoid fever, in combination with other infections 

such as Malaria or HIV, NTS-infected patients have an increased mortality rate 

from bacteraemia (Andrews-Polymenis et al, 2010). This has resulted in the 

search for possible vaccine strains, not only against S. Typhi and S. Paratyphi, 

but also including S. Typhimurium and S. Enteritidis.  

Tennant et al. chose two NTS serovars that account for the highest number of 

infections in Africa as well as for a high proportion of gastroenteritis in Europe 

and Northern America (Tennant et al, 2011). They deleted up to four genes 

from the genomes of S. Typhimurium and S. Enteritidis strains. The choice of 

genes is based on previous reports of attenuated virulence of deletion strains in 

mice or human infection models. GuaBA are two genes that are important for 

guanine synthesis and it has been shown previously that their deletion results in 

decreased virulence of Shigella flexneri strains as well as S. Typhi (Kotloff et al, 

2004; Wang et al, 2001). Similar, deletion of either protease clpP or clpX 

causes attenuation of S. Typhimurium and provide protection to mice after oral 

administration (Matsui et al, 2003). Additionally, ∆clpP or ∆clpX strains are 

characterised by hyperflagellation, which increases the display of antigens on 

the surface of the bacterial cell (Tennant et al, 2011). A combination with the 

deletion of fliD results in the overproduction of flagellin monomers. This 

supports the use of such a strain for the large-scale purification of antigens that 

are necessary components of live vaccines. S. Typhimurium strains with 

deletions of clpP and guaBA or a combination with the deletion of fliD are highly 

attenuated during mice infection. The double deletion strain of S. Enteritidis 

∆guaBA clpP also shows decreased virulence. These three strains are able to 

decrease bacterial shedding in mouse faeces and provide protection against 

otherwise lethal doses of S. Typhimurium and S. Enteritidis, respectively. It has 

been shown that the mice develop high levels of immunoglobin G (IgG) against 



 
1 Introduction 
 

41 

lipopolysaccharides and flagella antibodies. The vaccine efficacy is around 80% 

for all three strains and the next steps for further clinical trials have been 

initiated. 

Previously a range of deletion strains has been shown to be attenuated during 

mouse infection and has been proposed for the use as live vaccines, including 

∆aroA and ∆phoP (Galán & Curtiss, 1989b; Hormaeche et al, 1990; Hormaeche 

et al, 1991). However, due to low immunogenicity, and reports regarding side 

effects, their use has not advanced to the final approval for human use 

(Angelakopoulos & Hohmann, 2000; Hindle et al, 2002). Therefore, there are 

currently no live oral vaccines on the basis of NTS on the market.  

Another study has also employed the use of S. Enteritidis ∆guaBA clpP, but has 

concentrated their experiments on the constructions of flagellin and 

polysaccharides to form the basis of a conjugate vaccine (Simon et al, 2011). 

Similar to the study using strains as live vaccines, they have achieved an 

increased immune response when compared to using flagellin on its own and 

have proven a vaccine efficacy between 80% and 100%.  

Several studies have used O polysaccharides (OPS) for enhanced 

immunogenicity of conjugate vaccines against S. Typhimurium strains in the 

past (Svenson et al, 1979; Watson et al, 1992). Similar, OPS of S. Paratyphi 

has shown promising response in Phase I and II clinical trials (Konadu et al, 

1996; Konadu et al, 2000). Improving the Vi-containing vaccine to prevent 

typhoid fever has been the task of several groups and promising results using 

several combinations of Vi with different protein carriers have been 

demonstrated. Tetanus or Diphtheria toxin as well as the Pseudomonas 

aeruginosa recombinant exoprotein A (rEPA) and a non-toxic variant of 

diphtheria toxin (CRM197) have been used in the past (Cui et al, 2010; 

Kossaczka et al, 1999; Lin et al, 2001; Mai et al, 2003; Micoli et al, 2011). 

These toxins and proteins are used to create conjugate vaccines to increase the 

immunogenicity of the low immunogenic Vi-component that functions to prevent 

complement recognition of S. Typhi (Wilson et al, 2011).  

Nevertheless, most of these strains are a long way from being used for 

immunization of humans and do not address the problem of reducing or 

eliminating the needs for booster injections. 
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The need for vaccination of humans is followed by the need to prevent chicken 

populations from becoming reservoirs for the spread of Salmonella. Hence, 

studies supporting the development of vaccines for hens based on live or killed 

attenuated strains of S. Typhimurium and S. Enteritidis have been reported 

(Babu et al, 2003; Curtiss III & Hassan, 1996; Holt et al, 2003). In the UK, The 

Lion Code of Practice has been introduced in 1998 and includes the mandatory 

vaccination of laying hens against S. Enteritidis for farmers that are members of 

the British Egg Industry Council. In combination with more stringent controls of 

hygiene and more frequent testing for Salmonella, the Lion Quality mark is 

printed onto the egg shell and box to indicate eggs produced under this 

scheme. The number of eggs produced in the UK coming from a business that 

is part of this scheme has risen to 95% in 2010. The number of cases of food-

poisoning arising from S. Enteritidis has fallen and this has been attributed to 

the vaccination programme in combination with stricter hygiene and health 

measures on farms and during food production (O'Brien, 2013). 

 

1.5 Immune defence: Macrophages 
A range of different immune cells and processes belong to the innate immune 

system, which is the first line of response to the entry of foreign antigens into 

the human body. Those cells include, for example, dendritic, mast and 

phagocytic cells such as macrophages (Tripathi et al, 2007). Their roles vary 

from the detection of antigens, the activation of lymphocytes to phagocytosis 

and killing of bacterial pathogens as a general response to the entry of 

pathogenic bacteria. 

As described previously, macrophages are of major importance for the progress 

of Salmonella infection. Salmonella invades intestinal epithelial cells to avoid 

recognition by the immune system. Another way to avoid detection in the lumen 

of the intestine is to reach the basolateral surface by passing through M cells. 

This is followed by recognition of Salmonella by macrophages, which then 

induces the phagocytosis of the bacterial cells (Haraga et al, 2008). The 

bacteria are first contained in a vesicle called a phagosome that matures into 

the SCV before the fusion with a lysosome occurs. Several antibacterial 

mechanisms then become activated. Firstly, ROS are generated by the NADPH 
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phagocyte oxidase encoded by the phox gene. Secondly, nitric oxide is 

generated by the inducible nitric oxide synthase iNOS (Fang, 2004). iNOS is 

specific to macrophages and is not constitutively expressed (Tripathi et al, 

2007). Two other isoforms of nitric oxide synthase (NOS) exist. Both isoforms 

are calcium- and calmodulin-dependent and are found in neurons as well as in 

epithelial cells and hepatocytes respectively (Burgner et al, 1999). All three 

isozymes oxidize L–arginine producing nitric oxide and L–citrulline by using 

electrons from the electron donor NADPH (Wang & Ruby, 2011). Homologues 

to the eukaryotic NOS have been found in Gram-positive bacteria as well as 

Archaea, where they have been implicated in stress and growth responses 

(Crane et al, 2010). 

Free radicals such as NO and hydrogen peroxide damage the bacterial DNA as 

they deaminate the nucleotides and the radicals further react with oxygen or 

one another to form other toxic compounds such as the bactericidal 

peroxynitrite (Linehan & Holden, 2003; Wink et al, 1991). In addition, lysosomal 

enzymes and defensins are present within the phago-lysosome, aiding in the 

bactericidal activity of the reactive nitrogen and oxygen species (Mastroeni, 

2002). The acidification of the phago-lysosome poses an additional risk for 

bacteria; however, Salmonella has been shown to delay this process using 

changes in gene expression via the PhoPQ two-component system (Alpuche 

Aranda et al, 1992). 

Nitric oxide is a free radical that has been found to have several functions within 

the human body and in the environment. It is lipophilic and small in size and 

hence accumulates in membranes and is able to enter through as well as cross 

them (Hughes & Robert, 2008). These properties allow it to function as a 

neuronal signalling molecule as well as to help regulate blood pressure through 

the vasodilation of smooth muscle cells found on blood vessels (Poole & 

Hughes, 2000; Schoedon et al, 1995). The other two isoforms of NOS, namely 

neuronal NOS (nNOS) and endothelial NOS (eNOS), support this function by 

ensuring the site-directed production of NO (Burgner et al, 1999; Hughes & 

Robert, 2008). Although it is a radical, it is rather stable, but it still reacts with 

other radicals. In the environment, this reactivity increases the destruction of 

ozone, as both NO and nitrous oxide damage the stratosphere (Martinez-
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Espinosa et al, 2011). However, the reactivity of NO has also been shown to 

provide protection against oxidative and UV stress (Wang & Ruby, 2011). Its 

characteristics as a signalling molecule are not limited to mammals, but have 

also been shown for plants as well as squids (Dordas et al, 2003; Ferrarini et al, 

2008; Wang et al, 2010a; Wang et al, 2010b). 

The focus here is on NO as a component of the mammalian immune system 

and its antimicrobial activity. Within macrophages, iNOS is found within the 

cytosol as well as within intracellular small vesicles (Fang, 2004). Activity of 

iNOS is tightly regulated by a number of cytokines such as interferon gamma 

(IFN-γ), tumour necrosis factor alpha (TNF-α), IL-2 and IL-6 (De Groote & Fang, 

1995). 

1.5.1 Toxicity of reactive oxygen species 
In order to be able to survive the antibacterial activity within macrophages, 

Salmonella ssp. have evolved detoxification mechanisms to counteract the 

bactericidal environment. To prevent cell death, Salmonella can employ several 

protection mechanisms to avoid being targeted by reactive oxygen and nitrogen 

species. Mechanisms for the detoxification of reactive oxygen species that are 

released during the oxidative burst occurring after one to two hours post uptake 

into the SCV have been intensively studied and major mechanisms have been 

identified, which are discussed below (Tsolis et al, 1995; Vazquez-Torres et al, 

2000a). 

The reduction of oxygen by the NADPH oxidase leads to the production of 

superoxide anions (O2
-), which form hydrogen peroxide (H2O2) upon 

dismutation (Vazquez-Torres & Fang, 2001a). Both hydrogen peroxide and 

superoxide anions cause damage to iron-sulphur ([Fe-S]) clusters (Imlay & 

Imlay, 2002). In addition, H2O2 also oxidizes thiol groups and in combination 

with Fe(II) leads to the formation of hydroxyl radicals (OH-), hydroxide (OH˙) 

and Fe(III) in the so-called Fenton reaction. Hydroxyl radicals react with a range 

of molecules, including DNA, and DNA damage is believed to be closely linked 

to this chemical reaction (Woodmansee & Imlay, 2003). 

[Fe-S] clusters are present in a wide range of proteins and damage to these 

structures causes a change in the confirmation of the proteins, making them 
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prone to protein degradation due to their misfolded structure and inhibiting 

enzymatic reactions since the active centre is no longer functional (Imlay & 

Imlay, 2006). Another effect notable for transcription factors is the fact that a 

change of confirmation can cause a change in DNA binding properties and 

consequently altering gene expression levels positively or negatively, either 

through alleviated repression or through targeting a different DNA recognition 

motif. Reactivity of the protein-bound iron with e.g. NO has been shown to 

cause such regulatory changes for FNR- and NorR-regulated genes (Baptista et 

al, 2012; Cruz-Ramos et al, 2002). 

1.5.1.1  Enzymatic detoxification of ROS by Salmonella 
There are several different protection mechanisms against free radicals that 

have been discovered in Salmonella. One of them is the production of enzymes, 

e.g. superoxide dismutases or hydroperoxidases that convert the toxic radicals 

into less toxic compounds (Gilberthorpe et al, 2007). Two Cu,Zn superoxide 

dismutases (Cu,ZnSOD) are present in S. Typhimurium and one of them 

(SodC1) is closely linked to pathogenesis (Pacello et al, 2008). In combination 

with the ferroxidase activity of a DNA-binding protein called Dps, these three 

enzymes prevent the cytotoxic activity of hydrogen peroxide in the peri- and 

cytoplasm (SodC1/SodC2 and Dps, respectively). In addition, a catalase-

peroxidase (KatG) first found in Mycobacterium tuberculosis also exerts 

peroxynitritase activity in S. Typhimurium, highlighting its potential role in the 

detoxification of oxidative stresses (McLean et al, 2010). Another mechanism of 

protection involves the expression of the TTSS SPI-2, which prevents the 

trafficking of Phox-containing vesicles to the phagosome. Various deletion 

mutations of genes in the SPI-2 region result in strains that are less virulent in 

macrophage and mice experiments (Gallois et al, 2001; Vazquez-Torres et al, 

2000b). Wild-type strains are nevertheless exposed to oxidative stress as they 

are not able to prevent the fusion of Phox-containing vesicles with the SCV 

completely, but both research groups show that the percentage of localisation 

has been lowered by ~ 40%. 

The importance of Phox in preventing infection by pathogens has been 

highlighted in several mice infection experiments: An infection of mice lacking 

the phox gene (C57BL/6 gp91phox-/-), which are therefore unable to produce an 



 
1 Introduction 
 

46 

oxidative burst, leads to the death of the animals after a few days, whereas 

wild-type mice (C57BL/6) are able to clear the infection caused by S. 

Typhimurium (Mastroeni et al, 2000). Bone marrow derived macrophages 

extracted from phox-deficient mice are not able to suppress the bacterial 

growth, resulting in a survival rate of the wild-type Salmonella of nearly 100% 

(Vazquez-Torres et al, 2000a). In a similar manner, another research group has 

observed the diminished capacity of phox-deficient mice to withstand the 

infection by a virulent wild-type and the attenuated mutant strain ∆recBC (Shiloh 

et al, 1999). In vitro experiments using macrophages derived from wild-type and 

phox-deficient mice show that the lack the oxidative burst reduces the capacity 

of the macrophages to kill E. coli, Listeria monocytogenes and Salmonella wild-

type and attenuated strains significantly. 

1.5.2 Toxicity of reactive nitrogen species 
Reactive nitrogen species (RNS) provide a second line of antimicrobial defence 

for the immune system. RNS include a number of different chemical 

compounds, such as nitric oxide (NO), peroxynitrite (ONOO-), nitrosothiols 

(SNO) and nitrous acid (HNO2). RNS interferes with a number of biological 

molecules and structures, including, but not limited to: i) protein-bound metals; 

ii) amino acid biosynthesis and transport; iii) DNA strands and iv) transcriptional 

regulators (Fang, 2004). 

For Salmonella pathogenicity, RNS become important at two different stages 

during infection, firstly in the mouth and stomach and secondly within the 

phagosome of macrophages. The salivary glands harbour nitrate that is 

reduced to nitrite by oral commensal bacteria (Bourret et al, 2008). A direct 

correlation between the dietary intake of nitrite and nitrate concentrations in 

salivary glands has been shown (Gilchrist et al, 2010; Spiegelhalder et al, 

1976). The nitrate in the saliva then serves as an electron acceptor for 

anaerobic respiring bacteria in the mouth and the by-product nitrite reaches the 

stomach upon swallowing. In combination with the acidity of the gastric juice, 

nitrite then protonates to form acidified nitrite, also referred to as nitrous acid 

(HNO2) (Benjamin et al, 1994). Nitrous acid dissociates to form not only nitric 

oxide, but also dinitrogen trioxide (N2O3) and nitrogen dioxide (NO2). Inhibition 

of growth and decreased oral virulence by acidified nitrite and other RNS have 
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been demonstrated for S. Typhimurium (Bourret et al, 2008; Kim et al, 2003). 

Similar studies have shown the susceptibility of E. coli and Candida albicans to 

nitrite after acid exposure in a gastric juice containing stomach model (Benjamin 

et al, 1994; Björne et al, 2006). Again, a strong correlation between nitrite, 

nitrate and NO concentrations in the stomach and dietary intake of nitrate is 

observed (Björne et al, 2006; McKnight et al, 1997). Concentrations of these 

nitrogen compounds can increase up to ten times after a nitrate solution has 

been consumed. Such changes in concentrations pose a significant risk to 

pathogens and stress the important role of dietary nitrate in the defence against 

pathogens. Although Salmonella mounts the acid-tolerance response to protect 

itself against the low gastric pH, gastric RNS have been shown to inhibit the 

response by interfering with the two-component system PhoPQ in an 

unidentified mechanism (Bourret et al, 2008). Together, high nitrate 

concentrations in the oral cavity, high acidity of the gastric juice and RNS 

provide a highly bactericidal barrier against infection. However, the high number 

of cases of infections by e.g. Salmonella and enteropathogenic E. coli indicate 

that this is a sufficient barrier against some, but certainly not all intestinal 

pathogens. 

To further reduce the number of pathogenic bacteria, macrophages mount a 

second line of defence employing RNS. The release of nitric oxide during the 

nitrosative burst into the phagosome has been determined to occur 

approximately six to eight hours after phagocytosis in mice and might occur 

earlier within human macrophages (Eriksson et al, 2003; Stevanin et al, 2002; 

Vazquez-Torres et al, 2000a). In addition, release of N2O3 has been 

demonstrated (McCollister et al, 2008). RNS readily react with metals, such as 

iron and zinc, which are often protein-bound (Schapiro et al, 2003). As a result, 

Fe(II) is released from [Fe-S] clusters and accelerates the Fenton reaction that 

causes the release of ROS (Fang, 2004). It also inhibits bacterial respiration by 

binding reversibly to two different cytochrome oxidases in E. coli, further 

accentuating the antimicrobial activity of RNS in the phagosome (Butler et al, 

1997; Hori et al, 1996; Woodmansee & Imlay, 2003). In contrast, it has been 

proposed that the inhibition of respiration leads to the accumulation of NADH, 

which in turn scavenges OH˙ and results in increased resistance to H2O2 in 

Salmonella spp. (Husain et al, 2008). 
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Synergy between ROS and RNS also results in the formation of peroxynitrite 

that like NO has been implicated in causing DNA damage ((Szabó et al, 1996), 

reviewed in (Fang, 2004) and (Bogdan et al, 2000)). Interference with 

ribonucelotide reductase also means that DNA cannot be synthesized or 

repaired, accentuating the DNA damage already caused by NO (Fang, 2004). In 

addition, NO inhibits the regulation of DskA that controls the biosynthesis and 

transport of amino acids, disrupting the metabolic functioning of the cell (Henard 

& Vázquez-Torres, 2012). Peroxynitrite has also been shown to be a precursor 

for the generation of nitrate, S- and N-oxides in the gut lumen as the result of 

reactivity of ROS with RNS and oxidation of organic sulphides and tertiary 

amines (Winter et al, 2013). These three compounds are used as a terminal 

electron acceptor in anaerobic respiration by Enterobacteriaceae, providing E. 

coli and Salmonella with a competitive advantage over fermenting microbes of 

the intestinal flora. Furthermore, ROS react with thiosulphate to generate 

tetrathionate. Thiosulphate is created through the detoxification of H2S that is 

produced by colonic bacteria. Tetrathionate also serves as an electron acceptor 

and growth advantage of S. Typhimurium has been demonstrated (Winter et al, 

2010). Therefore, Salmonella exploits the secretion of ROS and RNS in the gut 

lumen to provide itself with an additional source of electron acceptors needed 

for anaerobic respiration.  

Interference of RNS with proteins by causing S-nitrosation is wide-spread and 

for example affects the citric acid cycle involved in energy metabolism 

(Richardson et al, 2011). Nitrosation also affects the regulation of NO 

detoxification genes. Transcriptional regulators such as FNR, Fur and NsrR 

contain [Fe-S] clusters. The iron reacts with NO and forms iron-nitrosyl 

complexes that no longer allow for DNA binding (Cruz-Ramos et al, 2002; 

D'Autréaux et al, 2002; Isabella et al, 2009). Therefore, this allows the 

expression of genes such as hmpA encoding for a flavohaemoglobin that 

converts NO to nitrate as a means to detoxify NO. 
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1.6 Detoxification of NO 
Defence against RNS follows three different routes: RNS either is enzymatically 

detoxified, the radicals are scavenged or the damage is repaired. During 

infection, all three possibilities are employed by Salmonella to ensure survival. 

Particular attention is given to proteins that allow the enzymatic detoxification of 

NO. 

Such enzymes are not unique to pathogenic bacteria such as E. coli and 

Salmonella, but are also found in denitrifiers. During anaerobic conditions, these 

bacteria and archaea use nitrate and nitrite as electron acceptors to maintain 

their metabolism (Arkenberg et al, 2011). Several enzymes are necessary to 

perform complete denitrification, forming part of the microbial nitrogen cycle as 

shown in Figure 6 (Watmough et al, 1999). Firstly, nitrate is reduced to nitrite by 

either an membrane-bound (Nar) or periplasmic form of a nitrate reductase 

(Nap) (Zumft, 1997). The gene transcription is linked to the change from 

aerobiosis to anaerobiosis as oxygen levels serve as a regulator for gene 

expression. The enzyme consists of complexes with two to three subunits and 

contains a [Fe-S] binding site and a molybdenum co-factor. A channelling of 

nitrite from a membrane-bound form of nitrate reductase into the periplasmic 

space has been proposed, but remains to be further elucidated. Three types of 

nitrite reductases have been identified, but only one type per species has been 

found (Watmough et al, 1999). Paracoccus denitrificans and Pseudomonas 

stutzeri possess a cytochrome cd1 nitrite reductase encoded by the nirS gene. It 

forms a homodimer and has two different haem groups. The copper nitrite 

reductase of Rhodobacter sphaeroides 2.4.3 encoded on the nirK gene is an 

example for the second type of nitrite reductase, but forms a trimer with two 

different domains. This enzyme family has three sub-classes, but all sub-

classes require copper to form a Cu+-NO+ complex during nitrite reduction 

(Zumft, 1997). The third class of nitrite reductase is the cytochrome c nitrite 

reductase. Rather than reducing nitrite to NO, it produces ammonia. It is also 

located within the periplasm and has 5 c-type haems. Both the nitrite 

reductases and the nitric oxide reductase are located within the periplasm. This 

prevents the diffusion of NO into the cytosol as it is reduced to the less toxic 

nitrous oxide without any need of a channelling protein.  
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Figure 6: Truncated denitrification pathways in E. coli and S. Typhimurium 

(Arkenberg et al, 2011) 

Nitrate respiration in E. coli and Salmonella is a truncated version of the 

denitrification pathway (red arrows). Unlike many soil bacteria, E. coli and 

Salmonella lack NosZ; indicated by a red cross. Nitric oxide (NO) is a toxic 

intermediate. The main enzymes involved in NO detoxification alongside their 

regulators are shown. The NO detoxification pathways are indicated by yellow 

dashed arrows and enzymes involved in these pathways are shown in yellow. 

Positive regulation is highlighted by arrows and negative regulation by 

perpendicular lines. Other enzymes are shown in red.  
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In addition, superoxide dismutase is present in the periplasm, which reduces 

the amount of hydroxyl radicals that potentially react with NO to form 

peroxynitrite. Nitric oxide reductases are membrane-bound due to their strong 

hydrophobicity and their active centre faces into the periplasm. The enzyme 

consists of the subunits NorB and NorC and has two haems. Haems are also 

present in the nitrous oxide reductase, encoded by the nos genes. It has two 

identical subunits and each contains a binuclear copper centre. The dinitrogen 

formed by the activity of the nitrous oxide then readily diffuses out of the cell.  

Denitrifiers such as P. denitrificans and P. stutzeri are exposed to a steady-

state concentration of NO, ranging from 20-50 nM. Therefore, it is important for 

the survival of the bacteria to be able to detoxify NO into N2O, followed by the 

conversion into dinitrogen. Tight regulation of the nitrate and nitrite reductases 

by nitrate as well as NarL and FNR-like factors such as NnrR and NNR has 

been shown that limits the expression of the reductases to oxygen-limited and 

anaerobe environments (Zumft, 1997). The properties of the regulator FNR are 

further discussed in 1.7.1. The limited amount of oxygen in the periplasm 

reduces the potentiated toxicity of NO and in addition NO also directly regulates 

the activity of the nitric oxide reductase. 

Although Salmonella is not a primarily soil-dwelling bacterium, it possesses the 

ability to perform a truncated version of denitrification. It uses nitrate and nitrite 

as electron acceptors during anaerobic growth also when residing in the 

gastrointestinal tract, leading to the production of NO and N2O, but it is lacking 

the nitrous oxide reductase to further convert N2O into dinitrogen (Winter et al, 

2013). So far, no enzyme with nitrous oxide reductase activity has been 

discovered in bacteria of the Enterobacteriaceae family. However, nitrous oxide 

is less toxic than NO and diffuses out of the bacterial cell. The enzymes and 

regulators involved in the truncated denitrification of Salmonella and E. coli are 

shown in Figure 6. Both bacteria have three nitrate reductases, two membrane-

bound systems encoded in the nar operons narGHJI and narZYWV as well as a 

periplasmic type encoded by napFDAGHBC (Zumft, 1997). Both types of 

enzymes contain [Fe-S] clusters and a molybdenum co-factor (Bertero et al, 

2005; Jepson et al, 2007; Jormakka et al, 2004). 
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Although NarG and NarZ seem to be isozymes, their regulation differs as NarZ 

is active during aerobic growth, whereas NarG is predominantly expressed 

during anaerobic conditions (Prior et al, 2009; Rowley et al, 2012). Nap is active 

during anaerobic conditions, where nitrate concentrations are low and Nap is 

then the main contributor to ammonia production coupled to the activity of the 

cytochrome c reductase NrfA. NarG is regarded as the main contributor to 

nitrate reduction with up to 98% attributed to its activity when nitrate 

concentrations are high. Several anti-porters are found in the periplasmic 

membrane to allow either the transport of nitrate into the cytoplasm and nitrite 

into the periplasm (NarK, NarU), or the transport of nitrite into the cytoplasm 

and the transport of protons into the periplasm (NirC) (Rowley et al, 2012; Vine 

& Cole, 2011). A schematic of the different locations of the enzymes within the 

cell are shown in Figure 7. 

Nitrite is reduced to ammonia by NrfA in the periplasm, by the nitrite reductase 

NirB in the cytoplasm or it is reduced to yield nitric oxide. Additionally, NarG has 

been shown to produce NO from nitrite once the nitrate pool has been 

exhausted (Gilberthorpe & Poole, 2008). The further reduction of NO to produce 

nitrous oxide is conducted by NorVW and further discussed in 1.6.2. So far, no 

enzyme with nitrous oxide reductase activity has been discovered in bacteria of 

the Enterobacteriaceae family, therefore truncating the denitrification cycle at 

the stage of nitrous oxide. Nitrous oxide emissions are measured in the head 

space of anaerobic cultures and previous studies have shown that all the 

nitrogen provided by nitrate in the medium has either been converted to nitrite 

or to nitrous oxide (Rowley et al, 2012). As nitrous oxide is the result of the 

reduction of toxic NO, the concentration of nitrous oxide serves as an indicator 

for the nitric oxide concentration in the medium and headspace. 
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Figure 7: Location of denitrification enzymes within the bacterial cell of E. coli 

and Salmonella  

Nap, a nitrate reductase, and NrfA, a cytochrome c nitrite reductase, are found 

in the periplasm. The antiporters NarK, NarU and NirC regulate the transport of 

nitrate, nitrite and protons across the periplasmic membrane. This supplies 

nitrate for the membrane-bound nitrate reductases NarG, NarZ or for Nap, 

depending on the growth conditions. Conversion of nitrite to ammonia is 

performed by the cytoplasmic NirBD or nitrite is converted to NO by NarG. 

Detoxification of NO in the periplasm is managed by NrfA, whereas the nitric 

oxide reductase NorVW and the flavohaemoglobin HmpA reduce NO to N2O 

under anaerobic and aerobic conditions, respectively. Figure created with 

information provided in figures by (Rowley et al, 2012; Vine & Cole, 2011). 
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All in all, enzymatic conversion of NO prevents the toxicity of nitric oxide, which 

has a multitude of effects on the bacterial cell as described in 1.5.2. It destroys 

iron-sulphur clusters and leads to a deamination of nucleotides and 

consequently damages the bacterial DNA (Justino et al, 2007; Wink et al, 

1991). Bacterial respiration is inhibited, further decreasing the chances of 

bacterial survival (Butler et al, 1997; Hori et al, 1996). In addition, NO causes 

the release of Zinc from thiol groups, thus causing changes in expression levels 

as the confirmation of transcription factors is altered (Tripathi et al, 2007). 

The effects of oxidative and nitrosative stresses have mainly been investigated 

using the model organism E. coli. Three enzymes have been identified to be of 

major importance for the detoxification of nitric oxide: flavohaemoglobin (Hmp), 

cytochrome c nitrite reductase (NrfA) and flavorubredoxin (NorVW) (van 

Wonderen et al, 2008). Their role during NO detoxification is discussed in 

further detail below. 

 

1.6.1 HmpA 
HmpA, also commonly known as Hmp in E. coli, is a flavohaemoglobin that has 

the ability to perform two distinct reactions either in an oxic or anoxic 

environment. In the presence of oxygen, it functions as a nitric oxide 

dioxygenase, converting nitric oxide to nitrate (NO3
-) in the following chemical 

reaction: 2 NO + 2 O2 + NAD(P)H → 2 NO3
- + NAD(P)+ + H+ (Gardner et al, 

2000; Gardner et al, 1998). Furthermore, it has been observed that the reaction 

is not only NADH-dependent, but is also facilitated by Fe(II)O2 that allows the 

formation of a nitrosyldioxyl complex (Hausladen et al, 1998).  

NO reductase activity of the purified HmpA protein in the absence of oxygen 

has also been confirmed (Kim et al, 1999; Mills et al, 2001). The NO molecules 

bind to HmpA and NO is converted to N2O in the following reduction reaction: 2 

NO + 2 H+ + 2 e- → N2O + H2O (Rowley et al, 2012). It has been proposed that 

although this mechanism seems plausible, the protection of cells against NO-

caused damage cannot be guaranteed as the reductase levels are too low 

(Gardner & Gardner, 2002; Gardner, 2005). 
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The deletion of hmpA in E. coli increases the sensitivity of strains to NO and 

related nitrogen species (Hausladen et al, 1998; Membrillo-Hernández et al, 

1999; Seth et al, 2012). Similar observations have been made for S. 

Typhimurium as hmpA deletion strains have increased aerobic sensitivity to NO, 

but no difference in sensitivity in comparison to the wild-type has been observed 

under anaerobic conditions (Crawford & Goldberg, 1998a; Gilberthorpe et al, 

2007; Karlinsey et al, 2012; Mills et al, 2008). 

Upon further investigation, a clearer role for HmpA during infection has been 

established. The increased NO sensitivity impacts on intracellular survival within 

macrophages, where the survival of ∆hmpA is significantly decreased when 

compared to wild-type survival (Bang et al, 2006; Gilberthorpe et al, 2007; 

Stevanin et al, 2002; Stevanin et al, 2007). This lead to a decreased bacterial 

burden in infection assays with Nramp1+/+ mice (C3H/HeN), supporting the 

hypothesis that hmpA plays an important part during Salmonella infection, 

whereas no effect of hmpA deletion is observed for Nramp1-/- mice (C57BL/6) 

(Bang et al, 2006; Karlinsey et al, 2012). Nramp1 is a natural resistance-

associated macrophage protein that is encoded by the Slc11a1 gene and 

increases the resistance to pathogens, including Salmonella (Álvarez-Ordóñez 

et al, 2011). This effect has been attributed to the regulatory properties of 

Nramp1 on uptake of L-arginine for iNOS activity and the oxidative burst (Barton 

et al, 1995). Reduced iNOS enzyme activity levels resulting in lower NO levels 

have been measured in Nramp1-/- cells (Fritsche et al, 2003). In addition, it has 

been shown that Nramp1 is a divalent metal efflux pump located in the 

phagosomal membrane that in a pH-dependant manner limits the concentration 

of metals such as iron and manganese within the phagosome (Forbes & Gros, 

2001). Metal limitations impair bacterial replication within the phagosome and 

hence limit bacterial survival. 

With regards to hmpA expression, regulation involving the methionine synthesis 

regulator MetR has been shown in E. coli and regulation is linked to 

homocysteine (Hcy) (Membrillo-Hernández et al, 1998; Schell, 1993). Hcy is 

important for the synthesis of methionine and reacts with NO when present. 

Following nitrosylation by NO, Hcy is no longer available for the synthesis 

pathway. Up-regulation of methionine synthesis by MetR to compensate for Hcy 
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loss also results in increased expression of hmpA, which in turn provides 

protection against NO. As a result, the decreasing levels of NO lead to a 

reduced chance of Hcy nitrosylation and the methionine synthesis pathway is 

no longer affected by NO.  

The induction of hmpA transcription following the exposure to NO has been 

observed and has been linked to repression by the NsrR regulator (Crawford & 

Goldberg, 1998a; Filenko et al, 2007). Furthermore, the oxygen-responsive 

regulator FNR represses hmpA expression in E. coli (Constantinidou et al, 

2006; Overton et al, 2006a). Both studies also have highlighted that in addition 

to the presence of NO, nitrite and nitrate also act as triggers for increased hmpA 

expression. Studies in Salmonella have confirmed the regulation by NsrR, but 

have not confirmed regulation by MetR or iron-responsive regulator Fur (Bang 

et al, 2006; Karlinsey et al, 2012). Changes in oxygen concentrations have also 

shown to increase hmpA expression, supporting the role of hmpA in the 

adaptation to changing growth conditions during infection (Rowley et al, 2012).  

HmpA plays an important part during NO detoxification when oxygen is present. 

Although the oxygen concentration during infection has been shown to be rather 

minimal (Eriksson et al, 2003), in vitro experiments using macrophages, as well 

as in vivo models using mice have repeatedly shown that HmpA plays an 

integral part during successful infection (Bang et al, 2006; Gilberthorpe et al, 

2007; Karlinsey et al, 2012; Stevanin et al, 2002; Stevanin et al, 2007).  

 

1.6.2 NorV 
NorV has been identified as a flavorubredoxin, due to its zinc-β-lactamase-like 

domain at the N-terminal region, containing a non-haem di-iron site as well as 

its flavodoxin-like domain that contains a flavin mononucleotide (FMN) (Gomes 

et al, 2000). In addition, a rubredoxin-like centre has been identified at the C-

terminus, but its role remains unclear. The NorV enzyme of the class of A-type 

flavoproteins has nitric oxide reductase activity, catalyzing the reduction of NO 

to N2O, where the rubredoxin is not required for this function (Gomes et al, 

2002). Furthermore, it has been shown that NorV is a tetrameric protein and 

creates an electron transfer chain with the gene product of the neighbouring 
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gene norW (Gomes et al, 2000). NorW is the redox partner of NorV and 

essential for its NO reductase activity. This activity, however, has been shown 

to be restricted to micro- and anaerobic environments (Gardner et al, 2002). 

The reaction of reducing NO to form N2O involves the non-haem iron site and 

includes a nitroxyl intermediate. Even sub-micromolar concentrations of NO [< 

0.5 µM NO] trigger the activity of NorVW (Gardner et al, 2003). 

A change from oxic to anoxic conditions, the exposure to nitroprusside as well 

as S-nitrosoglutathione (GSNO) and the exposure to NO in aerobic and 

anaerobic environments have been demonstrated as triggers for increased 

expression of norV (Flatley et al, 2005; Hutchings et al, 2002; Pullan et al, 2007; 

Rowley et al, 2012). In connection with these changes in gene expression, NO 

addition has been linked to the activation of the σ54-dependent regulator NorR 

(Gardner et al, 2003; Hutchings et al, 2002). A reduction of norV expression has 

been observed when E. coli cells are exposed to both H2O2 and NO (Baptista et 

al, 2012). No changes in norR mRNA have been detected, but electron 

paramagnetic resonance (EPR) analysis and enzyme activity assays reveal that 

H2O2 interferes with the binding of NO to NorR’s iron centres, hindering the NO-

dependent ATPase activity. It has been proposed that the oxidation of the iron 

centre of NorR allows a time-dependent activation of NorV, aiding in the 

detoxification of NO at later stages during macrophage infection. Changes in 

expression of norV are also observed during re-occurring E. coli urinary tract 

infections (Roos & Klemm, 2006). Although a putative NsrR site is located 

upstream of norVW, no NsrR regulation has been observed (Partridge et al, 

2009). Similarly, no repression by FNR is indicated (Constantinidou et al, 2006). 

Despite significantly increased sensitivity of a S. Typhimurium ∆norV deletion 

strain in anoxic conditions, no phenotypic changes in intracellular survival in 

macrophages using an E. coli deletion strain or during mice infection with 

Salmonella mutant strains are observed (Bang et al, 2006; Mills et al, 2008; 

Pullan et al, 2007). In agreement with enzyme activity reports, NorV does not 

protect the aerobic growth of S. Typhimurium in the presence of NO (Mills et al, 

2008). These results indicate the presence of several enzymes working 

together to ensure the complete detoxification of NO when encountered during 

infection. Although NorV seems to play an important part, in vivo experiments 
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have highlighted that its nitric oxide reductase activity alone is not essential for 

survival of Salmonella during the challenging conditions of intracellular survival.  

 

1.6.3 NrfA 
nrfA encodes for a cytochrome c nitrite reductase (Wang & Gunsalus, 2000) 

and forms a NrfA2-NrfB2 complex that is required for enzyme activity (Bamford 

et al, 2002; Clarke et al, 2007). Both NrfA and NrfB are penta-haem 

cytochromes and are located in the periplasm, where NrfB functions as the 

redox partner for NrfA (Bamford et al, 2002). In E. coli, it has been shown that 

NrfA reduces nitrite to ammonia as well as reduces NO to hydroxylamine 

(Poock et al, 2002; Vine et al, 2011; Wang & Gunsalus, 2000). In addition, it has 

been found that NrfA also produces NO (Corker & Poole, 2003). This, however, 

has not been demonstrated for the Salmonella enzyme (Gilberthorpe & Poole, 

2008). 

Deleting nrfA increases the sensitivity of E. coli strains towards the nitrosating 

agent S-nitroso-N-acetyl penicillamine (SNAP) (Poock et al, 2002). In anaerobic 

conditions, the addition of an aqueous NO solution has similar effects on a 

respective S. Typhimurium strain, although the effect on the growth of a single 

mutant strain is not as big as for the ∆norV strain (Mills et al, 2008). However, a 

combination of both norV and nrfA deletions results in a significantly reduced 

growth and further increases the sensitivity in comparison to the phenotype of 

the ∆norV strain. When S. Typhimurium is exposed to endogenously produced 

NO in chemostat experiments, the deletion of nrfA does not result in any 

phenotypic differences compared to the parent strain (Rowley et al, 2012). 

The regulation of nrfA is the result of a combination of several regulators. 

Repression of expression mediated by NsrR has been shown, which is 

responsive to the presence of NO (Efromovich et al, 2008). In addition, 

expression is also repressed by NarL, the reponse regulator of the NarQL two-

component system, but is also activated by FNR and NarP (Overton et al, 

2006a; Pullan et al, 2007). Such tight regulation is also supported by one study 

that has found a minimum of five proteins regulating the promoter of nrfA 

(Filenko et al, 2007). In summary, NrfA plays an integral part in the 
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detoxification of NO and is especially important under anaerobic conditions and 

when NorV is absent.  

1.6.4 NO detoxification in other bacteria 
As mentioned previously, nitric oxide detoxification is not unique to Salmonella 

or E. coli, but is also found in denitrifying bacteria such as Paracoccus and 

Pseudomonas species. Flavohaemoglobins such as Hmp have already been 

identified in other bacteria, including Bacillus subtilis and M. tuberculosis, where 

it could possibly contribute to NO tolerance as part of gut commensalism and 

pathogenicity, respectively (Poole & Hughes, 2000). Furthermore, evidence has 

been found that Neisseria gonorrhoeae contains an outer membrane nitrite 

reductase as well as a quinol-dependent NO reductase (Zumft, 2002). With 

regulation by NsrR and FNR, more similarities between Salmonella, B. subtilis 

and N. gonorrhoeae have become apparent (Kommineni et al, 2010; Spiro, 

2007). The equine pathogen Rhodococcus equi, related to M. tuberculosis, 

displays a similar phenotype within macrophages. It is able to form and maintain 

Rhodococcus-containing vesicles in macrophages and is able to survive and 

multiply within this structure (von Bargen et al, 2011). Its survival relies on the 

successful detoxification of NO, whereas ROS have been shown to be less 

relevant during survival. 

For the foodborne pathogen Campylobacter, no norV- or hmpA-homologues 

have been identified (Pullan et al, 2008). NrfA has been located on the 

Campylobacter genome, but its contribution to NO detoxification is only minimal 

(Pickford et al, 2008). However, Campylobacter has two globin proteins Cgb 

and Ctb that have been identified for their role in NO defence. The single 

domain globin Cgb lacks the reductase domain of a haemoglobin and has 

similarity to myoglobin (Elvers et al, 2004). Cbg expression increased with 

exposure to nitrosative agents and a gene deletion results in increased NO 

sensitivity. A possible dioxygenase or denitroxylase activity of Cgb has been 

proposed (Shepherd et al, 2011). Both cgb and ctb are under the regulation of 

the NO-sensitive transcriptional regulator NssR. A role for Ctb in Campylobacter 

respiration has been proposed, with a possible facilitation of oxygen transfer to 

terminal oxidases or to Cgb to support NO detoxification (Wainwright et al, 

2005; Wainwright et al, 2006). Binding of oxygen or NO to Ctb has been 
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proposed to reduce nitrosative stress and Ctb additionally influences the 

expression levels of cgb (Smith et al, 2011). It has been observed that 

Campylobacter jejuni has a significantly higher NO resistance than S. 

Typhimurium and that by an unknown mechanism, C. jejuni induces the 

expression of iNOS in macrophages so that the levels of iNOS increase 200 

fold (Iovine et al, 2008). Hence, nitrosative stress plays an integral part of innate 

immune defence against Campylobacter infections and Campylobacter, similar 

to Salmonella, heavily relies on NO detoxification mechanisms to be able to 

successfully establish an infection.  

Exposure to NO is also prevalent for plant-symbiotic bacteria. The FNR-type 

regulator NnrR has been shown to increase the expression of hmp, a putative 

flavohaemoglobin of Sinorhizobium meliloti, during the exposure to NO (Meilhoc 

et al, 2010). Deletion of a nitric oxide reductase NorB increases the strain’s 

sensitivity towards NO. As NO inhibits the nitrogen fixation activity of rhizobia by 

interfering with leghaemoglobin, detoxification e.g. by a nitric oxide reductase or 

a flavohaemoglobin, is additionally of importance to establish a functional 

symbiosis with the plant host (Meakin et al, 2007; Meilhoc et al, 2010; 

Tominaga et al, 2009; Wang & Ruby, 2011). 

Overall, all three enzymes currently identified in E. coli and Salmonella 

contribute to a successful circumvention of NO poisoning, but other enzymes 

are likely going to be involved in the wider defence against NO. Part of this is 

done by a series of transcriptional regulators that allow precise tuning of gene 

expression in response to NO. Every organism that is likely to encounter NO as 

part of its lifestyle, either during infection, anaerobic metabolism or during 

commensalism, is most likely going to possess similar enzymes that allow it to 

detoxify NO in order to survive. As the enzymes share a high homology, their 

regulators are also highly similar. 

 

1.7 Regulatory proteins which coordinate the NO response 
There are several proteins that have been identified for their importance to 

provide Enterobacteriaceae with the regulatory tools to mount a successful 

defence against antibacterial agents such as nitric oxide. Most of these 
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regulators are part of a complex regulatory network of several regulators 

working together. Four of the most important regulators of Salmonella NO 

detoxification genes are further introduced here. 

 

1.7.1 FNR 
FNR stands for fumarate and nitrate reductase regulator due to its control over 

the nitrate and fumarate reductase (Stock et al, 1989). It functions to adjust 

gene expression in the transition from aerobic to anaerobic growth by 

prioritizing the use of different terminal electron acceptors over one another 

(Overton et al, 2006a; Stock et al, 1989): In the absence of oxygen, the 

preferred electron acceptor, the de-repression of nitrate and nitrite reductases 

ensures the use of nitrate and nitrite instead of fumarate. This finely tuned 

regulation has been shown to primarily be the result of FNR and NarL co-

regulation (Overton et al, 2006a). The FNR protein readily reacts in the 

presence of oxygen, converting the [4Fe-4S]2+ cluster into a [2Fe-2S]2+ cluster, 

which no longer binds DNA and hence changes the regulation of genes 

previously activated or repressed (Khoroshilova et al, 1997). 

Microarray analysis for the comparison of gene expression of wild-type with fnr 

mutant strains has shown that a minimum of one hundred operons in E. coli and 

S. Typhimurium are regulated by FNR (Constantinidou et al, 2006; Fink et al, 

2007; Overton et al, 2006a). Furthermore, the presence of nitrate and nitrite in 

addition has been shown to influence gene expression. Activation by FNR has 

been shown for e.g. napA, nrfA, nirB and hcp, whilst repression of hmpA, ytfE 

(iron sulphur repair), ygbA (uncharacterized gene), yeaR-yoaG (putative tellurite 

resistance) and cyoA (cytochrome o ubiquinol oxidase gene) has been 

demonstrated (the function of these genes is discussed later) (Constantinidou et 

al, 2006; Filenko et al, 2007; Vine & Cole, 2011). 

FNR belongs to the family of FNR/CRP (cyclic adenosine monophosphate 

(AMP)-receptor proteins) (Spiro, 2012). Homologues of FNR and the DNA site it 

recognises with a hairpin loop motif (TTGAT-N4-ATCAA) cannot only be found 

in E. coli and Salmonella, but also in soil-dwelling bacteria such as P. 
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denitrificans and Bradorhizobium japonicum as well as P. aeruginosa and 

Rhodobacter (Rodionov et al, 2005; Zumft, 1997; Zumft, 2005).  

It contains a [4Fe-4S]2+ cluster which reacts with oxygen and nitric oxide, 

resulting in a dinitrosyl-iron-cysteine complex when in contact with NO (Cruz-

Ramos et al, 2002). This complex no longer allows for the dimerisation of FNR 

which is necessary for DNA binding and hence changes in the repression or 

activation of gene expression occur. This inactivation of FNR by NO has been 

demonstrated in vitro with spectrometry as well as in vivo using microarray 

experiments (Cruz-Ramos et al, 2002; Pullan et al, 2007). As a result of its 

reactivity with NO, FNR maintains a NO-dose dependent regulation of genes 

necessary for the adaptation to anaerobiosis as well as for NO detoxification. 

Anaerobiosis using nitrate and nitrite as terminal electron acceptors leads to the 

production of NO as a by-product of denitrification. Once NO is no longer 

detoxified by FNR-activated NrfA, the reactivity of NO with FNR occurs and lifts 

the repression of hmpA and to ensure further activation of genes involved in NO 

defence (Corker & Poole, 2003). 

The importance of FNR for anaerobic growth has been highlighted by the poor 

growth that fnr mutant strains display (Constantinidou et al, 2006; Corker & 

Poole, 2003). In the absence of FNR, no endogenous NO production is 

observed, indicating the regulation of nitrite and nitrate reductase genes by FNR 

(Corker & Poole, 2003; Gilberthorpe & Poole, 2008). Genes regulated by FNR 

are widely similar between S. Typhimurium and E. coli, but in Salmonella 

flagella and pathogenicity genes, e.g. SPI-1 genes from the inv operon and 

sicA, are also under FNR-regulation (Fink et al, 2007): When fnr is deleted, the 

mutant strain is no longer motile and is hypersensitive to ROS. Furthermore, the 

strain cannot survive intracellular within macrophages and is highly attenuated 

in mice. Previously, it has been shown that FNR is essential during enteritis, but 

not for the development of typhoid fever, indicating that regulation in S. 

Typhimurium is different to S. Typhi (Rollenhagen & Bumann, 2006). The 

necessity of FNR for virulence is also shown for Haemophilus influenzae, where 

the fnr deletion strain is unable to survive in activated macrophages (Harrington 

et al, 2009). A proteomic study of S. Typhimurium during infection conditions 
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has further underlined the importance of FNR as it is the main regulator of 

adaptation (Encheva et al, 2009).  

 

1.7.2 Fur 
Fur (ferric uptake regulator) is a transcriptional regulator that has been 

implicated in the regulation of iron homeostasis (Kumar & Shimizu, 2011; Lucas 

& Lee, 2000). Fur belongs to a protein family that has been connected to the 

regulation of metal concentrations within the cell (Chiang & Schellhorn, 2012; 

Dubbs & Mongkolsuk, 2012). Fur forms homodimers in order to bind DNA 

(Bagg & Neilands, 1987; Touati, 2000). Each monomer contains a structural 

zinc molecule as well as Fe2+ that supports Fur activity. It has been shown that 

Fur binds iron when available and then binds the so-called iron box in the 

promoter of iron-responsive genes, which represses gene expression (de 

Lorenzo et al, 1987). Iron boxes with the 19 bp sequence of 

GATAATGATAATCATTATC have been found upstream of several genes, 

including the superoxide dismutase genes of the sod operon, the suf operon 

involved in iron homeostasis and upstream of fur itself (Constantinidou et al, 

2006; de Lorenzo et al, 1987; Kumar & Shimizu, 2011; Outten et al, 2004; 

Patzer & Hantke, 1999; Zheng et al, 1999). In addition to the potential self-

regulation, OxyR and SoxRS have been shown to respond to oxidative stress, 

e.g. by H2O2 (Kumar & Shimizu, 2011; Zheng et al, 1999; Zheng et al, 2001). 

The iron-bound form of Fur reacts with sources of ROS as well as with nitric 

oxide leading to alleviation of repression by Fur (Chiang & Schellhorn, 2012; 

Pullan et al, 2007). The presence of hydrogen peroxide poses a risk to the cell 

as it reacts with Fe2+ to create Fe3+, hydroxide (OH˙) and hydroxyl radicals (OH-) 

in the Fenton reaction (Touati, 2000). Exposure to NO also results in a reaction 

with Fe to form an iron-nitrosyl complex, which does not interfere with the 

dimerisation, but no longer exhibits DNA binding properties (D'Autréaux et al, 

2002). This also corresponds to the regulation of hmpA in S. Typhimurium and 

has been shown for E. coli, although a Fur box has not been identified in the 

promoter region (Hernández-Urzúa et al, 2007; Justino et al, 2005; Poole & 

Hughes, 2000). The deletion of fur results in increased intracellular iron 
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concentrations, which lead to increased oxidative stress and DNA damage 

(Touati et al, 1995). For some bacteria, such as Bacillus anthracis, it is not 

possible to create a fur deletion strain and fur is deemed essential for the 

strain’s survival (Tu et al, 2011). 

 

Inactivation of Fur repression in response to stomach acid has been highlighted 

as a priming method of gene expression of S. Typhimurium prior to intracellular 

entry in the small intestine (Bourret et al, 2008; Hall & Foster, 1996). The link 

between the availability of iron and pH also plays a role during the acidification 

of the phagosome. Several studies have demonstrated increased acid 

sensitivity of fur deletion strains and attenuation in mice virulence models and 

intracellular survival assays in macrophages (Gilberthorpe et al, 2007; Karasova 

et al, 2009; Riesenberg-Wilmes et al, 1996). The regulation of the SPI-1 

activator hilA through HilD has also been linked to Fur (Ellermeier & Slauch, 

2008; Fink et al, 2007; Troxell et al, 2011). 

Sensitivity against hydrogen peroxide and nitric oxide is also increased for 

deletion strains in comparison to wild-type strains of E. coli and Staphylococcus 

aureus (Mukhopadhyay et al, 2004; Richardson et al, 2006). Due to these in 

vitro and in vivo assay results, the use of a ∆fur strain has been explored as a 

potential vaccine strain. It has significantly reduced virulence in mice, alongside 

high immunogenicity necessary to stimulate the immune system to create 

Salmonella-specific antibodies (Curtiss et al, 2009).  

Overall, the results stress the wide-ranging importance of Fur, not only for iron 

homeostasis, but also during oxidative and nitrosative stress. This link between 

several stresses allows Salmonella to mount a successful response to changes 

in the extra- and intracellular environment as they occur during infection. 

 

1.7.3 NorR 
In 2002, the E. coli protein YgaA has been identified to have a 42% protein 

identity with the nitric oxide reductase regulators (NorR) of Ralstonia eutrophus 

(Gardner et al, 2002). Further investigation has revealed that the adjacent 

genes ygaK and ygbD encode for a nitric oxide reductase and a 

NADH:rubredoxin oxidoreductase respectively and it has been proposed that 
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the genes are renamed from ygaA-ygaK-ygbD to norR-norV-norW (Gardner et 

al, 2002; Gomes et al, 2002). Deletion of norR inhibits the anaerobic 

endogenous production of NO, supporting the putative regulatory role of NorR 

on norVW. The presence of NorR is required for the expression of norV and 

ensures the protection of [Fe-S] clusters from NO-caused damage (Gardner et 

al, 2002). Other studies have further stressed the regulation of norV by NorR, 

also highlighting the impact of norR deletion on E. coli anaerobic growth in the 

presence of RNS (Gardner et al, 2003; Hutchings et al, 2002). The activation of 

norVW by NO is linked to NorR (Flatley et al, 2005; Gardner et al, 2003; Pullan 

et al, 2007). Three domains are needed for NorR regulator activity: 1) A C-

terminal part is required for DNA binding; 2) a σ54-dependent activator region 

with ATPase activity and 3) a N-terminal part containing a mononuclear iron 

cluster that has been linked to signalling (Gardner et al, 2003; Spiro, 2007). 

Homologues of the E. coli gene have been identified in other bacteria, such as 

S. Typhimurium, P. aeruginosa and Vibrio cholerae and a palindromic NorR-

binding site (GT-(N7)-AC) has been identified (Gardner et al, 2003; Rodionov et 

al, 2005). A change from aerobic to anaerobic growth results in up-regulation of 

norV as a result of endogenous NO production in S. Typhimurium, indicating 

similar regulatory mechanisms in E. coli and Salmonella (Rowley et al, 2012). 

Similar to FNR, oxygen reacts with the iron centre and changes the protein 

activity. In the case of NorR, the oxidation of the iron centre prevents NO 

binding and hence inhibits the ATPase activity (Baptista et al, 2012). This 

prevents the activation of NorV under oxidative stress responses, such as 

during the first stages of macrophage infection. When the nitrosative stress 

response is mounted, the presence of NO allows for NorV activation to detoxify 

NO. Intracellular survival assays with ∆norR and ∆norV deletion strains have 

shown that these genes are not the only players involved in NO detoxification 

as the deletion strains show no sign of decreased survival within macrophages 

(Pullan et al, 2007). A NsrR-binding site is situated between norR and norV, 

indicating a tight network of regulation involved in survival of nitrosative stress 

(Partridge et al, 2009). 
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1.7.4 NsrR 
Using computational analysis to map predicted regulatory networks associated 

with the metabolism of nitrogen oxides, it has been shown that several core 

members of genes involved in the detoxification of NO exist both in E. coli and 

Salmonella (Rodionov et al, 2005). The NsrR regulator has a binding site 

containing an inverted repeat (AAGATGCATTTnAAATACATCTT) at multiple 

promoter sites of several implicated NO detoxification genes (Tucker et al, 

2010). NsrR is a nitric oxide-sensitive repressor, which regulates the 

expression of genes such as hmpA (flavohaemoglobin gene), ytfE (iron sulphur 

repair), ygbA (uncharacterized gene), hcp-hcr (hydroxylamine reductase 

genes), nrfA (cytochrome c nitrite reductase gene) and yeaR-yoaG (putative 

tellurite resistance genes) (Bodenmiller & Spiro, 2006; Filenko et al, 2007; 

Karlinsey et al, 2012; Tucker et al, 2010). It belongs to the Rrf2 family of 

transcription factors due to the presence of a [Fe-S] cluster in its structure and a 

similarity with another family member IscR (Bodenmiller & Spiro, 2006). With 

regards to the iron-sulphur cluster, different compositions of clusters have been 

reported: all protein purifications were performed in E. coli using the nsrR gene 

cloned from different bacteria. NsrR, originally from Streptomyces coelicolor, 

has a [2Fe-2S] cluster and the apo form of the protein without the cluster is 

unable to bind to DNA (Tucker et al, 2008). Similar, NsrR from N. gonorrhoea 

contains a [2Fe-2S] cluster and its repression is relieved by the addition of NO 

(Isabella et al, 2009). In contrast, NsrR from B. subtilis contains a [4Fe-4S] 

cluster (Yukl et al, 2008). 

All three studies have shown the reactivity of the cluster with NO. Irrespective of 

the nature of the cluster, the presence of NO results in the loss of DNA-binding. 

When present, NO replaces the iron from the iron-sulphur clusters, resulting in 

nitrosylated iron-complexes that cause a conformational change of the structure 

of the protein (Tucker et al, 2010) (Figure 8). As a result of the conformation 

change, the binding to DNA is impaired and the repression of gene expression 

is abrogated (Pullan et al, 2007). In addition, three conserved cysteines are 

needed for the ligation of the [Fe-S] cluster (Tucker et al, 2008). 
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A) 

 

B) 

 

C) 

 

Figure 8: NsrR regulation of hmpA 

A) The NsrR protein (maroon) containing a [Fe-S] cluster has a structure that 

allows binding to the DNA upstream of hmpA, therefore blocking the 

transcription initiation site (pink). No expression of hmpA takes place. 

B) The presence of NO results in the removal of iron from the [Fe-S] cluster, 

therefore causing a conformational change. Binding to the DNA is no longer 

possible and NsrR dissipates. 

C) The transcription initiation site becomes available for binding by the RNA 

polymerase (green) and transcription of hmpA takes place.  
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Binding of NsrR to the DNA is believed to occur after dimerisation of NsrR, 

where each monomer binds to one of the two halves of the binding site. This 

binding blocks the transcription site where binding of the RNA polymerase 

would take place. 

Further experiments have highlighted the largely conserved structure of the 

NsrR-binding site for E. coli and S. Typhimurium (Bodenmiller & Spiro, 2006; 

Karlinsey et al, 2012; Lin et al, 2007; Rodionov et al, 2005) (Table 1). In 

addition, previously predicted NsrR-regulated genes hmpA, ygbA, ytfE and hcp-

hcr are shown to be under NsrR repression for both E. coli and Salmonella 

(Bodenmiller & Spiro, 2006; Filenko et al, 2007; Karlinsey et al, 2012; Pullan et 

al, 2007). Furthermore, the yeaR-yoaG operon is NsrR-repressed for both 

organisms (Filenko et al, 2007; Karlinsey et al, 2012; Lin et al, 2007). 

The deletion of nsrR increases the resistance of Salmonella towards GSNO and 

NO as a result of de-repressed NO detoxification genes such as hmpA 

(Gilberthorpe et al, 2007; Karlinsey et al, 2012). However, the survival in 

RAW264.7 macrophages of the deletion strain is decreased in comparison to 

the parent strain (Gilberthorpe et al, 2007). This is explained with the necessity 

to ensure the tight regulation of hmpA during infection. During the exposure to 

peroxide and superoxide that are creating oxidative stress, the deletion of nsrR 

increases the strain’s sensitivity. 

Overall, this highlights the importance of NsrR for Salmonella’s survival during 

infection and shows the need for regulation of NO detoxification genes. In N. 

gonorrhoea the deletion strain has an increased resistance towards nitrite 

shock, indicating a similar involvement of NsrR for the pathogenicity of 

Neisseria (Overton et al, 2006b). 

All in all, NsrR is an important regulator of genes that in part has been shown to 

help with NO detoxification. Its responsiveness to NO ensures that NO 

detoxification genes are only expressed in the presence of NO rather than 

continuously, which is an energy-efficient way of regulating gene expression. 
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Table 1: NsrR-regulated genes identified in E. coli and S. Typhimurium 

(*) S. Typhimurium-specific gene 

Gene(s): References: 

E. coli: S. Typhimurium: 

hcp-hcr 

(hydroxylamine 

reductase; NADPH 

oxidoreductase) 

(Filenko et al, 2007; 

Pullan et al, 2007; 

Rodionov et al, 2005) 

(Karlinsey et al, 2012; 

Rodionov et al, 2005) 

hmpA 

(flavohaemoglobin) 

(Bodenmiller & Spiro, 

2006; Pullan et al, 2007; 

Rodionov et al, 2005) 

(Bang et al, 2006; 

Gilberthorpe et al, 2007; 

Karlinsey et al, 2012; 

Rodionov et al, 2005) 

nrfA 

(cytochrome c nitrite 

reductase) 

(Filenko et al, 2007)  

STM1808* 

(putative tellurite 

resistance) 

 (Karlinsey et al, 2012; 

Rodionov et al, 2005)  

tehAB 

(tellurite resistance) 

(Bodenmiller & Spiro, 

2006) 

(Rodionov et al, 2005) 

yeaR-yoaG 

(putative tellurite 

resistance) 

(Filenko et al, 2007; Lin 

et al, 2007; Squire et al, 

2009) 

(Karlinsey et al, 2012) 

ygbA 

(uncharacterized) 

(Bodenmiller & Spiro, 

2006; Pullan et al, 2007; 

Rodionov et al, 2005) 

(Gilberthorpe et al, 2007; 

Karlinsey et al, 2012) 

ytfE 

(iron sulphur repair) 

(Bodenmiller & Spiro, 

2006; Pullan et al, 2007; 

Rodionov et al, 2005) 

(Gilberthorpe et al, 2007; 

Karlinsey et al, 2012; 

Rodionov et al, 2005) 
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1.8 Summary and context 
Salmonella ssp. have evolved into a range of serovars able to cause disease in 

a range of animal species, including humans. Its ability to maintain a reservoir in 

a range of different species enables wide-spread occurrence of infections 

around the world. Salmonellosis manifests itself in one of two different types of 

illness: gastroenteritis and enteric fever. Both diseases potentially have fatal 

outcomes, especially in immunocompromised individuals, the elderly, young 

children and babies. For example, the combination of Malaria infection with 

Salmonella-caused gastroenteritis has detrimental effects in children. The 

emergence of strains increasingly resistant against a range of antibiotics has 

decreased the chances of successful treatment in the case of infection. 

Currently available vaccines, however, only offer a limited choice of prevention 

since the storage conditions, patient range and the course of vaccination are 

not ideal. The hot climate, the age of patients most at risk of dying from 

Salmonellosis as well as accessibility of healthcare are notable obstacles in the 

countries most commonly affected. Therefore several projects have looked at 

increasing the sanitary conditions and at providing guidance on food 

preparation as a more effective means of preventing infection. 

Ingestion of food and water contaminated with Salmonella is one of the most 

common sources for Salmonella infections. Within the stomach, the gastric juice 

triggers the acid-tolerance response that allows its survival by modulating gene 

expression. It also allows priming of the expression of genes that becomes 

important for Salmonella infection later on in the intestine. Upon reaching the 

small intestine, Salmonella induces its uptake into intestinal epithelial cells and 

crosses the basolateral layer via the passage through M cells. Uptake into 

epithelial cells involves the induction of membrane ruffling. This is mediated in 

S. Typhimurium by the expression of SPI-1, where genes encode for a range of 

proteins that allow the formation of a needle complex as well as effector 

proteins that interact with the cytoskeleton of the host cell. Once inside the cell, 

Salmonella hijacks the cell’s nutrients for its own metabolism. It also is a means 

of escaping the recognition by the immune system. 

M cells filter the gut lumen for foreign antigens. Once in contact with 

Salmonella, they take up the bacteria and present them to macrophages on the 
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other side of the intestinal lumen. Macrophages are specialised to take up 

bacteria via phagocytosis. The phagosome containing the bacteria later fuses 

with the lysosome that contains antimicrobial peptides, ROS and RNS for the 

elimination of pathogens. Once the bacteria have been killed, macrophages are 

then able to present antigens to B and T cells. Those cells, belonging to the 

adaptive immune system, allow for the mounting of a complete immune 

response that includes antibody production for early recognition and defence 

against future infections. 

Within the macrophage a range of reactive oxygen and nitrogen species as well 

as intermediates are released into the phagosome. These radicals react with 

each other as well as with metals, releasing further radicals. The structure of 

proteins is also further at risk to NO binding. Elimination of enzyme activity or of 

binding properties significantly impacts on the bacterial cell metabolism and 

inhibition of bacterial respiration has also been reported. All in all, these defence 

mechanisms are very effective in preventing infections. 

However, Salmonella has evolved various proteins that allow its survival inside 

macrophages. It has enzymes that allow for the conversion of ROS and RNS 

into less toxic chemical compounds. These enzymes include i) the 

flavohaemoglobin HmpA that converts NO into nitrate; ii) the flavorubredoxin 

and nitric oxide reductase NorV that reduces NO to N2O and iii) the cytochrome 

c nitrite reductase NrfA that converts NO into ammonia. These enzymes have 

specific oxygen requirements and are not all expressed at the same time. For 

aerobic conditions, HmpA has been shown to be most important, but it also 

contributes to intracellular survival and mice virulence assays. The activity of 

NrfA has been shown to contribute to survival in the stomach. In the absence of 

oxygen, NorV has been highlighted to be of most importance for NO 

detoxification. Deletion of all three genes significantly reduces the growth in the 

presence of NO in in vitro anaerobic experiments. Aerobically the effect is less 

distinct and in vivo experiments are yet to prove that these are the only proteins 

providing protection against NO under the complex environmental conditions of 

infection. 
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There are a number of regulators that support the expression of the NO 

detoxification genes. FNR mainly regulates the use of fumarate and nitrate as 

electron acceptor sources during anaerobiosis, but has shown changes in 

activity and gene repression after exposure to NO. The main task of Fur is to 

regulate the iron uptake of the cells. Due to the reactivity of NO with protein-

bound iron, its regulation also responds to the presence of NO. Similar to FNR 

and Fur, NsrR contains an iron-sulphur cluster that is nitrosated by NO. The 

conformational changes result in a de-repression of genes such as hmpA, 

which is then transcribed to yield an effective NO defence. Unlike the other 

three regulator described, NorR seems to provide an exclusive regulation of 

norVW only, in comparison to more than 30 operons under the regulation of 

Fur. 

Overall, the interplay between the human immune system and Salmonella still 

has various unanswered questions and it remains unknown, which other genes 

may be important for the detoxification of NO for Salmonella pathogenesis. 

Novel mechanisms will not only further enhance our understanding of 

Salmonella pathogenesis, but could also be suitable targets for future drug or 

vaccine development.  

This project further explores which other genes support Salmonella during 

detoxification of nitric oxide by comparing two datasets of gene expression 

changes obtained during exposure to exogenous and endogenous NO, 

respectively. Following on, the gene set identified is tested for sensitivity of 

mutant strains towards anaerobic growth in the presence of NO. In addition, 

tellurite sensitivity of the deletion strains of genes STM1808, yeaR, tehA and 

tehB is examined to elucidate a possible link between tellurite and NO 

sensitivity. Furthermore, intracellular survival in activated and non-activated 

murine macrophages is investigated as a step towards a more complex 

environment mimicking the route of infection of Salmonella. The phenotypes are 

compared and contrasted in order to provide a clearer picture of additional nitric 

oxide detoxification mechanisms in S. Typhimurium. Possible routes of future 

work are shown that could help to identify suitable to support antibiotic or 

vaccine development.  
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2.1 Strains & culture conditions 

2.1.1 Strains & plasmids 
The isogenic parent strain from which all other mutants used in this study are 

derived is Salmonella enterica serovar Typhimurium SL1344 (Hoiseth & 

Stocker, 1981). A list of all strains and plasmids used in this study can be found 

in Table 2.  

 

2.1.2 Complex media 
The following complex media are used in this study: 

• Luria-Bertani (LB) broth: 

10 g Tryptone, 5 g Yeast Extract, 10 g NaCl per 1 L distilled H2O (dH2O); pH 

adjusted to pH 7.5 

• Lennox broth: 

10 g Tryptone, 5 g Yeast Extract, 5 g NaCl per 1 L dH2O 

• Green plates for selection of non-lysogenic P22 transductants: 

8 g Tryptone, 1g Yeast Extract, 5 g NaCl, 1.5% (w/v) agar per 1 L dH2O; 

addition of 21 mL of 40% (w/v) glucose (F/S), 25 mL of 2.5% (w/v) alizarin 

yellow G and 3.3 mL of 2% (w/v) aniline blue (F/S) after autoclaving. 

Sterilization of media is achieved by autoclaving at 121°C for 15 min. The 

supplementation of media with Kanamycin [75 µg x mL-1], Chloramphenicol    

[10 µg x mL-1], Ampicillin [100 µg x mL-1] or Tetracycline [5 µg x mL-1] is 

performed, when appropriate.  

 

2.1.3 Overnight cultures 
Overnight cultures are prepared using LB broth, supplemented with appropriate 

antibiotics. The bacterial cultures are incubated overnight at 37°C with shaking 

at 200 rpm, unless otherwise stated.  

 

2.1.4 Minimal media 
The chemical composition of the minimal media used is outlined in Table 3. 

MGN is a minimal medium containing glycerol and nitrate. MGM indicates 

minimal glucose content.  
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Table 2: Strains and plasmids used in this study: 
Strain Genotype Source 
SL1344 Salmonella enterica serovar Typhimurium 4/74 

hisG rpsL 
(Hoiseth & 
Stocker, 1981) 

SL1344 pSTM1808prom S. Typhimurium pMP220 STM1808prom (AmpR) This study 
∆cstA SL1344 ∆cstA::cat This study 
∆cstA pcstA SL1344 ∆cstA::cat, pBAD cstA (AmpR) This study 
∆cydB SL1344 ∆cydB::kan This study 
∆cydB pcydB SL1344 ∆cydB::kan, pBAD cydB (AmpR) This study 
∆hcr SL1344 ∆hcr::kan This study 
∆hcr phcr SL1344 ∆hcr::kan, pBAD hcr (AmpR) This study 
∆hmpA SL1344 ∆hmpA::kan (Mills et al, 2008) 
∆hmpA phmpA SL1344 ∆hmpA::kan, pBAD hmpA (AmpR) This study 
∆napABCD SL1344 ∆napABCD::kan (Appia-Ayme et 

al, 2011) 
∆narGHIJ SL1344 ∆narGHIJ::kan (Rowley et al, 

2012) 
∆narVWYZ SL1344 ∆narVWYZ::kan (Appia-Ayme et 

al, 2011) 
∆napABCD ∆narGHIJ 
∆narVWYZ 

SL1344 ∆napABCD::pCP20, ∆narGHIJ::cat, 
∆narVWYZ::kan 

(Appia-Ayme et 
al, 2011) 

∆nirB SL1344 ∆nirB::kan (Rowley et al, 
2012) 

∆norV SL1344 ∆norV::kan (Mills et al, 2008) 
∆nrfA SL1344 ∆nrfA::kan (Mills et al, 2008) 
∆nsrR SL1344 ∆ nsrR::kan This study 
∆STM1273 SL1344 ∆STM1273::kan This study 
∆STM1808 SL1344 ∆STM1808::cat This study 
∆STM1808 pSTM1808 SL1344 ∆STM1808::cat, pBAD STM1808 

(AmpR)  
This study 

∆STM1808 ∆tehB 
∆yeaR 

SL1344 ∆STM1808::cat, ∆tehB::pCP20, 
∆yeaR::kan 

This study 

∆tehA SL1344 ∆tehA::cat This study 
∆tehB SL1344 ∆tehB::kan This study 
∆tehB ptehB SL1344 ∆tehB::kan, pBAD tehB (AmpR) This study 
∆tehB ∆yeaR SL1344 ∆tehB::pCP20, ∆yeaR::kan This study 
∆yeaR SL1344 ∆yeaR::kan This study 
∆yeaR pyeaR SL1344 ∆yeaR::kan, pBAD yeaR (AmpR) This study 
∆ygbA SL1344 ∆ygbA::cat This study 
∆ygbA pygbA SL1344 ∆ygbA::cat, pBAD ygbA (AmpR) This study 
∆ytfE SL1344 ∆ytfE::kan This study 
∆ytfE pytfE SL1344 ∆ytfE::kan, pBAD ytfE (AmpR) This study 
Plasmid Genotype Source 
pBAD/Myc-His A C-Terminal 6xHis Tags, AmpR Invitrogen™ 
pCP20 Temperature-sensitive replication and thermal 

induction of FLP synthesis, AmpR, CatR 
(Cherepanov & 
Wackernagel, 
1995) 

pKD3 AmpR, pANT-Sɣ derivative, CatR (Datsenko & 
Wanner, 2000) 

pKD4 AmpR, pANT-Sɣ derivative containing a FRT-
flanked KanR 

(Datsenko & 
Wanner, 2000) 

pKD46 AmpR, pINT-ts derivative containing araC-ParaB 
and ɣ, β, exo genes 

(Datsenko & 
Wanner, 2000) 

pMP220 Wide host-range promoterless-lacZ probe vector 
(TetR), low-copy number 

(Zaat et al, 1987) 
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The basic composition of MGM and MGN has been described previously (Pope 

& Cole, 1982). Since the wild-type strain used is a histidine auxotroph, a 

supplementation with casamino acids is required for growth in minimal media. 

 

2.2 General laboratory techniques 

2.2.1 Polymerase chain reaction (PCR) 
The following table lists the PCR programs used during this project. In general, 

an elongation time of approximately 1 min per 1 kb product is used. All the 

reaction mixtures and programmes can be found in Table 4 and Table 5, 

respectively. 

2.2.2 PCR product purification 
The purification of PCR products is performed using a QIAquick PCR 

Purification Kit (QIAGEN) and following the manufacturer’s instructions. Briefly, 

the PCR sample is mixed with five volumes of binding buffer (PB) to enable 

binding of the DNA to a centrifuge column. The sample is applied to a centrifuge 

column and centrifuged at 13,000 rpm and for 1 min. The eluate is discarded 

and the column is washed with 0.75 mL of PE buffer. After removal of the 

eluate, an additional centrifugation step ensures the sufficient removal of 

ethanol from the buffer. Elution of the DNA is done using 50 µL of dH2O (Sigma-

Aldrich), leaving the column to stand for 1 min before centrifugation. Quality of 

the purification is routinely checked using gel electrophoresis (see section 

2.2.4). 

2.2.3 Plasmid purification 
The purification of plasmids has been performed using a QIAprep Spin Miniprep 

Kit (QIAGEN) and following the manufacturer’s instructions. Briefly, 10 mL of a 

LB overnight culture with the appropriate antibiotic are centrifuged at 13,000 

rpm for 3 min at room temperature. The supernatant is removed and the 

bacterial pellet resuspended in 500 µL of P1 buffer. Next, 500 µL of the lysis 

buffer (P2) are added and mixed by inverting the tube several times.  
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Table 3: Chemical composition of minimal media used in this study 

All the media are autoclaved at 121°C for 15 min. Casamino acids and glucose 
are prepared separately, filter-sterilised using a 20 µm filter and added just 
before use. Glycerol and sodium nitrate are prepared separately, autoclaved 
and also added just before use. * For aerobic growth, 0.01% (w/v) casamino 
acids are added. To enhance anaerobic growth, the amount of casamino acids 
is increased to 0.05% (w/v).  
Common name: chemical formula: MGN: MGM: 
potassium dihydrogen 
phosphate 

KH2PO4 33 mM 33 mM 

dipotassium phosphate K2HPO4 30 mM 60 mM 
ammonium sulphate (NH4)2SO4 8 mM 7.5 mM 
tri-sodium citrate Na3C6H5O7 2 mM 2 mM 
magnesium sulphate MgSO4 x 7 H2O 200 µM 200 µM 
ammonium hepta-
molybdate 

(NH4)6Mo7O24 1 µM 1 µM 

sodium selenate Na2SeO4 1 µM 0.8 µM 
magnesium chloride MgCl2 x 4 H2O 400 µM 450 µM 
manganese chloride MnCl2 x 4 H2O 50 µM 50 µM 
calcium chloride CaCl2 9 µM 11.5 µM 
iron chloride Fe(II)Cl2 x 4 H2O 160 µM 10.5 µM 
sodium nitrate NaNO3 22 mM - 
glycerol C3H5(OH)3 5 mM - 
glucose C6H12O6 - 55 mM 
casamino acids  0.1 mg x L-1 0.01%/ 0.05%* 
 
Table 4: Components of the PCR reaction 

Reagent: Volume [µL]: 
BIOMIX (Bioline) (2x) 25 
5’ - 3’ primer [20 µM] 1 
3’ - 5’ primer [20 µM] 1 
DNA 4 
dH2O (Sigma Aldrich) 19 
Total volume: 50 
 
Table 5: Details of the PCR programs used 

Use of the program: Analysis of mutagenesis: Knockout construction: 
Description temp [°C]: t [min]: temp [°C]: t [min]: 
1) Initial denaturation 95 2 94 2 
2) Denaturation 95 2 94 0.25 
3) Annealing 45 1 55 0.5 
4) Elongation 72 2 72 1 
5) Repeat of steps 
    2) to 4) 

30x 26x 

6) Final elongation 72 10 72 7 
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By adding 700 µL of buffer N3 and mixing the solution by inverting, the pH of 

the mixture is neutralized. The solution is centrifuged at 13,000 rpm for 10 min 

and the supernatant is applied to a centrifuge column. The following 

centrifugations are all performed at 13,000 rpm for 1 min unless otherwise 

stated. For binding of the plasmid DNA to the column, the column with the 

supernatant is centrifuged. The flow-through is discarded and the column 

washed with 500 µL PB buffer by centrifuging the column again. The flow-

through is again discarded and another washing step using 750 µL PE buffer 

followed by another centrifugation step. To eliminate residual ethanol from the 

PE buffer, the column is centrifuged again after the removal of the flow-through. 

The DNA is then eluted using 50 µL of dH2O, leaving the water on the column 

for 1 min before a final centrifugation step. Using a NanoDrop2000 

(ThermoScientific), the quantity of the plasmid is assessed. Alternatively, quality 

of the purified plasmid is assessed using gel electrophoresis (see section 2.2.4). 

2.2.4  Gel electrophoresis 
The quantity and quality of PCR products and plasmids are analyzed using gel 

electrophoresis. For loading, either 5 µL of PCR product or a mixture of 1 µL 

purified product or plasmid mixed with 1 µL loading dye and 4 µL dH2O is used 

for analysis on a 1% (w/v) agarose gel containing 0.004% (v/v) Ethidium 

Bromide. The gel is run at 100 V for 45 minutes. For size comparison, a 1 

kilobase (kb) Hyperladder (Bioline) is run as a marker. Imaging of the gel is 

done under exposure to UV light. 

 

2.3 Generation of constructs for gene knockouts 
Primers have been designed to fulfil the following criteria: Firstly, to contain a 

homology region with the gene of interest (indicated as P1 and P2 in Figure 9A 

respectively) and secondly, to contain a priming sequence of the antibiotic 

resistance cassette (indicated as H1 and H2 respectively). A list of primers used 

in this study can be found in Table 6. The primers are then used in a PCR 

performed by the BIO-RAD DNAEngine® to amplify an antibiotic gene cassette 

either from the plasmid pKD3 (CatR) or pKD4 (KanR) with homologous tails 

specific for the gene of interest. A detailed description of the different steps of 

the PCR is given in 2.2.1 and Table 5.   
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Table 6: List of primers used for the generation of gene knockout constructs 

Gene: Forward primer (5' to 3'): Reverse primer (3' - 5'): 
cstA AATGTAACATCTCTCTGGAAC

ACCCAAACGGACAACAACTG
TGTAGGCTGGAGCTGCTT 

CCCTCTCCTTATTCTGGAGAG
GGCTATTGATGTAAAAAGACA
TATGAATATCCTCCTTAG 

cydB CGTGACTTCTCAGCCGGCAC
GCTAAGACAGGAGTCGTCAA
GTGTAGGCTGGAGCTGCTTC 

CCCAGAATCCATGCGAAATA
CCACATTTTAAGCTCCTTACC
ATATGAATATCCTCCTTAG 

hcr AAGAAGACATGAAGCAATTG
CTGAGCGCGTAAGGAGGTCA
GTGTAGGCTGGAGCTGCTTC 

GCGCTGACGCTTACCGGGCC
TACGATGGAACGTTTACCGA
CATATGAATATCCTCCTTAG 

nirB CGTTAAGGTAGGCGGTAATA
GAAAAGAAATCGAGGCAAAA
GTGTAGGCTGGAGCTGCTTC 

GGCAGGATGTCATCGATTTT
GCAGATGTTTTGCCACTGAC
CATATGAATATCCTCCTTAG 

nsrR TAAATGTATTTTTCCCGTTTTC
CCTTTTCCTGAGGTTGATGTG
TAGGCTGGAGCTGCTTC 

CATTGAGGTTCCTCCATTGTC
ATCTCTAATGAAGTTTACTCA
TATGAATATCCTCCTTAG 

STM1273 CTTATGATTGGGTATTAAAAA
CCAGAAGAGTCTTATAATCGT
GTAGGCTGGAGCTGCTTC 

ATCTATCCCATGTCGAATTCA
TGGTCTTTTTTCAGCCGCGCA
TATGAATATCCTCCTTAG 

STM1808 TTAAATACATCTTTTAATCACC
ACATCAGGGAGATGTCTTGT
GTAGGCTGGAGCTGCTTC 

CTGGGCGGGACGCCGCCCA
GTGGTGACTGGTTTACCGAT
GCATATGAATATCCTCCTTAG 

tehA  CGTAATCACAAGCAGAGCGA
TCGCGTGCTCAATCTGCCTG
GTGTAGGCTGGAGCTGCTTC 

CGAACGGTCATTTTTTTCCTC
CGTTTTCAACAGTGCAGCGC
ATATGAATATCCTCCTTAG 

tehB CGCACTGAGCGCGCTGCACT
GTTGAAAACGGAGGAAAAAA
GTGTAGGCTGGAGCTGCTTC 

AAAATGCCGAACGCAGCGAG
ACTTACAGAACTTGCATCGCC
ATATGAATATCCTCCTTAG 

yeaR TGAGATTATCGCTGAGTAACC
TGCGTGAAGAGGGAAGCAAG
TGTAGGCTGGAGCTGCTTC 

TTATTCGTGACCGTGACGGT
ATAAGTAGCTTTTCCCATTAC
ATATGAATATCCTCCTTAG 

ygbA GGTGTAAAATAAATACACCTT
AATGTTCGGAGAGAGCACGG
TGTAGGCTGGAGCTGCTTC 

GCCTGGAGATGATGCGCGCC
GTAGGCCTGGCGCTTCCCCT
CATATGAATATCCTCCTTAG 

ytfE TTAAAATACAACTTATATTATT
GCAAATGAGGTAACGGCTGT
GTAGGCTGGAGCTGCTTC 

CCGTTTACAGCCGCCATCCG
GCAAAATGCCCGGCTGGCGA
CATATGAATATCCTCCTTAG 
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(A) 

 

(B) 

 

(C) 
 

(D) 

 

Figure 9: Creating gene knockouts 

(A) Primer design and amplification: Primers are designed to contain a 
homology region H1 or H2 corresponding to an outside region of the gene of 
interest (Gene B) and a sequence of nucleotides (P1 or P2) corresponding to 
regions of the antibiotic resistance gene cassette of pKD3 or pKD4 outside of 
the FRT regions. These primers are used to create gene knockout constructs by 
amplifying the antibiotic resistance gene cassettes containing short sequences 
homologous to Gene B.  
(B) Homologous recombination: The recombinase enzyme of the phage λ (γ, β, 
exo) (Datsenko & Wanner, 2000), encoded on the inducible plasmid pKD46, 
recognizes the homologous elements of the gene knockout construct and Gene 
B. The exchange of Gene B with the gene knockout construct takes place. 
(C) Result of the recombination event: The antibiotic resistance gene containing 
the FRT regions has replaced Gene B without affecting the neighbouring genes 
A or C. 
(D) Removal of the antibiotic resistance gene: The Flp recombinase of the 
pCP20 plasmid removes the antibiotic resistance genes due to the presence of 
specific recognition targets (FRT). The antibiotic resistance gene is excised and 
the chromosomal DNA ends joined together. 
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The resulting product is then purified using a QIAGEN PCR purification kit as 

described in 2.2.2. The purified product should have a concentration ranging 

from 20 to 60 ng x µL-1, which is analyzed using a NanoDrop2000 (Thermo 

Scientific). 

 

2.4 De novo mutagenesis 
The wild-type strain SL1344 containing the temperature-sensitive plasmid 

pKD46 is grown overnight at 30°C in LB broth supplemented with Ampicillin and 

grown as outlined 2.1.3. 50 mL of Lennox broth containing Ampicillin [100 µg x 

mL-1] and 1mM L-arabinose are inoculated with 1% of the overnight culture. The 

culture is incubated at 30°C until the OD600nm reaches a value between 0.48 and 

0.6. The liquid is transferred into a centrifuge tube and the cells are pelleted by 

centrifugation for 10 min at 4000 rpm and at 4°C. The cell pellet is washed and 

re-suspended three times using ice-cold 10% (v/v) glycerol. After the final 

washing step, 10% (v/v) glycerol is used to re-suspend the pellet a final time. 

100 µL of cells are mixed with 10 µL of pKD4 or pKD3 DNA generated as 

described in 2.2.3. The cell-DNA mixture is then transferred into an 

electroporation cuvette with a gap of 0.2 cm. Electroporation is performed using 

the BIO-RAD MicroPulser™ electroporator at a voltage of 2.5kV for a time of 5 

ms. 

After electroporation, 1 mL of LB is added to the cells, the mixture is transferred 

to an Eppendorf tube and incubated at 37°C for 2 hours to allow the recovery of 

the cells and the recombination to occur. The so-called Red system of the λ 

phage with its recombination enzyme is found on the pKD46 plasmid and 

enables the recognition of the homology regions of the gene of interest (Gene B 

in Figure 9) as well as of the gene knockout construct (Figure 9B) (Datsenko & 

Wanner, 2000). It enables the exchange of those to regions, resulting in the 

replacement of the gene of interest Gene B with the antibiotic gene resistance 

cassette (Figure 9C). 100 µL of the cell suspension are plated onto LB Agar 

plates supplemented with Kanamycin [75 µg x mL-1] (for pKD4 constructs) or 

Chloramphenicol [10 µg x mL-1] (for pKD3 constructs) respectively. The plates 

are incubated overnight at 37°C. 
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2.5 Verification of mutagenesis 
One colony is re-suspended in 200 µL of 1x PBS in a centrifuge tube. After 

boiling the bacterial suspension for 5 min at 100°C, it is centrifuged for 3 min at 

5000 rpm. The supernatant containing the DNA is transferred into a fresh 

centrifuge tube and kept on ice. This DNA is then used for a PCR reaction as 

described in 2.2.1. The DNA of the SL1344 wild-type strain is used as a control. 

The products of the PCR reactions are analyzed on a 1% agarose gel, run at 

110V for 45 min. A 1kb hyperladder (Bioline) is used as a size marker. Table 7 

shows a list of the primers used for the verification of the gene deletions. 

 

2.6 P22 transduction 
In order to prevent further recombination events taking place once the gene 

deletion is accomplished in a SL1344 pKD46 strain, a transduction using the 

bacteriophage P22 is performed. One colony of the deletion strain in the pKD46 

background is used to inoculate 10 mL of LB and grown overnight. Then, 10 mL 

LB are inoculated with 1% (v/v) the next day and grown aerobically at 37°C for 

one hour. 10 µL of P22 lysate are added and growth is continued for 6 hours. 

500 µL CHCl3 are added, carefully mixed and left to rest in the fridge overnight. 

The mixture is centrifuged for 15 min in an ice-cold centrifuge at full speed and 

the supernatant is transferred into a clean tube. 10 µL are mixed with 100 µL of 

SL1344 and incubated at 37 °C for 45 min. The cells are streaked onto LB 

plates supplemented with the appropriate antibiotic. After overnight growth at 

37°C, six colonies are picked and streaked onto Green plates. Grown overnight 

at 37°C, light green colonies are picked, indicating non-lysogenic strains and 

again streaked onto Green plates. Following this selection, the presence of the 

antibiotic gene cassette instead of the gene of interest is analyzed following the 

protocol in 2.5. 
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Table 7: List of primers used for the analysis and verification of gene deletion 

mutant strains 

Gene: Forward primer (5' - 3'): Reverse primer (3' - 5'): 
cstA CACCCAAACGGACAACAACT GGGCTATTGATGTAAAAAGA 
cydB GCTGACCGTGGGCGATCTGC TTAGCTTTCTTCTTGACCGG 
hcr CACCGGGCCGACCGCGCCGG AAGTTTAGTTGAAGATGACG 
hmpA TTCACATAAAGGAAGCACGT TTTCAGAGGATTTGTTGCAA 
nirB GGTCTAAAAACCCCTCATTT CTGATCGCTATGGTAAGGAC 
nsrR TTTCCTTCCCCGAACTGA CCGGCTCGGGATAGGATT 
STM1273 GCGCTGTTTATTTACATCAG CGAGTGGTTGAGTTTATAACC 
STM1808 CCACATCAGGGAGATGTCTT TGGTGACTGGTTTACCGATG 
tehA TACTTTATAAATTAAACAAA TCTCAGTAAAGTAATTTTCG  
tehB GTTGAAAACGGAGGAAAAAA ACTTACAGAACTTGCATCGC 
yeaR GTAACCAATAAATGGTAT TCAGGTACCAGCAACGTC 
ygbA TAATGTTCGGAGAGAGCACG GTAGGCCTGGCGCTTCCCCT 
ytfE TCATACTCGCTTAAATTA GGTGGCGCTGGCGCTTAC 

 

2.7 Removal of the antibiotic resistance gene cassette 
The removal of the antibiotic resistance gene cassette allows generating 

deletion strains where both original deletion strains have the same antibiotic 

resistance gene cassette or where antibiotic resistance might interfere with the 

experiments. It is necessary to generate electro-competent cells of the strain of 

interest using the method outlined in 2.4. 100 µL of electro-competent cells are 

then transformed using 5 µL of pCP20, a plasmid containing the Flp 

recombinase gene. Recovery of the cells and recombination are ensured by 

incubating the cells statically at 30°C for three hours. During this time, the 

expression of pCP20 leads to the production of Flp recombinase, an enzyme 

originally from Saccharomyces cerevisiae (Cherepanov & Wackernagel, 1995). 

Flp recombinase recognizes specific sequences, so-called Flp recombinase 

targets (FRT). Recognition of FRT consequently leads to the cutting of the DNA 

at these target sites. As FRT are strategically placed in the beginning and the 

end of the antibiotic resistance cassette genes, this process leads to the 

removal of the cassette (Figure 9D). Due to the temperature-sensitive nature of 

pCP20, the cells are spread onto LB plates containing Ampicillin (Amp) and 

overnight incubation occurs at 30°C. After a second selection round on LB Amp 

plates, the strain is grown in 10 mL LB at 45 °C to remove the pCP20 plasmid. 

Successful removal is monitored by plating bacteria onto LB and LB Amp plates 
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as well as PCR analysis to confirm the removal of the antibiotic resistance 

gene. 

 

2.8 Complementation studies 
In order to verify the phenotypes of the deletion strains, constructs of protein 

expression vector pBAD/Myc-His (Invitrogen) containing the gene of interest are 

made. The primers listed in Table 8 are used to amplify the gene of interest 

from genomic DNA, whilst introducing restriction enzyme cutting sites at the 5’ 

and 3’ ends. Digestion of the PCR product and digestion of the vector with the 

restriction enzymes NcoI and EcoRI in buffer H for one hour at 37°C allows the 

creation of overlapping sticky ends. A DNA ligase is then used to allow the 

ligation of the gene of interest into the vector. After one hour at room 

temperature, ligation products are stored at 4°C until further use. Electro-

competent cells of the respective deletion strains are prepared and transformed 

according to the protocol in 2.4. For the selection of successful transformants, 

LB agar plates containing Ampicillin are used.  

 

2.9 Growth sensitivity analyses 

2.9.1 Aerobic growth in the presence of potassium tellurite 
For inoculation of 50 mL of LB broth, ~0.6 x 109 cells of overnight cultures are 

used. For the calculation, the optical density of a 1:10 dilution is measured at 

600nm and the number of cells calculated (OD600nm = 1 ≈ 1.2 x 109 cfu x mL-1). 

The cultures are incubated at 37°C with shaking at 200 rpm. Every hour, the 

optical density is measured at a wavelength of λ = 600nm by using 1 mL of 

bacterial cultures until the OD reaches ~1.2. From then on, samples are diluted 

in LB at a 1:10 ratio. As a reference throughout the experiment, LB broth is 

used. Tellurite sensitivity is measured using the addition of 0.125 µg x mL-1 of 

K2TeO3 to 50 mL of LB. Where indicated, 100 µM DTT is added to cultures to 

eliminate oxidative stress caused by tellurite and its reduction. For 

complementation strains, L-arabinose (0.002% or 0.0002%) is added to the 

cultures to allow the expression of the gene from the pBAD plasmid.  
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Table 8: Primers used for the generation of cloning products 

Gene: Forward primer (5' - 3'): Reverse primer (3' - 5'): 
cstA AAAACCATGGGTAATAAATCAG

GGAAATACCT 
AAAAAAGCTTTAGTGCGCGCCT
TTCGCCTGCG 

cydB AAAACCATGGGTATCGATTATG
AAGTACTACG 

AAAAAAGCTTTAGTACAGAGAG
TGGGTGTTGC 

hcr AAAACCATGGGTATGACGATGC
CAACCTCACA 

AAAAAAGCTTTATGCGAGAACA
AGATCGCCCT 

hmpA AAAACCATGGGTCTTGACGCAC
AAACCATCGC 

AAAAAAGCTTTACAGCACTTTA
TGCGGGCCGA 

STM1808 AAAACCATGGGTTCCCACTTAC
GCATCCCGGC 

AAAAAAGCTTCAGGCTTTTTTC
TGTTGATAC 

tehB AAAACCATGGGTACCGTTCGTG
ACGAAAATTAC 

AAAAAAGCTTCAGGCCGTTTTT
CTCGCCAGCA 

yeaR AAAACCATGGGTGGCAAATTCC
ACAAAATCAT 

AAAAAAGCTTTATTCTCTCCCG
GCATGAATGA 

ygbA AAAACCATGGGTCCTGGTAAAC
GTATCGCTCG 

AAAAAAGCTTCACTTCTTGCGC
TGATATTTTT 

ytfE AAAACCATGGGTGCTTATCGCG
ATCAACCTTT 

AAAAAAGCTTTATTCCCCGGCC
AGCGCGCGTG 

STM1273 AAAACCATGGGTAAACTCGATA
CCCGATTAAC 

AAAAAAGCTTCATTTTGCGTGA
TACGGGGTCA 

 

2.9.2 Preparation of aqueous NO solution 
Oxygen-free nitrogen is used to sparge one litre of 1 M NaOH solution for a 

minimum of one hour. The solution is then scrubbed with NO gas (Sigma-

Aldrich). A volume of 3 mL of distilled water with a pH of 3 are then sparged 

with 20 mL of NO gas. This will achieve a saturated NO solution with a 

concentration of 2 mM. Stored on ice, the solution is ready to use and stable for 

a maximum of 24 h (Mills et al, 2008). 

 

2.9.3 Anaerobic sensitivity towards NO in minimal medium 
Overnight cultures are grown in medium-sized glass vials filled to the top with 

17 mL of MGM. The lids are sealed with parafilm to prevent oxygen from 

entering the vials. The cultures are grown statically overnight at 37 °C. A 

Hamilton syringe is used to inoculate 10 mL of MGM in Hungate tubes at a 

concentration of 5% (v/v). After inversion of the tubes, oxygen-free nitrogen gas 

is used to sparge the tubes for 5 min to remove residual oxygen in the head 

space. Incubation of the tubes occurs statically and the growth of the cultures is 

monitored by measuring the absorption at a wavelength of 590 nm at 1.5 hours 
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and every 30 min from then on. Once a value of 0.1 is reached, 40 µM aqueous 

NO is added and tubes are inverted briefly. L-arabinose at a concentration of 

0.0002% is added to MGM for the growth of complementation strains. 

 

2.10 β-galactosidase assay 
Similar to the generation of constructs for the complementation study (see 2.8), 

the STM1808 promoter region is PCR-amplified from genomic DNA, digested 

with restriction enzymes PstI and EcoRI and ligated into pMP220 (Zaat et al, 

1987). This then allows monitoring the control of regulators such as NsrR on the 

binding to the promoter site and the expression of β-galactosidase as a 

consequence. For the PCR, the following forward STM1808 prom F 

(AAAAGAATTCATACACACGCTCCTTCGGGA) and the reverse primer 

STM1808 prom R (AAAACTGCAGAAGACATCTCCCTGATGTGG) are used. 

 

2.10.1 Assay reagents 
The following reagents are freshly prepared on the day of the experiment: 

• Z buffer: 

0.06 M Na2HPO4 x 7 H2O, 0.04 M NaH2PO4 x H2O, 0.01 M KCl, 0.001 M 

MgSO4, 0.05 M β-mercaptoethanol, pH adjusted to 7.0 

• 0.1 M phosphate buffer: 

0.06 M Na2HPO4 x 7 H2O, 0.04M NaH2PO4 x H2O, pH adjusted to 7.0 

• o-nitrophenyl-β-D-galactopyranoside (ONPG): 

4 mg x mL-1 in 0.1 M phosphate buffer 

 

2.10.2 Experimental procedure 
Fresh overnight cultures are used to inoculate 10 mL LB at a ratio of 1:100 and 

grown to mid-log (OD600nm ~ 0.5). Cell growth is arrested by keeping the cells on 

ice for 20 minutes. Then 2 mL of culture are centrifuged for 10 minutes at 6,000 

rpm at 4°C. The supernatant is discarded and cells are resuspended in 2 mL 

ice-cold Z buffer. The OD600nm is measured and Z buffer is used as a reference. 
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The cells are diluted further by adding 0.5 mL cells to 0.5 mL Z buffer. To 

permeabilize the cells, 100 µL of chloroform and 50 µL 0.1% SDS are added 

and the mixture is vortexed. Equilibration of the mixture is achieved by placing it 

in a water bath at 28°C for 5 minutes. By adding 0.2 mL ONPG substrate (final 

concentration of 0.8 mg x mL-1) to the mixture, the reaction is started. Once an 

adequate yellow colouring similar to LB broth is achieved (A420nm ~ 0.6 - 0.9), 

0.5 mL 1M Na2CO3 is added, vortexed and the time of addition noted down. The 

addition of Na2CO3 acts as a stop solution, raising the pH of the solution to 11 

and stopping the enzymatic reaction. Of the reaction mixture, 1 mL is 

transferred to a centrifuge tube and centrifuged at 14,600 rpm for 5 minutes to 

remove cell debris. The supernatant is transferred to a cuvette and the A420nm 

and A550nm are measured. The absorbance at 420nm corresponds to the 

absorbance of o-nitrophenol, the product of the cleavage of ONPG performed 

by the β-galactosidase present. To eliminate false absorbance caused 

scattering by cell debris, the absorbance at 550nm is measured. At this 

wavelength, only cell debris scatters the light and the corresponding value is 

subtracted from the value obtained at 420nm. Miller units of enzyme activity are 

calculated using the following formula: 

Miller Units = 1000 x [(OD420 - 1.75 x OD550)] / (T x V x OD600). 

The wild-type strain SL1344 is β-galactosidase-negative and therefore the wild-

type strain containing the empty vector is used as a negative control for the 

experiment.  

 

2.11 RNA extraction and quantification 
SL1344 cultures are grown in 50 mL LB broth in conditions used for growth 

curves. After 3 hours of growth, 0.125 µg x mL-1 K2TeO3 is added to one set of 

the cultures and cultures are put back into the incubator. After 15 minutes, cells 

are harvested to achieve 4 OD units. Cell growth is arrested by the addition of a 

fifth volume of 5% (v/v) phenol (pH 4.3), 95% (v/v) ethanol and cell culture 

medium is removed by centrifugation at 3220 x g at 4°C for 10 min. Cell pellets 

are stored at -80°C until further use. RNA extraction from the cell pellets 

followed the protocol of the Promega SV40 Total RNA Isolation System kit. The 
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total RNA is treated with DNase (Ambion) to destroy the remaining DNA. DNA 

contamination is assessed using PCR or using the Experion RNA HighSens 

and RNA StdSens analysis kit (Bio-Rad). RNA purity and quantity are assessed 

using a NanoDrop (ThermoScientific) by comparing the ratio of OD260nm to 

OD280nm. 

 

2.12 Real-time reverse transcription (RT-) PCR 
After DNase treatment (see 2.10.1) 2 µg of total RNA are reverse-transcribed 

using SuperscriptII™ reverse transcriptase (Invitrogen) and random hexamers 

(Invitrogen) according to the manufacturer’s instructions. For the real-time 

quantification of expression levels, gene-specific primers with approximate Tm of 

60°C are designed (see Table 9 below). The average product size is chosen to 

be ~ 100 bp. Using the Bio-Rad CFX96™ Real-Time System, the quantification 

of a 5-fold dilution of the obtained cDNA is performed with the aid of the 

SensiMix™SYBR No-ROX kit (Bioline). The steps of the reaction can be found 

in Table 10. Three biological replicate with three technical replicates are 

analysed for each sample. For standardisation, dilutions of SL1344 

chromosomal DNA obtained using a Qiagen Genomic DNA isolation kit are 

used. The threshold cycle values (Ct) for each gene are then normalised to the 

Ct of the ampD gene (Appia-Ayme et al, 2012). 

 

2.13 Intracellular survival in macrophages 
Cultures of RAW264.7 murine macrophages are maintained in DMEM (10% 

foetal bovine serum (FBS), 2 mM L-glutamine, 1x penicillin/streptomycin, 1x 

fungizone added) at conditions mimicking the human body (37°C, 5% CO2). 

Macrophages are harvested by seeding 2 x 105 cells per well into a 24-well 

plate and incubating overnight. For the activation of the macrophages, 100 U 

IFN-γ are added 20-22 hours prior to the addition of bacterial cells. The bacteria 

are diluted in DMEM (without serum and antibiotics) to get a multiplicity of 

infection (MOI) of 10 (2 x 106 cfu x mL-1). The macrophages are washed with 

PBS and 0.5 mL of bacteria is added, followed by a centrifugation step at 500 

rpm for 2 min. 
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Table 9: Primers used for real-time PCR quantification 

Gene: Forward primer (5' - 3'): Reverse primer (3' - 5'): 
ampD qPCR ATGACGAAAAACCGTCCTT

G 
GGATCTATCGTTCCGGTGA
A 

hmpA qPCR TTAATGCTATCGCGGCCTA
C 

AATCTGGAAGCTGGTGTG
CT 

nirB qPCR CTACGGCTGCGAAGTGTG
TA 

AGTATCCTGTAGCGGCGT
GT 

norV qPCR GTCAGCACTACTGCGACG
AG 

CTGAACGGCGTCAGGATA
TT 

STM1808 
qPCR 

GCTCTACCCCCTTTTTCAC
C 

TTCCATCACGCAGAGTTGT
C 

tehB qPCR ACGCTGGATTTAGGATGTG
G 

CCATACTGGCCGGATTTTT
A 

yeaR qPCR ATACACGTTCCACGCCATT
C 

CCGAGAGACGAGGATAAA
CG 

 

Table 10: Details of the PCR programs used 

Use of the program: qPCR: 
Description temp [°C]: t [sec]: 
1) Initial denaturation 95 10 min 
2) Denaturation 95 15 
3) Annealing 58 15 
4) Elongation 72 10 
5) Repeat of steps 
    2) to 4) 

39x  

 

The cells are placed back in the incubator for 30 min before the medium is 

replaced by a killing medium containing 100 µg x mL-1 Gentamicin. Intracellular 

bacteria are not affected and are protected inside the macrophages. After 90 

min, the killing medium is replaced by a maintenance medium (10 µg x mL-1 

Gentamicin). The time points for the harvest of intracellular bacteria are two and 

ten hours after the addition of bacteria. For harvesting, cells are washed with 1 

x PBS after aspiration of the medium. 0.01% SDS in 1x PBS is then added, the 

plates are placed on a gel rocker for 20 minutes prior to pipetting up and down 

for 10 times to cause the lysis of the macrophages. The bacteria are diluted and 

plated onto LB agar plates. The number of colony-forming units (cfu) is 

assessed after an overnight incubation at 37°C and compared to the cfu at time 

points t1 = 2 h and t2 = 10h. 
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2.14 Continuous cultures 
For continuous culture of bacterial strains the New Brunswick BioFlo® 310 

reactor is run with a working volume of 1.2 L. Cells are grown aerobically in 10 

mL LB overnight, before 50mL of MGN are inoculated (1% v/v). After aerobic 

overnight growth, the reactor containing MGN is inoculated and a further 

aerobic overnight incubation followed. Glycerol in the medium serves as the 

sole carbon source and electron donor. The terminal electron acceptor is 

nitrate. 1M NaOH and 0.1 M H2SO4 are used to ensure that the pH remains at 

7.5 throughout the growth. After overnight aerobic growth, the air supply is 

limited from 100% to 0% and anaerobic state of the medium is achieved after 

one hour as measured with a dissolved oxygen probe. A feed containing MGN 

is set up and the dilution rate is set to 0.04 h-1. To monitor cell growth and 

concentrations of nitrogen compounds, culture and gas samples are taken at 

regular intervals throughout the experiment (Rowley et al, 2012). 

 

2.15 High-performance liquid chromatography & Gas 
Chromatography 

To determine the nitrite and nitrate concentrations of continuous culture 

samples, high-performance liquid chromatography (HPLC) with an anion-

exchange column Ion Pac AS22, 2 mm x 250 mm (Dionex, ICS-900) is used 

according to manufacturer’s instructions (Rowley et al, 2012). The gas samples 

are analysed using a PerkinElmer Clarus® 500 Gas Chromatograph (GC) and 

Elite-PLOT Q (DVB Plot Column, 30 m length; internal diameter of 0.53 mm, 

oxygen-free nitrogen as carrier gas; 95% argon / 5% methane as make-up gas; 

temperatures according to manufacturer’s instructions). A standard curve using 

N2O gas standards (0.4, 100, 1000 ppm, StGas) is prepared. In order to 

calculate the total concentration of N2O, an equal concentration of the gas is 

assumed for the head space and the culture solution. Henry’s Law constant at 

37°C of 0.453 is applied. 
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3.1 Introduction 
Transcriptomics has been used as a powerful tool to understand how enteric 

bacteria such as Salmonella and E. coli respond to nitrosative stress and how 

this correlates with gene expression during infection. This chapter will review 

the NO relevant transcriptomic datasets in the literature and using datasets 

previously produced by the Rowley laboratory, to determine the core NO 

responsive regulon i.e. genes up-regulated during both endogenous and 

exogenous NO detoxification, for experimental analyses in future chapters. 

 

3.1.1 In vitro analyses 
The global transcriptional response of E. coli to the presence of S-

nitrosoglutathione (GSNO) and to NaNO2 during aerobic growth has first been 

investigated in 2004 (Mukhopadhyay et al, 2004). During exponential growth in 

LB-rich medium, either 0.1 mM GSNO or 1 mM NaNO2 are added to the 

cultures and RNA extraction is performed five minutes post addition. Similar 

numbers of genes are up- and down-regulated for both compounds: 34 genes 

with more than a five-fold increase in expression levels in the presence of 1 mM 

GSNO are also at least fivefold up-regulated in the presence of 1 mM NaNO2, 

including hmpA, norVW and ytfE. A list of genes that are significantly up-

regulated in three or more studies can be found in Table 11. The expression of 

hmpA, norV and norW is increased by more than 30 fold under both conditions, 

stressing the importance of these systems for NO protection. A high number of 

genes encoding hypothetical proteins, e.g. yfiD and ygbA, show increased 

expression levels, indicating a yet to be characterised role during the response 

to nitrosative agents. Differences between expression levels of genes such as 

nrfA and metL between NaNO2 and GSNO exposure highlight the differences in 

expression that are observed depending on the culture conditions and NO 

donor used. The group has examined the effect of different regulators in 

response to NO and hence determined the NO sensitivity level of deletion 

mutants of fur, norR, oxyR and soxR. All four regulators contain cysteines and 

some have bound iron that makes them susceptible to reactivity with RNS. 

Therefore, all four could play a role in initiating the gene expression changes 

observed in response to NO sources.  



 

 

Table 11: Overview about genes significantly up-regulated in three or more studies. The experimental conditions for the studies were as follows: 
Mukhopadhyay et al.: E. coli, LB medium, + O2, overlap for genes up-regulated upon addition of 0.1 mM GSNO and addition of 1 mM NaNO2. 
Justino et al.: E. coli, minimal salts medium, - O2, addition of 50 µM NO. 
Flatley et al.: E. coli, minimal salts medium, overlap for genes up-regulated during aerobic and anaerobic growth after addition of 200 µM GSNO. 
Filenko et al.: E. coli, minimal salts medium + 20 mM trimethylamine-N-oxide + 2.5 mM NaNO2, - O2, K-12 MG1655 wild-type compared to ∆nsrR. 
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et al., 2004 

Justino 
et al., 
2005 

Flatley et 
al., 2005 
(+ O2) 
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(- O2) 

Filenko 
et al., 
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Partridge 
et al., 
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et al., 
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et al., 
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Roos & 
Klemm, 
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Hautefort 
et al., 
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allD ureidoglycolate 
dehydrogenase 

      x x  x 

citB citrate utilization protein b       x x x x 
cspB cold-shock protein       x x  x 
deoC deoxyribose-phosphate 

aldolase 
x       x  x 

dgoK 2-oxo-3-deoxy-galactonate 
kinase 

     x  x  x 

dgoR galactonate operon 
transcriptional repressor 

     x  x  x 

dsbA protein disulfide isomerase 
I 

     x x x   

fhuF ferric hydroximate transport 
ferric iron reductase 

x      x   x 

ftsJ cell-division protein      x  x  x 
hcp hydroxylamine reductase   x x x x x x x x 
hcr HCP oxidoreductase     x x x x x x 
hycA formate hydrogenlyase 

regulatory protein 
     x x   x 

marB hypothetical protein       x x  x 
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et al., 
2005 

Flatley et 
al., 2005 
(+ O2) 
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(- O2) 
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et al., 
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et al., 
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et al., 
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Eriksson 
et al., 
2003 

Roos & 
Klemm, 
2006 

Hautefort 
et al., 
2008 

ndh respiratory NADH 
dehydrogenase 2 

 x    x   x x 

norR/ 
ygaA 

anaerobic NO reductase 
transcriptional regulator; 

     x x x  x 

norV anaerobic NO reductase 
flavorubredoxin 

x x x x  x  x  x 

norW NO reductase x x  x       
nrdH glutaredoxin-like protein x x  x      x 
nrdI ribonucleotide reductase 

stimulatory protein 
x x        x 

setB proton efflux pump       x x  x 
soxS DNA-binding transcriptional 

regulator 
x x      x  x 

spvR spv operon regulator       x x  x 
ssaE secretion system effector       x x  x 
stfC fimbrial outer membrane 

usher 
      x x  x 

STM0084 sulphatase       x x  x 
STM0769 hypothetical protein       x x  x 
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et al., 
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et al., 
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sufA iron-sulphur cluster 
assembly scaffold protein 

x x    x    x 

tehA potassium-tellurite ethidium 
and proflavin transporter 

 x    x    x 

ybeD hypothetical protein  x      x  x 
ycfR outer membrane protein x       x  x 
ydcX inner membrane protein      x  x x x 
ydhC inner membrane transport 

protein 
       x x x 

ydiV flagellar regulatory protein 
CgdR 

 x     x x  x 

yeaR hypothetical protein  x   x  x  x x 
yehR lipoprotein  x      x  x 
yfhH DNA-binding transcriptional 

regulator 
     x  x  x 

ygbA hypothetical protein x    x x x  x x 
yhcN outer membrane protein        x x x 
yhcP p-hydroxybenzoic acid 

efflux subunit AaeB 
       x x x 
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et al., 
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Flatley et 
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(+ O2) 
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(- O2) 

Filenko 
et al., 
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Partridge 
et al., 
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yhcQ p-hydroxybenzoic acid 
efflux subunit AaeA 

       x x x 

yhcR hypothetical protein        x x x 
ylbE hypothetical protein  x      x  x 
yoaG hypothetical protein       x  x x 
yohK hypothetical protein      x  x  x 
ytfE iron-sulphur cluster repair 

di-iron protein 
x x   x x x  x x 
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The role of the regulators OxyR and SoxRS is only minor as a deletion of either 

gene does not increase the sensitivity to either nitrosative compound. Like Fur, 

OxyR and SoxR react to the changes in iron level and to the presence of ROS. 

The authors conclude that the activation of Fur, OxyR and SoxRS is the 

collateral result of the reactivity of RNS with the iron or cysteines. Deletion of fur 

causes severe growth defects when cells are exposed to RNS, indicating that 

continuous de-repression of the Fur regulon results in different effects than 

temporary relief of repression during the exposure to RNS of a wild-type strain. 

The quick recovery of growth of a norR deletion strain is explained with the 

functional redundancy between NorV under NorR regulation and of HmpA, 

which is not part of the NorR regulon.  

Changes in expression levels in response to different doses as well as over 

time are also investigated using primer extension assays and Northern blotting: 

The levels of hmpA and norV are highest at 1mM GSNO or NaNO2, whereas 

the levels of the hypothetical protein-encoding ygbA stay the same irrespective 

of the RNS concentration. The induction of both hmpA and ygbA is noted at 0.1 

mM GSNO or 0.1 mM NaNO2, showing that both genes are highly responsive to 

RNS. In addition, their expression levels peak after 5 and at 90 minutes. These 

similarities further stress the possible involvement of YgbA during RNS defence. 

Transcriptomic profile of E. coli during anaerobic growth and NO exposure 

In 2005, the transcriptomic profile of E. coli grown anaerobically in the presence 

of 50 µM NO has been published (Justino et al, 2005). RNA extraction has been 

performed fifteen minutes after the addition of NO. Anaerobic conditions 

minimize the interference of oxygen with NO and an increased production of 

RNS as a result. A range of differences, but also similarities in comparison to 

the aerobic study have been found. The NO detoxification genes hmpA and 

norVW are again among the up-regulated genes. The Fur regulon shows 

increased levels, further stressing Fur’s role as a NO-responsive regulator. In 

addition, FNR repression is relieved and FNR activated genes have significantly 

decreased expression levels. Therefore, FNR is added to the list of NO-

sensitive regulators. The class of genes with the highest percentage of changes 

in expression levels belongs to genes encoding hypothetical proteins (17%), 

followed by genes involved in energy metabolism and transport and binding 
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(13% each). Transport and binding of metals as well as multi-drug transporters 

include ydhK, encoding a hypothetical fusaric acid resistance protein; ydh, 

encoding a putative drug-exporter that confers antibiotic resistance and tehAB, 

encoding for tellurite resistance. DNA repair is also of importance as the nrd 

operon is highly up-regulated. NrdEF encode for a class Ib ribonucleotide 

reductase facilitating the synthesis of deoxyribonucleotides for the synthesis of 

DNA. 

Changes in genes encoding fimbrial-like proteins such as fimG are observed 

and a decrease in the flagellar biosynthesis gene flgB indicates that E. coli 

might reduce surface protein expression in response to NO. The interference of 

NO with [Fe-S] clusters results in a significant increase in genes of the suf 

operon and iscA and iscR. These genes allow for the new formation and repair 

of [Fe-S] clusters. The group has identified the importance of YtfE for dealing 

with NO stress and it has later been attributed to the repair of NO-induced 

damaged to [Fe-S] clusters (Justino et al, 2006; Justino et al, 2007). 

In conclusion, this study has outlined that E. coli’s survival to NO exposure is 

due to a change in expression levels of NO detoxification enzymes (hmpA, 

norVW), increased expression of the assembly system of [Fe-S] clusters (iscA, 

iscR, suf), DNA repair (nrd), an increase in the energy production (aceEF, lpdA) 

all under the regulation of stress-responsive regulators Fur, FNR and SoxR. 

Only 10% of genes identified in this study are overlapping with the genes 

identified in the previous, aerobic study. The differences are attributed to the 

change of growth medium (minimal salts instead of LB-rich medium) and the 

difference in oxygen levels during growth (anaerobic, not aerobic growth). 

Shortly after, the transcriptional adaptation of E. coli to the addition of 200 µM 

GSNO during aerobic and anaerobic steady-state growth in chemostats has 

been published (Flatley et al, 2005). As the bacterial growth in a chemostat is 

tightly controlled and less affected by parameters associated with batch culture, 

fewer genes show a significant change in expression levels after GSNO 

addition. A transient stop in oxygen uptake is observed and cell viability 

decreases by 70%, but adaptation to NO is achieved after five minutes. During 

aerobic growth, 17 genes are significantly up-regulated and only four show 

lower expression levels (codB (cytosine permease), nac (transcriptional 
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regulator), ydcC (conserved protein), yeaD (conserved protein)). The NO 

detoxification genes hmpA and norV, again, are among the group of up-

regulated genes. In addition, six genes of the met operon are induced. The met 

genes are involved in the regulation and biosynthesis of methionine. A 

connection between methionine and NO is proposed to be the result of 

nitrosation of homocysteine (Hcy) by GSNO, which is then depleted from the 

synthesis pathway. Up-regulation of the met genes allows for the compensation 

of loss of Hcy. Deletion of individual met genes results in higher sensitivity 

towards GSNO during disc diffusion assays and providing exogenous 

methionine significantly increases the survival of wild-type cultures. The levels 

of hcp, encoding the hybrid cluster protein, and yhaO, gene for a putative 

transport protein, are also significantly increased. 

During anaerobic growth, ten genes have significantly increased expression 

levels, when the expression levels of three genes are significantly reduced. 

Among the up-regulated genes, there is an overlap of six genes with the set of 

genes from the aerobic study: norV, hcp, yhaO as well as three met operon 

genes. In addition, norW and the gene for the ribonucleotide reductase 

accessory protein nrdH are also up-regulated. Both have already been 

highlighted in the Justino et al. study. In contrast to the previous two studies, no 

effect of Fur regulation is observed and it has been proposed that this is the 

result of the sufficient concentration of Fe in the defined medium. The influence 

of NorR regulation on norVW is further supported. Without the transcription of 

hmpA during anaerobic growth, it has been shown that expression of norVW is 

sufficient for NO detoxification. Furthermore, the genes of the methionine 

biosynthesis provide additional protection against NO. Although regulation of 

hcp via FNR and NarLP has previously been identified, the role of Hcp is still 

unclear (Van Den Berg et al, 2000). 

A close link between NsrR regulated genes and NO defence has been shown in 

the past through gene regulation of hmpA, ytfE and ygbA, encoding for a 

hypothetical protein (Bodenmiller & Spiro, 2006). A comparison of gene 

expression levels between an E. coli K-12 MG1655 parent and a nsrR deletion 

strain has been performed with the aim to evaluate the NsrR regulon (Filenko et 

al, 2007). Relief of NsrR-mediated repression of gene expression is observed 
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for several genes and operons during anaerobic growth, including hcp-hcr 

(hydroxylamine reductase and oxidoreductase), yeaR-yoaG (putative tellurite 

resistance), nap (nitrate reductase), hmpA (NO dioxygenase), ygbA 

(hypothetical protein), nrfA (cytochrome c nitrite reductase) and ytfE (iron-

sulphur repair). Although the nap operon encoding for a nitrate reductase has 

been shown to be NsrR regulated, the other E. coli nitrate reductase genes 

narGHIJ and the nitrate reductase genes nirBD are not affected by NsrR. The 

tight regulation of hcp-hcr has further highlighted the potential of Hcp during NO 

detoxification.  

A further analysis with the aim to identify direct NsrR binding sites across the E. 

coli genome has been performed using ChIP-chip (Partridge et al, 2009). Of 62 

identified NsrR-binding sites, 33 have previously been identified, including hcp-

hcr, hmpA, nrfA, yeaR-yoaG, ygbA and ytfE. In addition, several sites are 

located within promoter sequences of genes whose expression is significantly 

increased during the infection of the human urinary tract such as tehAB (Roos & 

Klemm, 2006). New NsrR targets are located in six categories of genes: Motility 

(e.g. fliA, fliL), carbon and energy metabolism (e.g. aceF, ndh), NO defence 

(norR, norV), proteolysis (e.g. clpB, ptrA), transport processes (e.g. dsdX, yhfC) 

and stress responses (sodB, sufA). The effect of NsrR on motility is further 

demonstrated as the absence of NsrR results in an increase in motility as did 

exposure to NO, a response which is not the mediated by HmpA. Additionally, 

surface attachment of an uropathogenic E. coli strain increases when nsrR is 

deleted or when the wild-type strain is exposed to NO. Therefore, NsrR binding 

represses motility and attachment until E. coli is exposed to NO, signalling 

arrival of the bacteria within the human body.  

Further analysis of the NsrR regulon of S. Typhimurium has been published 

recently, and although it has not available to inform the experiments conducted 

in this thesis, the results have been included here for completion. This study 

has analysed the role of NsrR regulated genes for aerobic NO detoxification by 

Salmonella (Karlinsey et al, 2012). NsrR-regulation is defined using the 

comparison of gene expression levels across the whole genome of a wild-type 

strain 14028 with levels in an isogenic nsrR deletion strain. The results indicate 

that apart from hmpA, more than 30 operons are up-regulated. This list of up-
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regulated operons include among others, hcp-hcr, yeaR-yoaG, ygbA, ytfE and 

STM1808. Bioinformatics have further revealed NsrR-binding sites upstream of 

tehAB, but confirmation by qRT-PCR is only possible for operons identified 

using microarray analysis. The deletion strains of single genes have been 

created and sensitivity towards the NO-releasing compound Spermine-

NONOate has been tested in LB medium in the presence of oxygen. 

Confirmation of hmpA sensitivity is shown along with impaired growth of 

∆STM1808. No sensitivity of the other deletion strains has been observed. In 

M9 minimal medium the sensitivity of strains increases. A contribution of HmpA, 

Hcp, YgbA and STM1808 is proposed to help with the aerobic resistance of S. 

Typhimurium against nitrosative stress.  

 

3.1.2 In vivo analyses 
In 2003, Eriksson et al. have published the first comprehensive analysis of the 

S. Typhimurium transcriptome during infection of murine macrophages. This 

study identifies more than 900 genes that are significantly up-regulated inside 

macrophages compared to a LB culture. Of relevance to this study they include 

hmpA, norV and its regulator norR. Apart from hmpA, three other NsrR-

regulated genes also have high expression levels: hcp, hcr and ytfE are 

significantly up-regulated after four (hcp, hcr) and eight hours (ytfE) 

respectively, indicating the potential role of the encoded proteins in the 

response towards nitrosative and peroxynitrite stress in macrophages. As 

mentioned in the main introduction, the release of NO by macrophages occurs 

at approximately eight hours after the uptake into the intracellular vesicles, 

whereas release of ROS occurs after approximately four hours. Therefore, the 

changes in gene expression of hcp and hcr relate to the release of ROS and the 

changes in gene expression of ytfE are the result of the release of NO. 

Through examining the expression profiles this group has established that the 

environment of the SCV is high in potassium, but low in magnesium and 

phosphate. No induction of iron acquisition or storage genes is observed, 

although it is known that NO mimics the depletion of iron by e. g. by interfering 

with Fe-Fur complexes (Crawford & Goldberg, 1998a). Due to the expression of 

operons for e. g. succinate dehydrogenase, it is concluded that oxygen is 
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available in the SCV. In correlation with previous reporter gene assays, the 

induction of various SPI-2, SPI-3 and SPI-5 genes (e.g. ssrAB, mgtBC and 

pipABD, respectively) has been shown. 

In comparison to the intracellular macrophage environment, in the epithelial cell 

(HeLA) intracellular environment is free of NO as epithelial cells do not possess 

iNOS needed for NO production. In HeLa cells, the transcriptional levels of the 

known NO detoxification and repair genes hmpA, norV, nrfA and ytfE do not 

change significantly (Hautefort et al, 2008). Thus they play a specific role during 

exposure to oxidative and nitrosative stress in comparison to a more general 

role in S. Typhimurium infection. 

The transcriptomic profile of the asymptomatic bacteriuria-causing E. coli strain 

83972 has been performed to investigate which genes are expressed during 

colonization of the urinary tract (Roos & Klemm, 2006). The study reveales an 

increase in expression levels of genes from the nar, fdn and met operons in 

comparison with in vitro-grown 83972 cells. Iron acquisition is of high priority 

since the concentration of soluble iron is low in the urinary tract and almost all 

genes with a role in iron transport and uptake are up-regulated (iucABCD, 

sitABCD, iroBCDEN, chu operon). Up-regulation of the nar and fdn operons is 

reflecting the high concentration of nitrate in human urine and correlates to 

increased levels of nirBC and nrfA, which allow for reduction of nitrite. In 

accordance with reports about NO tolerance and virulence of uropathogenic E. 

coli strains, up-regulation of hmpA, ytfE and norV has been reported. This could 

be an explanation for persistent growth of this E. coli strain in the urine without 

eradication by the immune system. In addition, it allows for the use of nitrate for 

respiration without the accumulation of toxic endogenous NO.  

To draw a comparison between in vitro and in vivo studies has proven difficult. 

Both systems have advantages, but are too different to compare directly. It is 

also difficult to compare in vitro experiments from different laboratories due to 

the impact even subtle changes in environment can have on transcription.  

Nevertheless, the recent study on NsrR regulation highlights genes that are also 

reported to be up-regulated during urinary tract infections caused by E. coli as 

well as have been found to be up-regulated during intracellular survival of 

Salmonella (Eriksson et al, 2003; Roos & Klemm, 2006). Overlaps between in 
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vitro and in vivo studies, validate the importance of particular genes for NO 

detoxification. In summary, the literature search has revealed that in particular 

three genes are of importance for NO defence in enteric bacteria, namely 

hmpA, norV and ytfE. In addition, several other genes have been implicated in 

detoxification of NO: hcp-hcr, ygbA, yeaR-yoaG, nrfA and STM1808. Their 

specific roles during NO exposure and the infection process of Salmonella in 

particular, however, have not been fully investigated. 

 

3.2 Aim 
The aim of this study is to make a comparative analysis of the Salmonella 

Typhimurium transcriptome during endogenous and exogenous NO exposure 

and to determine a core NO detoxification regulon. These studies have been 

carried out previously by members of the Richardson and Rowley groups. One 

study highlights the transcriptional response to an endogenous source of NO 

produced as a side product of nitrate metabolism. The other experiment 

measures the transcriptional response to aqueous NO addition to the culture. 

The hypothesis is that genes up-regulated in both conditions would form a core 

set of genes or regulon that allow Salmonella to deal with all aspects of NO 

detoxification. This core NO regulon would be further investigated in other 

chapters. 

 

3.3 Experimental design 
For the identification of new mechanisms on how Salmonella detoxifies NO, 

several aspects need to be considered: When using microarray analysis for the 

identification, every experimental condition leads to the increase in gene 

expression of some genes that have no involvement in NO detoxification in 

particular, but might belong to a general stress response or to a metabolic 

pathway affected by nitrosative stress or are induced under specific growth 

conditions. 

The procedure for the microarray experiment has been described previously 

and was performed by members of the Richardson and Rowley groups (Appia-

Ayme et al, 2011). Continuous culturing and the analysis of nitrate, nitrite and 
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nitrous oxide concentration follow the protocol in 2.14 and 2.15. The preparation 

of aqueous NO solution has been described in 2.9.2. The extraction of RNA has 

been described in 2.11 but MGN medium was used for continuous growth and 

2.12 describes the procedure for quantitative real-time reverse transcription 

polymerase chain reaction (qRT-PCR). The analysis presented here is based 

on the experimental data generated by others, mostly by Dr Paul Mills (NO) and 

Dr Gary Rowley (N2O). 

 

3.3.1 Endogenous NO production 
The production of NO is not solely the result of exposure within macrophages, 

but it also occurs as a product of nitrate respiration as part of denitrification. If S. 

Typhimurium is provided with a limited source of glycerol, a high concentration 

of nitrate as an electron acceptor and is grown anaerobically, nitrate is 

predominantly converted into nitrite (Figure 10). Nitrite is further reduced to NO. 

This endogenous NO production is potentially toxic for the cells and its 

accumulation should be avoided. Therefore the NO produced is reduced to 

N2O. Figure 6 (page 50) shows the denitrification pathway and the genes 

involved. N2O readily diffuses out of cells, reducing its toxicity potential for 

bacteria like E. coli and Salmonella that lack a nitrous oxide reductase. 

Additionally, extracellular N2O can be measured in the headspace of 

bioreactors and N2O concentration of the gas and liquid phase can be 

calculated (Rowley et al, 2012).  

For the analysis the gene expression levels at three different time points have 

been determined: At five hours of continuous growth, aerobic growth takes 

place as air is still supplied into the chemostat. No nitrate is used and hence no 

nitrite or N2O production is seen (Figure 10). No induction of nitrate respiration 

genes is expected. The gene expression levels at this time point provide the 

basis for comparison with later time points. 

At 24 hours, the air supply is turned off and a switch to anaerobic respiration 

using nitrate is observed (Rowley et al, 2012). After three to four changes of 

vessel volume (i.e. ~80 to 120 hours), a steady growth state is achieved. 

Further time points for RNA sampling are chosen at the beginning (80 h) and 

the end of the steady state of the experiment (120 h). 
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The comparison of genes differently induced after the switch from aerobic to 

anaerobic respiration should include genes involved in denitrification, in the 

metabolic switch from aerobic to anaerobic growth, but also those aiding in 

dealing with the toxicity and reactivity of NO. 
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Figure 10: Nitrate, nitrate and nitrous oxide concentrations during continuous 

growth of Salmonella Typhimurium SL1344 under glycerol-limitation and nitrate-

sufficiency (Rowley et al, 2012). 

Nitrate concentrations (in mM) are shown in blue diamonds, nitrite [mM] in 

green triangles, respectively. Nitrous oxide concentrations range in µM levels 

and are shown in red squares. The black line indicates the switch from aerobic 

to anaerobic growth with oxygen being consumed within one hour.  
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3.3.2 Exogenous NO exposure 
During infection, Salmonella encounters exogenously produced NO within the 

phagosomes of macrophages. Although it has been shown that Salmonella 

blocks the fusion of the lysosome with the phagosome (Uchiya et al, 1999), the 

presence of NO can still be detected within murine macrophages (Webb et al, 

2001). Within non-activated macrophages, the nitrosative burst occurs eight 

hours after bacterial uptake (Eriksson et al, 2000). However, when 

macrophages are activated with IFN-γ before bacterial exposure, the burst 

occurs after four hours (Webb et al, 2001). The reported NO concentrations 

within macrophages range from 20 µM (Eriksson et al, 2000) to 40 µM, rising to 

90 µM for activated macrophages (Vazquez-Torres et al, 2000a). 

Here, Salmonella is grown anaerobically in a minimal salts medium and the 

addition of 40 µM aqueous NO solution is used to mimic conditions of NO 

release in the macrophages.  

 

3.4 Results 

3.4.1 Expression profile during endogenous NO production 
In order to cause endogenous NO production by Salmonella, the bacteria are 

continuously grown anaerobically in the presence of nitrate as an electron 

acceptor. As a control time-point for expression, RNA samples are collected at 

5 hours, where growth in MGN occurs aerobically. This condition ensures the 

absence of nitrate respiration and no N2O, an indicator for NO production, is 

detected. Steady state of the cultures is reached after 80 to 120 hours, when 

the cultures have undergone a switch from aerobic to anaerobic growth, using 

nitrate and increasing nitrite and N2O concentrations. At these points 

Salmonella are undergoing nitrate respiration and are therefore dealing with 

nitrosative stress as a consequence of NO and N2O in the medium. 

For data analysis, the cut-off criteria are set to only include genes whose 

expression is ≥ five fold up-regulated at both 80 and 120 hours in comparison to 

5 hours, with an FDR of 0.05. After this filtering 45 genes are significantly up-

regulated (Table 16). 

  



 

 

Table 12: Salmonella Typhimurium genes up-regulated during NO (N2O) generating conditions  
Genes presented are a minimum of five fold up-regulated (p<0.05) during steady state in nitrate-sufficient (22 mM), 
glycerol-limited (5 mM) conditions. Significance is derived from a minimum of three biological replicates. Gene annotations 
from the KEGG database are shown. 
  fold change for each 

operon member: 
gene: annotation: 5 h to 80 h 5 h to 120 h 
agp glucose-1-phosphatase/inositol phosphatase 7 5 
aphA acid phosphatase/phosphotransferase 6 7 
cstA carbon starvation protein 7 6 
cydAB cytochrome d terminal oxidase polypeptide subunit I & II 14; 13 10; 10 
ego ABC-type aldose transport system ATPase component 5 8 
fdnGHI formate dehydrogenase-N subunits 17; 13; 8 21; 17; 9 
flgFI flagellar basal body rod protein; flagellar basal body P-ring protein 15; 9 7; 6 
glpKX glycerol kinase; ructose 1,6-bisphosphatase II 18; 5 17; 6 
hcr HCP oxidoreductase 77 67 
hmpA nitric oxide dioxygenase 172 121 
hypB hydrogenase nickel incorporation protein HypB 8 8 
metABF homoserine O-succinyltransferase; cystathionine γ-synthase; 5,10-

methylenetetrahydrofolate reductase 
10; 14; 12 6; 8; 7 

narGHIJK nitrate reductase 1 subunits 203; 54; 26; 
80; 73 

179; 50; 25; 
82; 57 

norV anaerobic nitric oxide reductase flavorubredoxin 8 4 
ompF outer membrane protein F precursor 23 14 
purF amidophosphoribosyltransferase 5 5 
putA bifunctional PutA protein; bifunctional in plasma membrane proline 

dehydrogenase and pyrroline-5-carboxylate dehydrogenase OR in cytoplasm a 
transcriptional repressor; contains frameshifts (1) colibase information 

19 10 

sbmC DNA gyrase inhibitor 7 10 
sfbABC ABC transporter ATPase/permease 14; 8; 8 14; 11; 8 



 

 

  fold change: 
gene: annotation: 5 h to 80 h 5 h to 120 h 
stcA fimbrial-like protein 6 9 
thiFH thiamine biosynthesis proteins 6; 9 5; 7 
udg UDP-glucose/GDP-mannose dehydrogenase 6 8 
ybdHL hypothetical protein (uncharacterised oxidoreductase in EC); aminotransferase 14; 9 11; 7 
ydeV autoinducer-2 (AI-2) kinase 5 6 
ydeZ sugar transport protein 5 7 
yeaR-yoaG hypothetical proteins 30; 10 41; 12 
yfbG bifunctional UDP-glucuronic acid decarboxylase/UDP-4-amino-4-deoxy-L-

arabinose formyltransferase 
7 9 

ygbA Hypothetical protein 11 12 
yneA sugar transport protein 7 8 
ytfE iron-sulphur cluster repair di-iron protein 43 36 
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Using qRT-PCR, it is possible to also include the changes in gene expression of 

norV since this gene has not been included on the probes of the microarray 

slide. The changes in gene expression for norV levels can be seen in Figure 11. 

The endogenous NO induced list includes a range of NsrR- and FNR-regulated 

genes such as hmpA, hcr, yeaR-yoaG, narGHIJK, cydAB and ygbA. The growth 

conditions based on high nitrate and low glycerol concentrations are reflected in 

the significant expression levels changes of genes known to be involved or 

putatively involved in glycerol metabolism (glpFKQX, ybdH) and in line with 

previous reports, the expression levels of fdnGHI are increased in response to 

nitrate (Overton et al, 2006a). 

The known and proposed NO detoxification genes hmpA, norV and ytfE are 

highly expressed and all three genes have previously been highly up-regulated 

in response to nitrosative stress (Filenko et al, 2007; Flatley et al, 2005; Justino 

et al, 2005; Karlinsey et al, 2012; Mukhopadhyay et al, 2004).  

The high expression levels of above 120 for hmpA reflect the need to activate 

NO detoxification and repair mechanisms to avoid accidental poisoning by NO. 

Although in vitro experiments have shown low activity levels of hmpA 

anaerobically, deletion of hmpA results in reduced intracellular survival of S. 

Typhimurium in human macrophages (Mills et al, 2008; Stevanin et al, 2002). 

Therefore, the importance of hmpA during anaerobic NO detoxification should 

not be underestimated. 

The levels of narG also peak at high values of above 150. This highlights the 

importance of NarG as a nitrate reductase for the growth and survival of 

Salmonella in glycerol-limited and nitrate-sufficient medium. 

In comparison with previous studies, several genes identified here overlap with 

results of other groups: Amongst up-regulated genes after the addition of GSNO 

as a nitrosylating agent during continuous anaerobic culturing of E. coli are 

several methionine biosynthesis genes (metABF) (Flatley et al, 2005). A link 

between the met genes and NO detoxification has been identified to lie in the 

nitrosylation of homocysteine, also linked to hmpA expression as previously 

described (De Groote et al, 1996; Membrillo-Hernández et al, 1998). 
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Figure 11: Gene expression levels 

of norV at 80 h and 120 h of 

anaerobic growth in MGN 

Gene expression levels have been 

normalised to levels of ampD and to 

values at 5 h where cells have been 

growing under aerobic conditions. 

 

 

The high levels of expression of cytochrome d oxidase genes cydAB have 

previously been reported during anaerobic growth of E. coli after the addition of 

trimethylamine-N-oxide (Filenko et al, 2007) and in S. aureus (Richardson et al, 

2006). The increased expression of this alternative bd-type ubiquinol oxidase, 

usually functioning during aerobic growth, might allow survival during the 

increased stress of NO onto the respiratory chain whilst compensating for the 

decreased functioning of other oxidases (Stevanin et al, 2000). 

In general, the comparison between studies using different NO donors has been 

difficult, especially if different media and growth conditions have been used. 

However, there is some overlap with regards to genes such as hcr, hmpA (NO 

dioxygenase), norV (NO reductase) and ytfE (iron-sulphur repair) across 

several studies, indicating the importance and potential role of their proteins for 

NO detoxification.  

 

3.4.2 Expression profile during exposure to 40 µM NO 
The addition of 40 µM NO mimics the NO concentration generated by iNOS in 

human macrophages during the nitrosative burst. During the experiment, 

Salmonella wild-type cells are exposed to 40 µM NO in anaerobic conditions 

and samples for RNA analysis are taken before as well as ten minutes after the 

addition of NO. For further analysis, a FDR cut-off of 0.05 has been chosen for 

gene expression levels at 10 minutes in comparison to 0 minutes. After 10 mi-
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nutes of NO exposure, the expression levels of 139 genes are significantly 

increased (Table 13). 

Of the three previously identified NO detoxification genes, hmpA and norVW 

(STM2840, ygbD) are up-regulated. The proposed [Fe-S] cluster repair gene 

ytfE is also among the up-regulated genes, supporting its potential role of NO-

caused damage repair.  

The regulation by NsrR and FNR marks one of the largest groups of up-

regulated genes, which include NO detoxification (hmpA, ytfE), pyruvate 

dehydrogenases (aceEF, lpdA, pdhR) and putative tellurite resistance genes 

(tehAB, STM1808, yeaR). 

The NsrR-regulon comprises the repression of the ytfE gene (Filenko et al, 

2007) and also regulates tehB in Salmonella spp., a homolog encoding for a 

tellurite resistance protein that is also found in the genome of E. coli (Rodionov 

et al, 2005). [Fe-S] clusters are prone to damage by NO which results in de-

repression of NsrR regulated genes in E. coli after endogenous NO exposure 

(Pullan et al, 2007). Other regulators playing a role in the nitrosative stress 

response and coordinating the change of gene expression are FNR and Fur 

that also contribute to gene expression changes in this study (Constantinidou et 

al, 2006; Overton et al, 2006a; Pullan et al, 2007). 

The addition of nitrate or nitrite respectively causes the up-regulation of the 

several operons including hcp-hcr and nirBDC that belong to the FNR-activated 

genes. The hmp and the ytfE operon are among the operons that are repressed 

by FNR, but the addition of either nitrite or nitrate causes an activation of the 

gene expression. This indicates the putative regulatory mechanism, which 

ensures that the expression of hmp is not disabled during the exposure to RNS. 

The exposure to NO negatively affects the [Fe-S] clusters of FNR and renders 

its repression ineffective, resulting in the expression of the protective 

flavohaemoglobin HmpA. Fur is also affected by the presence of nitric oxide, 

potentially by reactivity of NO with protein-bound iron (Pullan et al, 2007). 

 



 

 

Table 13: Salmonella Typhimurium genes up-regulated during exogenous NO addition  
Genes presented are a minimum of two-fold up-regulated (p<0.05) 10 min post NO addition to anaerobic cultures when 
compared to 0 min. Data shown is the mean of five biological replicates. Annotations have been supplied from the KEGG or 
the NCBI database where indicated by an asterisk. 
 
gene: annotation: fold change: 
aceEF pyruvate dehydrogenase subunit E1; dihydrolipoamide acetyltransferase 30; 18 
avrA secreted effector protein 12 
bfd bacterioferritin-associated ferredoxin 8 
clpB protein disaggregation chaperone 9 
cstA carbon starvation protein 4 
cueO multicopper oxidase 32 
cydB cytochrome d terminal oxidase polypeptide subunit 4 
cyoDE cytochrome o ubiquinol oxidase subunit IV; protohaem IX farnesyltransferase 15; 9 
entABCE 2,3-dihydroxybenzoate-2,3-dehydrogenase; 2,3-dihydro-2,3-dihydroxybenzoate synthetase; 

isochorismate synthase; enterobactin synthase subunit E 
26; 63; 21; 26 

fbaB fructose-bisphosphate aldolase 5 
fdoI formate dehydrogenase-O subunit γ 2 
fepABC outer membrane receptor; iron-enterobactin transporter periplasmic binding protein; iron-

enterobactin transporter ATP-binding protein 
19; 4; 5 

fes enterobactin/ferric enterobactin esterase 14 
fhuACE ferrichrome outer membrane transporter; iron-hydroxamate transporter ATP-binding subunit; 

ferric-rhodotorulic acid outer membrane transporter 
18; 8; 6 

fliC flagellin 3 
fljB flagellin 2 
foxA ferrioxamine receptor 4 
fxsA cytoplasmic membrane protein* 2 
gcd glucose dehydrogenase 8 
gpmA phosphoglyceromutase 24 
hcr HCP oxidoreductase 2 



 

 

gene: annotation: fold change: 
hin DNA-invertase 3 
hmpA nitric oxide dioxygenase 185 
hscB co-chaperone 2 
hslJ heat-inducible protein 2 
ibpAB heat shock protein/chaperone 6; 10 
ilvC ketol-acid reductoisomerase 17 
iroBCDEN glycosyl transferase family protein; ABC transporter; enterochelin esterase-like protein; 

hydrolase; outer membrane receptor FepA 
54; 24; 9; 9; 77 

katE hydroperoxidase II 6 
lpdA dihydrolipoamide dehydrogenase 9 
msrA methionine sulphoxide reductase A 5 
napBG citrate reductase cytochrome c-type subunit; quinol dehydrogenase periplasmic component 4; 2 
ndh respiratory NADH dehydrogenase 2 19 
nifSU cysteine desulphurase; scaffold protein 4; 6 
norVW anaerobic nitric oxide reductase flavorubredoxin; nitric oxide reductase 613; 204 
nrdA ribonucleotide-diphosphate reductase subunit α 4 
osmY hypothetical protein 14 
pdhR transcriptional regulator 8 
phoH riboflavin biosynthesis protein 10 
poxB pyruvate dehydrogenase 5 
rmf ribosome modulation factor 3 
sitABCD periplasmic-binding protein, ATP-binding protein; permease 88; 94; 80; 49 
sodA superoxide dismutase 61 
STM0382 permease 2 
STM0412 hypothetical protein  2 
STM0497 hypothetical protein 5 
STM0771 ABC-type cobalamin/Fe3+-siderophore transport component 8 
STM1250 hypothetical protein 81 



 

 

gene: annotation: fold change: 
STM1331 No information available 2 
STM1586 hypothetical protein 24 
STM1808 hypothetical protein 195 
STM1868A lytic enzyme 169 
STM1873 hypothetical protein 2 
STM2314 chemotaxis signal transduction protein 3 
STM2405 indolepyruvate decarboxylase 3 
STM2697 phage tail-like protein 3 
STM2923 hypothetical protein 2 
STM3160 inner membrane protein 5 
STM3362 hypothetical protein 4 
STM3698 permease 2 
STM3766 hypothetical protein 2 
STM4552 inner membrane protein 26 
STM4562 hypothetical protein 6 
sufCDS cysteine desulfurase subunit ATPase; cysteine desulfurase activator complex subunit; bi-

functional cysteine desulfurase/selenocysteine lyase 
14; 13; 11 

talA transaldolase A 5 
tcp methyl-accepting transmembrane citrate/phenol chemoreceptor 5 
tehAB potassium-tellurite ethidium and proflavin transporter; tellurite resistance protein 4; 6 
treAF trehalases 4; 10 
uspB universal stress protein 5 
ybaY hypothetical protein 5 
ybfA hypothetical protein 5 
ybgET hypothetical proteins 3; 4 
ybhRS transporter proteins 3; 2 
ybiH DNA-binding transcriptional regulator 4 
ybjP lipoprotein 2 



 

 

gene: annotation: fold change: 
ycfR outer membrane protein 18 
ycgB SpoVR family protein 7 
ydcK nucleoside-diphosphate-sugar pyrophosphorylase 3 
ydiU hypothetical protein 3 
yeaG serine protein kinase 18 
yeaR-yoaG hypothetical proteins 27; 7 
yehYZ ABC-type proline/glycine betaine transport system permease component; transporter 3; 5 
yfaE 2Fe-2S ferredoxin 2 
yfhFP putative iron-sulphur cluster insertion protein ErpA*; DNA-binding transcriptional regulator 

IscR 
3; 16 

ygaM hypothetical protein 8 
ygbAI hypothetical protein; regulatory protein 14; 6 
yghU glutathione S-transferase 6 
ygiN hypothetical protein 3 
yhbO intracellular proteinase 4 
yhcN outer membrane protein 5 
yhgGHI ferrous iron transport protein C; gluconate periplasmic binding protein; Fe/S biogenesis pro-

tein NfuA 
4; 2; 3 

yhhA hypothetical protein 8 
yiaG transcriptional regulator 14 
yifA transcriptional regulator HdfR 2 
yjcB inner membrane protein 4 
yohJ hypothetical protein 4 
ypeC hypothetical protein 6 
yqiCG glutathionylspermidine synthase* 2; 6 
ytfE iron-sulphur cluster repair di-iron protein 137 
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The Fur regulon includes the suf, sod and ent operons as well as cyoA, hmpA, 

norW and ytfE (Hernández-Urzúa et al, 2007; Justino et al, 2006; Justino et al, 

2005; Kumar & Shimizu, 2011; Patzer & Hantke, 1999). These genes are all up-

regulated during exogenous NO exposure, stressing the important role of Fur 

regulation in nitrosative stress.  

The presence of NO has been reported to cause disruptions in the bacterial 

respiratory chain. One method of compensation for this is expression of HmpA 

(Stevanin et al, 2000). An increased level of three cytochrome oxidase genes 

(cydB, cyoDE) has been noted in this study that could allow compensating for 

the vulnerability of cytochrome oxidases to NO damage.  

NO also causes the nitrosylation of ribonucleotide reductase. As a 

consequence, the formation of deoxyribonucleotides is disrupted, leading to a 

lack of synthesis and repair of DNA (Lepoivre et al, 1991). The transcription 

levels of nrdA, a gene encoding for such a ribonucleotide reductase, are 

increased and similar findings have been made in several other microarray 

studies (Filenko et al, 2007; Flatley et al, 2005; Justino et al, 2005; 

Mukhopadhyay et al, 2004). Increased expression of nrdA could allow for 

sufficient repair of DNA during nitrosative stress conditions. 

A large number of genes involved in metal homeostasis and [Fe-S] cluster 

formation are highly up-regulated. NO readily replaces iron in [Fe-S] clusters, 

leading to conformational changes of proteins and the release of free iron, 

which fuels the Fenton reaction, resulting in the release of hydroxyl radicals. 

Therefore, protein degradation is increased, but also the levels of ROS within 

the cell. Hence, bacteria need to ensure that iron is stored or bound using 

ferritins and siderophores. In addition, [Fe-S] cluster formation systems are 

activated to a higher level to allow the incorporation of iron into new [Fe-S] 

clusters as a way to sequestering free iron and to allow the formation of new 

proteins containing [Fe-S] clusters. With regards to iron storage, the levels of 

the Bfd, forming a complex with the bacterioferritin Bfr are increased. The 

release of Fur repression upon Fur negatively regulated gene clusters is 

eminent for operons involved in metal ion uptake (sit) as well as for 

siderophores (iro, ent). Similar relief of Fur repression has been reported 
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previously (Mukhopadhyay et al, 2004), underlining the important role of Fur in 

response to RNS. With regards to [Fe-S] clusters, the involvement of three 

pathways for their formation has been shown. Of the three pathways, members 

belonging to the nitrogen fixation operon (nifSU), the iron sulphur cluster (iscR) 

as well as from the sulphur formation operon (sufCDS) are highly expressed. 

According to previous reports in the literature, mainly the Suf pathway is 

implicated to be involved under stress conditions (Ayala-Castro et al, 2008), but 

according to the presented results, the other two pathways also play a role. 

In conclusion, a wide range of genes related to metal ion homeostasis and [Fe-

S] cluster formation are up-regulated to reduce potential damage caused by 

free iron, to continue [Fe-S] cluster formation as well as to maintain essential 

iron concentrations. These findings overlap with previous studies, where [Fe-S] 

cluster repair genes from the suf operon and ytfE have been highly up-regulated 

(Justino et al, 2005). Induction of hmpA and norV genes further ensures that 

NO detoxification takes place and increased transcription levels have been 

reported in previous E. coli studies (Filenko et al, 2007; Justino et al, 2005; 

Mukhopadhyay et al, 2004). Other genes up-regulated reflect the nitrosylation 

properties of NO and might allow counteracting these effects by increasing the 

number of functional proteins being produced or allowing for repair of damaged 

DNA.  

 

3.5 The core NO regulon 
To understand, which genes are absolutely required to detoxify NO from any 

source, we determine the overlap in genes which are up-regulated in both of 

these transcriptomic datasets. This set of genes hence is referred to as the core 

NO regulon. 

The overlap between the two datasets reveals nine genes to be significantly up-

regulated under both conditions and their respective expressional regulators are 

listed in Table 14. Their functions range from carbon starvation to cytochrome 

oxidase and to putative cytoplasmic proteins. Despite the diversity of gene 

annotations, their regulation is dominated by NsrR, FNR and Fur. 

 



 

 

Table 14: The genes of the core NO regulon, expression levels and their regulation 
  Expression levels: Endogenous NO  
Gene  Gene product  5 h to 80 h 5 h to 120 h Exogenous NO: Regulation  
cstA  Carbon starvation protein  7 6 4 CsrA (Dubey et al, 2003) 

σ70 (Blum et al, 1990) 
cAMP (Schultz et al, 1988; Schultz & Matin, 1991) 

cydB 
(cyd 
operon) 

Cytochrome d terminal 
oxidase polypeptide 
subunit II 

13 10 4 FNR (Govantes et al, 2000) 

hcr  NADH oxidoreductase for 
hcp gene product  

77 67 2 NsrR (Filenko et al, 2007; Filenko et al, 2005; 
Rodionov et al, 2005) 
FNR (Constantinidou et al, 2006) 
OxyR (Almeida et al, 2006; Seth et al, 2012) 

hmpA  Flavohaemoglobin with 
nitric oxide di-oxygenase 
and nitric oxide reductase 
activity 

172 121 185 MetR (De Groote et al, 1996) 
NsrR (Bang et al, 2006; Karlinsey et al, 2012) 
FNR (Cruz-Ramos et al, 2002; Poole et al, 1996) 
Fur (Crawford & Goldberg, 1998a; Hernández-Urzúa 
et al, 2007) 

norV 
(nor 
operon) 

Flavorubredoxin-type nitric 
oxide reductase 

8 4 613 NorR (Gardner et al, 2003; Gardner et al, 2002; 
Hutchings et al, 2002; Mukhopadhyay et al, 2004) 
NsrR (Partridge et al, 2009) 

yeaR-
yoaG  

Putative cytoplasmic 
protein with DUF1971 for 
tellurite resistance; 
putative cytoplasmic 
protein 

30; 10 41; 12 27; 7 NarL (Constantinidou et al, 2006; Lin et al, 2007; 
Squire et al, 2009) 
NsrR (Filenko et al, 2007; Karlinsey et al, 2012) 

ygbA  Putative cytoplasmic 
protein  

11 12 14 NsrR (Bodenmiller & Spiro, 2006; Filenko et al, 2007; 
Gilberthorpe et al, 2007; Karlinsey et al, 2012; 
Rodionov et al, 2005) 

ytfE  [Fe-S] cluster repair 
protein  

43 36 137 FNR (Constantinidou et al, 2006) 
NsrR (Bodenmiller & Spiro, 2006; Karlinsey et al, 
2012; Rodionov et al, 2005) 
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In the next sections, these genes are introduced further and the information 

available in the literature is discussed. 

3.5.1 cstA 
CstA has been annotated as a carbon starvation protein. It has been identified 

as a potential novel Salmonella virulence factor using a Caenorhabditis elegans 

infection model (Tenor et al, 2004). In E. coli cstA has been described as a 

peptide transporter (Schultz et al, 1988; Schultz & Matin, 1991). In 

UniProtKB/Swiss-Prot (accession number P15078) CstA has been annotated to 

contain eighteen trans-membrane domains, supporting the indication that it is 

an integral membrane protein. Transcription of cstA in E. coli is induced mainly 

during carbon starvation, but also occurs under nitrogen limitation (Dubey et al, 

2003; Schultz et al, 1988). Transcription in E. coli has been determined to be 

σ70-dependent, but a role of CRP-cAMP for regulation has also been identified 

(Blum et al, 1990; Schultz et al, 1988; Schultz & Matin, 1991). CstA is also 

regulated at the translational level by the carbon storage regulator protein CsrA, 

which blocks the Shine-Delgarno sequence upstream of cstA (Dubey et al, 

2003). No previous role in NO detoxification or damage repair has been 

recorded in the literature for CstA. 

3.5.2 cydB 
CydB has been annotated as a polypeptide subunit II of the cytochrome d 

terminal oxidase containing three haem cofactors (Osborne & Gennis, 1999). 

The structural analysis of CydAB has revealed the periplasmic location of a ‘Q 

loop’ implicated in quinol binding (Zhang et al, 2004). Hence, it has been 

proposed that CydAB has a function in quinol oxidation leading to the 

production of a proton motive force as part of the electron transport chain. A low 

NO-reductase activity has previously been reported, which is attributed to the 

shared phylogenesis with e.g. haem-containing NO reductases from B. 

japonicum (Saraste & Castresana, 1994). Measurements using purified 

cytochrome bd of E. coli has revealed no measurable NO reductase activity 

(Borisov et al, 2004). Evidence that NO inhibits enzyme activity even during low 

oxygen concentrations has led to the conclusion that E. coli CydAB is not 

functioning as a NO reductase during infection conditions. Such inactivation by 

NO has been shown to be reversible and quick recovery occurs. sIn E. coli, it 
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has been shown that cydB, together with cyoA, encodes for a cytochrome bo 

terminal oxidase in aerobic conditions and for a cytochrome bd type in 

microaerophilic conditions (Puustinen et al, 1991). Recently, a correlation 

between the regulation of cyoA and cydB has been shown: The deletion of one 

gene results in significant increase in expression of the respective other gene 

(Kumar & Shimizu, 2011). In 2000, Govantes et al. have investigated the 

regulation of the cydAB operon and have determined the interplay of the five 

promoters with regulatory factors (Govantes et al, 2000). The regulation of 

promoters P1 to P4 is mediated by the presence of oxygen as well as FNR and 

ArcA, part of a two-component system together with ArcB. Without the presence 

of a functional ArcA, no repression by FNR is observed and the mode of action 

is described as anti-activating. Promoter P5 has been found to be less tightly 

regulated and no effect of FNR- or ArcA-binding has been found. Increased 

transcription levels of cydAB are identified in E. coli when cells are grown 

anaerobically in minimal salts medium and exposed to a NO donor substance 

(Filenko et al, 2007). It has been shown that bacterial respiration is disrupted in 

the presence of NO (Stevanin et al, 2000). An increased amount of cytochrome 

oxidases could be a mechanism to ensure that a sufficient amount of oxidases 

are present to allow successful respiration by supplying a stable proton motive 

force across the membrane (Giuffre et al, 2012). Changes in expression levels 

of cydAB have been recorded in a study involving M. tuberculosis during the 

transition from acute to chronic infection of mice tissue (Shi et al, 2005). These 

changes are attributed to a change in aerobic respiration that allows M. 

tuberculosis to adapt to the host immune system. The multiplication rate and 

persistence of S. Typhimurium ∆cydA mutants are significantly reduced in 

chicken macrophages and in the reticulo-endothelial system of chicken (Turner 

et al, 2003). In a murine macrophage experiment, this phenotype is reversed 

and increased persistence is recorded. In addition, the mutant shows better 

adaptation to low pH. Differences between these phenotypes are attributed to 

the use of different serovars throughout the study. The findings of intracellular 

survival assays using ∆cydA mutants support a role of CydAB during infection 

through defence from NO-mediated stress and adaptation to environments of 

low oxygen concentrations. 
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CydB expression has been found to be increased after exposure to NO or in 

intracellular environments, indicating a role of CydB during infection. 

 

3.5.3 hcr 
Hcr belongs to one operon with hcp and encodes for a NADH-dependent 

oxidoreductase that modifies the gene product of hcp, a hydroxylamine 

reductase gene. Different studies have proposed different possible functions for 

this operon in E. coli: Wolfe et al. have shown that they function as a 

hydroxylamine reductase and Almeida et al. have shown peroxidase activity 

(Almeida et al, 2006; Wolfe et al, 2002). After a NsrR-binding site has been 

predicted (Rodionov et al, 2005), the binding site and its regulation by NsrR 

have been confirmed (Filenko et al, 2007; Filenko et al, 2005). The previously 

proposed induction by hydroxylamine, however, has not been confirmed 

(Filenko et al, 2007). Despite the proven repression of NsrR on the expression 

of hcr, it has been shown that it also belongs to the FNR regulon 

(Constantinidou et al, 2006; Kim et al, 2003). Another regulator of hcp-hcr is 

OxyR and an induction of gene expression by hydrogen peroxide has been 

demonstrated (Almeida et al, 2006). OxyR is a transcriptional regulator, which 

responds to the presence of hydrogen peroxide and consequently it has been 

shown to regulate genes in response to oxidative stress (Zheng et al, 1999). In 

addition, the binding of OxyR to the hcp promoter has been shown recently 

(Seth et al, 2012). The tight regulation by NsrR has been shown to be 

synonymous to NsrR regulation of hmpA and ytfE (Filenko et al, 2007) and an 

increased expression of hcp has also been noted after the addition of 200 µM 

GSNO to a continuous culture of E. coli (Flatley et al, 2005). Recent 

experiments have confirmed the regulation of hcp-hcr by NsrR in Salmonella 

using a microarray approach (Karlinsey et al, 2012). However, no change in NO 

sensitivity has been observed for a hcp deletion mutant strain in comparison to 

the wild-type phenotype, although a role for Hcp-Hcr has been proposed for NO 

detoxification and resistance against NO-mediated inhibition of respiration.  

Induction of hcp-hcr has also been observed within activated RAW264.7 

macrophages using gfp-fusions (Kim et al, 2003). Furthermore, deletion of hcp-

hcr results in a lower LD50 than wild-type when low inoculation doses are used. 
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No differences in intracellular survival and replication are observed at high 

doses. This contradicts findings that a deletion strain of hcp outcompetes wild-

type cells for survival in the spleen of mice (Karlinsey et al, 2012). These 

findings highlight that the precise roles of hcr and hcp have yet to be identified 

and that more research is needed to identify their role during infection. 

 

3.5.4 hmpA 
HmpA is one of the three identified NO detoxification genes and has been 

discussed in detail in Section 1.6.1.  

 

3.5.5 norV 
The gene norV encodes a flavorubredoxin-type NO reductase and is one of the 

characterized NO detoxification enzymes of Salmonella. Its protein function and 

role during infection have been discussed in Section 1.6.2. 

 

3.5.6 yeaR-yoaG 
YeaR and yoaG are two of the many yet uncharacterized genes from the 

Salmonella genome and belong to one operon. YoaG contains a domain of 

unknown function (DUF1869) that has not been characterized further. 

YeaR also contains a domain of unknown function (DUF1971) and it belongs to 

a family of uncharacterised domains predominantly found in tellurite resistance 

proteins (Marchler-Bauer et al, 2009). This domain has been found in a range of 

other bacteria, most of which belong to the Gamma-proteobacteria, ranging 

from soil-dwelling organisms such as P. denitrificans to pathogens like Yersinia 

pestis and H. influenzae or gastrointestinal inhabitants, e.g. E. coli K-12. This 

DUF is also found in the S. Typhimurium-specific gene STM1808, which will be 

discussed later.  

Irrespective of its putative role in tellurite resistance, it has been reported that 

the expression of yeaR in E. coli is induced by nitrate (Constantinidou et al, 

2006) as well as by the presence of nitric oxide (Justino et al, 2005). Further 

studies in E. coli have also determined that yeaR expression is repressed by 
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NsrR (Filenko et al, 2007; Partridge et al, 2009) and by FNR, although no FNR 

site has been identified (Constantinidou et al, 2006). Evidence for NsrR 

regulation in Salmonella has been published recently (Karlinsey et al, 2012). Lin 

et al., though, have shown that regulation of yeaR and its downstream 

neighbour yoaG occurs in a nitrate- and nitrite-dependent manner under the 

control of nitrate/nitrate response regulator NarL as well as NsrR with no 

involvement of FNR (Lin et al, 2007). This is further supported by biochemical 

analyses showing that NarL binds to a binding site upstream of yeaR without a 

requirement for FNR (Squire et al, 2009). De-repression of NsrR, however, is 

necessary before transcription of yeaR-yoaG is initiated. In addition, Fis, a 

sequence-specific DNA-binding protein, interferes with NarL binding. Two Fis-

sites close to the DNA-binding site of NarL lead to displacement of NarL by Fis, 

which prevents formation of an open complex that would initiate transcription of 

the downstream operon. 

The influence of nitrate, nitrite and NsrR on transcription indicates that YeaR 

might play a role during nitrosative stress and this link needs to be investigated 

further.  

YoaG and yeaR are part of one operon under the regulation of NarL and 

repression of NsrR (Constantinidou et al, 2006; Filenko et al, 2007; Lin et al, 

2007). In S. Typhimurium, a putative nitric oxide reductase (STM1273) is found 

downstream of the yeaR-yoaG operon. In 2005, the Northeast Structural 

Genomics Consortium (NESG) added a solution structure to the Protein 

Knowledgebase (UniProtKB/Swiss-Prot, accession number P64496) with 

regards to the structure of the E. coli MG1655 yoaG gene and revealed the 

presence of two β-strands and two α-helices. However, no functional role has 

been determined. 

 

3.5.7 ygbA 
Functionally and structurally, not much is known about YgbA. YgbA expression 

is induced by the addition of GSNO and sodium nitrite (Mukhopadhyay et al, 

2004) and a computationally predicted NsrR-site has been found upstream 

(Rodionov et al, 2005) which has subsequently been experimentally confirmed 
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in E. coli (Bodenmiller & Spiro, 2006; Filenko et al, 2007). and S. Typhimurium 

(Gilberthorpe et al, 2007). In the S. Typhimurium genome, ygbA is neighboured 

by operons hycDCBA, hypABCDE and sitABCD encoding for hydrogenases 

and manganese/iron transport systems, respectively. The reactivity of NO with 

[Fe-S] clusters and the subsequent release of free iron results in the need for 

the cell to sequester iron to reduce its reactivity and to allow its transport. For 

this reason, the proximity of ygbA to operons encoding iron transport systems 

provides a potential link to its involvement during nitrosative stress. 

 

3.5.8 ytfE 
YtfE is also known as nipC and RIC in the literature (Kim et al, 2003; Overton et 

al, 2008). Neither structure nor function have been determined in Salmonella so 

far, but extensive research has been conducted using E. coli. Initial studies 

have identified nitrite and GSNO as potential inducers of gene expression (Kim 

et al, 2003; Mukhopadhyay et al, 2004). The identification of a NsrR binding site 

has followed, first computationally (Rodionov et al, 2005) and later also 

experimentally (Bodenmiller & Spiro, 2006). Additionally, the strong induction of 

gene expression by nitrate and nitrite reported in 2006 (Constantinidou et al, 

2006) has been supported by findings that ytfE expression is activated by NarL 

(Filenko et al, 2007). Justino et al. have been able to assign YtfE a role in the 

biogenesis of iron-sulphur clusters in E. coli (Justino et al, 2006). Furthermore, it 

has been determined that YtfE contains an iron-sulphur cluster itself, forming a 

homodimer (Todorovic et al, 2008). The protection against oxidative stress has 

been proven in another study published in 2007 (Justino et al, 2007). Both 

Justino et al. and Pullan et al. describe a significant increase in gene expression 

when NO is added during aerobic growth (Justino et al, 2005; Pullan et al, 

2007). When ytfE is deleted from the S. Typhimurium genome, the deletion 

mutant does not show a higher susceptibility towards NO, using GSNO as an 

NO-donor, in comparison to the wild-type phenotype (Gilberthorpe et al, 2007). 

Moreover, the deletion has been reported to increase the persistence of the 

strain during the infection of mice (Kim et al, 2003). Since [Fe-S] clusters are 

especially at risk during nitrosative stress, it would be expected to see an 
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increased expression of proteins like YtfE that are able to counteract the 

disassembly of [Fe-S] clusters caused by NO. 

Despite the knowledge that ytfE is induced by nitrite under anaerobic conditions 

(Kim et al, 2003), it has been found that a ytfE mutant strain is significantly more 

virulent after intraperitoneal infection of mice than the isogenic parent strain 

(Rowley et al., unpublished data). Consequently, more extensive work has to be 

performed to fully understand the role of YtfE in Salmonella especially during 

the infection process.  

 

3.6 Discussion 

3.6.1 Expression changes to endogenous NO 
Exposure to endogenous NO has increased the levels of mRNA of 46 genes 

significantly. A list of the ten most highly induced genes is shown in Table 15, 

highlighting that at both 80 and 120 hours of continuous growth and NO 

exposure, five nar operon genes are highly induced. NarG tops the list for both 

rankings and indicates that the encoded nitrate reductase is the primary 

enzyme needed during anaerobic respiration and the use of nitrate as an 

electron acceptor. The level of hmpA are second highest, supporting the need 

for a NO detoxification mechanism during endogenous NO exposure.  

Other genes previously shown to play a role during NO defence are also highly 

up-regulated, e.g. encoding for the [Fe-S] repair protein YtfE. The precise role 

of the gene products of hcr and yeaR has not been determined, but six and five 

other studies, respectively, have also seen increased gene expression under 

NO stress conditions. In addition, the outer membrane protein precursor gene 

ompF shows increased expression for the 80 hour time point. NO exposure 

affects the integrity of the cell wall and increased expression of genes such as 

ompF would help to diminish the damage that endogenous NO causes to the 

cell wall proteins. For the 120 hour time point, the formate dehydrogenase-N 

subunit alpha-encoding gene fdnG is also highly induced. This reflects the need 

for S. Typhimurium to keep its metabolism running; even if endogenous NO 

concentrations are unfavourable for growth. 
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Table 15: Top Ten of most highly induced genes after 80 and 120 hours of 

continuous anaerobic growth of S. Typhimurium SL1344. 
Only genes with increased expression levels are shown for comparison.  

5 h to 80 h 5 h to 120 h 
 Gene: Fold change:  Gene: Fold change: 

1 narG 203 1 narG 179 

2 hmpA 172 2 hmpA 121 

3 narJ 80 3 narJ 82 

4 hcr 77 4 hcr 67 

5 narK 73 5 narK 57 

6 narH 54 6 narH 50 

7 ytfE 43 7 yeaR 41 

8 yeaR 30 8 ytfE 36 

9 narI 26 9 narI 25 

10 ompF 23 10 fdnG 21 

 

 

All in all, the genes that are most highly induced reflect the growth conditions 

faced by S. Typhimurium during continuous anaerobic growth and during NO 

production as a by-product of its metabolism. NarGHIJK and fdnG support 

anaerobic respiration, whereas hcr, hmpA, ompF, yeaR and ytfE provide 

protection against NO damage through detoxification and damage repair. 

3.6.2 Expression changes to exogenous NO  
Addition of exogenous NO requires a faster shift in gene expression in order to 

be able to survive the sudden exposure to NO in comparison to the depletion of 

oxygen and the gradual use of nitrate in anaerobic respiration that results in the 

formation of endogenous NO. The response to the NO addition manifests itself 

in the significant increase of expression levels of 139 genes. The ten genes with 

the highest expression changes have been listed in Table 16. The high levels of 

norVW and hmpA clearly point out the need for rapid NO detoxification. 

Furthermore, ytfE is on the list that has been shown to support NO-caused 

damage repair.  

The role of STM1808, containing a domain of unknown function implicated in 

tellurite resistance; STM1250, a putative cytoplasmic protein and of STM1868A, 
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encoding for a lytic enzyme, in the context of NO detoxification or damage 

repair are not yet clear. The need to reduce the amount of free iron within the 

cell that would result from damage to [Fe-S] clusters becomes evident with the 

up-regulation of sitABC.  

Again, the results reflect the changes in environmental conditions that S. 

Typhimurium faces during the experiment. NO interacts with [Fe-S] of proteins, 

releasing free iron into the cell. In order to prevent these Fe ions to fuel the 

Fenton reaction, leading to an increase in ROS to be formed, iron regulatory 

proteins are needed, encoded by the sit operon. Additionally, the protein repair 

is supported by increasing the expression of ytfE. Lastly, NO itself is detoxified 

via the increase in expression of hmpA and norVW. The exact role of STM1250, 

STM1808 and STM1868A, all Salmonella-specific genes, yet remains unclear. 

Only the increased expression of STM1808 and NO sensitivity of a respective 

deletion strain have been reported, but a further characterisation of STM1808 

function is still outstanding (Karlinsey et al, 2012). 

 

 

Table 16: Top Ten of most highly induced genes after addition of 40 µM NO to 

anaerobically growing S. Typhimurium SL1344 
 Gene: Fold change: 

1 norV 613 

2 norW 204 

3 STM1808 195 

4 hmpA 185 

5 STM1868A 169 

6 ytfE 137 

7 sitB 94 

8 sitA 88 

9 STM1250 81 

10 sitC 80 

 

  



3 Analysis of the Salmonella Typhimurium transcriptome under nitrosative 
stress 
 

128 

3.6.3 Core NO regulon 
Based on the results of both microarray data sets, it has been possible to 

identify nine genes that are up-regulated after both conditions of NO exposure 

and that potentially are important for NO detoxification. Of these, hmpA, norV 

and ytfE already have been shown to aid in NO defence. Other genes have, so 

far, not been shown to be involved or only recently have been suggested to play 

a role. Together with genes that show homology to the core NO regulon set, it 

remains to be determined what their contribution and potential function during 

NO detoxification is. Therefore, deletion mutant strains are constructed in the 

genes of the core NO regulon as well as of other genes such as STM1808, 

which share homology with core regulon genes. The aim is to allow the testing 

of these strains under nitrosative stress conditions. In order to validate potential 

phenotypes, complementation constructs are also made. 
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4.1 Introduction 
NO is a highly reactive gas with a short half-life time. It rapidly reacts with 

oxygen to form nitrogen dioxide. It is highly toxic for humans and hence in gas 

form cannot be readily used for experimental procedures. A range of 

compounds that act as NO donors and release NO under certain environmental 

conditions as well as pure NO are available and have been extensively used in 

the literature. NONOates are a family of compounds with two alkyl groups and 

several sequential nitrogen atoms. Although all of the family members can 

release NO upon contact with water or when the pH of a solution is lowered, 

half-life times of NO release vary significantly between the different NONOates. 

Half-lives of these compounds are as fast as 1.8 seconds for Proline-NONOate 

(Cruz-Ramos et al, 2002) and are as slow as 20 hours for DETA-NONOate 

(Jones-Carson et al, 2012). These differences in half life afford the choice of NO 

donor according to experimental requirements, as each compound has a certain 

ratio of NONOate concentration required to release a specific concentration of 

NO that needs to be taken into consideration: The addition of 1 µM of Proline- 

or Spermine-NONOate results in the release of 2 µM NO and adding 1 µM of 

diethylamine NONOate releases 1.5 µM NO. DETA-NONOate releases 6 µM of 

NO with the addition of 1 mg x mL-1. For example, reports of their use in E. coli 

and Salmonella experiments show the use of different concentrations of 

NONOate, covering a range of 50 µM (Baptista et al, 2012) to several mM of 

NO released (Karlinsey et al, 2012). In addition, a combination of different 

compounds is used to create a more steady NO release (Pullan et al, 2008). 

S-nitrosothiols such as S-nitrosoglutathione (GSNO) can also be used as NO 

donor compounds. The activity of GSNO is not oxygen dependent and achieves 

the highest antibacterial activity against stationary cells (De Groote et al, 1996). 

It is easily used for disk diffusion assays where GSNO is applied onto a disk on 

top of an inoculated agar plate (De Groote et al, 1996; Eriksson et al, 2000). It 

has been reported that even high concentrations of GSNO [500 mM] only exert 

a cytostatic effect on S. Typhimurium. The release of NO by GSNO is the result 

of a complex line of reactions, which result in the release of other by-products 

such as thiol radicals (Singh et al, 1996). Thus, although GSNO has practical 

advantages for laboratory use in comparison with the more expensive 

NONOates, the interference of thiol by-products in any phenotypes observed 
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cannot be excluded. Differences in sensitivity towards GSNO and other NO 

donors have been observed. A ∆metL mutant strain of S. Typhimurium is only 

sensitive towards GSNO, but shows no signs of increased sensitivity towards 

the NO donor DETA-NO (De Groote et al, 1996). This highlights the importance 

of cross-checking any NO sensitivity observed with GSNO by using an 

alternative NO source to exclude interference of thiols. 

Instead of using NO-generating compounds, a saturated NO solution has been 

generated. Although this saturated NO solution is only stable for 24 hours and 

reacts with oxygen, it allows a more defined administration of NO to liquid 

growth media. For an analysis of changes in anaerobic growth by NO, the use 

of such a saturated NO solution is the most suitable as no other RNS are 

generated during the preparation of the solution. 

Anaerobic NO detoxification is essential for the survival of Salmonella during 

infection. Several of the core NO regulon genes have already been shown to be 

of importance. The enzymatic NO detoxification of HmpA and NorV has been 

demonstrated and during anaerobic conditions, NorV has been shown to 

contribute more to NO defence (Mills et al, 2008). Deletion of ytfE does not 

increase the aerobic NO sensitivity, but shows decreased survival during mice 

infection (Gilberthorpe et al, 2007; Kim et al, 2003). The other genes have not 

yet been investigated for their anaerobic NO sensitivity, but have not shown any 

increased sensitivity under aerobic conditions. Similar to other related NsrR-

regulated genes, such as STM1808 (discussed in Chapter 5) and tehB, they 

possibly contribute to anaerobic NO detoxification. 

 

4.2 Aim 
The aim of this chapter is to determine the contribution of the core NO regulon, 

as identified in Chapter 3, as well as the remaining NsrR regulated genes to 

anaerobic detoxification of NO. In doing this, we experimentally confirm NsrR 

regulation of the Salmonella-specific gene STM1808, whose function is 

unknown. 
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4.3 Methods 

4.3.1 β-galactosidase assay 
For the investigation of NsrR-regulation of STM1808, lacZ fusion strains have 

been designed and β-galactosidase activity is measured as described in 2.10. 

The enzyme β-galactosidase cleaves the substrate ONPG, resulting in the 

generation of the yellow product o-nitrophenyl. The product o-nitrophenol 

absorbs light at 420nm and any changes in o-nitrophenol concentration are 

measured using a spectrophotometer. 

 

4.3.2 Mutant construction 
As described in Chapter 3, expression of several genes is stimulated by the 

addition of NO. For further investigation of anaerobic NO sensitivity, the core 

NO regulon genes are chosen as they have increased expression levels during 

both endogenous and exogenous NO exposure. In addition, the related genes 

STM1808, tehA and tehB are chosen due to their homology to the NsrR 

regulated gene, yeaR, and their up-regulation after exogenous NO exposure.  

Single deletion mutant strains have been constructed using the de novo 

mutagenesis method described by Datsenko & Wanner in 2000 (refer to 2.4 for 

the protocol). To avoid further recombination events, the mutation is transferred 

into a clean parent strain SL1344 using P22 bacteriophage transduction (2.6). 

The replacement of the gene of interest with an antibiotic gene cassette is 

confirmed using colony PCR and visualized on an agarose gel according to the 

protocols describe in 2.5. The images of gel electrophoresis after PCR 

amplification using external primers are shown in Figure 12. 

  



 

 

Figure 12: Gel electrophoresis images of the PCR confirmation of deletion mutations. 
The predicted band sizes for SL1344 wild-type genes and deletion mutant strains are as follows: 
A) SL1344 cstA: 2,151 bp, ∆cstA: 1,300 bp; 
B) SL1344 cydB: 1.140 bp, ∆cydB: 1,700 bp; SL1344 STM1273: 642 + 320* bp, ∆STM1273: 1,700 bp; 
C) SL1344 hcr: 972 + 320* bp, ∆hcr: 1,700 bp; 
D) SL1344 STM1808: 350 bp, ∆STM1808: 1,300 bp; 
E) SL1344 tehA: 1,050 bp, ∆tehA: 1,300 bp; 
F) SL1344 ygbA: 345 bp, ∆ygbA: 1,300 bp. 
Asterisk indicates the use of external primers that are further up- and downstream of the gene of interest, therefore creating 
larger bands as up to 320 bp are added to the amplification product.  
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Figure 12 continued: Gel electrophoresis images of the PCR confirmation of deletion mutations. 
The predicted band sizes for SL1344 wild-type genes and deletion mutant strains are as follows: 
A) SL1344 cstA: 2,151 bp, ∆cstA: 1,300 bp; 
B) SL1344 cydB: 1.140 bp, ∆cydB: 1,700 bp; SL1344 STM1273: 642 + 320* bp, ∆STM1273: 1,700 bp; 
C) SL1344 hcr: 972 + 320* bp, ∆hcr: 1,700 bp; 
D) SL1344 STM1808: 350 bp, ∆STM1808: 1,300 bp; 
E) SL1344 tehA: 1,050 bp, ∆tehA: 1,300 bp; 
F) SL1344 ygbA: 345 bp, ∆ygbA: 1,300 bp. 
Asterisk indicates the use of external primers that are further up- and downstream of the gene of interest, therefore creating 
larger bands as up to 320 bp are added to the amplification product. 

    

 D E F 



 
4 Contribution of NO induced genes to Salmonella NO resistance 
 

135 

4.3.3 Anaerobic growth 
To achieve anaerobic conditions, the cultures are grown in Hungate tubes and 

oxygen-free nitrogen is used to remove residual oxygen in the head space of 

the tubes. The medium used is a minimal glucose medium instead of the 

minimal salts medium used previously (Mills et al, 2008). This eliminates 

fluctuations in growth and results in higher optical densities of cultures 

throughout the experiment. In turn this allows more reproducible datasets to 

determine the effect of NO addition on growth. In accordance with previous 

reports, a concentration of 40 µM aqueous NO similar to the NO concentrations 

in the SCV is used for anaerobic experiments (Mills et al, 2008; Vazquez-Torres 

et al, 2000a). These experimental conditions reflect the NO concentration as 

well as scarcity of nutrients and oxygen available to Salmonella within the SCV 

(Eriksson et al, 2000; Eriksson et al, 2003). 

The strains are grown as outlined in 2.9.3. The addition of 40 µM NO is 

performed once the growth of the culture reaches an absorbance of 0.1. 

Subsequently growth is monitored at 30-minute intervals for up to 8 hours 

afterwards. NO addition is indicated by the arrow in Figure 14-16. A saturated 

NO solution is produced by scrubbing NO gas with oxygen-free NaOH solution. 

As such, the gas is used to saturate a volume of distilled water with a pH of 3 

(Baptista et al, 2012; Mills et al, 2008). NO retains its reactivity with oxygen and 

therefore the NO solution needs to be used within 24 hours. Using a Hamilton 

syringe, addition of precise NO concentrations to anaerobic cultures is 

achieved. 

The impact of 40 µM aqueous NO to the growth rate of anaerobic cultures is 

determined for several groups of genes: The first group comprises mutant 

strains where genes involved in NO detoxification, either known (hmpA, nrfA, 

norV, ytfE) or predicted (STM1273), and NO-mediated regulation (nsrR) are 

investigated. Next, mutant strains of the core NO regulon are assayed. The third 

group contains deletion strains of genes implicated for tellurite resistance.  
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4.4 NsrR regulation of STM1808 
Computational analysis of the S. Typhimurium genome has previously shown a 

NsrR-binding site located in the promoter of the Salmonella-specific gene 

STM1808 therefore suggesting an involvement in NO defence (Rodionov et al, 

2005). Furthermore, the results shown in 3.4.2 highlight that STM1808 

expression levels increases by 195 fold during the exposure to exogenous NO. 

This fold increase is very similar to hmpA levels (185), which is regulated by 

NsrR. In order to establish whether STM1808 indeed is regulated by NsrR, a 

lacZ transcriptional fusion which contained the suspected NsrR-binding site 

upstream of STM1808 is created. 

In Figure 13, the results of the β-galactosidase assay can be seen. In the wild-

type parent strain, the expression of β-galactosidase is repressed. The level of 

o-nitrophenol indicative of the amount of β-galactosidase present is at an 

equally low level to the levels of cells from the wild-type and of the nsrR deletion 

strain transformed with empty plasmid.  

In the ∆nsrR strain the activity of the STM1808 promoter fusion is increased to 

one hundred fold. This indicates that loss of NsrR results in de-repression of 

STM1808 and experimentally confirms for the first time that NsrR acts as a 

repressor of STM1808 expression. In support of the array data in Chapter 3, 

this also further supports a role for STM1808 in NO detoxification. As a result of 

this, STM1808 and the other tellurite resistance genes are included in this 

chapter to determine their role in Salmonella NO resistance. 

 

4.5 Anaerobic growth in the presence of 40 µM NO 

4.5.1 Sensitivity of strains with deletions of known NO detoxification 
genes 

 

To confirm the validity of our experimental set-up, we have first analysed the 

affect of NO addition to the to the growth rates of strains carrying mutation in 

genes previously implicated in Salmonella NO detoxification. The addition of    

40 µM NO to the wild-type strain SL1344 results in growth arrest of 
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approximately one hour (Figure 14). The levels of sensitivity for ∆norV and 

∆nrfA match previously recorded phenotypes (Mills et al, 2008). Deleting norV 

results in a more pronounced sensitivity than deleting nrfA, but both deletion 

strains are more susceptible to growth delay by NO than the wild-type. The 

growth rate of ∆nrfA drops by half and ∆norV grows at a rate of around one third 

of the rate displayed in the absence of NO. This confirms their attributed role of 

nitric oxide reduction under anaerobic conditions. 

No significant difference in growth arrest can be observed for the deletion 

strains of hmpA, STM1273 and ytfE. 

 

 
 
Figure 13: β-galactosidase activity of the SL1344 parent and the ∆nsrR strains. 

β-galactosidase activity of the SL1344 parent and the ∆nsrR strains transformed 

with pMP220 containing the STM1808 promoter (pSTM1808 promoter) or the 

empty plasmid (pMP220) is presented. The results show the mean of three 

biological replicates with standard deviations. 
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Figure 14: Anaerobic growth of NO detoxification mutant strains in MGM (0.05% (w/v) casamino acids) in the absence and presence 

of 40 µM NO. 

Cultures have been grown in MGM anaerobically in Hungate tubes at 37°C. Black arrow: Once an absorption value of 0.1 is reached, 

40 µM aq. NO is added to the cultures (black circles) or no addition is performed (white circles). Mean and standard deviation of three 

biological replicates are shown for each strain. 
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The minor contribution of HmpA for anaerobic NO detoxification has been 

shown previously (Mills et al, 2008) and corresponds to the findings shown 

here. The annotation for STM1273 does not indicate whether the enzyme would 

perform nitric oxide reductase activity anaerobically or aerobically. The analysis 

of the growth rates with and without the addition of NO show that there are no 

significant differences of ∆ytfE and ∆STM1273 growth in comparison to the 

respective wild-type growth rates (Table 17): The addition of NO results in 

changes in the growth rates in comparison to the growth rate in the absence of 

NO, but these changes are not significantly different from the growth rates 

measured for SL1344. It has been shown here that no significant anaerobic 

activity is noted. In other studies, no increased NO sensitivity for a Salmonella 

ytfE deletion strain has been observed, which correlates with our results 

(Gilberthorpe et al, 2007).  

The deletion of nsrR resulted in a phenotype more resistant towards NO 

addition, causing only a minor growth arrest in the growth of the culture. The 

growth rate after NO addition displays only a minor reduction when compared to 

its rate without nitric oxide. 

Statistical analysis has highlighted that the deletion strain ∆nsrR grows better in 

the presence of NO than the wild-type. Previous studies have reported similar 

findings (Gilberthorpe et al, 2007; Karlinsey et al, 2012): Removing NsrR from 

the pool of regulators in the cell results in the de-repression of NO detoxifying 

genes, allowing their expression to be continuous, irrespective of the presence 

of NO. As a result, it has been shown that a nsrR deletion strain is not affected 

by the presence of NO (Gilberthorpe et al, 2007; Karlinsey et al, 2012). The 

results shown here further accentuate this finding. 

 

4.5.2 Sensitivity of strains with deletions in the core NO regulon 
The next group of mutant strains comprises single deletion mutant strains from 

the list of the core NO regulon. All these genes are significantly increased in 

expression after NO addition to growing cultures or during conditions favouring 

endogenous NO production, indicating a role in coping with NO-caused stress 

(Chapter 3).  
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Table 17: Growth rates of wild-type and NO detoxification deletion strains 

from the time of NO addition until two or three hours post addition, 

respectively.  

The results are the mean of a minimum of three biological and two technical 

replicates with their standard deviations. Student t tests were performed and 

all growth rates with NO are significantly lower in comparison to growth rates 

without nitric oxide for each strain. Significant differences to corresponding 

wild-type growth rates are indicated by grey colouration. 

Strain NO Growth rate ± st. dev. 
2 h 3 h 

SL1344 - 0.68 ± 0.09 0.60 ± 0.05 
+ 0.45 ± 0.04 0.48 ± 0.03 

∆hmpA - 0.66 ± 0.06 0.66 ± 0.15 
+ 0.38 ± 0.07 0.49 ± 0.08 

∆norV - 0.68 ± 0.06 0.59 ± 0.07 
+ 0.22 ± 0.04 0.21 ± 0.05 

∆nrfA - 0.72 ± 0.03 0.62 ± 0.02 
+ 0.31 ± 0.12 0.34 ± 0.06 

∆nsrR - 0.57 ± 0.06 0.57 ± 0.15 
+ 0.54 ± 0.09 0.54 ± 0.08 

∆STM1273 - 0.67 ± 0.04 0.60 ± 0.04 
+ 0.47 ± 0.04 0.48 ± 0.04 

∆ytfE - 0.70 ± 0.05 0.61 ± 0.04 
+ 0.40 ± 0.10 0.46 ± 0.03 
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As reported in 4.5.1, deletion mutant strains of hmpA and ytfE do not show any 

deviations in their sensitivity from the wild-type phenotype (Figure 14). Similarly, 

deleting hcr does not have an increased NO sensitivity under the conditions 

tested. Hence, these strains show no contribution to nitric oxide detoxification 

during anaerobic conditions, although it cannot be excluded that functional 

overlap is masking the loss of these genes. The biggest impact of a single 

deletion to the growth rate post NO addition is achieved by the deletion of cstA 

or ygbA. Less than a third of the unstressed growth rate is observed for each of 

these strains (Table 18). Neither phenotypes match the hypersensitivity of 

∆norV, but are in the range of sensitivity shown by the ∆nrfA strain.  

The ∆cydB strain is more resistant to NO than SL1344 and its growth rate 

during NO exposure is significantly higher than SL1344 two hours after NO 

addition. This highlights the possible effect of NO on the respiratory chain. The 

removal of cydB might reduce the points of interference of NO with this 

particular cytochrome oxidase, increasing the amount of other cytochrome 

oxidases being used, which might be less affected by NO-induced stress. 

Deletion strains with significantly different NO sensitivity to the wild-type have 

been used to create complementation strains, where the gene of interest is re-

introduced on an arabinose-inducible plasmid into the deletion strain. All 

complementation strains display a restored level of sensitivity towards NO that 

no longer is significantly different to the wild-type (Table 18). This highlights that 

the phenotypes observed are the result of the specific gene deletion and not 

originating from a random mutation that might have been caused during de 

novo mutagenesis. 
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Figure 15: Anaerobic growth of core NO regulon mutant and 
complement strains in MGM (0.05% (w/v) casamino acids) in 
the absence and presence of 40 µM NO. 
Cultures have been grown in MGM anaerobically in Hungate 
tubes at 37°C. Black arrow: Once an absorption value of 0.1 is 
reached, 40 µM aq. NO is added to the cultures (black circles) 
or no addition is performed (white circles). Mean and standard 
deviation of three biological replicates are shown for each 
strain.  t [h] t [h] 
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Table 18: Growth rates of wild-type and core NO regulon deletion strains from 

the time of NO addition until two or three hours later, respectively. 

The results are the mean of a minimum of three biological and two technical 

replicates with their standard deviations. Student t tests have been performed 

and all growth rates with NO are significantly lower in comparison to growth 

rates without nitric oxide for each strain. Significant differences to 

corresponding wild-type growth rates are indicated by grey colouration. 

Strain NO 
Growth rate ± st. dev. 

2 h 3 h 

SL1344 - 0.68 ± 0.09 0.60 ± 0.05 
+ 0.45 ± 0.04 0.48 ± 0.03 

∆cstA - 0.61 ± 0.04 0.57 ± 0.02 
+ 0.20 ± 0.05 0.33 ± 0.03 

∆cstA pcstA 
- 0.65 ± 0.04 0.57 ± 0.04 
+ 0.38 ± 0.10 0.42 ± 0.06 

∆cydB - 0.65 ± 0.04 0.55 ± 0.06 
+ 0.55 ± 0.06 0.50 ± 0.05 

∆cydB pcydB - 0.63 ± 0.09 0.57 ± 0.05 
+ 0.44 ± 0.07 0.46 ± 0.05 

∆hcr 
- 0.62 ± 0.06 0.65 ± 0.17 
+ 0.40 ± 0.06 0.42 ± 0.09 

∆hmpA - 0.66 ± 0.06 0.66 ± 0.15 
+ 0.38 ± 0.07 0.49 ± 0.08 

∆norV - 0.68 ± 0.06 0.59 ± 0.07 
+ 0.22 ± 0.04 0.21 ± 0.05 

∆yeaR - 0.57 ± 0.13 0.53 ± 0.09 
+ 0.26 ± 0.11 0.33 ± 0.08 

∆yeaR pyeaR - 0.62 ± 0.08 0.56 ± 0.06 
+ 0.43 ± 0.05 0.45 ± 0.05 

∆ygbA - 0.64 ± 0.04 0.57 ± 0.03 
+ 0.23 ± 0.04 0.35 ± 0.04 

∆ygbA pygbA - 0.65 ± 0.04 0.59 ± 0.03 
+ 0.55 ± 0.06 0.49 ± 0.04 

∆ytfE 
- 0.70 ± 0.05 0.61 ± 0.04 
+ 0.40 ± 0.10 0.46 ± 0.03 
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4.5.3 Sensitivity of deletion strains involved in tellurite resistance 
The core NO regulon includes the putative tellurite resistance domain 

containing gene yeaR. In order to examine the influence of such a domain on 

NO sensitivity, several other genes are also included in the experiment: 

STM1808 also contains the DUF1971 and the operon tehAB has been 

annotated for conferring resistance to tellurite for E. coli in the past (Avazeri et 

al, 1997; Taylor et al, 1994; Turner et al, 1995b). In addition, all three genes 

show significantly increased levels of gene expression after the addition of NO 

as shown in Table 13. Single mutant strains and a triple deletion strain have 

been constructed and tested for their sensitivity towards NO under anaerobic 

conditions. The resulting growth phenotypes can be seen in Figure 16. 

As discussed in 4.5.2, a deletion strain lacking yeaR shows increased sensitivity 

of anaerobic growth towards NO addition in this experimental setup. Previously, 

no aerobic NO sensitivity has been observed (Karlinsey et al, 2012).  

A similar level of sensitivity can be seen for strains with deletions of STM1808, 

tehA and tehB, reducing the growth rate to 0.24, 0.32 and 0.32, respectively. 

Re-introduction of yeaR, tehB and STM1808 in trans into the respective single 

deletion strains restores the wild-type sensitivity levels and hence we are able 

to fully complement the phenotypes of the single deletion strains (Table 19). 

The deletions of the individual putative tellurite resistance genes lead to a 

growth rate reduction to ~ 40% of non-exposed cultures. 

The sensitivity of the triple deletion strain (∆STM1808 tehB yeaR) shows an 

accumulation of sensitivities from the three single deletion strains and the delay 

in growth is extended to three hours post NO addition. The growth rate of 

∆STM1808 tehB yeaR is at 26% of the rate without NO present (0.17 vs. 0.65), 

in comparison to a rate of 66% for the wild-type growth (0.45 vs. 0.68). The 

recovery of this triple deletion strain is very slow and clearly demonstrates for 

the first time the contribution of these genes to either Salmonella NO 

detoxification or NO-induced damage repair irrespective of their gene 

annotations of conveying tellurite resistance. 
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Figure 16: Anaerobic growth of tellurite resistance mutant strains in MGM (0.05% (w/v) casamino acids) in the absence and presence 

of 40 µM NO. 

Cultures have been grown in MGM anaerobically in Hungate tubes at 37°C. Black arrow: Once an absorption value of 0.1 is reached, 

40 µM aq. NO is added to the cultures (black circles) or no addition is performed (white circles). Mean and standard deviation of three 

biological replicates are shown for each strain. 
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Table 19: Growth rates of wild-type and tellurite resistance deletion strains 

from the time of NO addition until two or three hours later, respectively. 

The results are the mean of a minimum of three biological and two technical 

replicates with their standard deviations. Student t tests have been performed 

and all growth rates with NO are significantly lower in comparison to growth 

rates without nitric oxide for each strain. Significant differences to 

corresponding wild-type growth rates are indicated by grey colouration. 

Strain NO 
Growth rate ± st. dev. 

2 h 3 h 

SL1344 - 0.68 ± 0.09 0.60 ± 0.05 
+ 0.45 ± 0.04 0.48 ± 0.03 

∆STM1808 - 0.59 ± 0.05 0.52 ± 0.06 
+ 0.24 ± 0.04 0.26 ± 0.05 

∆STM1808 pSTM1808 - 0.62 ± 0.06 0.56 ± 0.07 
+ 0.34 ± 0.11 0.44 ± 0.03 

∆STM1808 tehB yeaR - 0.65 ± 0.03 0.58 ± 0.04 
+ 0.17 ± 0.11 0.15 ± 0.06 

∆tehA - 0.60 ± 0.06 0.55 ± 0.06 
+ 0.32 ± 0.05 0.38 ± 0.05 

∆tehB - 0.64 ± 0.03 0.57 ± 0.02 
+ 0.31 ± 0.09 0.40 ± 0.04 

∆tehB ptehB - 0.62 ± 0.13 0.57 ± 0.09 
+ 0.39 ± 0.04 0.38 ± 0.03 

∆yeaR - 0.57 ± 0.13 0.53 ± 0.09 
+ 0.26 ± 0.11 0.33 ± 0.08 

∆yeaR pyeaR - 0.62 ± 0.08 0.56 ± 0.06 
+ 0.43 ± 0.05 0.45 ± 0.05 
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4.6 Discussion 
The aim of this chapter has been to determine the contribution of the core NO 

regulon as well as the remaining NsrR regulated genes to anaerobic 

detoxification of NO. Experimental confirmation of NsrR regulation of STM1808 

has been another aim. 

 

The results of the β-galactosidase assay have experimentally proven the 

previously computational identification of an NsrR-binding site upstream of 

STM1808 that since has been published by Karlinsey et al. in 2012. Therefore, 

the regulation of STM1808 expression is explained as depicted in Figure 17. 

Fully assembled, NsrR contains an iron-sulphur cluster that binds to a specific 

DNA-binding site once two proteins have dimerized. The dimer prevents the 

initiation of STM1808 transcription by blocking the binding site of the RNA 

polymerase (Figure 17A). In the presence of NO, the [Fe-S] cluster is 

nitrosylated, where NO replaces the iron. As a result, the DNA binding of NsrR 

is eliminated and the nitrosylated NsrR dissipates (Figure 17B). This exposes 

the RNA polymerase binding site of STM1808 so that RNA polymerase binding 

and hence transcription of STM1808 takes place (Figure 17C). Direct binding 

has been confirmed through the β-galactosidase assay, where the STM1808 

promoter has been linked to the lacZ gene, encoding for a β-galactosidase. If 

RNA polymerase binding to the promoter is blocked, no enzyme will be 

produced and no colour change is observed. This has been observed for the 

combination of STM1808 promoter in an NsrR-producing strain. In an NsrR 

deficient strain, a colour change has indicated that lacZ transcription is possible 

and confirms the expressional regulation of STM1808 by NsrR. 
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A) 

 

B) 

 

C) 

 

Figure 17: Transcriptional regulation of STM1808 by NsrR 

(A) After protein assembly, NsrR contains a [Fe-S] cluster, binds to its binding 

site and hence masks the RNA polymerase binding site (pink) in the upstream 

region of STM1808. Therefore no transcription of STM1808 takes place as the 

RNA polymerase is unable to bind and to initiate transcription. 

(B) The reactivity of NO removes the iron from the [Fe-S] cluster of NsrR, 

resulting in a conformational change of the repressor. The binding of NsrR to its 

binding site is no longer possible. 

(C) RNA polymerase now binds and initiates transcription of STM1808. 
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No sensitivity is observed when yeaR and STM1808 deletion strains are 

subjected to 5mM Spermine/NONOate (Sper/NO) in the presence of oxygen 

(Karlinsey et al, 2012). However, differences in sensitivity due to oxygen 

concentrations have been reported for ∆hmpA in the past (Mills et al, 2008) and 

it has been recognized that enzyme activities vary due to different oxygen 

requirements. In addition, the effects of NO have been reported to be most 

prominent in the absence of oxygen and this is reflected by the physiological 

conditions found during infection. In the given conditions, the deletion of single 

tellurite resistance annotated genes or a combination of three results in severely 

and significantly increased NO sensitivity. Further analysis is necessary to 

investigate whether these genes STM1808, yeaR and tehAB confer tellurite 

resistance and whether there could be a link between the two stress-conferring 

compounds.  

The sensitivity levels of the known NO detoxification genes hmpA, norV and 

nrfA are in agreement with previously published results. Only a minor role for 

HmpA in anaerobic detoxification of NO is found and the observed wild-type 

sensitivity towards the addition of NO under anaerobic conditions therefore 

corresponds with the results of other groups (Crawford & Goldberg, 1998a; 

Karlinsey et al, 2012; Mills et al, 2008; Stevanin et al, 2002). Similar, the 

annotated nitric oxide reductase STM1273 has no significant effect on 

anaerobic NO sensitivity. The biggest contribution to NO defence comes from 

NorV, where a deletion results in a growth rate reduction to 32%. Similar, high 

NO sensitivity has been reported for norV deletion strains in E. coli and 

Salmonella (Baptista et al, 2012; Gardner et al, 2002; Hutchings et al, 2002; 

Mills et al, 2008). Deleting nrfA also leads to an increase in NO sensitivity in 

previous studies (Mills et al, 2008; Poock et al, 2002). The results shown here 

therefore support the major contributions of NorV and NrfA as well as the minor 

contribution of HmpA for NO detoxification that has been previously reported. 

Of particular interest in this assay are, however, the core NO regulon genes, the 

majority regulated by NsrR. The deletion of NsrR results in the de-repression of 

NsrR regulation that is shown to decrease Salmonella’s NO sensitivity 

significantly. Apart from the NO detoxification genes hmpA and norV, the core 

NO regulon also contains the NsrR-regulated genes hcr, yeaR-yoaG, ygbA and 



 
4 Contribution of NO induced genes to Salmonella NO resistance 
 

150 

ytfE. The ∆hcr strain does not shown any de- or increased NO sensitivity 

anaerobically and previously shown aerobically increased sensitivity is 

dependent on the growth medium (Karlinsey et al, 2012). Therefore, sensitivity 

might be dependent on oxygen and nutrient availability. YtfE has been 

highlighted for its ability to repair [Fe-S] clusters. This activity is of particular 

importance during NO exposure due to nitric oxide reactivity with iron, known to 

interfere with [Fe-S] cluster structure. Hence, deletion of ytfE is expected to 

increase NO sensitivity, unless functional redundancy is able to compensate for 

the lack of ytfE. In line with previous studies in Salmonella, ∆ytfE is not 

significantly more NO-sensitive than the parent strain (Gilberthorpe et al, 2007; 

Karlinsey et al, 2012; Kim et al, 2003). Mice infection studies, however, highlight 

a role for YtfE during infection as a deletion lowers the oral lethal dose 

significantly (Kim et al, 2003). 

Both ygbA and yeaR deletion strains display significantly increased sensitivity 

towards NO: Both strains have a growth rate reduced to 36% and 46% of non-

exposed cells, respectively. During aerobic conditions, a previous study has 

only identify NO sensitivity for ∆ygbA in minimal medium, but neither ∆ygbA nor 

∆yeaR are NO sensitive when grown in LB (Karlinsey et al, 2012). Therefore, 

oxygen and nutrient requirements also play a role for the activity of YeaR and 

YgbA or their activity might be masked by functional redundancy. The sensitivity 

levels of ∆yeaR and ∆ygbA measured in this study compare closely with ∆norV 

and ∆nrfA, stressing the importance of YgbA and YeaR during anaerobic NO 

detoxification. 

Although cstA regulation is independent of NsrR, the level of sensitivity to NO of 

a ∆cstA strain is equally low to ∆norV and ∆ygbA. This is the first report of NO 

sensitivity of a cstA deletion strain as this gene so far has not been linked to NO 

defence, but rather to carbon starvation.  

The cytochrome d ubiquinol oxidase subunit II encoding gene cydB is shown to 

significantly decrease the NO sensitivity of S. Typhimurium. As CydB is part of 

the respiratory chain, an increase in sensitivity is expected in line with previous 

findings that ∆cydA leads to decreased virulence in mice and that NO inhibits 

the enzyme activity of CydAB in E. coli (Borisov et al, 2004; Stevanin et al, 

2000; Turner et al, 2003). Possibly, the loss of cydB is compensated for during 
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in vitro conditions, whereas the more complex in vivo environment relies more 

heavily on CydAB functionality.  

Next, the deletion strains lacking putative tellurite resistance genes have been 

tested for their NO sensitivity. STM1808 and yeaR share the DUF1971 that has 

been labelled as a tellurite resistance marker. STM1808 and tehAB are also up-

regulated in the presence of exogenous NO. The single deletion of either four 

genes results in significantly increased NO sensitivity that is fully complemented 

with the introduction of the respective gene on a plasmid. The level of sensitivity 

ranges from a decrease to 53% (∆tehA) down to 41% (∆STM1808). This is the 

first demonstration that tellurite resistance genes provide protection against NO. 

Aerobically, only NO sensitivity for ∆STM1808 is shown, but this has been 

dismissed to be related to the putative tellurite resistance function (Karlinsey et 

al, 2012).  

The results presented here clearly show that these genes have an important 

role for NO defence for S. Typhimurium during anaerobic conditions. The 

deletion of all three tellurite resistance genes tehB, yeaR and STM1808 results 

in a severely growth-impaired strain in the presence of physiological amounts of 

NO. Irrespective of the gene annotations, it has to be pointed out that these 

genes provide a significant contribution to Salmonella’s NO tolerance. Although 

all three genes have been annotated to contain tellurite resistance domains, it is 

still unclear whether yeaR, tehAB and STM1808 allow for tellurite resistance in 

S. Typhimurium. It has been reported that their domains for binding S-adenosyl-

L-methionine (SAM) are truncated and might not fulfil the function of TehB as a 

SAM-dependent methyltransferase as it has been shown for Haemophilus 

influenzae (Karlinsey et al, 2012). Further analysis is necessary to establish 

their role for tellurite resistance. 

It is concluded that the nutritional environment and oxygen supply play an 

integral part for the influence of different genes on the sensitivity of S. 

Typhimurium. The role of norV and nrfA for anaerobic NO detoxification is 

confirmed. From the core NO regulon, several deletion strains have highlighted 

the potential involvement of more genes for NO defence. In addition, the tellurite 

resistance genes have pointed out another group of genes that might have 

evolved to support Salmonella’s survival during infection. Their potential for 

tellurite detoxification also needs to be investigated further. 
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5.1 Introduction to tellurium, tellurite and tellurite toxicity 

5.1.1 Tellurium 
Tellurium (Te) belongs to the group of chalcogenide elements together with 

oxygen, sulphur, selenium and polonium. Unlike other group members, tellurium 

is not an essential biological element (Ba et al, 2010). Tellurium concentrations 

naturally vary across the world and higher concentrations have been measured 

in the presence of copper and sulphur ores (Chasteen et al, 2009). In industry, 

a range of applications are found for this element (Ba et al, 2010; Turner et al, 

2012). Tellurium has been used in metallurgy to improve the properties of steel 

and as a component in solar panels. The spectroscopic properties of tellurium 

have led to its use in fluorescent Cadmium/Tellurium quantum dots that are 

used as measuring probes, e.g. to determine tiopronin levels in clinical samples 

(Wang et al, 2008). In addition, tellurium is increasingly found in rechargeable 

batteries. There are three groups of tellurium compounds: (i) complex tellurium-

containing structures, (ii) organotellurides and (iii) inorganic tellurides (reviewed 

by Ba et al., 2010). Tellurium-containing structures have a central Te atom and 

have a range of different ligands. Organotellurides have di- or trivalent Te atoms 

and alkyl or aryl residues. Organotellurides are chemically unstable and are 

redox active as they are oxidized by ROS or reduced by thiols. Inorganic 

tellurides form acids such as tellurious acid (H2TeO3) or telluric acid (H2TeO4). 

The salts of tellurious and telluric acid, tellurite (TeO3
2-) and tellurate (TeO4

2-) 

respectively, are well soluble and are toxic to bacteria and mammals (Chasteen 

et al, 2009). The reduction of tellurite and tellurate to Te0 or the methylation to 

yield (CH3)2Te make use of metabolic selenium pathways within the cell. 

 

5.1.2 Tellurite 
Historically, tellurite (TeO3

2-) has been used in the 1930s as an antibiotic to treat 

infections such as tuberculosis and dermatitis (Molina-Quiroz et al, 2012; 

Taylor, 1999). Tellurium toxicity depends on its oxidation state as well as 

whether it is present in organic or inorganic form. Ingestion or inhalation of 

tellurium compounds leads to nausea, vomiting and garlic odour (Ba et al, 2010; 

Prigent-Combaret et al, 2012). In general, the toxicity of tellurite stems from its 

reactivity with several components of proteins such as cysteines, selenium and 
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sulphur (Ba et al, 2010; Taylor, 1999). Free Fe(II) within the cell consequently 

causes the release of ROS as it fuels the Fenton reaction and further ROS are 

generated as a result of tellurite reduction directly (Chasteen et al, 2009). The 

addition of tellurite to growth media allows the selection of bacteria such as 

Shigella spp. and S. aureus as they form grey to black colonies on tellurite-

containing agar (Chasteen et al, 2009; Taylor, 1999). A list of properties of 

tellurite can be found in Table 20.  

 

5.1.3 Mode of action of tellurite 
Tellurite interacts with cysteine residues on proteins, binds to selenium within 

proteins and replaces sulphur groups (Ba et al, 2010; Taylor, 1999). Defects in 

cysteine metabolism increased the sensitivity E. coli to tellurite (Chasteen et al, 

2009; Fuentes et al, 2007). The importance of cysteine to bacterial tellurite 

resistance lies in cysteine’s protection against oxidative damage. Cysteine is an 

essential component required for the biosynthesis of glutathione (GSH) that 

serves as a reducing agent of tellurite as well as a scavenger of ROS. The in 

vitro reduction of tellurite has been shown to release hydroxyl radicals as part of 

the Fenton reaction and is described in the following reaction: TeO3
2- + 3 H2O + 

4 e- →Te0 + 6 OH- (Turner et al, 1999). The increased concentration of hydroxyl 

radicals results in oxidative stress, oxidizes thiols and induces the activity of the 

superoxide dismutase to counteract ROS toxicity (Borsetti et al, 2005; Pérez et 

al, 2007; Turner et al, 2012). Any defects in either the glutathione or thioredoxin 

thiol systems impair E. coli’s natural resistance to tellurite (Turner et al, 2001; 

Turner et al, 1999). The reduction of tellurite is also performed by the nitrate 

reductases NarZ and NarG purified from E. coli under aerobic conditions 

(Avazeri et al, 1997). The same study shows activity of an unknown, anaerobic 

tellurite reductase, but no further characterisation has been performed. Tellurite 

reductase activity of Nap has not been examined in the Avazeri study.  
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Table 20: Summary of properties of tellurite 

Chemical properties: 

o inorganic salt of tellurium 

o soluble 

o toxic 

o biocidal 

Uses: 

o alloy for electrical, optical and thermal equipment 

o bacterial selection 

o historically as an antibiotic 

o potential anti-cancer drug 

Toxicity: 

o reactivity with cysteines 

o replaces sulphur 

o oxidizing 

o binds to selenium 

o release of ROS upon reduction 

Detoxification/conversion 

o reduction to tellurium, releasing OH- → Te0 deposits 

o methylation → excretion 

Resistance: 

o on plasmids: 

o klaAB telB 

o ars operon 

o ter operon 

o genomic: 

o tehAB 

o tmp 

o trgAB cysK 
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Methylation of tellurite and efflux of the metal have been proposed as additional 

mechanisms to provide protection against tellurite toxicity. Methylation of 

tellurite by the bacterial thiopurine methyltransferase has been demonstrated 

and the characteristic garlic smell created by dimethyl telluride is observed 

(Prigent-Combaret et al, 2012). Although the efflux of tellurite outside of the cell 

has been proposed as a general resistance mechanism, it has not yet been 

shown for E. coli (Chasteen et al, 2009; Turner et al, 1995a). Further protection 

against tellurite toxicity has been shown to originate from reductase activity of 

the NAD(P)H-dependent catalases of Staphylococcus epidermidis and E. coli 

(Calderon et al, 2006). 

Tellurite inactivates [4Fe-4S] clusters by removing iron, resulting in an inactive 

[3Fe-4S]+ cluster (Calderon et al, 2009). This not only impacts the protein 

structure and most likely its activity, but also feeds iron into the Fenton reaction. 

The liberated Fe(II) generates additional ROS via the Fenton reaction and 

therefore increases the cellular damage. Deleting enzymes that allow the 

restoration of [Fe-S] clusters hence increases the tellurite sensitivity. Such 

enzymes include the cysteine synthase CysK and the cysteine desulfurase IscS 

(Fuentes et al, 2007; Rojas & Vásquez, 2005; Tantalean et al, 2003). 

 

5.1.4 Tellurite resistance 
Although nitrate reductases, catalases and other enzymes with tellurite 

reduction properties have been identified, they are only able to confer a low 

level of natural tellurite resistance. In E. coli for example, the minimal inhibitory 

concentration (MIC) lies between 1-2 µg x mL-1, equivalent to 3.94–7.88 µM 

(Summers & Jacoby, 1977; Taylor et al, 1994). In comparison with other metals 

such as Zinc (MIC = 1 mM) and Cadmium (MIC = 0.5 mM), the tolerance 

against tellurite is between 100 and 200 times lower (Chasteen et al, 2009). 

In addition to the nitrate reductases and catalases, six tellurite resistance 

mechanisms have been identified that increase the natural tellurite resistance of 

E. coli from 1µg x mL-1 to 128 µg x mL-1 (Summers & Jacoby, 1977; Taylor et al, 

1994). Three of these mechanisms are located on plasmids and have been 

found in a range of bacteria, but their precise mechanisms remain unknown 

(Chasteen et al, 2009; Walter & Taylor, 1989) (see Table 21).   
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Table 21: Tellurite resistance determinants. 

Their origins as determined by DNA sequencing and example organisms 

containing homologous genes are shown, adapted from Taylor, 1999.  

Origin: Gene(s): Homologues in other organisms: 
E. coli K-12 tehA Arabidopsis thaliana 

Archaeoglobus fulgidus 
H. influenzae 
Methanocaldococcus jannaschii 
Pyrococcus horikoshii 

tehB Aggregatibacter acetinomycetemcomitans 
Eikenella corrodens 
H. influenzae 
N. gonorrhoea 
N. meningitidis 

IncP (RP4) klaA (kilA)  
klaB (telA) B. subtilis 

Deinococcus radiodurans 
Rhodobacter sphaeroides 
Y. pestis 

klaC (telB) Agrobacterium tumefaciens 
Enterobacter aerogenes 
Rhizobium sp. 

R773 ars operon  
IncHI2 (R478) 
 

terZ B. subtilis 
Clostridium acetobutylicum 
D. radiodurans 
Dictyostelium discoideum 
P. aeruginosa 

terA C. jejuni 
C. acetobutyllicum 
D. radiodurans 
Y. pestis 

terB D. radiodurans 
Y. pestis 

terC E. coli K-12 
M. tuberculosis 
Myxococcus xanthus 
N. menigitidis 
Pseudomonas aeruginosa 
Rickettsia prowazekii 
Y. pestis 

terD B. subtilis 
D. radiodurans 
D. discoideum 
Y. pestis 

terE B. subtilis 
D. radiodurans 
D. discoideum 
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Origin: Gene(s): Homologues in other organisms: 
IncH12 (cont.) terE (cont.) Y. pestis 

terF B. subtilis 
D. radiodurans 

terF Y. pestis 
P. syringae tmp Homo sapiens 

Mus musculus 
M. tuberculosis 
P. aeruginosa 

R. sphaeroides trgA  
trgB  
cysK A. thaliana 

B. subtilis 
Brassica juncea 
D. discoideum 
Emericella nidulans 
E. coli K-12 
M. tuberculosis 
Schizosaccharomyces pombe 
Sunechocystis sp. 

 

 

 

Ter operon 
The plasmid-located ter operon confers resistance to colicin, a pore-forming 

bacterial toxin, in E. coli as well as bacteriophage infection and tellurite 

resistance (Kormutakova et al, 2000; Whelan et al, 1997). Another plasmid 

encoded operon is arsABC, encoding for an anion-translocation ATPase 

(Turner et al, 1992). ArsABC usually maintains a low intracellular concentration 

of arsenite and arsenate within the bacterial cell, but has also been shown to 

decrease the intracellular concentration of tellurite by 55%. Expression of 

arsABC raises the MIC of E. coli towards tellurite to 64 µg x mL-1. The plasmid-

located genes kilA, telA and telB have also been shown to confer tellurite 

resistance, however, again, their mode of action is not clear (Taylor, 1999). 

When kilA is over-expressed in E. coli, it increases tellurite resistance 

independent of the growth conditions (Turner et al, 1995b). 
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TrgAB  
The trgAB genes of R. sphaeroides are associated with the bacterial membrane 

and contribute to tellurite resistance (Taylor, 1999). Also, the R. sphaeroides 

and E. coli cysteine synthases CysK have been linked with tellurite resistance, 

presumably because it can counterbalance dysfunctional cysteines that have 

reacted with tellurite by ensuring the synthesis of new cysteines (Fuentes et al, 

2007; Taylor, 1999). 

 

TehAB 
The chromosomally located operon tehAB has first been thought to be located 

on a plasmid, but has later been identified within the E. coli genome (Taylor et 

al, 1994). An increase of tehAB in copy number when the operon is cloned into 

a multi-copy plasmid increases the MIC of E. coli to levels between 128 and 256 

µg x mL-1 (Avazeri et al, 1997; Taylor et al, 1994; Turner et al, 1995b). An efflux 

property has been proposed for TehA, but although it has been shown to 

provide flux activity for proflavin and ethidium bromide, no efflux activity for 

tellurite has been identified (Taylor, 1999; Turner et al, 1997). 

The tehB gene is not unique to E. coli, but homologues have been found in a 

range of bacteria (Table 21). Deletion of tehB in H. influenzae does not only 

increase tellurite sensitivity, but also hydrogen peroxide sensitivity as well as 

impair the infection ability in a rat infection model. The effect of a tehB deletion 

in H. influenzae has been complemented with E. coli tehB (Whitby et al, 2010). 

 

Structural analysis of purified TehB protein has highlighted that TehB does not 

specifically bind to tellurite, but also binds selenite and selenate, the toxic 

anions of selenium (Choudhury et al, 2011). Previously, TehB has been 

identified as an S-adenosyl-L-methionine (SAM)-dependent methyltransferase 

that could convert tellurite into dimethyl telluride by a similar pathway employed 

for selenate and selenite methylation (Liu et al, 2000). Dimerisation and a 

conformational change upon binding of SAM and tellurite have also been 

identified (Dyllick-Brenzinger et al, 2000). The regulation of this operon has 

been investigated in the past. In E. coli, initially no NsrR binding site has been 

found during computational analysis of the genome, but weak NsrR regulation 

and binding sites have been shown experimentally (Bodenmiller & Spiro, 2006; 
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Partridge et al, 2009; Rodionov et al, 2005). The S. Typhimurium genome 

contains NsrR binding sites upstream of tehAB, but experimental evidence 

highlights that the regulation by NsrR is weak (Gilberthorpe et al, 2007; 

Karlinsey et al, 2012; Rodionov et al, 2005). Exposure to NO increases the 

expression of tehAB as does the nitrate-rich environment encountered during 

urinary tract infections e. g. of humans, indicating that possibly other regulators 

are also involved and might be masking NsrR regulation (Justino et al, 2005; 

Roos & Klemm, 2006). 

Homologues of the H. influenzae TehB protein have been found in Salmonella 

and S. Typhimurium has three TehB-like proteins: STM1808, TehB and YeaR 

(Karlinsey et al, 2012). STM1808 and YeaR contain the domain of unknown 

function DUF1971 and share over 70% protein similarity (Figure 18). Both 

contain the conserved histidines H32 and H82 of the DUF that for STM1808 

have been shown to be required for NO resistance, whereas histidines at other 

positions within the protein (H31, H95 and H 102) are not required (Karlinsey et 

al, 2012). Further characterisation indicated that H32 and H82 allow for the 

coordination and binding of a Zinc ion. Initial homology studies with TehB of H. 

influenzae have highlighted truncation of S. Typhimurium and E. coli TehB 

proteins at the C-terminal domain. Therefore, it has been concluded that 

STM1808 and YeaR would not possess SAM-dependent methyltransferase 

activity and hence would not be able to reduce tellurite. No tellurite sensitivity 

assays with the STM1808 and yeaR deletion strains have been performed to 

further validate these conclusions.  

 
Figure 18: Alignment of the amino acid sequences of S. Typhimurium genes 

STM1808 and yeaR.  

The DUF1971 sequence is shown in bold and the conserved histidines H32 and 

H82 are shaded in grey. Over 70% of amino acids are shared between both 

sequences. 
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As shown in previous chapters, yeaR has been shown to respond to exposure 

to endogenous and exogenous NO sources. Additionally, deletion of yeaR 

results in increased NO sensitivity, raising the question whether there could be 

a link between NO and tellurite sensitivity and/or whether the genomic 

annotations of yeaR and STM1808 containing putative tellurite resistance 

domains are misleading. 

 

5.2 Aim 
The aim of this chapter is to determine whether the putative tellurite resistance 

and NsrR regulated genes contribute to tellurite resistance. This study aims to 

identify whether there is a correlation between tellurite and NO resistance. 

Further, the changes in gene expression levels of tellurite resistance and NO 

detoxification genes are investigated. 

 

5.3 Methods 
All strains are grown aerobically at 37°C as described in 2.1.3. Overnight 

cultures are grown without tellurite and 0.125 µg x mL-1 tellurite is added freshly 

to the LB medium before the start of the growth curve. Optical density of the 

cultures is monitored every hour. L-arabinose, DTT and tellurite are added to a 

subset of the cultures. In order to assess gene expression changes after 

tellurite exposure, 0.125 µg x mL-1 potassium tellurite is added to SL1344 

cultures growing in LB in a separate experiment. Cell samples for RNA 

extraction (described in 2.11) are taken shortly before and 15, 30 and 60 

minutes post tellurite addition. Levels of expression are analysed using RT-PCR 

as described in 2.12 and compared to levels of ampD and to levels prior to 

tellurite addition.  
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5.4 Results 

5.4.1 Growth of strains with deletions of putative tellurite resistance 
genes in the presence of potassium tellurite  

The addition of even low concentrations of 0.125 µg x mL-1 tellurite, a tenth of 

the MIC of E. coli, into the growth medium result in severe growth delays in the 

wild-type strain (Figure 19). In order to assess the importance of putative 

tellurite resistance genes, single deletion and a triple mutation strain of the 

tellurite resistance genes STM1808, tehAB and yeaR are tested under the 

same conditions. 

Aerobic LB cultures of the deletion strains without tellurite addition do not 

display any growth defects. The deletion of STM1808, a hypothetical gene with 

a DUF for tellurite resistance, affects the aerobic growth in LB in the presence 

of tellurite as growth is significantly lower than the parent strain with a rate of 

0.33 in comparison to 0.46 (Table 22). The introduction of STM1808 on a pBAD 

plasmid is able to restore the phenotype of the wild-type where only minor 

growth delays are observed, reflected by the rise in the growth rate to 0.44. The 

tehA deletion strain shows the same phenotype as ∆STM1808, with an impaired 

growth rate of 0.34 in the presence of tellurite. This indicates that both genes 

significantly contribute to the detoxification of tellurite. The single deletions of 

yeaR and tehB respectively, decrease the strains’ growth further than deletion 

of STM1808 or tehA to 0.17 and 0.13, respectively. The re-introduction of the 

respective genes is able to restore the growth significantly; in the case of ∆tehB 

to wild-type levels of 0.46. 
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Figure 19: Aerobic growth of putative tellurite resistance mutant and complementation strains in 

LB in the presence of 0.125 µg x mL K2TeO3 

Cultures are grown in 50 mL LB aerobically in 250 mL flasks at 37°C and with rotation of 200 
rpm. Media for growth of the complementation strains is substituted with L-arabinose (0.002% or 
0.0002%). White circles: Cultures grown without potassium tellurite. Black circles: Cultures grown 
in the presence of potassium tellurite. Mean and standard deviation of three biological replicates 
are shown for each strain. 
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Table 22: Growth rates of strains grown in the absence (-) and presence (+) of 

0.125 µg x mL-1 K2TeO3 aerobically in LB with shaking at 200rpm at 37°C. 

Media of complementation strains is substituted with L-arabinose. Growth rates 

have been calculated using the data of a minimum of three biological replicates 

and evaluating the growth between 3 and 7 hours into the experiment. No 

significant differences for growth rates in the absence of potassium tellurite in 

comparison to wild-type have been detected. Grey shading indicates a 

significant difference between growth rates in comparison to the respective wild-

type rate. 1: Improvement of the deletion mutant phenotype despite significant 

difference to wild-type phenotype. 

Strain: K2TeO3: Growth rate: 

SL1344 - 0.40 ± 0.05 
+ 0.46 ± 0.01 

∆STM1808 - 0.35 ± 0.05 
+ 0.33 ± 0.05 

∆STM1808 pSTM1808 
- 0.42 ± 0.03 

+1 0.44 ± 0.07 

∆STM1808 tehB yeaR - 0.40 ± 0.02 
+ 0.14 ± 0.02 

∆tehA 
- 0.41 ± 0.05 
+ 0.34 ± 0.03 

∆tehB - 0.41 ± 0.02 
+ 0.13 ± 0.04 

∆tehB ptehB - 0.37 ± 0.04 
+ 0.46 ± 0.02 

∆yeaR - 0.37 ± 0.05 
+ 0.17 ± 0.03 

∆yeaR pyeaR 
- 0.36 ± 0.04 

+1 0.30 ± 0.02 
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Figure 20: Aerobic growth of putative tellurite resistance mutant strains in LB in the presence of 0.125 µg x mL K2TeO3 and 100 

µM DTT. 

Cultures are grown in 50 mL LB aerobically in 250 mL flasks at 37°C and with rotation of 200 rpm. White circles: Cultures grown 

without potassium tellurite. Black circles: Cultures grown in the presence of potassium tellurite. Dashed line: Growth of respective 

strain in LB + 0.125 µg x mL K2TeO3 and 100 µM DTT. Mean and standard deviation of three biological replicates are shown for 

each strain. 
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The triple deletion of STM1808, tehB and yeaR results in growth as slow as 

observed for the ∆tehB and the ∆yeaR strain. 

In order to investigate whether the toxicity of tellurite is due to an increase in 

ROS, the ROS scavenger DTT has been added to a third set of cultures also 

containing tellurite. The addition of 100 µM DTT is sufficient to allow for the 

restoration of growth in the wild-type strain (Figure 20). This is also reflected in 

the growth rate that significantly improved to 0.55 (Table 23). Similar, the 

growth of the deletion strains is restored.  

 

 

Table 23: Growth rates of strains grown in the absence (-) and presence (+) of 

0.125 µg x mL-1 K2TeO3 aerobically in LB with shaking at 200rpm at 37°C. 

Media of complementation strains is substituted with L-arabinose. Growth rates 

have been calculated using the data of a minimum of three biological replicates 

and evaluating the growth between 3 and 7 hours into the experiment. No 

significant differences for growth rates in the absence of potassium tellurite in 

comparison to wild-type have been detected. Grey shading indicates a 

significant difference between growth rates in comparison to the respective wild-

type rate. 1: Significantly increased growth rate in comparison to wild-type 

equivalent rate. 

Strain: K2TeO3: Growth rate: 

SL1344 
- 0.40 ± 0.05 
+ 0.46 ± 0.01 

+K2TeO3+ DTT1 0.55 ± 0.09 

∆STM1808 
- 0.35 ± 0.05 
+ 0.33 ± 0.05 

+K2TeO3+ DTT 0.63 ± 0.12 

∆tehB 
- 0.41 ± 0.02 
+ 0.13 ± 0.04 

+K2TeO3+ DTT 0.73 ± 0.07 

∆yeaR 
- 0.37 ± 0.05 
+ 0.17 ± 0.03 

+K2TeO3+ DTT 0.60 ± 0.12 
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5.4.2 Growth of strains with deletions of nitrate and nitrite reduction 
genes in the presence of potassium tellurite 

Previous studies have shown that nitrate reductases reduce tellurite under 

aerobic conditions. This provides a possible link between NO and tellurite 

resistance. We therefore have determined the tellurite resistance of strains 

lacking nitrate and nitrite reductases. 

The single deletions of napDA, narG and narZ do not cause any significant 

growth deviations from the parent strain in the presence of tellurite (Figure 21). 

The growth rates of the single deletion strains range between 0.42 and 0.55 in 

comparison to a value of 0.46 of the parent strain (Table 24). However, the 

growth rate of a triple mutant lacking nitrate reductase operons (∆napDA 

narGHIJ narZYWV) is significantly impaired in the presence of tellurite and 

drops to 0.35. In comparison to the effect of a tehB deletion (growth rate: 0.13), 

this mutant strain has only a minor growth delay. The deletion of the 

cytochrome c reductase gene nrfA produces a growth delay of similar 

magnitude to the triple nitrate reductase mutant strain with a value of 0.34. 

Deleting the nitrite reductase gene nirB results in tellurite growth rate of 0.20, 

ranging just above 50% of the same strain grown in the absence of tellurite. The 

biggest effect of a single mutation therefore can be attributed to nirB, followed 

by nrfA. The ability of nitrate reductases to provide protection against tellurite 

toxicity is only minor, especially in comparison to the contribution of nirB and 

nrfA.  
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Figure 21: Aerobic growth of nitrate and nitrite reduction mutant strains in LB in the presence of 0.125 µg x mL K2TeO3 

Cultures are grown in 50 mL LB aerobically in 250 mL flasks at 37°C and with rotation of 200 rpm. White circles: Cultures grown 

without potassium tellurite. Black circles: Cultures grown in the presence of potassium tellurite. Mean and standard deviation of 

three biological replicates are shown for each strain. 
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Table 24: Growth rates of nitrate and nitrite reduction mutant strains grown in 

the absence (-) and presence (+) of 0.125 µg x mL K2TeO3 aerobically in LB 

with shaking at 200 rpm at 37°C. 

Growth rates have been calculated using the data of a minimum of three 

biological replicates and evaluating the growth between 3 and 7 hours into the 

experiment. No significant differences for growth rates in the absence of 

potassium tellurite in comparison to wild-type have been detected. Grey shading 

indicates a significant difference between growth rates in comparison to the 

respective wild-type rate. 

Strain: K2TeO3: Growth rate: 

SL1344 - 0.40 ± 0.05 
+ 0.46 ± 0.01 

∆napDA - 0.42 ± 0.02 
+ 0.47 ± 0.01 

∆napDA narGHIJ narZYWV 
- 0.37 ± 0.05 
+ 0.35 ± 0.03 

∆narG - 0.40 ± 0.02 
+ 0.55 ± 0.06 

∆narZ 
- 0.41 ± 0.03 
+ 0.42 ± 0.01 

∆nirB - 0.37 ± 0.07 
+ 0.20 ± 0.01 

∆nrfA 
- 0.41 ± 0.01 
+ 0.34 ± 0.05 
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5.4.3 Growth of strains with deletions of known NO detoxification genes 
in the presence of potassium tellurite 

Since there has been an overlap of putative tellurite genes and NO 

detoxification genes in the core NO regulon, a range of strains with deletions of 

known NO detoxification genes have also been tested for their tellurite 

sensitivity. Despite different oxygen requirements for NO detoxification by 

HmpA, NorV and NrfA, all respective deletion strains are significantly slower 

growing in the presence of tellurite than the wild-type strain (Figure 22). For 

∆hmpA, the growth rate is only 50% of the comparable rate without tellurite 

present and the rate of ∆norV and ∆nrfA is around 80% (Table 25). The 

recovery of ∆hmpA is achieved when a copy of hmpA is re-introduced on a 

plasmid. 

The deletion of the putative nitric oxide reductase gene STM1273 also results in 

a significantly slower growing strain in the presence of tellurite, but growth is 

only decreased by 10% in comparison to the growth absent of tellurite. 

Complementation of the deletion recovers the growth of ∆STM1273. A decrease 

by 60% in the growth rate is observed for the deletion of the [Fe-S] cluster 

repair gene ytfE. This phenotype is reverted by the introduction of a 

complementation plasmid. 

A significant increase in the growth rate is observed for the nsrR deletion strain 

where the mutant strain grows better in the presence of tellurite than its parent 

strain. As a known regulator of NO detoxification genes, NsrR de-regulation 

might benefit the strain’s growth in the presence of tellurite if tellurite and its 

toxic effects are reverted by NO detoxification enzymes. 

All in all, the deletion of NO detoxification genes also affects the sensitivity 

towards tellurite and de-regulation through the deletion of NsrR could enhance 

the ability to detoxify tellurite. 
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Figure 22: Aerobic growth of NO detoxification mutant and 
complementation strains in LB in the presence of 0.125 µg x mL 
K2TeO3 
Cultures have been grown in 50 mL LB aerobically in 250 mL 
flasks at 37°C and with rotation of 200 rpm. Media for growth of 
the complementation strains is substituted with L-arabinose. 
White circles: Cultures grown without potassium tellurite. Black 
circles: Cultures grown in the presence of potassium tellurite. 
Mean and standard deviation of three biological replicates are 
shown for each strain.  t [h] t [h] 
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Table 25: Growth rates of strains grown in the absence (-) and presence (+) of 

0.125 µg x mL-1 K2TeO3 aerobically in LB with shaking at 200 rpm at 37°C. 

Growth rates have been calculated using the data of a minimum of three 

biological replicates and evaluating the growth between 3 and 7 hours into the 

experiment. No significant differences for growth rates in the absence of 

potassium tellurite in comparison to wild-type have been detected. Grey 

shading indicates a significant difference between growth rates in comparison to 

the respective wild-type rate. 1: Significantly increased growth rate in 

comparison to wild-type equivalent rate. 2: Improvement of the deletion mutant 

phenotype despite significant difference to wild-type phenotype. 

Strain: K2TeO3: Growth rate: 

SL1344 - 0.40 ± 0.05 
+ 0.46 ± 0.01 

∆hmpA - 0.44 ± 0.11 
+ 0.23 ± 0.03 

∆hmpA phmpA 
- 0.37 ± 0.07 
+ 0.52 ± 0.13 

∆norV 
- 0.34 ± 0.01 
+ 0.27 ± 0.02 

∆nrfA - 0.41 ± 0.01 
+ 0.34 ± 0.05 

∆nsrR 
- 0.41 ± 0.02 

+1 0.56 ± 0.02 

∆STM1273 - 0.37 ± 0.01 
+ 0.33 ± 0.01 

∆STM1273 pSTM1273 - 0.34 ± 0.09 
+ 0.63 ± 0.00 

∆ytfE - 0.44 ± 0.18 
+ 0.18 ± 0.05 

∆ytfE pytfE 
- 0.34 ± 0.05 

+2 0.37 ± 0.04 
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5.4.4 Growth of strains with deletions of genes from the core NO regulon 
in the presence of potassium tellurite 

In order to be able to compare the overall sensitivity of strains to NO and to 

tellurite, the full set of core NO regulon mutant strains has been tested for its 

aerobic growth in the absence and presence of tellurite. In addition to the 

previously described mutant strains of hmpA, norV, yeaR and ytfE that have 

significantly increased sensitivity towards tellurite and hence slower growth, 

cstA, hcr and ygbA deletions also result in significantly slower growing strains 

(Figure 23 and Figure 24). The deletions of ygbA and cstA decrease the growth 

by 3% and 13% respectively. However, growth of ∆hcr in tellurite-containing 

medium is only at 62.5% of the growth rate when no tellurite is present (Table 

26). The difference in growth rates are minimized (∆hcr) or eliminated (∆cstA 

and ∆ygbA) with the introduction of a complementation construct. 

Similar to a deletion of nsrR, the ∆cydB strain grows better in tellurite-containing 

medium than the parent strain and is significantly less affected by tellurite. 

 

5.4.5 Expression level changes after tellurite exposure 
The expression levels of six genes grown in the absence and presence of 0.125 

µg x mL-1 potassium tellurite are compared. The expression of the tellurite 

resistance genes STM1808, tehB and yeaR is compared to the levels of the NO 

detoxification genes hmpA and norV to find possible correlations in response to 

tellurite exposure. The expression levels of nirB are also analysed as the nirB 

deletion strains has one of the lowest growth rates during tellurite exposure. 

Since regulation of hmpA, STM1808 and yeaR by NsrR has been shown, a 

response in expression could be linked to NsrR regulation.  

The addition of tellurite is done after three hours of growth in aerobic cultures of 

SL1344 in LB (Figure 25). A delay in growth is noticeable whilst the cells adapt 

to the change in growth conditions. Growth levels have recovered to the level of 

the undisturbed culture five hours after tellurite addition. The analysis of the 

RNA extracted from cells exposed to tellurite shows that the levels of STM1808 

are significantly increased by two to four fold at fifteen, 30 and 60 minutes after 

tellurite addition (Figure 26).  
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Figure 23: Aerobic growth of core NO regulon mutant and complementation strains in LB in the 

presence of 0.125 µg x mL K2TeO3 (part 1) 

Cultures have been grown in 50 mL LB aerobically in 250 mL flasks at 37°C and with rotation of 
200 rpm. Media for growth of the complementation strains is substituted with L-arabinose. White 
circles: Cultures grown without potassium tellurite. Black circles: Cultures grown in the presence 
of potassium tellurite. Mean and standard deviation of three biological replicates are shown for 
each strain. 
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Figure 24: Aerobic growth of core NO regulon mutant and complementation strains in LB in the presence of 0.125 µg x mL 

K2TeO3 (part 2) 

Cultures have been grown in 50 mL LB aerobically in 250 mL flasks at 37°C and with rotation of 200 rpm. Media for growth of the 
complementation strains is substituted with L-arabinose. White circles: Cultures grown without potassium tellurite. Black circles: 
Cultures grown in the presence of potassium tellurite. Mean and standard deviation of three biological replicates are shown for 
each strain. 
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Table 26: Growth rates of core NO regulon mutant and complementation strains 
grown in the absence (-) and presence (+) of 0.125 µg x mL-1 K2TeO3 
aerobically in LB with shaking at 200 rpm at 37°C. 
Growth rates have been calculated using the data of a minimum of three 
biological replicates and evaluating the growth between 3 and 7 hours into the 
experiment. No significant differences for growth rates in the absence of 
potassium tellurite in comparison to wild-type have been detected. Grey 
shading indicates a significant difference between growth rates in comparison to 
the respective wild-type rate. 1: Significantly increased growth rate in 
comparison to wild-type equivalent rate. 2: Improvement of the deletion mutant 
phenotype despite significant difference to wild-type phenotype. 

Strain: K2TeO3: Growth rate: 

SL1344 - 0.40 ± 0.05 
+ 0.46 ± 0.01 

∆cstA 
- 0.39 ± 0.05 
+ 0.34 ± 0.02 

∆cstA pcstA - 0.39 ± 0.04 
+ 0.50 ± 0.12 

∆cydB 
- 0.41 ± 0.03 

+1 0.57 ± 0.05 

∆hcr - 0.40 ± 0.02 
+ 0.25 ± 0.02 

∆hcr phcr - 0.40 ± 0.04 
+2 0.37 ± 0.03 

∆hmpA - 0.44 ± 0.11 
+ 0.23 ± 0.03 

∆hmpA phmpA 
- 0.37 ± 0.07 
+ 0.52 ± 0.13 

∆norV 
- 0.34 ± 0.01 
+ 0.27 ± 0.02 

∆yeaR - 0.37 ± 0.05 
+ 0.17 ± 0.03 

∆yeaR pyeaR 
- 0.36 ± 0.04 

+2 0.30 ± 0.02 

∆ygbA - 0.41 ± 0.01 
+ 0.40 ± 0.06 

∆ygbA pygbA 
- 0.40 ± 0.06 
+ 0.47 ± 0.09 

∆ytfE - 0.44 ± 0.18 
+ 0.18 ± 0.05 

∆ytfE pytfE 
- 0.34 ± 0.05 

+2 0.37 ± 0.04 
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Figure 25: Growth of SL1344 strain with and without addition of 0.125 µg x mL-1 

potassium tellurite. 

White circles show the growth of SL1344 in LB under standard conditions 

without any tellurite present. Black circles show the growth of SL1344 with an 

addition of 0.125 µg x mL K2TeO3 at three hours indicated by the arrow. RNA 

extraction is performed before and fifteen, 30 and 60 minutes post tellurite 

addition. The mean of four biological replicates with standard deviation is 

shown.  

 

The levels of tehB and yeaR are also significantly increased at fifteen minutes, 

but struggle to reach the two-fold cut-off. The levels decrease further with the 

later time points, although yeaR levels are still significantly different to levels 

prior to tellurite exposure. The levels of hmpA do not reach the two-fold 

threshold and are minimal throughout the time course of the experiment. The 

other NO detoxification gene of interest, norV, does not significantly increase in 

expression after fifteen, but significantly increases to nearly six-fold after 30 

minutes. The level declines to four-fold when the 60 minute time point is 

reached. NirB RNA levels significantly increase to eight-fold at fifteen and 30 

minutes and peak at ten-fold after 60 minutes. 
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Figure 26: Changes in expression levels of assorted genes after tellurite addition. 
Expression levels of STM1808, tehB, yeaR, hmpA, nirB and norV genes fifteen (A), 30 (B) and 60 minutes (C) post the addition of 0.125 µg x 
mL-1 K2TeO3, normalised to ampD expression levels and to the values obtained at 0 min (i.e. before the addition of tellurite): A 1.5 fold cut off 
has been applied. Values presented are the mean of four biological replicates with standard deviations. An asterisk indicates a p value below 
0.05 as determined by the t test by comparison of expression levels at specific time point with levels at 0 min.  
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5.5 Discussion 
The aim of this chapter has been to determine the contribution of putative 

tellurite resistance and NsrR-regulated genes to tellurite resistance. Further, the 

aim is to clarify whether a correlation between tellurite and NO resistance 

exists. The chapter also aims to investigate the changes in gene expression of 

tellurite resistance and NO detoxification genes.  

This study has shown that the gene products of yeaR and STM1808, despite 

previous hypotheses in the literature, do contribute to tellurite resistance in S. 

Typhimurium (Karlinsey et al, 2012). Even though the homology to other tehB 

genes might not be supportive of their protective role during tellurite exposure, 

the results clearly show that even a single deletion has significant impact on the 

growth of the strain. The biggest contribution to the sensitivity of a triple deletion 

strain comes from the deletion of tehB. However, the deletion of all three genes 

further delays the growth. The correlation to the production of ROS might also 

explain why Salmonella has three of these genes rather than just the tehAB 

operon and the yeaR gene like E. coli. Salmonella pathogenicity relies on the 

survival within macrophages. The two main groups of antibacterial stresses 

encountered during this process are ROS and RNS. Any additional 

mechanisms that allow detoxifying either of these provide a competitive 

advantage during the infection process. Therefore, the evolutionary 

development of tellurite resistant mechanisms that detoxify hydroxyl radicals 

from tellurite reduction are also valuable for survival in the presence of ROS 

and hence during pathogenicity. 

The addition of DTT scavenges any ROS present and eliminates any effect 

ROS have on bacterial growth. The recovery of growth of the tellurite deletion 

strains in the presence of DTT hence highlight that the deletion of putative and 

known tellurite resistance genes affects the ability to deal with the toxicity of the 

ROS generated during the detoxification of tellurite. ROS are also generated in 

the presence of NO when the generation of free Fe(II) supplies the Fenton 

reaction, leading to hydroxyl radical formation. Therefore, the link between the 

tellurite and NO sensitivity of tellurite deletion strains is proposed to originate 

from the inability of deletion strains to sufficiently detoxify ROS. 
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Previous reports that NarG and NarZ function as aerobic tellurite reductase 

have not been confirmed (Avazeri et al, 1997). The expression of narG has 

been shown for anaerobic conditions and therefore, a deletion of narG would 

not cause any changes in expression levels in the tellurite growth experiment 

(Rowley et al, 2012). This is reflected by the lack of significant growth delay 

displayed by the ∆narG mutant strain. The study by Avazeri et al. has been 

performed using purified protein and therefore any regulatory impacts have 

been eliminated. It might hence be possible that NarG functions as a tellurite 

reductase, but such observation has not been made in this study. NarZ, 

however, has been shown to be expressed during aerobic growth (Spector & 

Kenyon, 2012). The results presented here though do not support the findings 

of the reductase activity assays as the deletion of narZ does not have any effect 

on the growth of the mutant strain. The physiological relevance of NarG and 

NarZ as tellurite reductases is doubtful. As shown here, during aerobic 

conditions where narZ expression is present, no influence on tellurite sensitivity 

is observed for S. Typhimurium. Aerobically, where no NarG expression is 

expected, no influence on tellurite resistance is observed. Anaerobically, the 

study by Avazeri et al. has not found any enzyme activity. In order to be able to 

clarify whether the discrepancies stem from differences between E. coli and S. 

Typhimurium, a comparative study between these two bacteria is needed. Only 

when all three nitrate reductase operons are deleted, does S. Typhimurium 

show a significantly reduced growth of 95% with tellurite present.  

The two investigated nitrite reductases NirB and NrfA display stronger 

sensitivities: A growth reduction by 17% (∆nrfA) and 45% (∆nirB) respectively 

highlight the potential of nitrite reductases to further support Salmonella growth 

during tellurite exposure, although their gene expression has been attributed to 

anaerobic rather than aerobic conditions (Rowley et al, 2012).  

All genes classified for NO detoxification, either confirmed (hmpA, norV, nrfA, 

ytfE) or putative (STM1273), increase the tellurite sensitivity of the respective 

deletion strains. The effect of deleted hmpA, STM1273 and ygbA has been 

reverted with the appropriate complementation constructs, validating the 

phenotypes observed. When NsrR is deleted, decreased tellurite sensitivity is 

observed: This indicates a link between NO detoxification mechanisms under 
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the regulation of NsrR and the toxicity of tellurite. It is hereby proposed that the 

connection between NO and tellurite toxicity lies in direct and indirect 

generation of ROS. Disruption of [Fe-S] clusters by both compounds fuels the 

Fenton reaction that results in ROS production. In addition, ROS are generated 

when tellurite is being reduced to yield insoluble Te0. As a result, tellurite 

resistance mechanisms could benefit S. Typhimurium during NO exposure and 

NO detoxification mechanisms could minimize the toxicity of tellurite exposure. 

This is also reflected in the sensitivity of the ytfE deletion strain: As an [Fe-S] 

repair enzyme, YtfE is needed during NO and tellurite reactivity with [Fe-S] 

clusters to maintain protein functionality and to reduce the amount of free iron 

within the cell.  

The core NO regulon genes all influence the tellurite sensitivity when deleted 

and thus further strengthen the hypothesis that tellurite and NO detoxification 

are linked. Deletion of cydB shows decreased sensitivity, similar to NsrR and it 

remains to be determined what the role of this cytochrome d ubiquinol oxidase 

subunit is during tellurite resistance. A previous study using E. coli has not 

found any changes in sensitivity when cydB is deleted (Borsetti et al, 2005). In 

2000, however, tellurite reduction via the respiratory chain has shown to involve 

several cytochrome oxidases (Trutko et al, 2000). Expression of CydB is at the 

highest level during microaerobic conditions, but increased expression is 

observed an- and aerobically when NO is present (Govantes et al, 2000; Pullan 

et al, 2007). As a result, the levels of CydB might not be high within the cell 

during aerobic cell growth and this could eliminate interference of tellurite with 

its enzyme activity. If the level of affinity of CydB towards an interaction with 

tellurite is higher than of other cytochrome oxidases, a deletion of cydB during 

aerobic growth would not have much impact on the growth of the cells.  

The expression level changes of tellurite resistance genes are of particular 

interest in this study: To further investigate a possible correlation between NO 

and tellurite defence, changes in expression levels of NO detoxification genes 

hmpA and norV in response to tellurite are compared to level changes of 

STM1808, tehB and yeaR. In addition, the gene nirB is included as a deletion 

strain displayed major tellurite sensitivity. 
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At the first time point, all three tellurite resistance gene levels have increased 

significantly, indicating a response to the tellurite addition. The levels of 

STM1808 RNA further increase at the other time points, whereas yeaR and 

tehB levels decrease later on. This indicates possible differences in regulation 

of STM1808 in comparison to tehB and yeaR. The signal ratios of STM1808 

mRNA between an nsrR deletion and a 14028 parent strain are equally 

increased compared to yeaR-yoaG in a previous study (Karlinsey et al, 2012). A 

direct link to NsrR regulation, however, has not been confirmed as hmpA levels 

failed to rise at the time points where cells for RNA extraction have been 

sampled. A late increase of norV RNA levels at 30 and 60 minutes indicates a 

delayed regulatory effect of tellurite on norV gene expression. The expression 

levels of nirB drastically increase to eight-fold after fifteen minutes and peak at 

ten-fold after one hour. Together with the sensitivity data, this indicates that nirB 

plays an important role during tellurite response: A rapid and prolonged 

increase in gene expression would allow protection against tellurite toxicity. 

Given the fact that NirB functions as a nitrite reductase, it could function in the 

reduction of tellurite to tellurium rather than protection against oxygen radical 

formation and toxicity.  
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6.1 Introduction 
During infection, Salmonella is able to survive in the intracellular environment of 

macrophages and epithelial cells. Activation of macrophages is the result of 

exposure to cytokines such as IFN-γ and to bacterial cell wall components, e.g. 

LPS (Kalupahana et al, 2005). Activation results in the release of high levels of 

NO through the induction of iNOS and nitric oxide concentrations of up to 90 µM 

have been measured (Eriksson et al, 2000; Vazquez-Torres et al, 2000a). LPS 

on the surface of Salmonella is recognized by macrophage receptors, which 

leads to phagocytosis of Salmonella within a phagosome. In addition, 

Salmonella uses its TTSS SPI-1 to induce intracellular uptake. The bacterial 

vacuole is modified by Salmonella to form the tighter SCV. SPI-2 effector 

proteins then modify the position of the SCV and ensures the acquisition of 

nutrients from the cytosol to counteracts the depletion of ions by Nramp1 

(Figueira & Holden, 2012). This protein is macrophage specific and an ion 

transporter that removes ions from the SCV to create less favourable growth 

conditions for bacteria (Forbes & Gros, 2001; Haraga et al, 2008). As described 

previously, macrophages produce a range of compounds with high bacterial 

toxicity aiming to eliminate intruding pathogens. Bacteriolytic enzymes are 

contained within the lysosome, which fuses with the phagosome. Controversy 

exists whether fusion of the SCV with the lysosome is efficiently prevented by 

Salmonella to avoid exposure to these hydrolytic enzymes (Haraga et al, 2008). 

In addition to hydrolytic enzymes, the phagocyte oxidase Phox starts to 

generate superoxide, hence increasing the oxidative stress levels that result in 

a high risk of toxicity to invading bacteria sand make Phox an essential 

component of the innate immune defence.  

Lack of the phox gene significantly reduces the ability of mice to fight infections 

by Salmonella (Shiloh et al, 1999). In macrophage assays, lack of phox leads to 

a Salmonella survival rate of 100% (Vazquez-Torres et al, 2000a). 

Furthermore, the exposure of SPI-1 translocator proteins SipBCD in the cytosol 

triggers the induction of iNOS activity that is responsible for the production of 

toxic NO (Cherayil et al, 2000). NO reacts with superoxide to form peroxynitrite, 

further potentiating its toxicity (Bogdan et al, 2000). NO’s reactivity inhibits DNA 

replication and repair, bacterial respiration, synthesis of amino acids and 

accelerates the creation of ROS due to the release of iron from [Fe-S], feeding 
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into the Fenton reaction (Fang, 2004; Henard & Vázquez-Torres, 2012; 

Schapiro et al, 2003; Szabó et al, 1996). SPI-2 has been shown to inhibit the 

fusion of iNOS-containing vesicles with the SCV, but further specifics of the 

mechanism are unknown (Chakravortty et al, 2002). In addition, a connection of 

the nitrite transporter NirC and decreased NO production has been proposed 

(Das et al, 2009). Channelling of nitrite into the bacterial cytoplasm decreases 

the chances of auto-oxidation of nitrite yielding NO. Lower NO levels have less 

of an inhibitory effect on the SPI-2 effector protein SpiC. SpiC is a potent 

inhibitor of the IFN-γ-triggered JAK/STAT pathway that induces iNOS activity. 

Less NO therefore leads to inhibition of phosphorylation of the JAK/STAT 

pathway component STAT-1 by SpiC and prevents induction of iNOS. 

The release of antibacterial compounds occurs in a staggered manner to mount 

a continuous antimicrobial defence (Vazquez-Torres et al, 2000a). The onset of 

ROS release has been shown to occur one to two hours after the formation of 

the SCV (Tsolis et al., 1995; Vazquez-Torres et al., 2000). It takes up to eight 

hours for the nitrosative burst to take place that involves the production of nitric 

oxide by iNOS. 

The addition of the cytokine IFN-γ to the culture medium allows the stimulation 

of cell culture macrophages prior to the exposure to the surface LPS on 

bacteria. This knowledge has allowed the systematic use of activated and non-

activated macrophages to create different experimental conditions. Using this 

model, it is possible to compare the uptake of bacteria as well as their survival 

within macrophages at different time points. Activated macrophages release NO 

and other RNS shortly after the uptake of the bacteria during the experiment 

rather than after an eight hour delay using non-activated cells. Therefore, two 

different scenarios are possible: First, uptake of bacteria into non-activated cells 

is followed by the oxidative burst at two and nitrosative burst at eight hours. 

Second, bacterial uptake into activated cells is shortly followed by the release of 

NO as part of the nitrosative burst in activated macrophages. The latter 

excludes any priming of gene expression changes in response to ROS that 

allows for an adaptation to RNS exposure occurring at a later stage. 

In comparison to the anaerobic NO sensitivity experiment of the previous 

chapter, several factors are different. Release of ROS and RNS triggers the 
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formation of new radical species that are not present when NO is added to 

anaerobically growing bacterial cultures. The previous assay also relies on a 

minimal medium that does not mimic the SCV nutrient composition. Therefore, 

the environment in the SCV is more complex than the conditions of the NO 

sensitivity assay. 

RNS-specific mechanisms are most important during the bacterial exposure to 

activated macrophages where the RNS release occurs shortly after bacterial 

uptake, allowing less time for the adaptation of gene expression. This allows for 

the comparison between those two different conditions and the evaluation on 

the importance for genes primarily during NO detoxification in activated 

macrophages or for defence against radicals produced during the reaction of 

ROS with RNS.  

 

6.2 Aim 
The aim of this study is to investigate the intracellular survival of the core NO 

regulon deletion strains that display significant increase or decrease of NO 

sensitivity during anaerobic NO exposure. In addition, the tellurite resistant 

mutant strains are also included as they show significantly increased NO 

sensitivity. The bacterial cfu from within resting and activated macrophages are 

compared to identify the significance of early and late NO exposure for bacterial 

intracellular survival.  

 

6.3 Methods 
Bacterial cells are grown overnight in shaking LB cultures at 37 °C. The optical 

density at λ = 600nm is measured and the bacterial cfu x mL-1 is calculated 

using the following formula: An OD600nm of 1 corresponds to 1.2 x 109 cfu x mL-1. 

Continuous culturing of RAW264.7 cells follows the protocol in 2.14. Briefly, 

cells are maintained in DMEM with the addition of 5% FBS, L-glutamate and 

Penicillin/Streptomycin at a temperature of 37 °C and at a CO2 concentration of 

5%. Sub-culturing is performed once a confluency of 75-80% is reached and a 

confocal microscope is used to evaluate cell morphology and health. Seeding of 

macrophages is performed 16 hours and 30 hours prior to the addition of 

bacteria to the culture medium for non- and activated macrophages, 

respectively. A MOI of 10 is used for both experimental setups. Activation of 
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macrophages is achieved by the addition of 100 units of IFN-γ to the culture 

medium 20-22 hours before bacterial addition. After two hours of bacterial 

exposure, extracellular bacteria are washed off and any residual bacteria killed 

with the antibiotic Gentamicin. Bacterial numbers are assessed after two and 

ten hours to allow for the comparison of cfu after uptake into and invasion of 

macrophages in comparison to survival cfu after exposure to RNS after the 

nitrosative burst at eight hours. For activated macrophages, the nitrosative burst 

occurs sooner and therefore exposes bacteria to RNS shortly after uptake. 

Harvesting bacteria from macrophages is achieved by rupturing macrophages 

at the given time points by using a solution of PBS containing SDS.  

 

6.4 Results 

6.4.1 Intracellular survival in non-activated macrophages 
Seven of the eleven tested strains have been found to have significantly 

decreased survival in comparison to the wild-type strain when the cfu changes 

between two and ten hours are compared (Figure 27). With decreases by over 

80%, ∆STM1808 and ∆ygbA display the highest significant level of sensitivity 

towards the intracellular environment. With values ranging at 25% of wild-type 

levels, ∆cydB, ∆STM1808 tehB yeaR and ∆tehA also show major, significant 

decreases in survival. Also significantly decreased are the cfu of ∆tehB (by 

28%) and ∆yeaR (by 38%). No accumulative effect of a multiple deletion of 

tellurite resistance genes has been observed as the levels of ∆STM1808 tehB 

yeaR are similar to the cfu changes of ∆STM1808. All mutant strains with 

deletions of single or multiple tellurite resistance genes are significantly affected 

in their intracellular survival. 
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Figure 27: Bacterial intracellular survival of tellurite and NsrR-regulated gene 

deletion strains between two and ten hours after exposure to non-activated 

RAW264.7 macrophages. 

The wild-type fold-change is shown on the left. On the right, values of deletion 

strains have been normalised to the bacterial cfu of SL1344 and are shown as a 

percentage of the wild-type fold change. The values represent a minimum of 

two biological replicates with three technical replicates each. The error bars 

show the standard deviations. Asterisk indicates significant differences to wild-

type values with p<0.05, according to the t test. 

 

  

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Fo
ld

 c
ha

ng
e 

2 
h 

to
 1

0 
h 

* 

* 

* 
* 

* 

* * 



6 Contribution of the Salmonella core NO regulon and tellurite resistance genes 
to macrophage intracellular survival 
 

189 

Functional components of bacterial respiration, represented by CydB, are also a 

key element for bacterial pathogenesis. The fold changes in cfu observed for 

∆hmpA are at 60% of the wild-type fold-change and hence at the same level as 

shown for ∆cstA and ∆yeaR. However, the change in intracellular bacterial load 

is not significant for ∆cstA and ∆hmpA. ∆norV and ∆ytfE also have shown a 

decrease in intracellular cfu, but again this deviation from the wild-type 

phenotype has not been significant. Possible factors influencing the statistical 

significance are the high variations between results and the small sample sizes 

used. 

All in all, deletion of tellurite resistance and cytochrome oxidase genes leads to 

significantly decreased intracellular survival of S. Typhimurium within non-

activated macrophages. Lower intracellular survival has been observed for 

known NO detoxification genes, but the effect has not been significantly 

different from the wild-type phenotype. 

 

6.4.2 Intracellular survival in IFN-γ activated macrophages 
Activation of macrophages changes the profile of significantly decreased fold 

changes of deletion strains. Of the eleven strains tested, seven are significantly 

different to wild-type (Figure 28). The general decrease of intracellular survival 

peaks at 56% (∆norV) and 54% (∆STM1808 tehB yeaR). The survival of ∆hmpA 

and ∆ytfE significantly drops to 50% and less. The deletion of either cstA or 

tehA decreases the fold change by 30%. A similar decrease is observed for 

∆STM1808 and ∆tehB; however, the decreases are not significantly different 

from wild-type. Changes by less than 20% are observed for ∆cydB, ∆yeaR and 

∆ygbA, but only the result of ∆yeaR has been statistically significant.  

This study has confirmed the importance of hmpA and norV genes for the 

detoxification of NO. Exposure of single deletion strain to activated 

macrophages results in significantly decreased intracellular survival. Cfu are 

down by 50% and more when the bacterial cells are exposed to NO shortly after 

uptake into macrophages. 
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Figure 28: Bacterial intracellular survival of tellurite and NsrR-regulated gene 

deletion strains between two and ten hours after exposure to activated 

RAW264.7 macrophages. 

The wild-type fold-change is shown on the left. On the right, values of deletion 

strains have been normalised to the bacterial cfu of SL1344 and are shown as a 

percentage of the wild-type fold change. The values represent a minimum of 

two biological replicates with three technical replicates each. The error bars 

show the standard deviations. Asterisk indicates significant differences to wild-

type values with p<0.05, according to the t test. 
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It also shows that the deletion of either does not result in a significant difference 

to wild-type survival when the NO exposure is delayed in non-activated 

macrophages. This indicates that hmpA and norV are important for fast NO 

detoxification as it is essential for survival in activated macrophages. 

 

6.5 Discussion 
The S. Typhimurium hmpA deletion strain has repeatedly been shown to have a 

lower survival rate in activated macrophages and a reduced virulence in mice 

and these observations fit to the results of this study (Bang et al, 2006; 

Gilberthorpe et al, 2007; Karlinsey et al, 2012; Stevanin et al, 2002; Stevanin et 

al, 2007). Deletion of norV in an E. coli strain does not cause any changes in 

intracellular survival in mouse macrophages or in mouse virulence (Pullan et al, 

2007). In S. Typhimurium, NorV has been shown to provide protection against 

macrophage killing, similar to the results observed in Figure 28 (Baptista et al, 

2012). 

A similar pattern of significantly decreased intracellular survival is observed for 

∆cstA and ∆ytfE, indicating that the [Fe-S] cluster repair performed by YtfE is of 

particular importance in rapid NO response. The importance of YtfE for 

pathogenicity has already been shown for S. Typhimurium and H. influenzae, 

where ytfE deletion decreases virulence in mice (Harrington et al, 2009; 

Karlinsey et al, 2012; Kim et al, 2003). In addition, cstA might have a similar role 

to ytfE or the NO detoxifying genes hmpA and norV. A previous study has 

already highlighted that deletion of cstA decreases the virulence of S. 

Typhimurium in C. elegans (Tenor et al, 2004). However, the virulence assay 

model using C. elegans is lacking nitrosative stress as no nitric oxide is 

produced by the nematode. Therefore, CstA could be a virulence factor, 

particularly important under acute NO stress.  

When the oxidative burst is proceeding the nitrosative burst after bacterial 

uptake in non-activated macrophages, the single deletion strains of STM1808, 

tehA, tehB, yeaR and ygbA all show significantly decreased survival in 

comparison to wild-type levels. The combination of deletions of three tellurite 

resistance genes has not further decreased the poor intracellular survival in 
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non-activated, but significantly increases sensitivity to the intracellular 

environment in activated macrophages. The results underline the observation of 

a previous study, where ∆STM1808 infection of mice results in significantly 

decreased bacterial burden of spleen and liver (Karlinsey et al, 2012). A 

previous study in H. influenzae has found a decrease in virulence of ∆tehB 

when the deletion strain is used in a rat infection model (Whitby et al, 2010). No 

record of using a tehA deletion strain has been found. ∆yeaR and ∆STM1808 

tehB yeaR are significantly more sensitive in this study under both conditions, 

although a mice infection study has not found any significant difference in 

bacterial burden of ∆yeaR (Karlinsey et al, 2012).  

Overall, the beneficial effect of tellurite resistance genes on intracellular survival 

and partially for infectivity has been shown. A comparison of results from this 

study with the results of Karlinsey et al. can be seen in Table 27. 

A very strong decrease of survival is observed for ∆ygbA in non-activated 

macrophages. Such an increased sensitivity of the deletion strain is not 

observed in the mice virulence study (Karlinsey et al, 2012). Deletion of cydB 

also only results in significantly decreased survival in non-activated 

macrophages. Previously, ∆cydA has shown decrease murine virulence, but no 

change in invasiveness of chicken liver cells has been observed (Turner et al, 

2003). In a lung infection assay using a M. tuberculosis cydC deletion strain, a 

decreased bacterial burden is observed (Shi et al, 2005). Transposon mutant 

assays using murine macrophages and BALB/c mice have found that a 

functional cydB gene is important for survival, but has no significant effect for 

the virulence in mice overall (Chan et al, 2005). Furthermore, transposon 

insertions into cydA decrease the fitness of S. Typhimurium during cattle and 

mice infection (Chaudhuri et al, 2013). These results indicate that the 

cytochrome oxidases play an important role during infection, although further 

details remain to be elucidated. 

Several approaches to assess fitness of mutant strains on a larger scale exist. 

Signature-tagged mutagenesis allows the comparison of the survival of 

transposon mutant strains in vitro with survival in an infection model. This 

technique has been key to identify SPI-2 (Shea et al, 1996), however, the 

number of unique tags used for probe hybridization is limited. 
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Table 27: Comparison of fold-changes and their significance of tellurite and 

NsrR-regulated gene deletion strains between two and ten hours in non- and 

activated RAW264.7 macrophages. 

Results from the Karlinsey et al., 2012 study regarding bacterial burden in liver 

and spleen of C3H/HeN mice (Nramp1+) are shown. (↓) indicates decreased 

cfu, whereas (↔) indicates no phenotypic change to wild-type results. (N. D.) 

indicates that this phenotype has not been determined in the study. Asterisks 

indicate significant changes to respective wild-type values.  

 

Strain: 
Karlinsey et al., 
2012 

Non-activated 
RAW264.7: 

Activated 
RAW264.7: 

∆cstA N. D. ↓ ↓* 
∆cydB N. D. ↓* ↓ 
∆hmpA ↓* ↓ ↓* 
∆norV N. D. ↓ ↓* 
∆STM1808 ↓* ↓* ↓ 
∆STM1808 tehB 
yeaR N. D. ↓* ↓* 
∆tehA N. D. ↓* ↓* 
∆tehB N. D. ↓* ↓ 
∆yeaR ↔ ↓* ↓* 
∆ygbA ↓ ↓* ↓ 
∆ytfE ↓* ↓ ↓* 
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In addition, the focus of results often remains on negatively selected strain, i.e. 

that are less fit than the wild-type strain (Chaudhuri et al, 2013). TraDIS 

(transposon directed insertion site sequencing) has been developed to allow 

positive and negative selection of mutants and identification of genomic regions 

next to transposon sites is achieved using Illumina sequencing (Langridge et al, 

2009b). A recent study includes over 7,700 transposon mutant strains and 

highlights that disruption in several of the core NO regulon genes impacts on 

the fitness during animal infection models in chicken, pigs, cattle and mice 

(Chaudhuri et al, 2013). CstA is only required in pig infection, whereas an effect 

of hmpA is only seen during the infection of cattle. No effect of cydB, hcr, norV, 

ygbA, yoaG or ytfE has been reported. However, interestingly, transposon 

insertions in tehB result in reduced fitness within chicken, pigs and cattle. 

Unfortunately, no report about yeaR or STM1808 has been found in the 

supplementary data as it would be interesting to know whether the other tellurite 

resistance genes have a similar effect on survival fitness.  

The mixture of ROS and RNS created within non-activated macrophages during 

the intracellular phase of Salmonella infection results in an increased radical 

production through the Fenton reaction. As a result, bacteria are exposed to 

both ROS and RNS within the time frame of the experiment. In contrast, 

exposure to NO, other RNS and ROS in activated macrophages occur at once, 

but allows for a longer recovery time until the ten hour time point. Therefore, it 

has been concluded that there are two sets of genes important for intracellular 

survival: 1) enzymatic NO detoxification and NO damage repair genes and 2) 

genes that allow detoxification of a combination of nitrogen and oxygen radicals. 

When the exposure to NO is imminent, e.g. in activated macrophages, the gene 

products of hmpA, norV and ytfE are needed to detoxify NO and to repair 

proteins directly affected by NO. Strains significantly affected in non-activated 

macrophages have deletions in e.g. tellurite resistance genes and hence are 

predicted to be more sensitive due to radicals produced in the Fenton reaction 

after NO exposure or tellurite detoxification.  
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As each chapter has been discussed individually, this general discussion 

emphasizes the major outcomes of the research and provides hypotheses and 

suggestions for future studies. 

 

7.1 Context 
Salmonella is a globally important pathogen, causing millions of cases of 

typhoid fever and gastroenteritis in humans each year. Outside of humans, 

Salmonella also infects a range of mammals and birds, where consumption of 

contaminated meat is a common source of human gastroenteritis. Human 

fatality rates are increased in immunocompromised hosts, the elderly, young 

babies and children. Factors such as malnutrition and underlying diseases such 

as Malaria and HIV further increase the severity of the illness. With increased 

use and misuse of antibiotics for treatment, a rapid rise in antibiotic resistance 

has evolved, resulting in more difficult management of the disease. Current 

Typhoid fever vaccines cannot protect against gastroenteritis strains, nor do 

they offer lifelong immunity against S. Typhi infection. Further limitations include 

storage conditions and the minimum age for recipients of the vaccine. Measures 

for supplying clean drinking water and heat treatment of water, vegetables and 

meat are therefore the most successful means of decreasing Salmonella 

infection rates in areas where infection by S. Typhi, S. Paratyphi and S. 

Typhimurium are common and where access to vaccines is low. 

The first step towards infection is the ingestion of Salmonella with contaminated 

food products or water. The combination of RNS from dietary nitrate and the 

acidity of the stomach trigger the acid tolerance response and also prime gene 

expression for the later reoccurring exposure to RNS within macrophages. 

Further passage through the gastrointestinal tract transport Salmonella into the 

small intestine. To avoid antibacterial metabolites from commensal gut bacteria 

and detection by the immune system, Salmonella uses the SPI-1 proteins to 

invade enterocytes or channels through M cells to reach the basolateral side of 

the intestinal epithelium. M cells present Salmonella bacteria to macrophages 

that take them up via phagocytosis. Irrespective of how Salmonella reaches the 

intracellular stage, it modifies the vacuolar compartment to form the SCV. 

Within the SCV, Salmonella encounters exposure to ROS and RNS that are 
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part of the antimicrobial defence mounted by the immune system. Detoxification 

of ROS and RNS at this stage is essential to ensure survival and the ability to 

replicate within the host cell. Three enzymes for NO detoxification have 

previously been identified for E. coli and S. Typhimurium, namely HmpA, NorV 

and NrfA. Tolerance levels of NO and intracellular survival are known to be 

lower for E. coli than for Salmonella. This raises the question whether additional 

NO detoxification mechanisms exist in Salmonella that allow it to survive higher 

NO concentrations. Salmonella encounters NO in the stomach after the 

protonation of nitrite yields NO and other RNS and is further exposed to NO in 

the SCV. Therefore, NO detoxification is an essential step during Salmonella 

pathogenesis and a better understanding of this process would allow the 

development of antibacterial drugs or vaccines that can target the enzymes 

involved in NO defence or accentuate the toxicity of NO.  

 

7.2 Identification of the core NO detoxification regulon 

7.2.1 Changes in gene expression during exposure to endogenous NO 
As a result of denitrification, NO is produced endogenously by Salmonella. 

Detoxification of nitric oxide is then needed to avoid self-poisoning. Anaerobic 

growth in a bioreactor under nitrate-sufficiency results in NO-genesis and has 

been used to compare gene expression levels before and after NO production. 

46 genes are significantly up-regulated by a minimum of five-fold. The up-

regulation of the NO detoxification genes hmpA (flavohaemoglobin), norV 

(flavorubredoxin-type nitric oxide reductase) and ytfE (iron-sulphur repair) 

matches previous reports, stresses the importance of NO detoxification during 

denitrification and also validates the approach taken (Filenko et al, 2007; Flatley 

et al, 2005; Justino et al, 2005; Karlinsey et al, 2012; Mukhopadhyay et al, 

2004). 

The most up-regulated genes, at over 120 fold, are hmpA and narG. NarG 

encodes for an anaerobically-active nitrate reductase, similar to NarZ. The third 

nitrate reductase Nap is of higher importance during aerobic growth and is not 

significantly affected by endogenous NO exposure during anaerobic growth 

(Rowley et al, 2012). Expression levels of narZ are also not significantly 
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affected under the experimental conditions. Therefore, the results suggest that 

NarG is the major enzyme for nitrate respiration under the given nitrate-

sufficient conditions. 

The importance of HmpA during survival within murine and human 

macrophages as well as during mice infection has been shown in the related 

literature (Bang et al, 2006; Gilberthorpe et al, 2007; Karlinsey et al, 2012; 

Stevanin et al, 2002). The high expression levels during endogenous NO 

exposure have stressed the importance of HmpA’s nitric oxide dioxygenase 

activity, providing further proof that HmpA plays a major role during situations 

where NO levels are high such as during intracellular survival within 

macrophages. Groups of genes all regulated by NsrR and FNR, known to be 

NO-responsive transcriptional regulators, are significantly induced and include 

cydAB, hcr, hmpA, narGHIJK, yeaR-yoaG, and ygbA. 

The methionine biosynthesis operon has previously been shown to be 

significantly affected by NO toxicity where three met genes are significantly 

increased (Flatley et al, 2005). The increase in expression of met operon genes 

in this study corresponds with the observation that reactivity of NO with 

homocysteine results in increased expression of met genes to compensate for 

the loss of homocysteine in the methionine biosynthesis pathway (De Groote et 

al, 1996; Membrillo-Hernández et al, 1998; Schell, 1993). 

The increase in cydAB (cytochrome d oxidase genes) RNA levels have been 

reported for E. coli and S. aureus after NO exposure and have been explained 

to be a mechanism to compensate for the decreased activity levels of other 

oxidases (Filenko et al, 2007; Richardson et al, 2006; Stevanin et al, 2000). 

This is further evidence that NO is affecting bacterial respiration. 

Results from other studies have also shown the increased gene expression of 

hcr, hmpA, norV and ytfE, supporting the observations that they play an 

important role during NO detoxification (Filenko et al, 2007; Hautefort et al, 

2008; Karlinsey et al, 2012; Partridge et al, 2009). 
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7.2.2 Changes in gene expression during exposure to exogenous NO 
Exogenous NO is encountered during infection of macrophages, where NO is 

produced in order to kill invading pathogens. Detoxification of NO is essential to 

enable Salmonella to survive and replicate within macrophages as part of the 

infection process. The addition of 40 µM NO to anaerobically growing S. 

Typhimurium cells significantly changes the gene expression levels of 139 

genes by a minimum of two-fold after ten minutes.  

Similarly to the observations made during endogenous NO exposure, the levels 

of hmpA, norVW and ytfE are also significantly increased as shown in previous 

studies (Filenko et al, 2007; Justino et al, 2005; Mukhopadhyay et al, 2004). 

With fold-changes above 135, these four genes are in the group of the top ten 

genes that see the highest fold changes in expression. Other genes in the 

group include STM1808 (putative tellurite resistance gene), STM1868A 

(encoding for a lytic enzyme), STM1250 (encoding for a putative cytoplasmic 

protein) and sitABC (encoding for an iron transport system). The high 

expression levels of NO detoxification genes underline the importance of NO 

detoxification for bacterial survival.  

Again, genes regulated by FNR and NsrR significantly increase in expression in 

response to NO. Apart from hmpA and ytfE, pyruvate dehydrogenase genes 

(aceEF, lpdA, pdhR) and putative tellurite resistance genes are most noticeably 

affected (tehAB, STM1808, yeaR).  

As seen with the results of endogenous NO exposure, the bacterial respiratory 

chain is noticeably affected as expression levels of cydB (cytochrome d oxidase 

subunit) and cyoDE (cytochrome o ubiquinol oxidase subunits) are significantly 

increased. Another compensatory mechanism to counteract NO toxicity is the 

increased expression of the DNA repair gene nrdA which could potentially 

decrease DNA damage caused by NO as shown in the related literature 

(Filenko et al, 2007; Flatley et al, 2005; Justino et al, 2005; Lepoivre et al, 1991; 

Mukhopadhyay et al, 2004). The interference of NO with metal homeostasis and 

[Fe-S] cluster formation is also observed. Several iron storage (bfd), iron uptake 

(sit operon), siderophore (iro, ent) and [Fe-S] cluster formation genes (iscR, 

nifSU, sufCDS) are significantly increased, stressing the importance of 

balanced iron levels within the cell to decrease the amount of radical production 
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from free iron through the Fenton reaction and the importance of protein repair 

for the functioning of the cell (Justino et al, 2005). 

The observed gene expression level changes correspond with the reported 

toxicity of NO. Disruption of protein conformation through reactivity with iron, 

DNA damage and the relief of gene repression through NsrR and FNR are all 

confirmed as the corresponding genes are significantly up-regulated. 

 

7.2.3 The core NO regulon 
The overlap between up-regulated genes after endogenous and exogenous NO 

exposure has been determined in order to identify genes that belong to a core 

NO regulon. Nine genes are up-regulated more than two-fold under both 

conditions: cstA, cydB, hcr, hmpA, norV, yeaR-yoaG, ygbA and ytfE, all of 

which share a number of common regulators such as NsrR and FNR. HmpA, 

NorV and YtfE have previously been shown to be involved in NO defence 

through enzymatic detoxification (HmpA and NorV) and protein repair (YtfE). 

However, very little is known about the contribution of the other proteins during 

detoxification of NO. 

All core NO regulon genes are conserved in the following Salmonella strains: S. 

Typhimurium strains LT2, SL1344, DT104 and 14028s; S. Typhi strains Ty2 and 

CT18; S. Paratyphi A; S. Gallinarum; S. Enteritidis PT4 and S. Choleraesuis 

(Silva et al, 2012). In S. Paratyphi C, only hcr, norV and ygbA are well-

conserved, but the other core NO regulon genes are considered absent as the 

gene identity is at levels of 85% or below. CydB and yeaR-yoaG are not well 

conserved in S. Paratyphi B, whereas overall, cstA, cydB, hcr, norV and ytfE 

are well-conserved across S. Dublin, S. Diarizonae, S. Arizonae and S. bongori. 

YeaR is the gene which is least well conserved across these last three genes. 

In conclusion, norV, cstA, hcr, ytfE, ygbA and cydB are most well-conserved 

from the core NO regulon genes with an average gene similarity of above 97%. 

Average values in the range of 90-93% have been determined for hmpA, yeaR 

and yoaG.  

The carbon starvation protein-encoding gene cstA has not previously been 

linked with NO defence, but a role during nematode infection, where no nitric 
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oxide is present, has been recognized (Tenor et al, 2004). Increased expression 

levels of cydB have been explained with the increased demand for energy 

during infection (Hautefort et al, 2008). In addition, nitric oxide inhibits the 

activity of CydB, making it prone to malfunctioning during NO exposure (Borisov 

et al, 2004; Stevanin et al, 2000). Hcr functions as an oxidoreductase for Hcp, 

with a previous NO exposure assay showing the expression of the gene to be 

increased (Kim et al, 2003). However, its role during infection is not clear as 

deletions of hcr and its operon partner hcp increase bacterial survival within 

murine liver and spleen, although at lower inoculation doses. Also, a hcp 

deletion strain has the same NO sensitivity as the wild-type strain (Karlinsey et 

al, 2012). This raises the question about the exact role of Hcr in the infection 

process. 

The next two genes on the list of core NO regulon genes have been linked to 

NO defence for some time: HmpA and NorV can convert NO into less toxic 

products and are an integral part of NO detoxification of Salmonella (Crawford & 

Goldberg, 1998b; Hausladen et al, 1998; Mills et al, 2008). Alongside norV and 

hmpA, ytfE expression has also been linked to the presence of NO (Bodenmiller 

& Spiro, 2006; Gilberthorpe et al, 2007; Justino et al, 2005; Pullan et al, 2007). 

Its role has been shown to allow for the repair of [Fe-S] clusters (Justino et al, 

2007). The strong induction of hmpA, norV and ytfE to a number of NO donor 

agents strongly supports their role during NO detoxification. 

YeaR, yoaG and ygbA have been less in the focus of interest in studies looking 

at NO toxicity, although increased gene expression in the presence of NO 

sources has been reported (Constantinidou et al, 2006; Justino et al, 2005; 

Mukhopadhyay et al, 2004). The DUF of yeaR indicating a tellurite resistance 

role has not been investigated further, nor any possible function of ygbA in NO 

detoxification or damage repair.  

Overall, the expression levels of three well-characterised NO defence genes 

have been shown to change significantly, alongside a number of genes that 

have only recently been shown to respond to NO. The further investigation of 

the NO sensitivity of single deletion mutants is necessary to validate the 

grouping into the core NO regulon. 
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7.3 Sensitivity towards NO 
The anaerobic NO sensitivities of mutant strains with deletion of known NO 

detoxification, core NO regulon and tellurite resistance genes are investigated. 

The results shown here agree with previously published results in that both 

∆norV and ∆nrfA display significantly increased NO sensitivity, showing that NO 

detoxification is an important process (Mills et al, 2008). The sensitivity of 

∆hmpA is not significantly increased, supporting its minor role during anaerobic 

NO detoxification determined by Mills et al. in 2008. Deletion of the putative NO 

reductase STM1273 does not result in any changes in anaerobic NO sensitivity, 

questioning its gene annotation, at least under the conditions used. ∆ytfE 

displays no significant change in nitric oxide sensitivity, in line with previous 

observations (Gilberthorpe et al, 2007; Karlinsey et al, 2012; Kim et al, 2003). 

De-repression of NsrR-regulated genes through deletion of NsrR results in 

decreased NO sensitivity. NsrR deletion allows continuous expression of NO 

defence genes such as hmpA and ytfE that detoxify NO and repair the protein 

damage caused. The anaerobic nitric oxide sensitivity of ∆hcr is not significantly 

increased. This is possibly due to the influence of nutrient and oxygen 

availability or functional redundancy. Nutrient and oxygen availability could also 

explain the results observed for ∆yeaR and ∆ygbA. A previous study by 

Karlinsey et al. has not detected any aerobic NO sensitivity of Salmonella 

strains lacking either of these genes, but a significant anaerobic NO sensitivity 

is shown in this study, highlighting that functionality of YgbA and YeaR is 

influenced by oxygen tension. The increase in sensitivity for both deletion 

strains is very close to the levels detected for ∆norV and hence ygbA and yeaR 

play an important role during anaerobic NO defence. Similar sensitivity is also 

observed for ∆cstA, highlighting that the presence of CstA plays an important 

role during NO exposure.  

The deletion of cydB, encoding a subunit of a cytochrome d oxidase, results in 

significantly decreased NO sensitivity, suggesting that this particular 

cytochrome oxidase is not highly affected during in vitro NO exposure. A mice 

infection study has shown that deletion of the other subunit, cydA, decreases 

virulence, indicating the more complex in vivo environment causes S. 

Typhimurium to require more functional cytochrome oxidases than during in 

vitro studies where only one stress factor is introduced (Turner et al, 2003).  
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For the first time, it has been shown that the deletion of single tellurite 

resistance genes significantly increases NO sensitivity. The link between 

tellurite resistance genes and NO detoxification has not been suggested before. 

Deletion of all three tellurite resistance genes results in a strain with severe 

growth impairments when exposed to NO. Irrespective of the gene annotation, 

STM1808, tehAB and yeaR play a major role during survival in the presence of 

NO.  

In conclusion, NO sensitivity of deletion strains is dependent on oxygen and 

nutrient availability. Discrepancies with other studies most likely are the result of 

aerobic vs. anaerobic growth. Overall, the majority of core NO regulon genes 

are important during nitric oxide defence. In addition, a contribution of, and 

functional redundancy between tellurite resistance genes in surviving NO stress 

has been shown for the first time. 

 

7.4 Sensitivity towards tellurite 
NsrR-regulation of the yeaR homolog STM1808 has been previously 

computationally predicted and after the experiments which determined NsrR 

regulation of STM1808 in this thesis have been performed, direct NsrR 

regulation has been confirmed in the literature (Karlinsey et al, 2012; Rodionov 

et al, 2005). 

Ironically, this is the first study to experimentally investigate the effect of tellurite 

resistance genes on the tellurite sensitivity of Salmonella. A correlation between 

NO sensitivity of ∆STM1808 and its tellurite resistance domain has been 

dismissed in the past and no tellurite sensitivity has been tested (Karlinsey et al, 

2012). Single deletion strains are greatly affected by the presence of tellurite 

and a triple deletion strain struggles to grow even over the time course of nine 

hours. This study has clearly stressed that all three genes STM1808, yeaR and 

tehB are important for tellurite resistance, despite any protein truncations of 

STM1808 and YeaR in the C-terminal domain that might render the SAM-

dependent methyltransferase dysfunctional (Karlinsey et al, 2012).  

During tellurite reduction to tellurium, ROS are produced that lead to a high 

level of oxidative stress. Scavenging of ROS through the addition of DTT 

restores the growth of all three single tellurite deletion strains. This is proof that 
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the sensitivity of the deletion strains is the result of ROS production and that all 

three genes function in protection against oxidative stress. The correlation 

between NO and tellurite toxicity potentially lies in the production of oxygen 

radicals during tellurite reduction and during NO reactivity with [Fe-S] clusters, 

and a subsequent release of iron. Therefore, deletion of a tellurite resistance 

gene would also affect cells growing in the presence of NO as ROS 

detoxification is impaired. It would appear then that the label of tellurite 

resistance genes is somewhat misleading and that they are actually stress 

response genes which respond to damaging free radical stress. 

This study has not confirmed previous reports about tellurite reduction by nitrate 

reductases (Avazeri et al, 1997). During aerobic growth, NarG expression does 

not take place and a deletion strain does not show any signs of altered tellurite 

sensitivity. Although NarZ is expressed during aerobic growth, deletion of narZ 

does not impact tellurite sensitivity. The sensitivity of ∆nirB, however, is 

extremely high and ∆nrfA also has significantly increased tellurite sensitivity, 

pointing at a physiological role of these nitrite reductases during tellurite 

reduction, possible as the reductases might be able to bind and reduce tellurite 

to tellurium.  

There is a strong correlation between NO and tellurite sensitivity of deletion 

strains of known NO detoxification genes (hmpA, norV, nrfA, ytfE). Significant 

increases in tellurite sensitivity of the respective deletion strains are observed, 

confirming the hypothesis that NO and tellurite toxicity are linked. 

Across the remainder of the core NO regulon genes, ∆cydB is less tellurite 

sensitive than the wild-type strain and the same phenotype is observed for 

∆nsrR. The other core NO regulon deletion strains are all significantly more 

tellurite sensitive than the wild-type strain. This further stresses the correlation 

between NO and tellurite resistance. 

The same low concentration of tellurite used for the growth sensitivity assay is 

also used during the monitoring of expressional changes. RNA levels of nirB 

display the highest fold changes at the three time points and this corresponds to 

the drastically increased tellurite sensitivity of the respective deletion strain. 

Fold changes of norV and STM1808 take longer to reach their peaks and for 

norV to breach the two-fold cut-off, but the four-fold changes measured 30 
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minutes post tellurite addition persist until the 60 minute mark. The fold changes 

of hmpA, tehB and yeaR do not change more than two-fold after tellurite 

addition. The strong NsrR regulation known for hmpA therefore might not be 

affected by tellurite. The differences between levels of STM1808 and yeaR 

indicate that despite high homology of the genes, their regulation under tellurite 

stress is differing. It has become evident that tellurite exposure causes 

prolonged changes in gene expression levels, raising the questions whether 

there is a tellurite-responsive regulator either specific to tellurite or responsive to 

several toxic metal anions.  

The presence of additional mechanisms for ROS detoxification could provide S. 

Typhimurium with a competitive advantage during infection as other pathogenic 

bacteria such as pathogenic E. coli strains only have TehB and YeaR to boost 

survival under oxidative and nitrosative stress.  

 

7.5 Intracellular survival within non- and activated macrophages 
Non-activated macrophages require approximately one hour before ROS are 

released into the phagosome or the SCV. RNS release takes place eight hours 

after the uptake of bacteria when no prior activation of macrophages has taken 

place. Therefore, any bacterial cells that are taken up into the non-activated 

macrophages encounter ROS release first, followed by NO production at a later 

stage. Activated macrophages produce NO at a high level shortly after bacterial 

uptake, therefore omitting the exposure to ROS. 

All the tested strains show decreased intracellular survival in both non- and 

activated macrophages when cfu levels at two and ten hours are compared to 

wild-type levels. However, the deletion of NO detoxification genes hmpA, norV 

or ytfE causes non-significant decreases in non-activated murine cells along 

with the result of ∆cstA, whereas the decrease is significant for the results from 

the activated macrophage cells. These results are consistent with previously 

published studies showing decreased survival in activated macrophages 

(∆hmpA, ∆norV) and decreased mice virulence (∆hmpA, ∆ytfE) (Bang et al, 

2006; Baptista et al, 2012; Gilberthorpe et al, 2007; Karlinsey et al, 2012; Kim et 

al, 2003; Stevanin et al, 2002; Stevanin et al, 2007). Survival within activated 
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macrophages requires a fast response to the NO released in comparison with 

the eight hour delay of NO production within non-activated macrophages. Lack 

of cstA has proven to reduce nematode virulence (Tenor et al, 2004). As 

nematodes do not produce NO to kill pathogens, this screening model is more 

indicative to highlight virulence factors such as possibly CstA rather than NO 

detoxifying mechanisms. 

On the contrary, the intracellular survival of ∆cydB, ∆STM1808, ∆tehB and 

∆ygbA is significantly decreased in non-activated macrophages, but not in 

activated cells. These genes hence are less important for a rapid NO 

detoxification as observed for hmpA, but support the detoxification of ROS and 

RNS in general. The triple deletion strain ∆STM1808 ∆tehB ∆yeaR shows 

significantly decreased intracellular survival in both experimental conditions, but 

survival is most drastically reduced in non-activated macrophages. Similar, 

deletion of yeaR results in significantly reduced survival in both conditions, but 

the reduction is bigger when ∆yeaR is subjected to non-activated macrophages. 

In conclusion, tellurite resistance genes contribute significantly to intracellular 

survival and this has partly been reflected in the role of STM1808 and tehB 

during mice and rat infection in previous work (Karlinsey et al, 2012; Whitby et 

al, 2010). The poor intracellular survival of ∆cydB in non-activated macrophages 

in this study is reflected by the importance of the cyd operon during mice 

virulence shown previously (Turner et al, 2003). A previous study has listed 

cydB as one of the genes where transposon mutations have led to decreased 

survival within murine macrophages (Chan et al, 2005). 

Although ∆ygbA struggles to survive within non-activated macrophages, no 

effect on mice virulence has been observed previously, and the function of 

YgbA has not been further elucidated (Karlinsey et al, 2012). NO detoxification 

and repair genes are shown to be of most importance during NO exposure as 

the deletion strains are more affected in activated macrophages. Therefore, 

there are two groups of genes that ensure S. Typhimurium survival within 

macrophages. Firstly, tellurite resistance proteins and cytochrome oxidases are 

most needed to counteract radical formation from the oxidative and nitrosative 

burst and to maintain the cellular energy metabolism. Secondly, NO detoxifying 
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and repair enzymes are needed after the release of NO in order to reduce NO 

reactivity with proteins and DNA. 

 

7.6 Future work 
Most of the core NO regulon and the tellurite resistance genes have only been 

minimally characterised in Salmonella to-date. Therefore, further experiments 

are needed to provide a more precise function of the proteins during NO 

detoxification, intracellular survival and overall during infection. 

It would be of interest to perform a range of experiments to investigate the time 

point when each of these proteins is expressed during the course of a 

macrophage infection study, for example by using GFP-labelling, high resolution 

microscopy and time lapse techniques. These experiments could provide 

clarification as to whether the intracellular macrophage environment as such or 

the nitrosative burst in particular is responsible for the activation of gene 

expression. 

Additionally, an iNOS inhibitor, such as aminoguanidine or L-NG-monomethyl 

arginine, could be used to selectively stop the production of NO by iNOS within 

macrophages (Corbett & McDaniel, 1996; Kim et al, 2003; Stevanin et al, 2002). 

One of these inhibitors could be used to completely inhibit NO synthesis from 

the start of the bacterial uptake or to abort NO production shortly after the onset 

of the nitrosative burst. In comparison with intracellular survival in iNOS-/- and 

iNOS+/+ macrophages, this could help to establish the vulnerability of deletion 

strains to differing time periods of exposures to NO during intracellular survival. 

 

Infection studies and virulence models 
These experiments would also lay the basis for mouse infection studies, either 

by intraperitoneal injection or oral administration of S. Typhimurium for 

competition assays between wild-type and mutant strains (Bang et al, 2006; 

Karlinsey et al, 2012). In addition, iNOS-deficient mice serve as a NO-free 

model. Parameters for observations could be the bacterial burden of organs 

such as the liver and spleen as previously used for S. Typhimurium mice 

virulence assays (Bang et al, 2006; Karlinsey et al, 2012; Kim et al, 2003). 
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In contrast to macrophage and mice models, other virulence models exist, e.g. 

using C. elegans as the nematode does not have a nitric oxide synthase it could 

use to prevent bacterial infection. Such a model would highlight any genes that 

are of importance from a more general aspect of virulence, i.e. are not specific 

during encounters with NO. ∆cstA has already been tested in a C. elegans 

virulence model and has showed significantly decreased virulence, but the other 

core NO regulon genes have not yet been tested (Tenor et al, 2004). 

 

Biochemical protein characterisation 
With regards to biochemical and biophysical characterisation, these results 

have opened up a whole range of potential experiments. The crystal structures 

of several core NO regulon and tellurite resistance proteins have yet not been 

determined, e.g. for CstA, STM1273, STM1808 and YeaR. A limited number of 

purifications has been performed that would allow for a biochemical analysis. 

Possible enzyme activity assays include nitric oxide or tellurite reduction, NO 

oxygenase activity or [Fe-S] repair. One technique is protein film voltammetry 

which has been used to determine the NO reductase activity of NrfA (van 

Wonderen et al, 2008). An electrode replaces the membrane and directly 

supplies electrons to the protein that forms a monolayer on the electrode 

(Anderson et al, 2001). The electron transfer is measured and information about 

enzyme kinetics are obtained using only small quantities (picomole) of purified 

protein (Heering et al, 1998). 

Furthermore, the ligand binding, potential dimerization, potential cofactors such 

as FAD or NAD(P)H or inhibitors, and absorption spectra to identify e.g. NO-

mediated changes in haem groups or rubredoxin domains, using UV/visible, X-

ray absorption or electron paramagnetic resonance spectroscopy would be of 

particular interest for better understanding of the protein functions. As 

differences between aerobic and anaerobic properties might exist, as it is the 

case for HmpA, different oxygen levels should be taken into consideration (Kim 

et al, 1999; Mills et al, 2001). 

With previous evidence in the literature that cst genes play a role during 

starvation conditions in E. coli and S. Typhimurium, further tests to investigate 

the role of cstA during intracellular survival would be useful (Dubey et al, 2003; 
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Schultz et al, 1988; Spector et al, 1988). It would be of interest to examine 

whether a cstA deletion strain is less fit under starvation conditions, e.g. shows 

growth deficits in minimal media such as MM5.8 that mimics the low pH of the 

macrophage environment.  

Even though it has been shown that bacterial respiration suffered during NO 

exposure, deletion of cydB in this study shows the opposite effect as a deletion 

strain is significantly less sensitive to grow in the presence of NO than the 

parent strain (Fang, 2004). Nevertheless, ∆cydB has significantly decreased 

survival within non-activated macrophages and cydA deletion in S. Typhimurium 

reduces the virulence in mice (Turner et al, 2003). Therefore, the influence of 

CydB could be more directed at the metabolic fitness and hence would have a 

bigger impact during the more complex in vivo conditions. It would be of interest 

to perform studies looking at NO binding and dissociation with CydAB and other 

cytochrome oxidases to compare the effect NO has on their enzyme activity.  

Similar to STM1273, hcr deletion does not result in increased NO sensitivity. 

Aerobic sensitivity of ∆hcp to NO has previously been shown and deletion of hcr 

might also lead to increased aerobic NO sensitivity (Karlinsey et al, 2012). A 

combination mutant of hcr and hmpA deletion could also facilitate to uncover 

possible functional overlap between both genes. Whether Hcr has the ability to 

deoxygenate NO similar to HmpA would need to be established using enzyme 

activity assays similar to the ones performed for HmpA in previous studies 

(Gardner et al, 2000; Hausladen et al, 1998).  

STM1273 has been annotated as coding for a putative nitric oxide reductase, 

but no anaerobic NO sensitivity for the deletion strain has been observed. 

Determining the aerobic NO sensitivity of this mutant would therefore be of 

interest. A combination mutant lacking norV, nrfA or hmpA as well as STM1273 

might provide information about functional redundancy that could have masked 

any nitric oxide reductase activity of STM1273. If any NO sensitivity is detected, 

protein purification to further investigate anaerobic or aerobic NO reductase 

activity would then be a possible step (Gomes et al, 2002). 

 

Tellurite resistance genes 
The tellurite sensitivity assay highlights the ability of STM1808 and YeaR to 

protect Salmonella against tellurite toxicity. Previous work has shown the 
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importance of conserved histidines for functionality of STM1808, but no further 

protein characterisation or structural analysis has been performed nor have 

similar experiments been performed for YeaR (Karlinsey et al, 2012). Sequence 

alignments of S. Typhimurium and E. coli tehB with H. influenzae tehB indicate 

a truncation at the C-terminal domain. Therefore, it has been questioned 

whether STM1808 and YeaR as homologues of S. Typhimurium TehB would be 

able to have any SAM-dependent methyltransferase activity. Protein purification 

would thus allow further enzyme activity studies, e.g. for methyltransferase 

activity, and protein crystallization studies to establish the protein structures. 

Substitution of putatively important residues in YeaR would allow assessing 

which residues are needed for enzyme activity and comparison with STM1808 

could provide information on how similar their function is. Additionally, deleting 

the C-terminal domain from TehB or inactivating the associated 

methyltransferase through amino acid substitution could elucidate whether the 

enzyme function of TehB solely relies on the methyltransferase. 

A previous study by Avazeri et al. has used purified NarG and NarZ to 

investigate aerobic tellurite reduction activity. The results shown here do not 

support their role for aerobic tellurite resistance. Since narG expression is 

limited to anaerobic environments, aerobic tellurite sensitivity assay and 

enzyme activity studies do not match physiological conditions of NarG activity 

(Rowley et al, 2012). A residual tellurite reductase activity of a ∆narG narZ 

strain is observed that could be attributed to the aerobically expressed nitrate 

reductase Nap.  

For investigation of NarG contribution to tellurite resistance, a deletion strain 

would need to be tested during anaerobic growth. Differences between 

sensitivities of E. coli and S. Typhimurium strains might exist and this could be 

investigated via a side-by-side study of corresponding deletion strains. 

Deletion of nirB highlights that this nitrite reductase is a major component for 

tellurite resistance. Tellurite reduction assays with purified protein would need to 

be performed to further investigate the enzyme kinetics of NirB. Additionally, 

cross-sensitivity of tellurite sensitive strains to other metals would need to be 

investigated. Similar work has already highlighted links to anions of arsenic and 

selenium in E. coli (Turner et al, 2001; Turner et al, 1992). 
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It has not been established, how gene expression might be modulated by the 

presence of tellurite directly. It is assumed that the production of ROS leads to 

expression changes, but the possibility of a tellurite-sensing regulatory system 

has not yet been explored. It has been shown here that NsrR is contributing to 

gene expression regulation, but metal-responsive regulators such as BaeSR, 

Fur and PhoPQ have not yet been assayed for a response to tellurite (Appia-

Ayme et al, 2011; Nies, 1999; Runkel et al, 2013). 

 

7.7 Concluding remarks 
The work presented in this study stresses the importance of nine additional 

genes for the detoxification of NO or the repair of NO damage and shows a link 

between NO and tellurite sensitivity for the first time. An overview of the 

phenotypes of the tested strains is given in Table 28 and underlines that 

functional tellurite resistance also confers an advantage for NO stress and 

intracellular survival of S. Typhimurium.  

Although the characterisation of the core NO regulon and tellurite genes still 

offers a huge potential for future work, this work has set the basis in showing 

the connection between the resistance to tellurite and defence against NO via 

the ROS produced as a result of their reactivity and reduction.  

 

  



 

 

Table 28: Overview of phenotypes of core NO regulon, tellurite and NO detoxification deletion mutant strains. 
The sensitivity during anaerobic NO exposure and aerobic growth in the presence of tellurite are all significant results. Results of 
intracellular survival are shown and (n.s.) indicates non-significant results. (↓) and (↑) refer to de- and increased sensitivity of a strain, 
respectively and (wt) indicates that the wild-type’s phenotype has been observed. (n.d.) refers to phenotypes that have not been 
determined in the studies.  

Strain: NO sensitivity (-O2) K2TeO3 sensitivity (-O2) Intracellular survival: 
RAW264.7 

Intracellular survival: 
RAW264.7 + IFN-γ 

∆cstA ↑ ↑ ↓ n.s. ↓ 
∆cydB ↓ ↓ ↓ ↓ n.s. 
∆hcr wt ↑ n.d. n.d. 
∆hmpA wt ↑ ↓ n.s. ↓ 
∆norV ↑ ↑ ↓ n.s. ↓ 
∆yeaR ↑ ↑ ↓ ↓ 
∆ygbA ↑ ↑ ↓ ↓ n.s. 
∆ytfE wt ↑ ↓ n.s. ↓ 
∆STM1808 ↑ ↑ ↓ ↓ n.s. 
∆tehA ↑ ↑ ↓ ↓ 
∆tehB ↑ ↑ ↓ ↓ n.s. 
∆yeaR ↑ ↑ ↓ ↓ 
∆STM1808 tehB yeaR ↑ ↑ ↓ ↓ 
∆hmpA wt ↑ ↓ n.s. ↓ 
∆norV ↑ ↑ ↓ n.s. ↓ 
∆nrfA ↑ ↑ n.d. n.d. 
∆nsrR ↓ ↓ n.d. n.d. 
∆STM1273 wt ↑ n.d. n.d. 
∆ytfE wt ↑ ↓ n.s. ↓ 
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The production and detoxification of a potent
cytotoxin, nitric oxide, by pathogenic enteric
bacteria
Anke Arkenberg1, Sebastian Runkel1, David J. Richardson and Gary Rowley2

School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk NR4 7TJ, U.K.

Abstract
The nitrogen cycle is based on several redox reactions that are mainly accomplished by prokaryotic
organisms, some archaea and a few eukaryotes, which use these reactions for assimilatory, dissimilatory or
respiratory purposes. One group is the Enterobacteriaceae family of Gammaproteobacteria, which have their
natural habitats in soil, marine environments or the intestines of humans and other warm-blooded animals.
Some of the genera are pathogenic and usually associated with intestinal infections. Our body possesses
several physical and chemical defence mechanisms to prevent pathogenic enteric bacteria from invading the
gastrointestinal tract. One response of the innate immune system is to activate macrophages, which produce
the potent cytotoxin nitric oxide (NO). However, some pathogens have evolved the ability to detoxify NO
to less toxic compounds, such as the neuropharmacological agent and greenhouse gas nitrous oxide (N2O),
which enables them to overcome the host’s attack. The same mechanisms may be used by bacteria producing
NO endogenously as a by-product of anaerobic nitrate respiration. In the present review, we provide a brief
introduction into the NO detoxification mechanisms of two members of the Enterobacteriaceae family:
Escherichia coli and Salmonella enterica serovar Typhimurium. These are discussed as comparative non-
pathogenic and pathogenic model systems in order to investigate the importance of detoxifying NO and
producing N2O for the pathogenicity of enteric bacteria.

Enteric bacteria, NO and human health
Enteric bacteria find their natural habitat in the intestines
of humans and other warm-blooded animals. Some of the
genera are pathogenic and usually associated with intestinal
infections, whereas others are essential and are part of
the normal flora. Examples are the pathogenic Salmonella,
which is a common source of food poisoning, compared
with commensal non-pathogenic Escherichia coli strains,
which have beneficial traits for humans, such as synthesizing
vitamin K from undigested material in the large intestine [1].
Physical and chemical host barriers of the innate immune
system generally protect the host from invading pathogens
by activating macrophages, a special type of phagocyte,
to engulf and destroy the invaders. Activated macrophages
produce ROS (reactive oxygen species) and RNS (reactive
nitrogen species), which are able to modify or inactivate
proteins, lipids and nucleic acid compounds of the engulfed
micro-organism, and thereby kill them [2]. One RNS that
has sparked a great deal of interest in recent times is the
potent cytotoxin nitric oxide (NO) that is lethal to most

Key words: Escherichia coli, nitrate respiration, nitric oxide detoxification, nitrous oxide,

pathogenicity, Salmonella enterica serovar Typhimurium.

Abbreviations used: FNR, fumarate and nitrate reductase regulator; Fur, ferric-uptake regulator;

iNOS, inducible nitric oxide synthase; MetR, methionine repressor; RNS, reactive nitrogen

species; ROS, reactive oxygen species; SCV, Salmonella-containing vacuole; SPI-2, Salmonella

pathogenicity island 2.
1These authors contributed equally to this work.
2To whom correspondence should be addressed (email g.rowley@uea.ac.uk).

pathogens. NO is generated in macrophage lysozymes by
iNOS (inducible nitric oxide synthase). When iNOS becomes
activated, it catalyses the oxidation of L-arginine to L-
citrulline and NO [3]. The generation of ROS is performed by
the NADPH oxidase Phox, and genetic defects affecting this
enzyme lead to an increased rate of infections in humans [4].
Phox reduces O2 to O2

− , which dismutates into hydrogen
peroxide. The reactivity of NO and hydrogen peroxide
results in the generation of other reactive compounds such
as peroxynitrite. If mice lack iNOS or Phox, or both, they
are much more susceptible to Salmonella infections, resulting
in higher fatality rates and increased tissue damage of liver and
spleen [5,6]. On the one hand, this underpins the importance
of both enzymes for the immune system to deter invading
pathogens. On the other hand, it highlights the importance
of detoxification mechanisms for pathogenic bacteria such
as Salmonella. In addition, NO is generated after a nitrate-
rich meal. Dietary nitrate produces salivary nitrite, which
becomes acidified in the stomach and is further converted into
NO [7,8]. It has been shown that the NO levels generated in
the stomach are far beyond its beneficial use as a vasodilator
and that it supports the killing of pathogens in addition to
the stomach acidity [7]. However, some pathogens such as
Salmonella have evolved the ability to protect themselves
against oxidative and nitrosative stresses. They are able to
detoxify NO and related RNS to less toxic compounds and
thereby ensure their survival. The same defence mechanisms
may be used by bacteria producing NO endogenously as a
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Figure 1 Truncated denitrification pathways in E. coli and Salmonella Typhimurium

Nitrate respiration in E. coli and Salmonella is a truncated version of the denitrification pathway (red arrows). Unlike many

soil bacteria, E. coli and Salmonella lack NosZ; indicated by a red cross. NO is a toxic intermediate. The main enzymes

involved in NO detoxification alongside their regulators are shown. The NO detoxification pathways are indicated by yellow

broken arrows. Enzymes involved in these pathways are shown in yellow. Positive regulation is highlighted by arrows, and

negative regulation by perpendicular lines. Other enzymes are shown in red.

by-product of their own metabolism during anaerobic nitrate
respiration.

NO detoxification in enteric bacteria
As E. coli and Salmonella are facultative anaerobes, O2 is
their preferred energy source, if present. However, if there is a
shortage of O2, they are able to switch to nitrate respiration to
maintain their metabolism in a process called denitrification
[9]. Unlike many soil bacteria, E. coli and Salmonella undergo
only truncated denitrification, where the alternative electron
acceptor nitrate is converted into nitrous oxide (N2O) via
nitrite and NO. The subsequent conversion of nitrous oxide
into dinitrogen gas is lacking. The enzymes involved in
these reactions (Figure 1) are dependent on cofactors for
correct functioning, most commonly metal cofactors such
as molybdenum, copper and iron–sulfur [Fe–S] clusters. The
lack of N2O reduction only makes a minor difference to
the bacterium bioenergetically [9], but, on the other hand,
the ability to detoxify NO is very important. Although it
has been controversial for a long time whether NO itself
is toxic or only the resulting RNS [10], recent studies have
clearly proven that NO has cytostatic and cytotoxic effects on
both aerobically and anaerobically grown cultures [11,12]. Its
reactivity with [Fe–S] clusters, thiol groups and ROS results

in extensive damage of DNA, proteins and transcription
factors, in particular [13–15].

Enteric pathogens must have evolved mechanisms to
overcome NO produced by the immune system as well as
to defend themselves against their own toxic metabolites.
E. coli and Salmonella are known to possess three major
enzymes to perform this role. They comprise the soluble
flavohaemoglobin Hmp, the di-iron-centred flavorubredoxin
NorV with its NADH-dependent oxidoreductase NorW
(NorVW) and the cytochrome c nitrite reductase NrfA
[16,17]. All enzymes vary in importance under different
environmental conditions. Hmp is able to cope with oxic
as well as anoxic conditions, and produces nitrate and
N2O respectively. Both the NorVW and Nrf enzymes are
only active under anaerobic or micro-oxic conditions [18].
NorVW reduces NO to N2O, whereas NrfA uses either NO
or nitrite to form ammonia. It has been shown that NorV
and NrfA are the most important enzymes in anaerobic NO
detoxification of Salmonella [16]. Hmp has only a minor role
in NO detoxification under anoxic conditions, but it is the
crucial enzyme when O2 is present [16–18]. The combined
activity of the three enzymes allows Salmonella and E. coli
to be very flexible in their metabolism and hence helps them
to survive in a range of different environments. This ability
is also advantageous outside the host because high nitrate

C©The Authors Journal compilation C©2011 Biochemical Society



1878 Biochemical Society Transactions (2011) Volume 39, part 6

concentrations and therefore high NO generation is also
seen in wastewater and soil. High nitrate levels in these
environments are mainly caused by manure from humans
and other animals and the excessive use of nitrate-containing
fertilizers.

Another reason for this high flexibility is due to various
transcription factors being differently transcribed under
specific conditions [19]: the main regulators that mediate a
response to NO in Salmonella and E. coli include NorR,
NsrR, FNR (fumarate and nitrate reductase regulator) and
MetR (methionine repressor) [12].

NorR exclusively regulates the norVW genes in response
to nitrosative stress. MetR is implicated in the regulation of
hmp in both organisms, alongside the NO-sensitive repressor
NsrR that, in addition, also regulates the expression of nrfA
[19–21]. NsrR belongs to the Rrf2 family of transcriptional
repressors and senses NO specifically by a [2Fe–2S] cluster
[22]. This assumption results from great similarities between
NsrR and other [2Fe–2S] cluster-containing members of the
Rrf2 family such as IscR or RirA. The presence of the [Fe–
S] clusters makes the protein structure and binding prone
to damage by NO. It has been reported that E. coli genes,
which are repressed by NsrR, are derepressed after exposure
to NO [23]. Other regulators that are important in stress
response and co-ordination of gene expression are FNR
and Fur (ferric-uptake regulator) [23–25]. FNR possesses
a master function in the transition between aerobic and
anaerobic growth and mediates the up-regulation of several
operons in response to nitrate and nitrite [25]. Hmp and
ytfE are among the genes that are repressed by FNR, but
the addition of either nitrite or nitrate causes an activation
of the gene expression. This indicates a putative regulatory
mechanism, which ensures that the expression of hmp will
not be disabled during exposure to RNS. Exposure to NO
damages the [Fe–S] clusters of FNR and results in the
derepression of the protective flavohaemoglobin hmpA [26].
It has been demonstrated that ytfE plays a crucial role in
the repair of NO- and ROS-damaged [Fe–S] clusters [27].
Furthermore, NO-sensitivity and growth impairment of ytfE
mutants showed its importance in the response to oxidative
and nitrosative stresses [14] and its di-iron centre has been
structurally characterized [28]. Fur is also affected by the
presence of NO, potentially by a reaction of the protein-
bound iron with NO [23]. Fur mainly regulates genes that are
involved in the uptake of iron, but it also moderately regulates
hmp expression [12]. It has been proposed that Fur regulation
becomes important once iron is limited; however, there are
still controversial opinions about the repressor function of
hmp [12].

Salmonella also utilizes SPI-2 (Salmonella pathogenicity
island 2) for NO protection. SPI-2 encodes a TTSS
(Type III secretion system), which allows formation of an
SCV (Salmonella-containing vacuole) in the intracellular
environment and prevents lysosomal fusion. This prevents
the co-localization of Phox and iNOS with the SCV, hence
reducing the exposure of Salmonella to nitrosative and
oxidative stresses [29].

However, we and others believe that additional unknown
pathways with important roles in NO protection remain
to be characterized for both organisms [30]. In search
of such mechanisms, transcriptomic analyses have proven
to be helpful to highlight potential genes involved [19].
Gene annotations based on homology provide some insight
into possible proteins expressed, but do not always
highlight functions that are of higher physiological relevance.
Therefore the function of putative NO-detoxification genes
and proteins needs further investigation, particularly with
respect to infection.

N2O production in enteric bacteria
Salmonella and E. coli are commonly exposed to different
stresses as they have various interactions with the body. This
suggests that their response to stresses such as nitrosative
stress and hence N2O production varies as well. Since NO
is highly reactive, it will quickly become detoxified by the
conversion into nitrous oxide in the cytoplasm of Salmonella
and E. coli. This process serves to convert a potent cytotoxin
into a potent greenhouse gas.

Enteric bacteria can produce NO as a side product of
nitrate or nitrite metabolism. One major source of this NO in
Salmonella has been suggested to be the reduction of nitrite by
the NarG nitrate reductase [31]. This endogenous NO leads
to derepression of genes encoding systems that are concerned
with the detoxification of NO and the repair of proteins
damaged by the cytotoxin. There have been reports of
nitrous oxide release by pure cultures of Enterobacteriaceae,
including E. coli, Klebsiella pneumoniae and Salmonella
enterica during nitrate metabolism that presumably reflects
NO being converted into nitrous oxide [32,33]. Whether
there is a physiological importance for generating and
releasing the neuropharmacological agent nitrous oxide to an
enteric pathogen as a side product of their nitrate metabolism
has yet to be addressed, but it is an interesting question.

Concluding remarks
The significance of NO production is well studied in relation
to human or murine macrophages as part of the immune
defence mechanisms; however, this is not the case for the
detoxification of NO and the subsequent production of
N2O by pathogens. Three enzymes have been identified
that contribute significantly to NO detoxification. Therefore
several questions need to be addressed in the future. Which
additional mechanisms contribute to the detoxification of
NO, either directly by enzymatic conversion of NO or
indirectly, repairing the damage caused? Does the production
of N2O differ between pathogenic and non-pathogenic
bacteria?
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Resolving the contributions of the membrane-bound and periplasmic nitrate
reductase systems to nitric oxide and nitrous oxide production in
Salmonella enterica serovar Typhimurium
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The production of cytotoxic nitric oxide (NO) and conversion
into the neuropharmacological agent and potent greenhouse gas
nitrous oxide (N2O) is linked with anoxic nitrate catabolism
by Salmonella enterica serovar Typhimurium. Salmonella can
synthesize two types of nitrate reductase: a membrane-bound
form (Nar) and a periplasmic form (Nap). Nitrate catabolism
was studied under nitrate-rich and nitrate-limited conditions in
chemostat cultures following transition from oxic to anoxic
conditions. Intracellular NO production was reported qualitatively
by assessing transcription of the NO-regulated genes encoding
flavohaemoglobin (Hmp), flavorubredoxin (NorV) and hybrid
cluster protein (Hcp). A more quantitative analysis of the extent
of NO formation was gained by measuring production of N2O,
the end-product of anoxic NO-detoxification. Under nitrate-rich
conditions, the nar, nap, hmp, norV and hcp genes were all
induced following transition from the oxic to anoxic state, and

20% of nitrate consumed in steady-state was released as N2O
when nitrite had accumulated to millimolar levels. The kinetics
of nitrate consumption, nitrite accumulation and N2O production
were similar to those of wild-type in nitrate-sufficient cultures
of a nap mutant. In contrast, in a narG mutant, the steady-state
rate of N2O production was ∼30-fold lower than that of the wild-
type. Under nitrate-limited conditions, nap, but not nar, was up-
regulated following transition from oxic to anoxic metabolism
and very little N2O production was observed. Thus a combination
of nitrate-sufficiency, nitrite accumulation and an active Nar-type
nitrate reductase leads to NO and thence N2O production, and this
can account for up to 20% of the nitrate catabolized.

Key words: Enterobacteriaceae, nitrate reductase, nitric oxide,
nitrite reductase, nitrous oxide, Salmonella.

INTRODUCTION

The Enterobacteriaceae family of Gammaproteobacteria are
found naturally in soils, water systems and sewage and as a part
of the gut flora in the gastrointestinal tract. They are facultative
anaerobes that can, with few exceptions, use nitrate or nitrite as
terminal respiratory electron acceptors. The availability of these
electron acceptors varies in the different environments to which
the bacteria adapt [1]. For an enteric pathogen, for example, the
gastrointestinal tract can be rich in nitrate or nitrite, but nitrate
is more scarce in bodily fluids such as the bloodstream [1]. In
many species of Enterobacteriaceae, there are two biochemically
distinct nitrate reductases: one membrane-bound with the active
site located in the cytoplasm and the other in the periplasm.
These are coupled to two nitrite reductases to provide parallel
pathways for nitrate reduction to ammonium in the two cellular
compartments and that are differentially expressed in response to
different nitrate and nitrite concentrations [1,2]. In the cytoplasm,
nitrate is reduced to nitrite by a membrane-bound respiratory
nitrate reductase system (NarGHI):

NO−
3 + 2e− + 2H+ → NO−

2 + H2O (Reaction 1).

The nitrite produced can then be reduced further to ammonium
by a sirohaem-containing nitrite reductase (NirB):

NO−
2 + 6e− + 8H+ → NH+

4 + 2H2O (Reaction 2).

In the periplasm, the process involves two different enzymes:
a periplasmic nitrate reductase (NapA) that reduces nitrate to
nitrite and a periplasmic cytochrome c nitrite reductase (NrfA)
that further reduces the nitrite to ammonium. Reactions 1 and
2 together lead to the production of extracellular ammonium
and are often termed DNRA (dissimilatory nitrate reduction to
ammonium).

Salmonella and Escherichia coli produce the cytotoxin nitric
oxide (NO) as a side-product of nitrate or nitrite metabolism
[3,4]. One major source of this NO has been suggested to be
the reduction of nitrite by the membrane-bound nitrate reductase
NarG [3]. This endogenous NO leads to derepression of genes
encoding systems that are concerned with the detoxification
of NO and the repair of proteins damaged by the cytotoxin.
The regulator that mediates this derepression is the NO-binding
protein NsrR (NO-sensing repressor) [5–7]. A key enzyme in
the NsrR regulon in Salmonella enterica serovar Typhimurium
is flavohaemoglobin (Hmp) that reduces two molecules of NO
to one molecule of nitrous oxide (N2O) under anoxic conditions,
using cytoplasmic NADH as electron donor [8,9]. This represents
the conversion of a potent cytotoxin into a product that is
both a neuropharmacological agent and potent greenhouse gas
[10]. There have been reports of N2O release by pure cultures

Abbreviations used: D, dilution rate; DNRA, dissimilatory nitrate reduction to ammonium; Hmp, flavohaemoglobin; KmR, kanamycin-resistance;
MS, minimal salts; NapA, periplasmic nitrate reductase; Nar, membrane-bound nitrate reductase; NirB, cytoplasmic sirohaem nitrite reductase; NorV,
flavorubredoxin; NrfA, periplasmic cytochrome c nitrite reductase; NsrR, NO-sensing repressor; qc, specific rate of consumption; qRT, quantitative
real-time; SBR, bioreactor concentration of substrate; SR, reservoir concentration.

1 Correspondence may be addressed to either of these authors (email g.rowley@uea.ac.uk or d.richardson@uea.ac.uk).
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Table 1 All strains and plasmids used in the present study

Strain or plasmid Genotypes or relevant characteristics Reference

Strains
SL1344 Salmonella Typhimurium, his− , mouse-virulent [40]
�hmpA SL1344 �hmpA ::kan [29]
�norV SL1344 �norV ::cat [29]
�norV�hmpA SL1344 �hmpA ::kan �norV ::cat [29]
�narGHJI SL1344 �narGHJI::kan The present study
�napFDAGHBC SL1344 �napFDAGHBC::kan The present study
�nirB SL1344 �nirB::kan The present study
�hcp Sl1344 �hcp::kan The present study

Plasmids
pKD4 ApR, pANT-Sγ derivative containing an FRT-flanked KmR [17]
pKD46 ApR, pINT-ts derivative containing araC-ParaB and γ , β , exo genes [17]

of Enterobacteriaceae, including Escherichia coli, Klebsiella
pneumoniae and S. enterica during nitrate metabolism, and it is
likely that this is due to reductive detoxification of NO produced as
a side-product of nitrate metabolism [11,12,18–20]. In the present
paper, we describe a biochemical study on nitrate catabolism
in continuous cultures of the food-borne pathogen Salmonella
Typhimurium which reveals that intracellular NO production
and associated extracellular N2O production can account for
up to 20% of nitrate catabolized and is linked to the culture
nitrate status, nitrite accumulation from nitrate respiration and
the biochemical type of the nitrate reductase system expressed.

EXPERIMENTAL

Bacterial strains and growth media

Salmonella Typhimurium strains (Table 1) were cultivated
anaerobically in MS (minimal salts) medium [13]. The sole
carbon and electron source was glycerol, the sole terminal electron
acceptor was sodium nitrate, with ammonium (15 mM) present
as a nitrogen source. Continuous culture was performed in a
New Brunswick Scientific BioFlo 3000 fermenter with a 1.2 litre
working volume under pH control (pH 7.0, 1 M NaOH and 1 M
HCl/0.1 M H2SO4 used for regulation). A 100 ml volume of
MS medium was inoculated with 5 ml of an overnight culture
and aerobically incubated overnight at 37 ◦C. Then, 50 ml of
this culture was used to inoculate the bioreactor. After 24 h of
aerobic batch growth, the air supply was switched off and a
feed of MS medium was started to achieve a dilution rate (D) of
0.04 h− 1. The measured dissolved O2 (percentage air saturation)
in the culture fell from 100 % to 0% within 1 h of switching
off the air supply and was monitored throughout the continuous
culture phase of the experiment to ensure that it remained at 0%.
During the experiment, samples were taken at regular intervals to
determine the attenuance at 600 nm (D600), protein concentration
and nitrogen compound composition.

Protein and nitrogen compound quantification

Protein concentration was determined using the method described
in [14]. Nitrate was determined via HPLC using the anion-
exchange column Ion Pac AS22, 2 mm×250 mm (Dionex, ICS-
900) as described by the manufacturer. Nitrite was measured
colorimetrically with a modified Griess reaction [15]. A
PerkinElmer Clarus® 500 Gas Chromatograph with an ECD
(Electron Capture Detector) and Elite-PLOT Q (DVB Plot
Column, 30 m length; 0.53 mm internal diameter; carrier gas,
N2; make-up gas, 95% argon/5% methane; temperatures as

described by the manufacturer) were used with known gas
standards of N2O [0.4, 100, 1000 p.p.m., supplied from StGas]
to determine the N2O concentration in headspace gas samples.
From this, the total N2O in headspace and solution was calculated
by applying Henry’s Law, assuming equilibration between the
solution and gas phases and using a Henry’s Law constant at
37 ◦C of 0.453.

Enzyme activity

The NarGH nitrate reductase complex, comprising the 140000
Da NarG and the 60000 Da NarH subunits, was purified from
anaerobic cultures of Salmonella Typhimurium and assayed using
Methyl Viologen as the electron donor, essentially as described
previously for Paracoccus pantotrophus NarGH [16].

RNA extraction, qRT (quantitative real-time)-PCR and mutant
construction

RNA was extracted at the appropriate time points from
nitrate-sufficient and -limited continuous cultures of Salmonella
Typhimurium SL1344 using a Promega SV 96 total RNA
purification kit. The total RNAs were first treated with Turbo
DNaseFree from Ambion and the absence of DNA contamination
was verified by PCR. RNA quality was assessed on an Agilent
2100 Bioanalyser. Then, 2 μg of DNaseI-treated total RNA
were retro-transcribed from random hexamers (Invitrogen) with
Superscript II RT (Invitrogen) according to the manufacturer’s
recommendations. Specific primers for the genes of interest
amplifying an average product of 100 bp with an approximate
Tm (melting temperature) of 60 ◦C were designed. The qRT-
PCRs were performed on a 5-fold dilution of the total cDNA
obtained, using the Bio-Rad Laboratories CFX96 instrument
and SensiMixTM SYBR No-ROX kit (Bioline). The qRT-PCR
experiments were performed in triplicate, with three independent
total RNA preparations. The calculated threshold cycle (Ct) for
each gene was normalized to the Ct of the ampD gene, expression
of which is invariant across a large range of growth conditions.
Mutants were constructed in Salmonella Typhimurium SL1344
using λ Red mutagenesis [17]. Oligonucleotides were designed
which deleted the entire gene or operon in question inclusive
of start and stop codons. A linear PCR product was generated
using a template plasmid, pKD4, resulting in a KmR (kanamycin-
resistance) gene cassette with 40 bp of homologous sequence
flanking to the loci. The amplified DNA fragment was
column-purified and electroporated into Salmonella Typhimurium
SL1344pKD46. Mutations were confirmed by PCR using
primers external to the site of mutagenesis; as well as internal
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Figure 1 Nitrate, nitrite and N2O consumption or production in a glycerol-
limited nitrate-sufficient continuous culture of Salmonella Typhimurium
SL1344

The culture was initially grown in batch mode under atmospheric oxygen concentration for 24 h,
during which time cellular biomass [indicated by an increase in D600 (‘OD’)] was generated. The
air supply to the culture was then switched off and the system switched to continuous mode at a
dilution rate of 0.04 h− 1. The measured dissolved O2 (percentage air saturation) in the culture
fell from 100 % to 0 % within 1 h of switching off the air supply, and was monitored throughout
the experiment to ensure it remained at 0 %. The pH and temperature were maintained at 7 and
37◦C respectively. The glycerol concentration in the reservoir feed was 5 mM and the nitrate
concentration was 22.5 mM. (A) Biomass; (B) nitrate (�), nitrite (�) and N2O (�). For clarity,
only the results from a single chemostat run are shown. The results ( +− S.D.) derived from
replicate experiments is given in Table 2.

primers within the KmR cassette, k1 and k2 [17]. P22 transduction
was used to transfer the mutations into a clean SL1344
background.

RESULTS

Nitrate respiration and N2O production in nitrate-sufficient
continuous cultures

Salmonella Typhimurium was cultured to anoxic steady-state
in continuous cultures with nitrate (reservoir concentration, SR,
22.5 mM) present as the respiratory electron acceptor and glycerol
(SR 5 mM) present as the carbon source for anabolism and electron
source for respiration. The cultures were grown in batch mode
under an atmospheric oxygen concentration for 24 h, during
which time cellular biomass (x) was generated (Figure 1A). The
air supply to the culture was then switched off and the system
was switched to continuous mode (D = 0.04 h− 1). There was
a decrease in D600 and protein concentration in the bioreactor
as the culture shifted from aerobic to anaerobic metabolism,
until a new biomass steady-state was reached after three or
four bioreactor vessel volume changes (∼80–120 h). During the
transitional, non-steady-state, phase (between 24 and ∼80 h)
the nitrate concentration in the bioreactor (SBRNO3

− ) decreased,
consistent with a shift from oxygen respiration to anaerobic
nitrate respiration (Figure 1B). The shift to nitrate respiration
was also reflected by increased transcription of both the narG and
napA nitrate reductase genes and the gene for the nitrate/nitrite
antiporter narK, detected using qRT-PCR analysis, at 80 h and
120 h compared with 5 h (Figure 2).

Figure 2 qRT-PCR of genes involved in nitrate and nitrite transport and
reduction

The qRT-PCR experiments were performed in triplicate, with three independent total RNA
preparations. The calculated threshold cycle (Ct) for each gene was normalized to the Ct of the
ampD control. Results are means +− S.D. A, nitrate sufficiency; E, nitrate limitation; 1, 5 h oxic;
2, 80 h anoxic; 3, 120 h anoxic.

Nitrite was produced almost stoichiometrically with nitrate
consumption during the first ∼20 h of the transition phase
(24–48 h) (Figure 1B). This is consistent with nitrite being
produced directly from nitrate reduction by the nitrate reductase(s)
(Reaction 1), such that the SBRNO3

− decreased from ∼22 mM
to ∼5 mM and the SBRNO2

− increased from ∼0 mM to
∼18 mM (Figure 1B). Over the next 50 h, the SBRNO2

−

decreased by ∼4.5 mM from ∼18 mM to a steady-state value of
∼14 mM (100–120 h). In steady state, the specific rate of nitrate
consumption (qcNO3

− ) was ∼20% higher than the specific rate
of nitrite accumulation (qpNO2

− ) (Table 2). To account for this
difference some of the nitrite produced from nitrate in Reaction 1
must be further consumed by the culture. This rate of consumption
(qcNO2

− ) can be estimated from the difference between qcNO3
−

and qpNO2
− (Table 2). Ammonium is a possible net product of

nitrite reduction by the NirB or NrfA nitrite reductases (Reaction
2), with nirB in particular being strongly induced during the
anaerobic phase (Figure 2). However, the SBRNH4

+ remained
constant at ∼13 mM throughout the continuous culture phase of
the experiment, which represented a net consumption of ∼2 mM
of the 15 mM NH4

+ in the reservoir feed for anabolic purposes.
NO is also a potential net product of nitrite reduction,

but extracellular accumulation was not detected above 1 μM.
However, increased transcription of hmp, hcp and norV was
observed following the transition from oxic (5 h sampling time)
to anoxic (80 and 100 h sampling times) conditions (Figure 3).
These genes are regulated by the cytoplasmic NO-responsive
transcription factors NsrR (hmp and hcp) and NorR (norV),
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Table 2 The steady-state rates of nitrate, nitrite and N2O production in chemostat cultures of Salmonella Typhimurium

The data presented are taken during steady state at 100–120 h from replicate continuous cultures run in parallel under identical conditions. qcNO3
− = (SRNO3

− − SBRNO3
− )D/x;

qpNO2
− = (SBRNO2

− )D/x; qcNO2
− = qcNO3

− − qpNO2
− ; qpN2O = (SBRN2O)D/x. N2O data are expressed as nitrogen-equivalents to allow for direct comparison between N2O and nitrate

or nitrite. ND, not detectable, nitrite detection limit = 0.005 mM.

Strain NO3
− Glycerol

Biomass
(g · l− 1)

NO3
−

consumed
(mmol · l− 1)

NO2
−

produced
(mmol · l− 1)

N2O
produced
(mmol · l− 1)

qcNO3
−

(mmol · g − 1 · h − 1)
qpNO2

−

(mmol · g − 1 · h − 1) qcNO2
−

qpN2O
(mmol · g − 1 · h − 1)

SL1344 22.5 5 0.19 +− 0.01 18.1 +− 0.7 14.0 +− 0.3 4.0 +− 0.2 3.81 +− 0.19 2.95 +− 0.15 0.86 0.850 +− 0.050
SL1344 5.5 22 0.18 +− 0.01 5.0 +− 0.5 ND 0.016 +− 0.003 1.11 +− 0.10 ND 1.11 0.004 +− 0.001
nar 22.5 5 0.11 +− 0.01 16.0 +− 0.5 16.5 +− 1.0 0.076 +− 0.004 6.0 +− 0.6 6.0 +− 0.6 0 0.028 +− 0.003
nap 22.5 5 0.15 +− 0.02 21.0 +− 0.2 15 +− 1.0 3.6 +− 0.4 5.6 +− 1.0 4.0 +− 0.5 1.60 0.96 +− 0.10

Figure 3 qRT-PCR of genes regulated by the NO-responsive transcription
factors NsrR and NorR

The qRT-PCR experiments were performed in triplicate, with three independent total RNA
preparations. The calculated threshold cycle (Ct) for each gene was normalized to the Ct of the
ampD control. Results are means +− S.D. A, nitrate sufficiency; E, nitrate limitation; 1, 5 h oxic;
2, 80 h anoxic; 3, 120 h anoxic.

and so this increased transcription is indicative of intracellular
NO production. It was notable that N2O accumulated as the
SBRNO2

− decreased in the transition phase between 48 and 100 h
(Figure 1B). The steady-state rate of N2O production (qpN2O),
when normalized for the two nitrogens in N2O compared with the
one nitrogen in NO2

− , matched the steady-state rate of nitrite
consumption (Table 2), showing that this N2O production is
closely linked to the metabolism of nitrite generated from nitrate
metabolism. Since hmp, hcp and norV transcription indicated the
production of intracellular NO, then the series of reactions that
lead to 2 mol of NO2

− being reduced to 1 mol of N2O via NO is
predicted to be:

2[NO2
− + 2H+ + e− → NO + H2O] (Reaction 3)

2NO + 2H+ + 2e− → N2O + H2O (Reaction 4)

Reaction 4 is known to be catalysed by both the Hmp and NorV
(flavorubredoxin) enzymes under anoxic conditions, and so hmp
and norV mutants were also analysed under the nitrate-sufficient
continuous culture conditions. In the case of strains carrying
single lesions in either hmp or hcp, the rate of N2O production
in steady state was comparable with wild-type. However, a
double hmp nor mutant only produced N2O at ∼40% of the
rate of the wild-type, suggesting functional overlap of these two
systems in NO detoxification and N2O production under anoxic
conditions. In total, ∼18 mM nitrate in the feed reservoir was
consumed in the steady state (SRNO3

− − SBRNO3
− at t = 120 h)

and ∼4 mM nitrogen equivalents of N2O was produced (Table 2).
This represents a conversion of ∼20% of nitrate into N2O
(Table 2).

Comparison of N2O production in Salmonella Typhimurium nar and
nap mutants in nitrate-sufficient continuous cultures

The NarG nitrate reductase has previously been implicated in both
NO and N2O production and nitrosation in Enterobacteriaceae
[2,3,11,12,18–20]. However, a number of Enterobacteriaceae
species only have a Nap type of nitrate reductase [2], and, in those
that have both Nar and Nap, the nitrate-rich growth conditions
under which many previous studies of NO or N2O production
has been made would not be those that favour nap expression,
which is maximal under nitrate-limiting conditions [1,2,5,21–23].
Thus the question of whether activity of Nap can lead to NO
and N2O production has not been directly addressed before. To
investigate this, isogenic narG and napA strains were constructed.
Both were able to grow under anaerobic conditions with nitrate
as a sole electron acceptor, but a double narG napA mutant
could not. Under the nitrate-rich continuous culture conditions,
the nar strain, which is dependent on Nap for growth, achieved
a steady-state anoxic biomass of ∼60% of the wild-type strain
under identical culture conditions (Figure 4A and Table 2). The
kinetics of nitrate consumption and nitrite accumulation during
the aerobic–anaerobic transition phase were closely matched
(Figure 4B and Table 2), suggesting that the respiratory nitrite
reductase systems Nrf or Nir (Reaction 2) do not operate at a
significant level to consume the nitrite produced from Reaction
1. The rate of nitrate consumption in the steady state (100–120 h)
was comparable with that of the wild-type (Table 2). Significantly,
however, the steady-state SBRN2O was only ∼0.08 mM in the nar
strain (Figure 4B and Table 2), such that the steady-state rate
of N2O production (qpN2O) was approximately 30-fold lower
than for the wild-type strain (Table 2). In contrast, the rate of
N2O production in the nap strain was comparable with that of
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Figure 4 Nitrate, nitrite and N2O consumption or production in a glycerol-
limited nitrate-sufficient continuous culture of an Salmonella Typhimurium
mutant deficient in Nar

The culture was run as described for Figure 1. The glycerol concentration in the reservoir feed
was 5 mM and nitrate concentration was 22 mM. (A) Biomass; (B) nitrate (�), nitrite (�)
and N2O (�). For clarity, only the results from a single chemostat run are shown. The results
( +− S.D.) derived from replicate experiments is given in Table 2.

the wild-type (Table 2). The large difference in the rate of N2O
production between the nap and nar strains (Table 2) suggests
that it is not associated with respiration in nitrate-rich cultures
conditions itself, but with metabolism via the Nar system, rather
than the Nap system, under nitrate-rich culture conditions.

NarG generates nitrite in the cytoplasm and it has been argued,
on the basis of genetic and microbiological data, that this can
compete with nitrate for the Nar active site in the cytoplasm
[3], with Nar then catalysing Reaction 3. To demonstrate
biochemically that purified Salmonella Nar can reduce nitrite,
we isolated the membrane-associated NarGH complex from
detergent-solubilized membranes of Salmonella Typhimurium.
The enzyme complex displayed nitrate and nitrite reductase
activities that each obeyed a Michaelis–Menten-type dependency
on substrate concentration (Figure 5). These activities were fully
sensitive to low concentrations of azide (20 μM), which is a
potent inhibitor of Nar-type nitrate reductases and NO production
and nitrosation by Enterobacteriacaea [19,24]. The Km and Vmax

values for nitrate reduction were determined as 123 +− 14 μM
and 83 +− 10 μmol · min− 1 · mg− 1 respectively (Figure 5A). For
nitrite reduction, the Km and Vmax values were determined as
5200 +− 1900 μM and 24 +− 5 μmol · min− 1 · mg− 1 respectively
(Figure 5B). Using a molecular mass for NarGH of 200000 Da,
the kcat values for nitrate and nitrite could be approximated as 270
s− 1 and 80 s− 1 respectively.

In addition to Nar reducing nitrite to NO, it is possible that
nitrite generated in the cytoplasm by Nar is a substrate for another
NO-generating nitrite-reducing enzyme. The likely candidate for
this would be the cytoplasmic NADH-dependent nitrite reductase
NirB, which was also induced following transition to anoxic
steady state (Figure 2), and has been implicated previously in
cytoplasmic NO generation [25]. A nirB strain was therefore
constructed and grown in the nitrate-rich continuous cultures,
but the behaviour was identical with that of wild-type, with the
specific rate of N2O production was similar to that of wild-type.

Figure 5 The kinetics of nitrate (A) nitrite (B) reduction by NarGH from
Salmonella Typhimurium

Assays were undertaken in 20 mM Hepes and 2 mM EDTA (pH 7.0) under anaerobic conditions
in nitrogen-sparged sealed cuvettes using reduced Methyl Viologen as electron donor. The data
are fitted to the Michaelis–Menten kinetic model with the K m and V max values for nitrate reduction
as 123 +− 14 μM and 82 +− 10 μmol · min − 1 · mg − 1 respectively, and K m and V max values for
nitrite reduction as 5200 +− 1900 μM and 24 +− 5 μmol · min − 1 · mg − 1 respectively.

The NrfA nitrite reductase system has been shown previously to
play a role in detoxifying NO added exogenously to Salmonella
and E. coli [26–30]. Some reports have suggested that a product
of NO metabolism by Nrf can be N2O [31]. To assess this, a nrfA
periplasmic nitrite reductase mutant was also examined in nitrate-
rich continuous culture, but, like the nirB mutant, it behaved
identically with wild-type. Thus, although nrfA was expressed
in the anoxic phase of the cultures (Figure 2), the periplasmic
NrfA enzyme does not appear to be important for detoxification
of endogenously produced intracellular NO.

Nitrate metabolism in nitrate-limited continuous cultures

The net consumption of ∼17 mM nitrate and 5 mM glycerol
by the nitrate-sufficient cultures suggested that running the
continuous cultures with a SRNO3

− of <17 mM and a SRglycerol
of >5 mM would lead to nitrate limitation. To achieve this
condition, the SRNO3

− was lowered to 5.5 mM and the SRglycerol
concentration increased to 22 mM (Figure 6A). Under these
conditions, the SBRNO3

− was very low under steady-state
conditions (100–120 h) (Figure 6B), consistent with nitrate
limitation. qRT-PCR revealed up-regulation of nap, but not
narG, following the oxic–anoxic transition, consistent with Nap
being the enzyme of choice for metabolism under nitrate-limited
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Figure 6 Nitrate, nitrite and N2O consumption or production in a glycerol-
sufficient nitrate-limited continuous culture of Salmonella Typhimurium
SL1344

The culture was run as described for Figure 1. The glycerol concentration in the reservoir feed
was 22 mM and nitrate concentration was 5 mM. (A) biomass; (B) nitrate (�), nitrite (�) and
N2O (�). Results are illustrative for experiments run in triplicate. For clarity, only the results
from a single chemostat run are shown. The results ( +− S.D.) derived from replicate experiments
are given in Table 2.

conditions (Figure 2). During the transition phase of 24–48 h,
nitrite accumulated in the reactor vessel to a maximum of
∼3 mM, concomitantly with nitrate consumption. However, this
was only transient, and nitrite was not detectable (detection limit
of 0.005 mM) when the cultures reached steady state (Figure 6B).
Thus the rates of nitrate and nitrite consumption (Reactions
1 and 2) were matched (Table 2). Significantly, the profile of
N2O accumulation was quite different from the nitrate-sufficient
cultures. Like nitrite, N2O accumulated transiently, and the peak
of production lagged approximately 20 h behind that of nitrite,
but the maximum obtained was 20-fold lower than the maximum
obtained in the nitrate-sufficient cultures (compare Figure 6B with
Figure 1B). In steady state (100–120 h), there was only minimal
N2O release, the rate of which was more than two orders of
magnitude lower than for the nitrate-sufficient cultures (Figure 6B
and Table 2), with less than 0.1% of the nitrate-nitrogen ending
up as N2O.

DISCUSSION

In the present study, we have examined nitrate catabolism and
associated exogenous N2O production during continuous culture
of Salmonella Typhimurium under nitrate-rich and nitrate-limited
anoxic conditions. NO is detoxified by conversion into N2O
in the cytoplasm (Reaction 4), and, as a consequence, the
direct measurement of NO released by bacteria will grossly
underestimate the actual level produced intracellularly during
nitrate metabolism. Salmonella Typhimurium cannot reduce
N2O and so measuring its extracellular release is a good
quantitative measure for the fraction of nitrate catabolized that
forms NO intracellularly. This has been illustrated in the present
study where, under nitrate-rich conditions, millimolar levels of
extracellular N2O were measured, but extracellular NO was not
detected above 1 μM. This demonstrates that, under the steady-
state metabolic conditions established, there is highly efficient

reductive detoxification of endogenously produced cytotoxic NO
to N2O, which then escapes from the cell. From this, it can be
estimated that up to 20% of nitrate catabolized is converted
into the NO, which represents a substantial scale of intracellular
production and thus requires very efficient detoxification of the
cytotoxin.

N2O production was maximal under nitrate-rich culture
conditions where both nar and nap were expressed. However,
mutagenesis confirmed that Nar was the major enzymatic route
for the nitrate catabolism associated with N2O production.
(Figure 4 and Table 2). In the 20 h following anoxia, nitrate was
consumed and nitrite accumulated in a near-stoichiometric
fashion and very little N2O accumulated (Figure 1B). The likely
biochemical processes in operation are first nitrate import via the
nitrate/nitrite antiporter NarK [32], the gene for which was also
up-regulated during nitrate catabolism under nitrate-sufficient
conditions. This is then followed by reduction to nitrite by
NarG, and export of nitrite by NarK in exchange for incoming
nitrate (Figure 7A). This process generates protonmotive force
for growth. It is notable that, under these nitrate-rich culture
conditions, the consumption of the nitrite produced from nitrate
respiration is minimal and there is extensive extracellular
accumulation of nitrite rather than the further reduction to
ammonium (Figure 1B) despite expression of both nirB and
nrfA (Figure 7A). Thus, although Salmonella Typhimurium is
considered to be a canonical DNRA organism, under these nitrate-
rich conditions, nitrite, rather than ammonium, is the major
extracellular end-product of nitrate respiration. It makes sense
from a bioenergetic view point to maximize nitrate respiration
and minimize nitrite respiration under electron acceptor-sufficient
conditions. This is because the ↑H+ /e− stoichiometry for
reduction of nitrite by NrfA (2 with NADH as electron donor
and 0 with quinol as electron donor) is lower than for nitrate
reduction by Nar (3 with NADH and 1 with quinol) [33]. In
this respect, it also makes bioenergetic sense to utilize the NarG
nitrate reductase system, rather than the Nap system, since the
↑H+ /e− coupling ratios for periplasmic reduction of nitrate by
Nap (2 with NADH and 0 with quinol) are also less than for Nar.
This is highlighted by the lower biomass yield when the mutant
in narG, that is dependent on Nap for growth, was cultured under
the nitrate-sufficient conditions (Table 2).

At the end of the transition phase of the anoxic nitrate-sufficient
continuous culture, the nitrite reaches an extracellular level that
is ∼3-fold higher than that of nitrate (Figure 1). It is under these
conditions that the rate of N2O production is maximal. The rate
of N2O production matched the rate of nitrite reduction and the
levels produced accounted for the balance of nitrate-nitrogen that
did not accumulate as nitrite-nitrogen. The very low rate of N2O
production in the narG mutant suggested that it was linked to
nitrite reduction by NarG. Competition between two substrates
(nitrite and nitrate) for a single active site can be described by:

vnitrite/vnitrate = (kcat/Km)nitrite/(kcat/Km)nitrate

×([nitrite]/[nitrate]) (adapted from [34])

From the steady-state chemostat fluxes (Table 2),
vnitrite/vnitrate = qcNO2

− /qcNO3
− = 0.226. From the kinetic

parameters derived from the purified NarGH, (kcat/Km)nitrite/(kcat/
Km)nitrate = 0.007. Thus [nitrite]/[nitrate] = 32 and this equates to
the steady-state intracellular ratio of the two substrates. Such a
ratio is perfectly conceivable if some of the nitrite exported by
NarK in exchange for incoming nitrate re-enters the cell, possibly
via by the bidirectional nitrite channel NirC [31], the gene for
which was expressed under these growth conditions (Figures 2
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Figure 7 Schemes for nitrate and nitrite metabolism in Salmonella
Typhimurium SL1344 under the different growth conditions explored in the
present study

(A) In electron-acceptor-rich high-nitrate/nitrite conditions. Nar reduces nitrate to nitrite
which is exported via NarK to the periplasm where it accumulates almost stoichiometrically
with the nitrate consumed. (B) In electron-acceptor-rich low-nitrate/nitrate ratios, nitrite
is imported by NirC and consumed via Nar producing NO, which is detoxified by
Hmp and NorV to produce N2O. (C) Under nitrate-limiting growth conditions, Nar is not
synthesized, and the Nap and Nrf systems are actively consuming nitrate and the nitrite produced
from nitrate reduction (with electrons flowing via the NapC and NrfH quinol dehydrogenases).
No intracellular NO is generated, hmp and norV expression is low and N2O is not produced.

and 7B). Intracellular nitrite may then out-compete intracellular
nitrate for the active site of a NarG. This argument is supported
by the experiments with the NarG mutant under nitrate-sufficient
conditions that showed a near-stoichiometric consumption of
nitrate and production of nitrite, and a very low level of N2O
production in the steady state (Figure 4). It is also consistent with
the data of the early 1980s that led to the conclusion that NarG
might reduce nitrite to N2O and with more recent genetic and
microbiological data that suggested that NarG in fact reduces
nitrite to NO [3,11,12,18–20].

Under nitrate-limited growth conditions, the production of N2O
was very low in the steady-state phase, where both nitrate and ni-
trite were only present at low-micromolar levels. These conditions
promoted expression of napA and nrfA, but not narG (Figure 2).
This is consistent with the expression pattern observed in E. coli
under low-nitrate/nitrite growth conditions [22,23,35–37]. Under
these conditions, the absence of nitrite accumulation reflects that
it is fully reduced through to ammonium by NrfA (Figure 7C,
Reaction 2), so that there is maximum utilization of the limited
respiratory electron-acceptor pool available to the culture. Thus
results of the present study for Salmonella Typhimurium confirm
observations from E. coli that when nitrate is sufficiently abund-
ant, the bacteria exploit the energy-efficient, but low-affinity,
NarG enzyme to reduce nitrate in the cytoplasm [22,23,35–37].
When nitrate is scarce, Nap provides a higher-affinity, but more
poorly coupled, pathway that does not require nitrate transport for
nitrate to serve as an effective electron sink [21] (Figure 7C).

Broadening the implications of the results more widely for the
many species of Enterobacteriaceae that synthesize both NarG
and NapA, the primary role of NarG is to generate protonmotive
force when nitrate is abundant, such as occurs in nitrate-rich
carbon-limited soils and sediments or wastewater-treatment plants
[2]. Under these conditions, it has previously been thought that
nitrite reductase NirB protects the cytoplasm from nitrite toxicity.
However, the results of the present study show that nitrite can
accumulate to millimolar levels in the extracellular medium and
that, in fact, what nitrite is consumed is reduced to N2O (Reactions
3 and 4) not ammonium (Reaction 2). However, in many habitats,
Enterobacteriacaea will encounter much lower concentrations of
nitrate, where the periplasmic pathway for nitrate and nitrite
reduction is active [2]. We have shown that this combination
will not lead to intracellular NO production, as judged by the lack
of N2O production and the absence of up-regulation of the hmp
and hcp genes of NsrR regulon. The comparative experiments
conducted with the narG and napA mutants demonstrate that
nitrate reduction by Nap does not lead to extensive N2O production
even under nitrate-sufficient conditions.

Comparison of the narG and napA strains revealed a higher cell
yield using Nar rather than Nap, reflecting the higher ↑H+ /e− for
quinol oxidation by nitrate for Nar (1) compared with Nap (0)
[33]. When Nap is operational, growth is dependent on energy-
conserving formate dehydrogenase and NADH dehydrogenase
reactions associated with glycerol metabolism for energy
conservation, with nap serving a quinol pool recycling role [33].
However, although it makes bioenergetic sense to use NarG, under
nitrate-rich conditions, there is a downside, which is the risk
of cell damage associated with cytotoxic NO production. Co-
ordinate induction of a NO-detoxification system minimizes this
risk. There is, however, an energetic cost in using electrons in the
non-energy-conserving cytoplasmic reduction of NO. The overall
reduction of nitrite to N2O via NarG and then HmpA or NorV
using NADH consumes 2 mol of NADH (4 mol of e− ; Reactions 3
and 4) and yields an overall ↑H+ /e− of 1.5, which compares with
an overall ↑H+ /e− of 2 when NADH is used via the respiratory
electron-transport chain to reduce nitrite to ammonium. Thus it
merits reflection on whether the diversion of ∼20% of nitrate
into NO and thence N2O has any physiological importance. N2O
is a neuropharmacological agent that inhibits a range of cell
receptors and transporters. The significance of N2O production
by pathogens has not been addressed, but it is likely to be a
property of many enterobacterial pathogens and also pathogens
such as Neisseria that have truncated denitrification pathways in
which N2O is the product of nitrite reduction due to the lack of
N2O reductase [38,39]. Further studies on the significance of N2O
production by pathogenic bacteria are therefore merited.
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