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Abstract 
 

Crop varietal mixtures have the potential to increase yield stability compared to 

monocultures in highly variable and unpredictable environments, yet knowledge of the 

specific mechanisms underlying enhanced yield stability has been limited. Field studies 

are constrained by environmental conditions that cannot be fully controlled and thus 

reproduced. This thesis tested the suitability of Arabidopsis thaliana as a model system 

to allow for reproducible experiments on ecological processes operating within crop 

genetic mixtures. Knowledge of the ecological processes occurring within varietal 

mixtures may improve the exploitation of mixtures in both conventional and subsistence 

agriculture. 

 

Genotypic diversity among accessions of A. thaliana buffered against abiotic stress, 

specifically nutrient and heat stress, and increased yield stability through compensation. 

The role of compensatory interactions in genotypic mixtures was supported by 

experiments investigating the ability of A. thaliana genotypic diversity to buffer against 

biotic stress, specifically the oomycete pathogen Hyaloperonospora arabidopsidis and 

viral pathogen Turnip yellows virus. 

 

Findings from research on plant phenotypic traits involved in competition and 

compensation in A. thaliana, were translated into the crop plant winter barley in field 

experiments. Mixtures achieved high and stable yields despite being subjected to 

multiple abiotic and biotic stresses, some of which were not anticipated. Unexpectedly, 

facilitation was identified as an important ecological process occurring within mixtures. 

This indicates that crop varietal mixtures have the capacity to stabilise productivity even 

when environmental conditions and stresses are not predicted in advance. 
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Chapter 1 

General Introduction 

 
1.1 Plant biodiversity affects stability and productivity of natural systems 

 

How plant populations and communities respond to environmental stresses and natural 

selection pressures is a question central to plant ecology. Plant diversity is known to 

affect ecosystem stability, productivity and function (Tilman 1996; Hooper 1998; 

Hector et al. 2002), yet the roles of specific ecological processes and mechanisms 

underlying such relationships remain poorly understood. Detailed knowledge of such 

mechanisms will facilitate the exploitation of plant diversity in sustainable 

agroecosystems contributing to an increase in food and financial security of the worlds’ 

poorest people. The following section explores the ecological processes proposed to be 

responsible for increased stability of diverse ecosystems and outlines the most widely 

accepted, yet still heavily debated hypotheses in this area of plant ecology. The section 

begins by examining the positive relationship between plant diversity, stability and 

productivity, followed by a discussion of the key ecological mechanisms that may 

underlie these relationships. Research showing nonpositive relationships between 

diversity, stability and productivity are then presented to highlight neutral or negative 

effects of diversity in natural systems. Plant phenotypic traits thought to be responsible 

for increased stability and productivity in genotypically diverse systems are examined, 

and their relevance to agriculture briefly discussed. 

 

1.1.1 The diversity-stability hypothesis 

 

The relationship between biodiversity, stability and productivity has been debated 

intensely by ecologists over the last few decades. Elton (1958) hypothesized that greater 

diversity within populations increases ecological stability and that diverse communities 

are less susceptible to invasion. Early empirical studies presented evidence for the idea 

that increased diversity and complexity lead to greater ecological stability (MacArthur 

1955; Hutchinson 1959). However, controversy regarding the diversity-stability theory 

began when later studies reached the opposite conclusion that diversity decreased 

stability (Gardner and Ashby 1970; May 1974; MacDonald 1978; Pimm 1979).  
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There is no complete agreement on the terms used to describe ecological stability and its 

underlying causal mechanisms, but the most commonly used terms are those outlined by 

Pimm (1984). In his definition, species diversity is determined as a combination of 

species richness (the number of species) and the evenness of the species abundance 

distribution. When only a single species occurs, this is a ‘species monoculture’, while 

the term ‘species mixture’ is used to describe the co-occurrence of two or more species. 

The terms 'connectance' (calculated by dividing the actual number of interspecific 

interactions by the potential) and the term 'interaction strength' (the mean magnitude of 

interspecific interaction) are used to describe species diversity (Pimm 1984). Stability of 

a system refers to its ability to return to equilibrium following perturbation, an alteration 

of ecosystem function through a disturbance event (Pimm 1984). Resistance refers to 

the ability of the plant community to maintain productivity and resist change during 

perturbation (Tilman and Downing 1994). Recovery is defined as the system's ability to 

compensate for the perturbation-associated loss of productivity (Reusch et al.  2005). 

Resilience refers to the ability of the system to return to its pre-perturbation state after 

the perturbation event and is a combination of resistance and recovery (van Ruijven and 

Berendse 2010; Vogel et al. 2012). Ecological resistance, recovery and resilience may 

all have a role to play in enhancing system stability depending on the perturbation and 

the diversity present. 

 

Until recently, few experiments have manipulated species diversity in the field to 

investigate the relationship between diversity and stability (Pimm 1984; Tilman et al. 

2001; Pfisterer and Schmid 2002). Most studies used laboratory-based investigations or 

field observations and generally found that higher levels of diversity were associated 

with greater ecosystem stability (Tilman and Downing 1994; McNaughton 1995; 

Naeem and Li 1997; Tilman et al. 2001). Pioneering ecological research, in which 

species diversity was manipulated in a long-term grassland experiment, has contributed 

considerably to the diversity-stability debate (Tilman et al. 2001). The outputs from this 

experiment ranged from gaining a greater understanding of the effects of plant species 

diversity on temporal stability of ecosystems (Tilman et al. 2006), to studying the 

effects of drought stress on productivity and stability in plots varying in species 

diversity (Tilman and Downing 1994). Overall this research strongly supports the 

hypothesis that increased levels of plant diversity lead to an increase in ecological 

stability in these natural grasslands. This finding may be of great importance to 
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agriculturalists seeking to increase crop yield stability through application of 

appropriate plant diversity. 

 

1.1.2 The diversity-productivity hypothesis  

 

The theory that greater plant diversity can lead to an increase in plant productivity was 

originally suggested by Darwin (1872). Theoretical (Tilman et al. 1997b) and 

experimental studies (Harper 1977) have shown overyielding, in which mixtures yield 

higher than monocultures, to be associated with multispecies coexistence. An increase 

in productivity with diversity is thought to be the result of the increased likelihood of a 

productive species being present (sampling effect) that is also able to compensate for 

underyielding species (compensation), and from a greater chance of efficient 

exploitation of all available niches (complementation) (Tilman 1996; Hector et al. 1999; 

Hector et al. 2010). Together these effects increase utilization of limiting resources and 

enhance productivity through increased resource retention. The diversity-productivity 

hypothesis is therefore based on the prediction that functional complementarity can 

increase productivity through resource partitioning and/or positive interactions such as 

facilitation (Loreau 2000; Mulder et al. 2001; Tilman 2004). The key causal 

mechanisms suggested to cause increased productivity in diverse communities, i.e. 

compensation, complementation, and facilitation, are discussed in the following 

sections. 

 

1.1.3  Mechanisms that increase stability and productivity: Compensation 

 

The insurance hypothesis suggests that stability will increase with diversity as more 

diverse communities have a greater likelihood of containing a species able to increase 

performance and compensate for others in response to perturbation (Yachi and Loreau 

1999; Hector and Bagchi 2007; Cardinale et al. 2011). Diverse communities can 

achieve greater stability if species vary in their response to perturbation and if some 

species are able to compensate for the decrease in productivity by poorly-adapted 

species. Compensation is observed when decreased productivity of poorly-adapted 

plants is counter-balanced by increased productivity by competitors through competitive 

release causing compensatory growth. Compensation is regularly shown to increase 

stability in terrestrial and aquatic plant ecosystems (McNaughton 1977; Leps et al. 

1982; Tilman et al. 1996; Hughes and Stachowicz 2004; Bai et al. 2004). Tilman et al. 
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(1996) used results from a decade long grassland study to show that community 

productivity is often stabilised at the expense of population stability, which decreased in 

diverse communities, as a result of interspecific competition and compensation 

 

The hypothesis of the sampling effect suggests that an increase in productivity with 

greater diversity is the result of the increased likelihood of a productive species being 

present and thus able to dominate the community. Many studies provide evidence for 

the sampling effect with often a single species increasing resistance and/or recovery 

from perturbation (Hector et al. 2002; Fargione and Tilman 2005; van Ruijven and 

Berendse 2010). However sampling effects and compensation restrict productivity to 

that of the most productive species and are therefore predicted to increase stability of 

productivity but not necessarily productivity itself (van Ruijven and Berendse 2010). 

Resolving the importance of these mechanisms in plant communities is therefore 

necessary if we want to exploit the relationship between diversity and productivity to 

develop higher yielding cropping systems and deploy biodiversity in agriculture. 

  

1.1.4 Mechanisms that increase stability and productivity: Complementation 

 

Complementarity is thought to increase productivity at higher levels of species diversity 

as interspecific differences in resource requirements and usage allow for increased 

utilization of limiting resources thereby increasing overall productivity (Naeem 1994; 

Tilman et al. 1997a; Lehman and Tilman 2000). Empirical support for this hypothesis 

comes from studies showing plant species diversity and niche complementarity to 

strongly affect ecosystem functioning by increasing productivity relative to species 

monocultures (Brassard et al. 2011; Tilman et al. 2001).  

 

Plant biodiversity has been shown to increase aboveground biomass at the community 

and population level in high nutrient environments (Kirwan et al. 2007), and under 

heavy grazing by livestock (Isbell and Wilsey 2011), indicating potential applications to 

high input and intensively grazed agricultural systems. The effect of diversity on above-

ground biomass production varies amongst functional groups e.g. forbs, herbs, legumes 

(Roscher et al. 2004; Roscher et al. 2011). This can be applied to intercropping systems 

in agriculture in which complementary species are grown together to benefit each other. 

Belowground complementarity has rarely been studied even though belowground 
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production can account for half of the total annual net productivity (Brassard et al. 

2011). Soil space is more fully occupied by roots in species mixtures (e.g. trees and 

grass species) compared to monocultures (e.g. a single grass species), indicating niche 

differentiation and complementarity in root traits resulting in increased exploitation of 

soil resources (Brassard et al. 2011). However, despite the positive effect of diversity on 

biomass being shown in several studies (Tilman et al. 2001; van Ruijven and Berendse 

2005; Marquard et al. 2009; Cardinale et al. 2011; Isbell and Wilsey 2011), some 

studies have shown species richness to have no effect on productivity as plant 

abundance, density or biomass have a greater impact upon the systems ability to 

respond to stress (Kahmen et al. 2005; Wang et al. 2007). These findings indicate the 

role of additional, often unknown, effects on the diversity-productivity relationship thus 

highlighting the need for rigorous experimental studies. 

 

1.1.5 Mechanisms that increase stability and productivity: Facilitation  

 

Protection from herbivores, provision of shade and accumulation of nutrients can 

increase fitness of neighbouring plants in a process called facilitation (Callaway 1995). 

Facilitation and resource partitioning reduce the intensity of interspecific competition 

relative to intraspecific competition, increasing resource capture in species mixtures. 

Compatible species increase productivity but not at the expense of others (Loreau 

1998). Facilitation is thought to be greatest under extremely harsh environmental 

conditions (Bertness and Hacker 1994). However, competition is often the strongest 

interaction between plants when environmental conditions are less stressful (for reviews 

see Callaway 1995; Brooker and Callaway 2009), and increases as environmental 

conditions increase plant productivity (Bertness and Callaway 1994; Goldberg et al. 

1999; Brooker and Callaway 2009). The effects of competition on ecological processes 

also increase as overall plant productivity increases whilst the inverse relationship is 

seen with facilitation (Brooker and Callaway 2009). Facilitation often requires greater 

levels of diversity than is typically present in species monocultures (even if multiple 

genotypes are present) as the positive interactions between plants often require a range 

of form and strategy often absent within species (Callaway 1995). 
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1.1.6  Negative or neutral effects of biodiversity on productivity and stability 

 

Biodiversity does not always increase productivity in species mixtures (Hooper 1998; 

Loreau and Hector 2001). Antagonistic plant-plant interactions, whether physical or 

chemical, can lead to a reduction in biomass of mixtures compared to monocultures due 

to negative complementarity (Loreau and Hector 2001: Polley et al. 2003). When 

selection favours species with extreme phenotypes the result is often a decrease in 

mixture productivity relative to monocultures (Loreau 2000). Studies on the relationship 

between plant diversity and stability have also shown contradictory results when 

investigating the effects of species diversity on resistance to environmental stresses. 

Increased resistance to drought has been shown in diverse natural grasslands (Tilman 

and Downing 1994; Kahmen et al. 2005), yet some studies have shown a negative effect 

which may be due to random assemblage of species and disregard for competitive 

interactions taking place (Pfisterer and Schmid 2002; Van Peer et al. 2004; van Ruijven 

and Berendse 2010). Few studies have reported neutral effects of biodiversity on 

productivity and stability, likely because such findings are rarely published (A.C. 

Newton personal communication). The indication is therefore, that other factors than the 

diversity productivity relationship, as exemplified with the diversity biomass 

relationship, affect ecological resistance (Wang et al. 2007). 

 

1.1.7  The effects of genotypic diversity on ecosystem stability 

 

The effect of plant species diversity and plant functional group diversity on primary 

productivity (Hector et al. 1999; Tilman et al. 2001), ecosystem stability (Loreau 2000), 

nutrient cycling (Naeem et al. 1994; Tilman et al. 1996) and invasibility (Knops et al. 

1999) has been well studied. Importantly, little attention has been paid to these 

relationships at the genotypic level. There is an indication that genetic diversity reduces 

the risk of invasion by alien species (Crutsinger et al. 2008), increases resistance to 

extreme climates (Reusch et al. 2005) and grazing in marine systems (Hughes and 

Stachowicz 2004), and reduces plant diseases such as rice blast through facilitation (Zhu 

et al. 2000), yet specific ecological processes acting at the level of genotypic diversity 

remain largely unknown. 

 

Plant genotypes can vary in many ecologically important functional traits relating to 

competitive ability (Cahill et al. 2005), response to drought (van Ruijven and Benrendse 
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2010) and resistance to herbivores (Pan and Price 2001; Wise 2007; Kotowska et al. 

2010). A study on the effect of genotypic selection on genotypic diversity in Potentilla 

reptans found that the strongest performing genotypes increase in abundance over time 

through possessing desirable traits such as high growth rates and the production of large 

seeds which interact positively with the local environment (Stuefer et al. 2009). 

Environmental conditions have been shown to alter the patterns and dynamics of 

genotypic diversity in computational and mathematical models (Nowak and Sigmund 

2004; Violle et al. 2007), and in grassland systems (Reich et al. 2003; Silvertown 

2004).  

 

The importance of plant genotypic diversity on ecosystem stability and productivity has 

received little attention (but see Hughes et al. 2008; Kotowska et al. 2010). In natural 

populations genotypic diversity can vary from almost genotypic monoculture (Li et al. 

2006) to extremely diverse genotypic mixtures (Stehlik and Holderegger 2000). 

Functional trait variation between different genotypes within a population will alter 

genotype frequency through time due to environmental interactions (Stearns 1989). 

Thus it should be possible to predict success of a particular genotype by examining its 

functional traits (Stuefer et al. 2009). For example competitive ability and persistence 

may be desirable traits in dense canopies thereby increasing selection for genotypes 

with high growth rates and large leaves that can contribute to community stability 

through compensation (Vermeulen et al. 2008). Ecosystems threatened by drought may 

favour plants with the ability to form dense root mats in the upper soil layer, a trait 

desirable for both the individual and the community as the growth of others is facilitated 

resulting in greater productivity and stability (van Ruijven and Berendse 2010). These 

studies highlight the importance of maintaining plant diversity over time, as the relative 

contribution of traits possessed by different genotypes for ecosystem functioning can 

change over relatively short time periods.  

 

1.1.8 Relevance to agriculture of understanding such processes 

 

Increasing plant species diversity often decreases stability of populations whilst 

increasing community stability and productivity (Tilman 1996). Complementary 

resource usage through niche partitioning in diverse communities increases nutrient 

storage, promoting stability by decreasing invasibility (van Ruijven et al. 2003). Greater 
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diversity decreases interspecific variation in traits among sites and decreases site-to-site 

variance in traits providing greater stability to the overall community (Tilman 1999). 

Application of these principles to agriculture can enhance crop production if the 

mechanisms contributing to increased stability and productivity in biologically diverse 

systems are properly understood such that they are effectively deployable in an 

agricultural setting. This thesis aims to further understanding in this research area 

through experimental investigation of the mechanisms responsible for increased yield 

and yield stability in diverse cropping systems.  

 

1.2  Exploiting the benefits of plant diversity in agriculture 

 

Current farming techniques rely heavily on the use of monoculture systems that are 

dependent upon high chemical inputs to buffer against environmental stresses and 

maintain optimum growing conditions. The fertilisers and pesticides required are 

energetically and economically costly to produce and are sometimes detrimental to the 

local environment sometimes leading to the creation of nitrate vulnerable zones in 

which restrictions to restrict watercourse pollution. Threats to modern farming are being 

compounded as environmental conditions become increasingly unpredictable, fuel 

prices escalate, the chemicals used to control pests are becoming more heavily 

regulated, and pests are evolving resistance to pesticides (Ruttan 1999; McDonald and 

Linde 2002; Morton 2007). Agroecosystem approaches to arable farming offer solutions 

to these issues through the application of ecological principles in an agricultural setting. 

Appropriate biological diversity can limit yield loss in low input and organic systems 

through use of varietal mixtures and through a range of ecological approaches discussed 

herein. Such approaches increase the system's potential to buffer against adverse 

environmental conditions, reduce fertiliser inputs, and control disease, among other 

benefits (Vandermeer 1989; Finckh and Wolfe 1998).  

 

1.2.1 Deployment of diversity in agriculture 

 

Plant diversity can be deployed at different levels in an agricultural setting:  species, 

variety and gene. Monocultures and mixtures (also referred to as polycultures) can be 

deployed at each of these diversity levels. The term ‘monoculture’ often refers to the 

use of same species (species monoculture) for entire fields, but within a species there 
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may be many varieties,  plants that are uniform for desired traits, each of which in 

themselves can be referred to as a ‘monoculture’ (variety monoculture). Varieties may 

differ in their genetic background but show uniformity for certain disease resistance 

genes, which can be referred to as ’gene monocultures’ (Finckh and Wolfe 1998). This 

section begins by reviewing studies on agricultural diversity at the species level, and 

examines the use of species mixtures to benefit the main crop (cover-cropping), and 

produce a secondary crop yield (inter-cropping). The review will then discuss the 

ecological and economic advantages and disadvantages of growing varietal mixtures, 

focussing on the underlying mechanisms responsible for increased plant performance in 

genotypically mixed populations.  

 

1.2.2  Application of species diversity in agriculture 

 

Intercropping is the practice of simultaneously managing two or more crops in the same 

field (Willey 1979). Intercropping systems can provide substantial yield advantages, 

and the multiple crops provide insurance against total crop failure thereby safegarding 

small-holder livelihoods (Lithourgidis et al. 2011). For these reasons, intercropping 

methods continue to be popular with farmers from tropical and temperate regions (Li et 

al. 2006). Other benefits of intercropping relate to the enhancement of ecological 

function through processes such as compensation, complementation and facilitation 

resulting in higher land utilization efficiency and higher, more stable yields (Willey 

1979). 

 

Intercropping systems often rely on crop differentiation in resource requirements and 

usage, allowing for increased utilization of limiting resources and greater productivity 

through complementation (Vandermeer 1989). Intercropping of multiple species is 

primarily adopted to increase soil structure and fertility, commonly achieved by 

intercropping grasses with nitrogen-fixing legumes such as peas or beans which reduces 

the need for excessive nitrogen inputs (Stern 1993; Exner et al. 1999). Greater 

differentiation of resource requirements and usage within the crop reduces niche overlap 

between species which reduces competition intensity and results in increases in crop 

production through competitive release (Andersen et al. 2007).  
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Positive interactions between species can occur when one crop alters the growing 

environment of another crop leading to an increase in crop growth (Begon et al. 1996). 

Such facilitation can be achieved by increasing soil water retention through planting a 

combination of deep and shallow rooted crops (Morris and Garrity 1993). Examples 

include maize and faba bean intercropping systems common in Northern China (Li et 

al. 2006). Nutrient leaching and soil erosion can be minimized by plants with extensive 

root systems such as most trees species (Toledo 1985; Marten 1986). Insect pest 

outbreaks can also be reduced through intercropping by providing microhabitats for 

natural enemies to persist (Vandermeer 1989; Andow 1991), and increasing distance 

between host plants, reducing the spread and abundance of insect pests (Root 1973). 

Intercropping approaches to farming lead to an overall reduction in farm inputs 

(Kontturi  et al. 2011). 

 

Intercropping systems may require the crops to be fully mixed with no distinct row 

pattern, planted in rows narrow enough to permit interaction between crops, planted in 

strips wide enough to accommodate machinery and allow for separate harvesting, or 

planted in relay, where sowing dates of the crops are staggered (Finckh and Wolfe 

1998). Mixing rates of intercrops are selected to achieve the required levels of 

interactions between crops to enhance crop function and achieve higher yields whilst 

considering the practicalities of farming multiple crops simultaneously in the same 

space. Interactions between intercrops occur both above and below-ground yet below-

ground interactions have been shown to account for much of the increase in yield and 

nutrient uptake in intercropping systems such as wheat-maize mixtures (Li et al. 2006). 

Despite the advantages of growing crop species mixtures intercropping can sometimes 

reduce primary crop yields due to high levels of competition for resources (Akanvou et 

al. 2007). Maize-wheat intercropping systems have been shown to reduce maize yields 

through high levels of competition for below ground resources which highlights the 

important role of competition in diverse crop species mixtures (Li et al. 2001).  

 

Cover crops are grown to benefit the primary crop which they do primarily by 

improving soil fertility and soil structure (Langdale et al. 1991). Cover crops are 

typically nitrogen-fixing legumes commonly grown prior to the main cash crop such 

that when they decompose, the nutrients return to the soil and become available for the 

cash crop (Shipley et al. 1992; Erenstein 2003). Legume cover crops have led to 
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increased yield stability without the addition of large amounts of fertiliser (Mundt 

2002). This is achieved through the facilitation of primary crop growth by raising levels 

of available nutrients often achieved by planting grass-legume mixtures, such as winter 

wheat and white clover in the UK (Jones and Clements 1993). Non-legume cover crops, 

such as ryegrass or buckwheat, can also be used to recycle nutrients and reduce leaching 

of nitrogen into the groundwater (Clark et al. 1994; Ranells and Wagger 1997). Cover 

crops can also control weeds by out-competing weeds for resources prior to, and during 

the growth of the primary crop (Teasdale 1993). Despite the disadvantages of growing 

several crops simultaenously, such as managing many different harvest times, species 

mixtures offer ways to increase water-use efficiency, soil structure and fertility, pest 

control and provide many other benefits that subsistence farmers can afford (Gliessman 

1995). 

 

1.2.3  Application of within species diversity 

	
  

Variety monoculture systems, in which a single high-yielding variety is grown 

throughout an entire field, dominate modern agricultural practices (Trewavas 2001). 

Monoculture systems are heavily dependent upon high levels of chemical inputs, such 

as pesticides and fertilisers, for soil improvement and pest control. An alternative to the 

monoculture system is the use of varietal mixtures, in which several genotypes are sown 

together at the same time to buffer against environmental stresses and improve yield 

stability, (Wolfe 1985; Lannou and Mundt 1996; Zhu et al. 2000). Mixtures are 

commonly deployed to control disease which they can do in several ways including the 

prevention of pathogen spread by increasing distance between susceptible host plants, 

or the use of resistant plants to form a barrier to prevent pathogen dispersal (Chin and 

Wolfe 1984; Zhu et al. 2000). The beneficial effect of mixtures on disease control has 

been observed in many crops, controlling major pathogens such as powdery mildew in 

barley (Wolfe 1992), stripe rust in wheat (Finckh and Mundt 1992), and blast in rice 

(Zhu et al. 2000). The use of varietal mixtures to buffer against the effects of abiotic 

stresses is also not an uncommon agricultural practice (Finckh and Wolfe 1998). For 

example, sowing a mixture comprised of high yielding varieties and winter hardy 

varieties effectively insures against excessive losses experienced in colder winters, 

particularly as survivors are able to overyield via compensation and competitive release 

(Finckh et al. 2000). Mixtures are commonly deployed to control a single stress, usually 
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a disease, yet mixtures can be used to control diverse and sometimes unpredicted 

stresses. Methods of using within-field genetic diversity to buffer against the effects of 

environmental fluctuations whilst maintaining productivity are particularly applicable to 

most cereal crops in which there is sufficient genetic diversity to allow such practices. 

However, this method may not be as effective if the available genetic diversity of a crop 

is too low, for instance in coffee (Hendre et al. 2008) and oil seed rape (Qian et al. 

2009). 

 

Yield is the most important factor for growers, yet yield stability is often hard to 

achieve in variety monocultures because they contain little variation for resistance to 

abiotic and biotic stresses. UK winter wheat yields have been particularly variable over 

the last few years. A wet harvest reduced yields in 2009 whereas dry conditions reduced 

yields in 2010. In 2011 there was a yield increase in all regions except the Eastern 

regions where yields were lower than in 2010 due to a very dry spring. 2012 saw wheat 

yields decline again with the greatest drop in yield (-31%) in the South West region 

(www.gov.uk). Due to such variation in crop yields, yield stability of varieties is 

becoming a significant breeding target. Ostergaard et al. (2005) found that varietal 

mixtures provided greater yield stability than monocultures. Variances associated with 

genotype by environment interactions are almost always lower for mixtures than their 

components in monoculture due to compensatory interactions occurring within the 

mixed population (Smithson and Lenne 1996; Cowger and Weisz 2008). When Polish 

barley trials were analysed to assess the yield stability of mixtures and pure stands, 

mixtures were found to have a much more stable yield than pure stands, but a lower 

yield on average (Eberhart and Russell 1966). The beneficial effect of mixtures on yield 

stability has been observed elsewhere in barley (Wolfe 1992) and also in wheat (Finckh 

and Mundt 1992). Within a mixture it is difficult to predict which variety will provide 

the highest yield, partly due to complexity of competitive interactions within the field 

and also variable field conditions, a fact that highlights the importance of maintaining 

genetic diversity as an essential practice for successful diverse cropping systems.  

 

In the late 1970s, the use of varietal mixtures of wheat and barley became more popular 

with farmers, however, this transition was not as popular with the millers and maltsters 

due to issues regarding grain heterogeneity, grain verification and customer preference 

(Mundt 2002) as well as processing difficulties. There are also issues surrounding the 
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agronomy of growing mixtures, however, through the application of precision 

agricultural technologies available to farmers, these difficulties could be partially 

mitigated against, depending on the planting regimes adopted (Miller et al. 2001). 

Certain compromises must be made regarding the pesticide spray programmes and 

fertiliser application rates which must be adapted to the mean of the mixture 

components rather than tailored specifically to a single variety. Harvesting mixtures 

may also present problems to the farmer if there is variation in ripening dates between 

plants in the same field. Despite these issues varietal mixtures have potential for 

achieving high and stable yields whilst simultaneously requiring less chemical inputs, 

making their use appealing when attempting to meet future global food demands using 

sustainable approaches to farming. 

 

1.2.4 Experimental approaches to investigate ecological processes occurring within 

varietal mixtures 

	
  

There remains a significant gap in scientific knowledge about the relationship of 

environmental stress to yield in mixtures. Studies are often conducted under similar yet 

largely unreproducible environmental conditions, which reduces the ability to test 

hypotheses is adequately replicated experiments. Replicated trials across multiple soil 

types will indicate the consistency and any environmental dependency of such 

interactions taking place within the mixture. For disease studies, experimental plots are 

often artificially inoculated at higher concentrations than would be normal in nature, in 

an attempt to avoid stochastic effects in disease establishment (Mundt 2002). This may 

reduce the effectiveness of the mixture due to a reduction in the number of generations 

of pathogen increase that occur before the crops’ carrying capacity is reached (Mundt 

2002). Natural disease infection would allow the studies to be more accurately 

representative of the field environment. Non-diseased controls are often absent in field 

studies of mixtures, but are needed to allow for comparisons of the effects of disease on 

yields (Mundt 2002). Disease scoring of individual plants within both monoculture and 

mixture plots would aid understanding of the ability of mixed plant genotype 

populations to control disease and the alteration of population dynamics impacting upon 

population yield. Further, data from hand harvested plants and post-harvest varietal 

grain identification would provide insights into the population processes occurring 

within mixed variety populations under environmental stress.  
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1.3  Arabidopsis as a model plant for varietal mixture studies 

 

Translational science from model systems into cropping systems can increase our 

understanding of the mechanisms contributing to high and stable crop production. 

Selection for traits that promote complementation, through facilitation and resource use 

efficiency, and compensatory interactions may enhance ecological resistance and 

resilience resulting in stability and productivity of the agricultural system. The 

following section describes the suitability of Arabidopsis thaliana as a model system to 

investigate the mechanisms leading to enhanced crop function in varietal mixtures. 

Traits contributing to the value of Arabidopsis as a model organism are discussed in 

detail. The use of Arabidopsis to investigate the effect of pathogens on plant fitness is 

then examined. The section finishes by focusing on the responses of Arabidopsis to 

abiotic stress and competition between plants, highlighting the suitability of this species 

for this project. 

 
1.3.1 A model to understand varietal mixtures 

	
  

Arabidopsis has been used extensively as a model organism to investigate the effects of 

a variety of stresses on plant fitness, including herbivory (Weinig et al. 2003; Arany et 

al. 2005), bacterial and viral pathogens (Kover and Schaal 2002; Pagan et al. 2008, 

2009), drought (Bouchabke et al. 2008), and salinity (Zhu 2001). Arabidopsis has also 

aided our understanding of factors affecting the outcomes of competition between plants 

through manipulation experiments in which plants were grown in crowded, resource 

limited conditions and the vegetative and reproductive outputs were measured (Cahill et 

al. 2005; Masclaux et al. 2010). The proven track record of the model plant in these 

research areas prompted us to explore its potential for modelling crop varietal mixtures. 

Until now, the effects of stress on competition between closely related individuals in 

crop varietal mixtures have been studied on a large scale because of the high variance 

between experiments associated with the partly uncontrolled environment and genotype 

by environment interactions (Ceccarelli and Grando 1991). A suitable model system in 

which environmental conditions are more readily controlled would require fewer plants, 

making it feasible to manipulate and test the effects of specific interactions and to 

obtain insights into the mechanisms at work in crop mixture systems. Greater 
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understanding of the plant-plant interactions within varietal mixtures and the crop’s 

interaction with the environment has the potential to inform rational choices of 

component varieties in mixtures. 

 

1.3.2 The value of Arabidopsis as a model organism 

	
  

Arabidopsis is a member of the mustard family (Brassicaceaae) with a wide distribution 

across the northern hemisphere (Meinke et al. 1998). It is a small dicotyledonous annual 

species that has been used extensively over the last 30 years as a model organism to 

increase understanding in many areas of plant biology such as biochemistry, physiology 

and genetics (Koornneef and Meinke 2010). Arabidopsis has many traits which make it 

ideal for use as a model organism. It has a rapid life cycle (as short as six weeks from 

germination to mature seed), high seed production (often >5000 seeds per plant) and 

can be easily cultivated in small spaces, reducing the resources required for large scale 

studies (Meinke et al. 1998). Arabidopsis was initially used to understand genetics and 

its small diploid genome (125Mb total) was the first plant genome to be to fully 

sequenced (Arabidopsis Genome Initiative 2000). The fully assembled genome and 

extensive genetic and physical maps of all five chromosomes made Arabidopsis an ideal 

model for genetic studies. Widespread use of this model has resulted in the production 

of a vast array of genetic resources available for experimental analysis including over 

750 natural accessions and many mutant lines all catalogued at stock centres (ABRC, 

http://abrc.osu.edu/; NASC, http://Arabidopsis.info/). Examples of discoveries first 

made in Arabidopsis include the genetic regulation of flowering time (Koornneef et al. 

1998) and much of the biology of floral development (Coen and Meyerowitz 1991). 

Arabidopsis was also used to identify plant receptors for phototropism (Huala et 

al.1997) and phytochrome action (Quail et al. 1995). Phytochrome mediated light 

perception (red:far red light ratio) is of particular importance to this study as it indicates 

the presence of neighbouring plants, and other studies have shown variation for 

developmental changes by Arabidopsis genotypes in response to this light ratio, which 

has particular relevance to ecological studies of competition (Dorn et al. 2000; Pigliucci 

et al. 1995a). Arabidopsis is closely related to economically important crops such as 

turnip, cabbage, broccoli and oil seed rape, making it a suitable model for Brassica 

crops. Genetic and molecular studies are simpler in the diploid Arabidopsis than in 

polyploid Brassica crops, thus providing a good springboard to understanding Brassica 
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genetics (Mitchell–Olds 2001). Negatives associated with the use of the Arabidopsis 

model system for understanding crop varietal mixtures include issues when attempting 

to extrapolate results from disease studies on Arabidopsis to crops. This is largely due to 

the fact that most coevolved pathogens are closely adapted to their specific host. Also, 

phenotypic diversity between genotypes is much greater for Arabidopsis than most crop 

species, which can create issues when attempting to translate research from model to 

crop.  

 

1.3.3  The effects of pathogens on Arabidopsis 

	
  

The variety of diseases that infect Arabidopsis and the variation in responses of 

different Arabidopsis genotypes to diverse pathogens have been exploited by many 

groups studying aspects of resistance and tolerance in plants. The range of pathogen 

types able to infect Arabidopsis includes bacteria (e.g. Pseudomonas syringae) (Boch et 

al. 2002), fungi (e.g. Golovinomyces orontii) (Adam and Somerville 1996), oomycetes 

(e.g. Albugo candida) (Cooper et al. 2008), viruses (e.g. Cucumber mosiac virus) 

(Pagan et al. 2008) and nematodes (e.g. Meloidogyne incognita) (Sijmons et al. 1991). 

Arabidopsis has been used to investigate natural variation for disease resistance and 

tolerance to naturally occurring pathogens such as Hyaloperonospora arabidopsidis 

(Salvaudon et al. 2007; Nemri et al. 2010), Albugo species and Erysiphe species 

(Cooper et al. 2008). It has also proven to be a useful model to study experimental 

pathogens of threat to crops related to Arabidopsis, such as Turnip yellows virus 

(TuYV) in Brassicas (Stevens et al. 2005) and Cucumber mosaic virus (CMV) in 

Cucurbits (Pagan et al. 2008, 2009). Susceptibility to a broad range of pathogens has 

further increased the popularity of Arabidopsis as a host in model pathosystems.  

 

1.3.4  Naturally occurring pathogens of Arabidopsis 

	
  

Hyaloperonospora arabidopsidis (Hpa) is an obligately biotrophic oomycete pathogen 

specific to Arabidopsis. Plant and parasite have a long coevolutionary history (Holub 

2008). The Arabidopsis-Hpa model pathosystem has been used to study interactions 

between major resistance genes (R genes) and the oomycete effectors (ATR genes) 

identifying components of the interaction between host and pathogen, and exposing the 

complexity of such interactions that relate to plant immune systems and suppression of 
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immunity by pathogens (reviewed by Coates and Beynon 2010). Nemri et al. (2010) 

used association genetics of resistances to Hpa to increase genetic map resolution for 

different race-specific R genes in Arabidopsis indicating that combinations of 

association and linkage mapping could help discovery of novel resistance genes. Lapin 

et al. (2012) took the work on race-specific R genes further, identifying the source of 

broad-spectrum resistance of Arabidopsis accession C24 to Hpa as multiple 

combinations of isolate-specific loci. The quantitative resistance loci they identified can 

potentially assist the cloning of disease resistance-related genes, improving 

understanding of the complex molecular mechanism of disease immunity in plants. The 

potential for interactions between co-infecting species of pathogens complicates the 

plant-pathogen interaction further, as demonstrated in the study of interactions between 

Arabidopsis and two of its natural pathogens (Cooper et al. 2008). This study found 

suppression of host defence by the oomycete Albugo candida which allowed infection 

by avirulent strains of Hpa and powdery mildew (Erysiphe spp.). A similar suppression 

of resistance by a non-adapted pathogen isolate has been reported to be caused by 

pathogens such as rusts (Yarwood 1977). Arabidopsis is an extremely useful model for 

studying crop pathogens because of the similarities in its major pathogens epidemiology 

and dispersal mechanisms. Powdery mildews infect Arabidopsis (Erysiphe spp.), wheat 

and barley (Blumeria spp.), and share similar characteristics including aerial dispersal of 

spores and disease symptoms. Parallels between the model pathosystem and 

agronomically important pathosystems suggest that this model may be suitable for 

studying cropping systems under biotic stress. 

 

Empirical studies have also provided insights into the evolutionary history of plant host 

and pathogen. Salvaudon et al. (2007) used the Hpa-Arabidopsis pathosystem to study 

trade-offs between host and parasite fitness. Host genotypic variation in compatibility 

with the pathogen had a significant effect on the relationship between host and plant 

fitness leading to differences in resource availability to both pathogen and host. 

Damgaard and Jensen (2002) studied the effect of disease on competitive ability in two 

genotypes of Arabidopsis and used the data to predict the outcome of long-term co-

existence in the presence of the pathogen Hpa (then named Peronospora parasitica). 

They concluded that both Arabidopsis genotypes would co-exist in the absence of the 

pathogen, but if the pathogen was present the resistant genotype would outcompete the 

susceptible genotype and thereby reduce population genetic diversity. These studies 
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provide insight into ways in which plant population and community structure can be 

influenced by plant-pathogen interactions at the local scale.  

 

The interaction between plant tolerance and resistance to viral and bacterial pathogens 

has also been investigated in Arabidopsis. Kover and Schaal (2002) measured plant and 

parasite fitness along with disease severity in search of selection for tolerance and 

resistance to the bacterial pathogen, Pseudomonas syringae. They concluded that 

Arabidopsis genotypes vary in their tolerance to P. syringae which reduces the strength 

of selection for resistance to the pathogen. Korves and Bergelson (2003) explored this 

idea further by investigating the developmental response of plants to the pathogens P. 

syringae, Xanthomonas campestris and Hpa. They found changes in flowering time, 

and branch architecture due to pathogen infection affect plant tolerance and disease 

resistance.  

 

1.3.5  Experimental pathogens of Arabidopsis 

 

Arabidopsis has been used extensively to study pathogens that do not normally naturally 

occur on this species. Pagan et al. (2008, 2009) investigated interactions between the 

parasite Cucumber mosaic virus (CMV) and plant density, monitoring differences in life 

history traits between Arabidopsis genotypes. Greater resource allocation to 

reproductive growth increased tolerance to the direct negative effect of the pathogen on 

plant fitness, while investment in vegetative growth increases tolerance to the indirect 

costs of infection, which reduces competitive ability through reduced plant fitness 

(Pagan et al. 2009). Westwood et al. (2013) found that CMV infection increased 

tolerance to drought in Arabidopsis. This effect was attributed to the induction of 

abscisic acid (ABA) regulated genes by the virus, which led to alteration of the root 

characteristics. The outcome of this interaction was beneficial to both plant and 

pathogen as increased plant tolerance to abiotic stress increases the likelihood of virus 

survival during periods of environmental stress.  

 

Stevens et al. (2005) identified Arabidopsis as a host for Beet mild yellowing virus 

(BMYV) and Turnip yellows virus (TuYV) indicating the potential of this pathosystem 

for understanding the vector-virus-host interactions. Knowledge of these interactions is 

of particular relevance to important agronomic crops including oilseed rape (OSR) and 
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sugar beet that are threatened by both the aphid vector, Myzus persicae, and its 

symbiotic virus. Arabidopsis has also been used to study resistance to cabbage white 

butterflies (Pieris species) and leaf miners (Scaptomyza species.) (Hering 1957; 

Reymond et al. 2000). This genus of leaf miners is related to Drosophila indicating a 

potential combination of the genetic tools of Arabidopsis and Drosophila for a plant-

insect-model system (Mitchell-Olds 2001).  

 

1.3.6  The effects of abiotic stress on Arabidopsis 

  

High levels of trait diversity among Arabidopsis accessions allow for rigorous testing of 

the response of plants to abiotic stress. The species has been used as a model to 

understand the effects of nutrient stress on plants, providing insight into mechanisms of 

nutrient uptake and accumulation (Raghothama 1999; Vert et al. 2002; Palmgren 2001) 

and also the interactions between nutrient status and other stresses such as salt stress 

(Wu et al. 1996; Zhu et al. 1998). Arabidopsis has proven to be a useful model in the 

study of the effect of salinity stress on plants, an area of particular agronomic 

importance as it affects one-fifth of cultivated land globally (Zhu 2001; Labidi et al. 

2004). Bouchabke et al. (2008) found phenotypic variation in response to drought stress 

between accessions suggesting that Arabidopsis could potentially be used to identify 

important alleles for the complex traits of drought resistance in economically important 

plants. Advances in our understanding of tolerance to drought and salinity stress are 

critical for global crop production as they are responsible for yield losses of over 50% 

worldwide (Boyer 1982; Bray 2000; Wang et al. 2003). 

 

Natural accessions of Arabidopsis can be widely variable in their morphology, 

development and physiology, opening up the potential for use of Arabidopsis in 

research areas such as evolutionary ecology (Mitchell-Olds 2001; Jorgensen 2012). 

High levels of self-pollination facilitate quantitative trait loci (QTL) mapping and 

testing of progeny of advanced lines, which can be problematic in outcrossing species 

(Karkkainen et al. 1999). The genomic sequence, QTL and association mapping allows 

for the study of natural selection on functional genes through the isolation of genes and 

identification of ecologically important polymorphisms (Johanson et al. 2000; Stahl et 

al. 1999). Findings from such studies can be tested experimentally through competition 
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experiments or reciprocal transplant experiments involving the use of near isogenic 

lines (NILs) to test the fitness of allelic/phenotypic variants. 

 

1.3.7  Phenotypic plasticity and competition in Arabidopsis 

	
  

The genetics and evolution of phenotypic plasticity has been extensively studied in 

Arabidopsis. Pigliucci et al. (1995a, b) found Arabidopsis to be an ideal model for 

investigation of genotype by environment interactions because of the wealth of 

information on genetics, physiology, development and high environmental sensitivity. 

They found genotypic variation for plasticity in response to light and nutrient treatments 

and also a correlation between the amount of phenotypic variation within a genotype 

and the range of variation in the environment. Later flowering genotypes have been 

associated with greater plasticity in many morphological and physiological traits 

indicating variation in life history strategy between early and late flowering genotypes 

(Zhang and Lechowicz 1994). Pigliucci and Kolodynska (2002) measured phenotypic 

plasticity in response to flooding in natural Arabidopsis accessions. Flooding conditions 

uncovered selection for different traits and trade-offs in allocation between roots and 

above-ground biomass, leaves and reproductive structures. Empirical studies on trade-

offs in resource allocation and phenotypic plasticity in plants impact heavily upon our 

understanding of competitive interaction between plants across environments. Aarseen 

and Clauss (1992) used Arabidopsis to study r/K-selection theory which relates to a 

trade-off between the ability to reproduce quickly (r-selection) and compete 

successfully (K-selection) (MacArthur and Wilson 1967). There was great variation in 

fecundity allocation between plants of different sizes. However the authors did not take 

this work further by studying the outcomes of competition between r and K specialist 

genotypes. Cahill et al. (2005) investigated competition between Arabidopsis genotypes 

in monocultures and mixtures under different nutrient treatments. They found greater 

levels of competition under high nutrient conditions when resources were ample. Plant 

competitive ability was largely related to neighbour size (biomass) and shading ability, 

not genotypic identity. Masclaux et al. (2010) performed a similar study and found that 

the strength of the competitive ability of the neighbour, not its genetic identity, affected 

plant growth of focal plants. Willis et al. (2010) found a correlation between tolerance 

of competition and suppression of neighbours. Willis et al. (2010) found neighbour 

genetic identity to affect the fitness of focal plants, however, they may have confounded 
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genotype and size which could have been tested properly by using plants of different 

sizes or ages within a competing genotype.  

 

The impact of resource availability on the outcome of competition remains a question of 

great scientific interest. The effect of carbon dioxide levels on competition between 

genotypes was explored by Andalo et al. (2001). At ambient CO2 levels genotypic 

monocultures outperformed mixtures of competing genotypes and vice versa at elevated 

carbon dioxide levels in which increased plant growth increased competition for 

resources (Andalo et al. 2001). The interaction between plant traits and environmental 

conditions highlights the need for studies testing mixtures over a range of environments. 

The use of Arabidopsis as a model for such studies on competition can aid our 

understanding of the ecological processes that structure populations and communities 

and, in an agricultural setting, the effect of these processes on maximising and 

maintaining productivity. This makes Arabidopsis a suitable model for our research into 

the mechanisms underlying the increased performance of crop variety mixtures 

compared to their component monocultures. 

 

1.4  Contents of this thesis 

	
  

In Chapter 2, the ability of Arabidopsis genotypic diversity to buffer against abiotic 

stress, specifically nutrient and heat stress, was investigated using large-scale genotypic 

mixture experiments and pair-wise interaction experiments. Compensation was 

identified as the main ecological process conferring yield stability in these experiments. 

 

Further investigation into the mechanisms contributing towards yield stability in a 

genotypically mixed population continues in Chapter 3. Support was provided for the 

role of compensatory interactions in the ability of Arabidopsis genotypic diversity to 

buffer against biotic stress, specifically the oomycete pathogen Hyaloperonospora 

arabidopsidis and viral pathogen Turnip yellows virus. 

 

Findings from previous chapters regarding plant phenotypic traits involved in 

competition and compensation in Arabidopsis were translated into the crop winter 

barley in Chapter 4. The ecological resistance of winter barley varietal mixtures to 

abiotic and biotic stresses experienced under field growing conditions were 
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investigated. It was found that mixtures can stabilise yield despite unexpected stresses 

that were not anticipated when the experiment was designed. 

 

Finally, in Chapter 5, I will discuss the implications and applications of this research, 

identifying key areas that require further investigation. 
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Chapter 2 

Stabilisation of yield in plant genotype mixtures through compensation 

rather than complementation 
 

This chapter has been accepted as a paper by Annals of Botany: 

 

Creissen HE, Jorgensen TH, Brown JKM. 2013. Stabilisation of yield in plant 

genotype mixtures through compensation rather than complementation. Annals of 

Botany. 112, 1439-1447. doi:10.1093/aob/mct209. 

 

 

2.1 Introduction 

 

Empirical studies have shown that higher levels of plant species diversity can result in 

greater above-ground productivity (Hector et al.1999; van Ruijven and Berendse 2005; 

Roscher et al. 2011) and ecosystem stability (Tilman et al. 2006). Previous studies on 

the relationships between plant diversity, stability and productivity of ecosystems have 

focused on diversity at the species level (Tilman 2001), yet these relationships are also 

observed at the functional group and genotype level (Hector et al. 1999; Hughes and 

Stachowicz 2011). The potential of plant diversity to increase or stabilise productivity is 

of great interest in crop systems (Zhu et al. 2000; Li et al. 2009). However, there is 

limited understanding of the actual mechanisms leading to correlations between plant 

diversity, productivity and stability which currently restricts the use of biologically 

diverse cropping systems in agriculture. 

 

Ecological stability is commonly described using two main terms, resistance and 

resilience. Resistance refers to the ability of the system to resist change in response to 

perturbation, whereas resilience refers to the ability of the system to recover by 

returning to its pre-perturbation state (for reviews see Tilman 1996; Hooper et al. 2005). 

Resistance is the more relevant trait in annual plants, particularly when environmental 

stress occurs near or after the time of flowering. Note that resistance in the ecological 

sense used here, operating at the population or community level, is not the same as 

resistance of individual plants to stress or disease. Proposed mechanisms by which 
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stability is achieved by ecological resistance in diverse communities or populations 

include compensation, complementation and facilitation. Compensation occurs when a 

species displays resistance to perturbation and is able to compensate for more 

susceptible species. It requires variation between species or genotypes in response to 

stress and competition, allowing the stronger species or genotypes to compensate for 

weaker ones via competitive release (Tilman 1996). Such interactions increase stability 

in productivity at the community level but increase variability at the population and 

species level (Tilman 1996; Bai et al. 2004). Similar compensatory mechanisms may 

occur between genotypes in a diverse population of a single species (McLaren et al. 

2011). Complementation, on the other hand, results from increased resource use 

efficiency in mixed communities or populations because individual plants often 

experience less niche overlap than in monoculture, which can lead to overyielding in 

species mixtures (Hector et al. 2002; Silvertown 2004). Finally, facilitation results from 

positive interactions between species or genotypes, which may increase productivity 

and stability by altering features of the local environment to the benefit of neighbouring 

plants, such as the accumulation of nutrients, provision of shade and protection from 

herbivores (Callaway 2002). Facilitation is indicated if plants perform significantly 

worse when a neighbour is removed and is common in stressful environments 

(Callaway 2002; Kikvidze et al. 2006).  

 

Crop breeding programmes produce cultivars with increased yield potential which must 

be coupled with improved farming practices to achieve those yields (Calderini and 

Slafer 1998). In most situations, a single cultivar that is completely or almost 

completely genetically uniform is grown throughout a field (Trewavas 2001). 

Monocultures rely heavily on chemical inputs such as fungicides, pesticides and 

herbicides to maintain the specific environment required for successful cropping. 

However, selection for performance under high input conditions and low environmental 

variation can lead to a reduction in yield stability across environments (Calderini and 

Slafer 1999). The use of agro-chemicals may be heavily restricted in the future, forcing 

farmers to consider using alternative cropping systems that are adaptable to multiple 

environments (Hillocks 2012). If plant diversity within fields of agricultural crops 

contributes to achieve stable, high levels of production, it will promote food security, 

which is threatened by a ‘perfect storm’ of multiple interacting environmental and 

natural resource challenges (Beddington 2009). 
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Considering the current threat of global warming and the unpredictable ecological 

responses to climate change (Lavergne et al. 2010), the importance of increasing the 

adaptive power of crops is of great concern (Lobell 2008). Varietal mixtures, where 

several cultivars are grown together, are only used to a limited extent in modern, 

intensive farming owing to perceived disadvantages regarding heterogeneity of the end-

product and variable agronomy (Newton et al. 2008b). Mixtures have the potential to 

increase yield stability and control pests and diseases whilst being less reliant on 

chemical inputs which generate a high demand for energy in their production and 

application (Wolfe 1985; Altieri 1999; Zhu et al. 2000).  

 

Presently, evidence for the advantages and disadvantages of growing varietal mixtures 

comes from studies that are typically large in scale because of the high variances 

associated with the uncontrolled environment and genotype by environment interactions 

(Madden et al. 2007). A suitable model system in which environmental conditions are 

more readily controlled would require fewer plants, making it feasible to manipulate 

and test the effects of specific interactions and to obtain insights into the mechanisms at 

work in crop mixture systems. Greater understanding of the plant-plant interactions 

within varietal mixtures and the crops interaction with the environment has the potential 

to inform rational choices of component varieties in mixtures. 

 

Arabidopsis thaliana (Brassicaceae) is a small annual weed that has been successfully 

used as a model for understanding plant biology (Mitchell-Olds 2001; Meldau et al. 

2012; Jorgensen 2012). Arabidopsis, like most weedy species, is an r-strategist 

producing thousands of small seeds with little investment of resources per seed 

(MacArthur and Wilson 1967). It occurs naturally in highly disturbed environments 

with little competition but it can readily be used in competition studies because 

genotypes can differ greatly in biomass, seed production, resource requirements and 

competitive ability (Cahill et al. 2005; Masclaux et al. 2010). Phenotypic variation for 

traits relating to competitive ability observed within a genotype can be largely attributed 

to environmental variation (Clauss and Aarssen 1994) and several studies have found 

significant interactions between genotypes and environments (Pigluici et al. 1995a,b). 

The small size of Arabidopsis plants and short generation times under glasshouse 

conditions provide a model system in which the high levels of replication required for 
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competition experiments across environments can be reliably achieved. These attributes 

may make Arabidopsis a powerful tool for controlled ecological studies on competition 

between plants. 

 

Here we examine Arabidopsis as a model system to study the effects of genotypic 

diversity on yield under glasshouse conditions. The roles of compensation and 

complementation in stabilising productivity in genotypic mixtures of Arabidopsis were 

determined for plants subjected to the types of abiotic stresses that may challenge 

present and future agricultural systems. We tested the hypotheses that: i) genotypic 

mixtures have greater yield stability than monocultures, particularly when under 

environmental stress, ii) the yield of individual genotypes is more variable within 

mixtures than monocultures but compensation by stronger competitors within the 

mixtures begets an increase in yield stability for the mixture as a whole, and iii) 

competitive ability can be predicted from plant phenotype. 

 

2.2.  Materials and methods 

 

2.2.1  Four-way mixture experiments 

 

Four genotypes of Arabidopsis were selected for study (Ler-1, Col-0, Gy-0, Ga-0) based 

largely on phenotypic variation for rosette size and seed production. Genotypes were 

selected to vary in flowering time by a few days at most so they would compete for 

resources at a similar time (Table 2.1). Four-way mixture experiments were conducted 

to investigate the effects of all the genotypes competing with each other. The 

experiment was conducted in large plastic trays (680 x 440 x 50 mm) in which inter-

plant distance was 30mm for horizontally and laterally nearest neighbours, and 40mm 

between diagonally opposite neighbours, which generated intense competition between 

plants. In the absence of competitors under optimal growing conditions, genotypes 

ranged in rosette diameter from 30 to 110mm. Plants were cultivated as both 

monocultures and 4-way mixtures in which competition between genotypes was 

intensified by maximizing distance between plants of the same genotype (Fig. 2.1). 

Seeds were sown in small pots of peat-based compost (Levington F2 soil, Nitrogen 150: 

Phosphorous 200: Potassium 200 mg L-1, pH 5.3 – 5.7) and were incubated at 4ºC for 4 

days to break dormancy before being moved to the glasshouse at 21–23ºC on a 16 h 
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light/8 h dark cycle supplemented with 120 µmol m-2 s-1 fluorescent lighting for 

germination. After 7 days in the glasshouse, seedlings were transplanted into the 

experimental layout. Plants were grown under high or low nutrient conditions from the 

seedling stage until senescence. The high nutrient treatment consisted of eight parts 

compost (Levington F2 soil) to one part grit. Low nutrient conditions were created by 

diluting the high nutrient soil mixture with medium grade (2-5 mm) vermiculite (1:2 

v/v). 

 
 

Fig. 2.1: Planting design for four-way mixtures of Arabidopsis genotypes. Each small 

block represents an individual plant. Each letter represents a different genotype. Focal 

plants were sampled from inside the dark-bordered square to avoid edge effects. N=5 

plants per genotype.  

 

Each experimental repeat consisted of two replicates of each of the four monocultures 

under both nutrient conditions, and six replicates of four-way mixtures per nutrient 

condition, resulting in a total of 28 trays per experimental repeat. For each monoculture 

tray, ten focal plants were randomly selected for phenotypic trait analysis whereas for 

each mixture tray, ten focal plants of each genotype were sampled. 

 

Two independent experiments were performed during autumn (beginning in October 

2010) and winter (beginning in January 2011). Both experiments (autumn and winter) 
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had additional lighting for the duration of the experiment. Temperatures were fairly 

constant (mean temperature 19/20°C, daily maximum 26/27°C, standard deviation of 

mean temperature 1.3/1.8°C) during these replications. Another experiment ran during 

summer (beginning in June 2010) using the same design as the other two but it was 

exposed to additional heat stress, not replicated in other seasons. Temperature and light 

levels were substantially higher than in the other two experiments (mean temperature 

21°C, daily maximum 31°C, standard deviation of mean temperature 2.6°C). No 

additional lighting was provided during the summer experiment. 

 

Several measurements were taken for each focal plant to assess plant fitness, including 

days to first flower (phase 6, Boyes et al. 2001), height of longest inflorescence at the 

onset of silique maturation and total seed mass. Plants were bagged with individual 

clear, micro-perforated bags when the first siliques began to ripen to ensure all seeds 

were collected. Relative yield (yield in mixture/ yield in monoculture) (de Wit 1960) 

was calculated for each genotype to assess mixture performance. 

 

2.2.2  Pair-wise interaction experiments 
 

To test the hypothesis that competitive ability can be predicted from above-ground 

phenotypic traits, pair-wise interaction experiments were conducted to investigate the 

effect of a single competing genotype on the fitness of the focal genotype. Plants were 

treated as focal or competing, but not both, because it was not possible to bag adjacent 

plants for seed collection. The four genotypes (Ler-1, Col-0, Gy-0, and Ga-0) and a 

different set of four genotypes (Wei-0, Van-0, Ms-0, Ema-1) were assigned to a 

competitive group based on phenotypic traits relating to their predicted competitive 

ability such as seed production, rosette size and flowering time when grown as a single 

plant (Table 2.1). Genotypes received a ranking for each trait. These rankings were 

weighted to calculate predicted competitive ability based on preliminary study data; 

seed mass was given a weighting of 4, rosette size a weight of 2 and flowering time a 

weight of 1. Group 1 had the lowest predicted competitive ability due to its low yield, 

small rosette and early flowering whereas group 4 was predicted to be the most 

competitive. 
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Set 
Competitive 

Group 
Genotype 

Days to 

flower 

Rosette diameter 

at 4 weeks (mm) 
Seed mass (g) 

1 1 Ler-1 25.0 ± 0.0 28.5 ± 3.1 0.019 ± 0.008 

1 2 Col-0 26.6 ± 1.7 57.4 ± 5.6 0.124 ± 0.013 

1 3 Gy-0 31.0 ± 2.6 98.8 ± 21.4 0.177 ± 0.074 

1 4 Ga-0 28.6 ± 2.7 84.4 ± 12.9 0.345 ± 0.079 

2 1 Van-0 29.0 ± 0.0 34.6 ± 4.2 0.090 ± 0.013 

2 2 Wei-0 25.8 ± 1.1 60.0 ± 11.9 0.098 ± 0.041 

2 3 Ms-0 25.7 ± 1.2 50.4 ± 14.9 0.127 ± 0.074 

2 4 Ema-1 34.0 ± 4.0 111.3 ± 10.7 0.516 ± 0.093 

 

 

Table 2.1. Mean trait values (± SD) for eight Arabidopsis genotypes grown under high 

nutrient conditions in the absence of competitors. N=5 plants per genotype. 
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Growing conditions were the same as in the high nutrient treatment of the four-way 

experiment except that plants were grown in small pots (70mm x 70mm x 70mm), each 

of which contained four plants. Plants were spaced 30mm apart to achieve a similar 

intensity of competition as in the tray experiments. Below the soil surface, pots were 

either undivided or divided into four equal sections using plastic strips thus providing 

conditions in which below-ground competition was either allowed or prevented. Plants 

were grown either in monoculture (four plants of one genotype in the same pot) or a two 

way mixture containing two plants of each genotype with the same genotype at 

diagonally opposite corners of the pot. Plants were cultivated simultaneously in the 

same glasshouse from June-August 2011. Temperatures were quite variable (mean 

20°C, max 35°C, standard deviation of mean temperature 3°C). Measurements taken 

were the same for plants in the four-way mixture experiment with the addition of a 

rosette diameter measurement at four weeks old, which was not possible to do in the 

large, crowded tray experiments. 

 

2.2.3 Root growth assays 

 

Seedling root growth assays were conducted to test if early root growth rates differed 

between genotypes. 30 seedlings of all eight genotypes were grown on plates containing 

½ strength Murashige and Skoog (½MS) medium media in environmentally controlled 

cabinets (Snijders Economic Delux Dimmable containing Sylvania Britegro 

F36WT8/2084 bulbs). Cabinets were set to 16 hour photoperiod, 23/16 °C day/night 

temperature. Plants were grown as single plants. Total root length measurements were 

taken at six and ten days growth using the image processing package Fiji (Schindelin et 

al. 2012). 

 

2.2.4.  Statistical analysis: Four-way mixture experiments 

 

Seed mass and flowering time were analysed in linear mixed models to evaluate 

differences between monocultures and mixtures. Fixed factors included growing season, 

nutrient level (high/low), cultivation type (monoculture/mixture), genotype and their 

interactions. Seed mass was log-transformed to normalise the distribution of residuals 

and to make them approximately independent of fitted values. Non-significant 

interaction terms were removed from the model. Random effects were the block (tray) 
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in which the plants were grown and the individual plants. Initially the model was run for 

the combined autumn and winter dataset. The summer dataset (including the additional 

heat stress) was analysed in a separate model. Finally a model was run for all three 

datasets combined to assess the effect of the additional heat stress in the summer season 

on plant fitness in mixtures and monocultures. Details of the models are given in the 

Results section. All unplanned two-way comparisons were tested by protected least 

significant difference (LSD).  

 

2.2.5 Statistical analysis: Pair-wise interaction experiments 

 

Initially a linear mixed model was run to test the strength of competition between 

genotypes within pots; fixed factors included competition (presence/absence of 

competitors) and the competitive group of the focal plant from which phenotypic 

measurements were taken. To evaluate differences between monocultures and mixtures 

in seed mass, rosette size and flowering time, a separate linear mixed model was then 

run on data from pots in which competitors were present. This included the main effect 

of each variable and the interactions between them. Fixed factors included genotype, 

competition type (above ground only, or above and below ground competition), 

cultivation type (mixture/monoculture) and their interactions. Seed mass was log 

transformed, as above. A separate linear mixed model included the effect of competition 

type and competitive group (of the focal and the competing genotypes) on seed mass, 

rosette size and flowering time. Seed mass was square-root transformed to normalise the 

distribution of residuals and to make them approximately independent of fitted values. 

All non-significant interactions terms were removed from the model. Random effects in 

this model were the pot in which the plants were grown and the individual plants. All 

other factors were treated as fixed. All statistical analysis was conducted using Genstat 

v.12 (Payne 2009). 
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2.3  Results 

 

2.3.1  Four-way mixture experiment 

 

Genotypic mixtures produced similar yields to those obtained in monocultures across all 

three experiments (Fig. 2.2; Table A2.1a, F1,39=5.52, P=0.02). Gy-0 achieved the 

highest yields in monoculture in two of the three experiments (Fig. 2.3). The genotype 

Ga-0 consistently produced more seed mass in mixtures (mean relative yield = 1.5), 

whilst Ler-1 consistently produced less seed mass in mixtures (mean relative yield=0.6; 

Fig. 2.4; Table A2.1a, F3,39=25.29, P<0.001). Despite differences in the yield of 

individual genotypes, the overall yield stability of mixtures (calculated by standard 

deviation) was approximately the same as that of the most stable genotype in 

monoculture (Fig. 2.5a). 

 

 

 
Fig. 2.2: Mean seed mass yields of Arabidopsis genotypes grown in mixture and in 

monoculture in the four-way mixture experiments during the autumn and winter 

seasons, and the summer season. N=1880. Error bars indicate 95% confidence interval 

of means. 
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Fig. 2.3: Mean seed production per plant of each genotype in monoculture or mixture 

for each four-way mixture experiment. N=1880. Error bars show 95% confidence 

interval of means.  
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Fig. 2.4: Relative yield (mixture yield/monoculture yield) for each Arabidopsis 

genotype under high and low nutrient treatment in a four-way mixture experiment 

conducted during (a) the autumn and winter. N=1260, (b) the summer. N=620. (c) 

relative yields for eight genotypes in the pair-wise interaction experiment. Competitive 

groups of genotypes increase from left to right on the graph. N=639. Error bars show 

95% confidence interval of means. 

 

The highly significant interaction between growing season and genotype reflects 

differential responses of the four genotypes to different glasshouse environmental 

conditions across the three seasons, in particular the summer experiment in which the 

plants were subjected to additional heat stress (Fig. 2.3; Table A2.1a, F6,39=56.17, 

P<0.001). To examine the effect of growing season, data from the summer experiment 

was separated from the autumn and winter experiments.  
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Fig. 2.5: (a) Standard deviation of the mean seed mass produced per tray (block) in a 

four-way mixture experiment. (b) Mean plant yield in genotypic monoculture and the 

four-way mixture averaged over entire experiment. N=1880. Error bars show 95% 

confidence interval of means.  

 

Genotype had the largest effect on seed production in the autumn and winter 

experiments (Fig. 2.3; Table A2.1b, F3,13=67.7, P<0.001) while the effect of growing 

season (autumn/winter) was comparatively small (F1,13=2.12, P=0.02). The significant 

interaction between cultivation type (mixture/monoculture) and genotype in the autumn 

and winter experiments (Fig. 2.3; Table A2.1b, F3,13=16.23, P<0.001) reflects 

differential responses of the four Arabidopsis genotypes to the two cultivation types in 

which they were grown. As expected, plants produced more seed under high nutrient 

conditions (Fig. 2.6; Table A2.1b, F1,13=12.53, P<0.001). 
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Fig. 2.6: Mean seed production per plant of each genotype under high or low nutrient 

treatment for each experiment. N=1880. Error bars show 95% confidence interval of 

means. 

 

The additional heat stress substantially reduced growth of Col-0 and Ler-1 in the 

summer experiment. In the other two seasons, Ler-1 and Col-0 were 82% and 60% 

taller respectively (Fig. 2.7). Genotype had the largest effect on seed production in 

summer (Fig. 2.3; Table A2.1c, F3,15=156.92, P<0.001). Despite the additional heat 

stress in summer, genotype performance was qualitatively similar across the entire 

experiment; in particular Ga-0 consistently overyielded in mixtures (Fig. 2.4, relative 

yield>1). However, there were substantial quantitative differences between the summer 

experiment and the other two experiments. In the summer, plants produced much less 

seed (Fig. 2.2, 72% overall reduction in seed mass). There was a larger effect of 

cultivation method on seed production in summer (Table A2.1c; F4,15=39.17, P<0.001), 

largely because Ga-0 individuals receiving the low nutrient treatment produced 

significantly less seed in monoculture than they did in mixtures (Fig. 2.4; P<0.01 for 

difference from 1, LSD).  
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Fig. 2.7: Mean plant height for each genotype grown in each experiment. N=1880. Error 

bars show 95% confidence interval of means. 

 

The number of days taken to flower differed between genotypes (Fig. 2.8; Table A2.2; 

F3,47=876.13, P<0.001) and between seasons (F2,47=284.45, P<0.001) with some 

interaction between the two factors (F6,47=45.47, P<0.001). There was an overall 

reduction in days taken to flower in the summer season (Fig. 2.8). There was a small but 

significant interaction between genotype and cultivation method (Table A2.2, 

F3,47=10.30 P<0.001), attributable to slightly delayed flowering of Ga-0 in mixtures 

(Fig. 2.8, P<0.01, LSD). Gy-0 showed a delay in flowering when under low nutrient 

conditions in the summer which led to an unexpected increase in seed mass (Fig. 2.6, 

Fig. 2.8). 
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Fig. 2.8: Mean days taken to flower for four Arabidopsis genotypes grown in 

monoculture and mixture in a four-way mixture experiment. N=1880. Error bars 

indicate 95% confidence interval of means. 

 

2.3.2 Pair-wise interaction experiment  

 

Competition was studied in the absence and presence of below-ground competition to 

test whether above-ground traits or below-ground traits had the greatest effect on 

competitive ability. Genotype had the greatest effect on seed production (Table A2.3, 

F7,24=137.76, P<0.001). There was a small overall effect of competition type (either 

above ground competition only or both above and below ground competition) on seed 

production, largely due to an interaction between competition type and genotype (Table 

A2.3, F14,24=7.91, P<0.001). Mixtures achieved slightly greater yields than 

monocultures (Fig. 2.9; Table A2.3, F1,24=9.87, P<0.001). Mixture performance of 

genotypes increased with competitive group (Fig. 2.4c).The factor affecting seed 

production most strongly was the phenotype of the focal plant, as large rosette size (x) 

was consistently associated with increased seed production (y=301.41x + 30.72, R2 = 

0.55). The competitive group of both the focal plant (Table A2.4, F3,13=143.6, P<0.001) 

and competing plant (Table A2.4, F3,13=6.16, P<0.001) significantly affected seed 
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production. More competitive groups showed a larger reduction in seed production in 

the presence of competition (Fig. 2.10; Table A2.5, F3,7=16.1, P=0.001) indicating that 

these highly competitive genotypes have the greatest yield potential and the ability to 

utilize limited resources allows them to overyield in mixture, but they may not perform 

so well in monoculture. Yield of the focal plant decreased when the competitive ability 

of the neighbour increased but only when competition was unrestricted (Fig. 2.11; Table 

A2.4, F3,13=3.77, P=0.01).  

 

 

 
 

Fig. 2.9: Mean seed production in mixtures and monocultures in the pair-wise 

interaction experiments. N=639. Error bars indicate 95% confidence interval of means. 
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Fig. 2.10: Mean seed production of focal Arabidopsis plants from four competitive 

groups (1= least competitive, 4= most competitive) under three competition treatments 

(above ground competition only, above and below ground competition, single plant) in 

a pair-wise interaction experiment. N=639. Error bars indicate 95% confidence interval 

of means. 

 

 
Fig. 2.11: Mean seed production of focal Arabidopsis plants grown with plants of four 

competitive groups (1= least competitive, 4= most competitive) in a pair-wise 

interaction experiment, (a) when competition was restricted to above ground only, (b) 

when competition occurred both above and below ground. For competitive groups see 

Table 2.1. N=639. Error bars indicate 95% confidence interval of means. 
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2.3.3 Root growth assays  

 

Seedling root growth assays showed no significant effect of genotype on initial root 

growth rates (Fig. 2.12) although the conditions in which root growth was measured 

were inevitably not the same as those used in the glasshouse, where the plants were 

grown in soil.  

 

 
Fig. 2.12: Mean seedling root length after ten days growth on ½ MS plates. N=128. 

Error bars indicate 95% confidence interval of the means. 
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2.4 Discussion 

 

We investigated the suitability of Arabidopsis thaliana as an ecological model for 

studying intra-specific competition between plants at different levels of genetic and 

phenotypic diversity. In this study, Arabidopsis genotypic diversity enhanced ecological 

resistance of the population to nutrient stress and the combination of nutrient and heat 

stress shown by an increase in yield and yield stability compared to the average 

monoculture. Mixtures produced yields that were as stable and almost as high as the 

best performing monoculture (Gy-0) over the entire experiment, supporting the 

hypothesis that biodiversity increases ecological stability (Yachi and Loreau 1999; 

Hooper et al. 2005; Tilman et al. 2006). Yield stability was achieved through 

compensation in which the fittest, most plastic genotype with high yield potential (e.g. 

Ga-0) overyielded in genetic mixtures, compensating for the lower yield of less fit 

genotypes (e.g. Ler-1). This effect was greatest in the summer experiment when plants 

were under the highest levels of abiotic stress. Compensation was seen throughout the 

study despite genotypic variation in responses to environmental conditions. There was 

no transgressive overyielding, which would have been an indication of complementary 

resource usage, and plants always performed better in the absence of others indicating 

that facilitation did not occur (Callaway 2007; Brooker 2008). As complementation was 

not detectable in this experiment, we conclude that compensation was responsible for 

the increased ecological resistance of Arabidopsis mixtures to nutrient stress and also 

the combination of nutrient and heat stress.  

 

The role of root competition in plant genetic mixtures is intriguing and appears to have 

been important in this experiment. Although competition for space above-ground is 

obvious, the results of the pair-wise interaction experiments indicate that, in fact, 

competition between Arabidopsis plants depends more on below-ground interactions. 

The most competitive genotypes decreased the yield of focal plants only when below-

ground competition was permitted indicating that below-ground competition may be 

more important than above-ground competition in Arabidopsis when securing resources 

for seed production. The growth habit of the Arabidopsis rosette prevented the 

partitioning of the aerial space in a similar way to that done for the soil space, a 

common method for separating above and below-ground competition (Semere and 

Froud-Williams 2001; Cahill, 2002). Restricting competition with partitions can also 
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create artificial effects including alteration of the root system architecture (McPhee and 

Aarssen 2001). No significant interaction was identified between competitive ability 

and seedling root growth indicating that some property of adult plant roots allows 

certain genotypes to outcompete others for below ground resources. Below-ground 

competition for nutrients, water and space often affects plant growth more than above-

ground competition yet it remains overlooked in many studies of competition between 

plants (Casper and Jackson 1997). This study implies that it is crucial to understand 

below-ground interactions between adult plants in order to predict accurately the 

outcome of competition between cultivars and design sustainable cropping systems. 

 

Nevertheless, the competitive ability of genotypes was predictable from above-ground 

phenotype. The most competitive genotypes had larger rosettes, took longer to flower, 

were more plastic in their flowering time, and produced more seed, confirming 

predictions from the four-way mixture experiment. These results suggest that 

competitive ability can be predicted in crops prior to competition experiments. Such 

data can be used to estimate the mixing ability of genotypes and increase the efficiency 

of mixture selection (Knott and Mundt 1990). Certain genotypes may contribute more 

yield in mixtures than in monoculture; for example, in the four-way mixture 

experiment, Gy-0 monocultures produced more seed than Ga-0 monocultures yet Ga-0 

was the highest yielding genotype in mixtures. This implies that high levels of intra-

genotypic competition decreased the yield of individual Ga-0 plants in monoculture, 

indicating that while Ga-0 is a strong competitor with other genotypes, it is not well-

adapted to intra-genotypic competition. This effect was amplified under low nutrient 

conditions where Ga-0 showed a significant reduction in yield when grown in 

monoculture compared to the mixture. The phenotypic plasticity of Ga-0 (e.g. a delay in 

flowering time in mixtures) allowed the genotype to respond to different growing 

conditions in a way that the more static Gy-0 did not. Under less predictable 

environmental conditions (seen in the summer experiment) phenotypic plasticity and 

high yield potential enables genotypes such as Ga-0 to compensate for less fit 

genotypes, thereby increasing yield stability through enhanced resistance.   

 

The pair-wise interaction experiments suggested little advantage of being in the lowest 

competitive groups (group 1 and 2), but their reduced time taken to flower may be 

advantageous in very unpredictable environments in which setting seed quickly 
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provides escape from potentially fatal environmental conditions. We speculate that if an 

additional drought stress was included in the summer experiment then Ga-0 and Gy-0 

individuals would have died before setting seed. These experiments showed the seed 

production of group 4 genotypes to be most restricted by the presence of competition, a 

trait that increases the potential for compensation in mixtures via competitive release. 

This finding highlights the importance of mixture selection because successful mixtures 

must contain components that are not only good performers but also good neighbours 

(Mundt et al. 1995). 

 

To date, the majority of studies of genetic mixtures in agriculture have been conducted 

under field conditions and have focussed on the ability of mixtures to control disease 

(Finckh et al. 2000; Zhu et al. 2000; Mundt 2002). Varietal mixture studies often report 

general trends in yield and disease severity for the population (Mundt 2002; Philips et 

al. 2005; Newton and Guy 2009) but few studies have focussed on the plant-plant 

interactions taking place within mixtures (Allard and Adams 1969; Finckh and Mundt 

1992). Empirical studies that attempt to separate the effects of abiotic and biotic stress 

on mixtures are impractical because of the unique environmental conditions of the field 

(Finckh et al. 2000). Arabidopsis provides a model system in which individual stresses 

can be applied separately and in combination, and in which genotype by environment 

interactions can be closely studied under environmentally controlled conditions in an 

efficient and repeatable way. In this study, Arabidopsis provided insight into the 

mechanisms of plant competition within genetic mixtures and demonstrated its potential 

in ecological research.  

 

Agricultural weed ecology may benefit from the use of Arabidopsis as a model. Studies 

investigating competitive ability of varieties above and below ground will become 

increasingly important as the use of herbicides becomes restricted by legislation or by 

insensitivity of target weeds. At present, there is no intentional selection for increased 

competitive ability, because competition from weeds is minimised by the use of 

herbicides. Increased competitive ability in crops may be associated with lower yield 

(Lemerle et al. 2006) but greater weed suppression (Jordan 1993; Song 2010). Different 

varieties and mixtures may be selected depending on the cropping system 

(conventional, low-input or organic) and there may be a trade-off between reducing 

competition between crop plants and increasing competition against weeds. 



	
  

45	
  
	
  

 

The Arabidopsis model system has the potential to be used to study pest and pathogen 

dynamics in crops. The use of genetic diversity to control pests and pathogens will 

become increasingly important as the chemicals used to control them become more 

heavily regulated. Cropping systems will need to be less reliant on chemical input, less 

expensive to manage and show greater adaptability to the changing environment if 

future food security is to be achieved (FAO, WFP, IFAD 2012; Hillocks 2012). 

Genetically diverse crops, able to adapt to a wider range of environments, will 

contribute to stable, high productivity by buffering against diverse and sometimes 

unpredictable stresses.  
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Chapter 3: 

Yield of plant genotype mixtures under disease pressure 
 

3.1  Introduction  

 

The relationship between plant diversity, ecological stability and ecosystem 

productivity is of great importance to natural systems. Plant pathogens alter such 

relationships by affecting plant fitness, reducing the growth and competitive ability of 

diseased plants which can impact heavily upon plant population and community 

structure (Burdon et al. 2006; Bradley et al. 2008; Maron et al. 2011; Latz et al. 2012). 

Pathogens can promote host plant biodiversity by preventing competitive exclusion if 

they have a greater negative impact upon the dominant species in a community, such 

that a trade-off exists between plant competitive ability and susceptibility to pathogens 

(Alexander and Holt 1998; Bradley et al. 2008; Allan et al. 2010). However, if 

pathogens have a greater detrimental impact upon uncommon and less competitive 

species then biodiversity will be reduced (Peters and Shaw 1996). Studies investigating 

the effect of biodiversity on the system's ability to buffer against disease have been 

largely observational; for example, increased species richness has been shown to reduce 

disease caused by foliar and soil borne pathogens and increase productivity in grassland 

communities (Allan et al. 2010; Maron et al. 2011). Despite the pertinence of 

understanding the impact of pathogens on plant diversity at all complexity levels, 

studies investigating the ability of pathogens to promote plant genotypic diversity in 

natural systems are rare, and experimental tests of the mechanisms of pathogen-induced 

changes to diversity are even rarer. Theory predicts that increased stability can be 

achieved through resistance to change or recovery after perturbation (Pimm 1984). 

Knowledge of plant-plant interactions contributing to such mechanisms can facilitate 

appropriate exploitation of plant genotypic diversity, stabilising productivity in natural 

and agricultural systems. Manipulation experiments, in which diversity and 

environmental stresses are regulated, can improve understanding of the mechanisms 

contributing to increased productivity and ecological stability in diseased populations. 

 

Host fitness and competitive ability can be reduced by susceptibility to the pest or 

pathogen, or through costs of mounting a defence response (Brown 2002; Damgaard 

and Jensen 2002; Tian et al. 2003; Bedhomme et al. 2005). When costs of resistance is 
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associated with reduced plant growth or reproduction these may be traded-off against 

competitive ability since the latter is expected to be associated with an increased 

allocation to growth (Chase et al. 2002; Viola  et al. 2010). Empirical support for a 

trade-off between competitive ability and defence is inconclusive. In Arabidopsis, 

greater resource allocation to reproductive growth can increase tolerance to the direct 

negative effect of the viral pathogen, Cucumber mosaic virus, on plant fitness (Pagan et 

al. 2008, 2009). Investment in vegetative growth can increase tolerance to the indirect 

costs of infection, reducing competitive ability through reduced plant fitness (Pagan et 

al. 2009). However, defence costs are reported to decrease or even disappear in the 

presence of plant competition as was observed in Arabis perennans infected by Plutella 

xylostella, which indicates that some defence mechanisms may be advantageous in 

competitive environments (Siemens et al. 2003). These contradictory findings raise 

questions regarding the overall importance of defence costs in plant ecology and 

evolution. Studies testing the effect of various biotic stresses on plants grown under 

different competition scenarios could provide insight into the relative costs and benefits 

of plant defence. 

 

Plant pathogens are a major threat to food security reducing global crop yields by 20-

40% (FAO 2013), such that agricultural systems must combat disease pressures. 

Modern arable farmers routinely grow a single high yielding variety throughout an 

entire field to maximise yield potential (Trewavas 2001). Such monocultures exert a 

strong selection pressure on pathogen races to overcome resistance, increasing reliance 

on fungicides that are becoming heavily restricted (Bai and Shaner 1994; Brown and 

Hovmoller 2002; Hillocks 2012). Varietal mixtures offer a potential solution to these 

problems through the use of several partially- and fully-resistant genotypes sown 

together at the same time to control disease (Wolfe 1985; Lannou and Mundt 1996; Zhu 

et al. 2000). Several studies have investigated the competitive interactions between 

plants in mixtures contributing to yield stability under disease pressure e.g. Burdon et 

al. 1984; Finckh and Mundt 1992; Cowger and Mundt 2002. However, results are often 

highly variable due to large genotype by environment interactions and it is therefore 

difficult to draw firm conclusions from these experiments. A model system under 

controlled environmental conditions would provide the level of experimental control 

required to study the ecological mechanisms behind resistance of varietal mixtures to 

pathogens. Arabidopsis thaliana (Brassicaceae) has traits that make it particularly 
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suitable to such studies, including small size and short generation time, and therefore 

provides an excellent model system to study competition under glasshouse conditions in 

which environmental conditions are readily controlled. 

 

This study examined the effect of plant genotypic diversity in stabilising plant 

productivity in populations under pathogen attack. We tested the hypothesis that 

compensation by better-adapted plants increases yield stability in phenotypically diverse 

mixtures, and that this effect is greatest when susceptible and resistant genotypes are 

combined in the presence of the pathogen. We predicted that biologically dissimilar 

pathogens have different effects on the relationship between plant diversity, stability 

and productivity because of differences in disease transmission, progression and impact 

on plant fitness.  

 

3.2.  Materials and methods 

 

3.2.1  The model system 

 

Arabidopsis thaliana is an excellent model for studying the effect of competition on 

productivity because seed mass correlates positively with vegetative biomass and 

overall fitness (Aarssen and Clauss 1992; Clauss and Aarssen 1994). Its small size, 

rapid life cycle and limited requirement for space are convenient for competition studies 

that require high levels of replication. To study the ability of Arabidopsis genotype 

mixtures to buffer against disease and stabilize yield in different environments two 

pathogens were selected that differ greatly in their taxonomy, transmission method and 

impact on plant fitness. 

 

Hyaloperonospora arabidopsidis (Hpa) is an obligate oomycete pathogen causing 

downy mildew in natural populations of Arabidopsis (Holub et al. 1994; Koch and 

Slusarenko 1990). Arabidopsis genotypes show high levels of variation in their 

interactions with different Hpa isolates both in terms of resistance (Nemri et al. 2010) 

and tolerance (Salvaudon et al. 2008). There is also good indication that plant 

competitive ability can be altered by the presence of the pathogen (Damgaard and 

Jensen 2002). This pathosystem therefore offers a tool to investigate mechanisms 

leading to increased yield and yield stability in plant genotypic mixtures.  
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The Polerovirus Turnip yellows virus (TuYV) is a major viral disease of oilseed rape 

(Brassica napus) with potential to decrease yield by 26% in the UK (Jay et al. 1999). 

Typical symptoms include reddening and purpling of leaf margins and inter-veinal 

yellowing and reddening (Stevens et al. 2008). TuYV is insect-borne with the main 

vector being the peach-potato aphid (Myzus persicae). There are currently no known 

Arabidopsis genotypes that are fully resistant to TuYV, though variation in tolerance to 

the virus is known (Stevens et al. 2005). This virus was used as it represents a group of 

agriculturally important pathogens that have natural representatives infecting 

Arabidopsis. Viruses are biologically very different from oomycete pathogens, using 

host resources in different ways. Experiments with TuYV can indicate how universal 

the consequences of pathogen infection for host plant fitness and competitive ability are.  

 

3.2.2  Experimental design  

 

Four Arabidopsis genotypes were selected for the Hpa experiment and two for the 

TuYV experiment (see below). Plants were sown in pots (70mm x 70mm x 70mm) with 

four plants per pot 30mm apart, generating intense competition (Creissen et al. 2013). 

Under optimal growing conditions, rosette diameter at five weeks varied between 

genotypes by 50 to 110mm. Phenotypic measurements were taken for one focal plant in 

each pot, with other plants acting as competing neighbours only. Plants were cultivated 

as monocultures and as mixtures of two or four genotypes to assess the effect of 

competition between different genotypes. This design also enabled examination of the 

effect of diversity on competitive ability of focal plants, measured by relative yield (RY 

= yield in mixture/yield in monoculture, de Wit 1960).  

 

3.2.3 Plant growth conditions 

 

Seeds were sown into media consisting of eight parts peat-based compost (Levington F2 

soil, Nitrogen 150: Phosphorous 200: Potassium 200 mg L-1, pH 5.3 – 5.7) to one part 

grit and incubated at 4°C for four days in a controlled environment room to break 

dormancy. Once dormancy had been broken, seedlings were moved to a glasshouse for 

germination at 18°C during the day/12°C at night on an 8h dark/16h light cycle 

supplemented with high pressure sodium lighting (240 µmol m-2 s-1). After ten days in 
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the glasshouse seedlings were transplanted into the experimental design. When plants 

began to flower (phase 6, Boyes et al. 2001) glasshouse temperatures were increased to 

23°C during the day/16°C at night to hasten seed production. 

 

3.2.4  Experiments with Hyaloperonospora arabidopsidis  

 

Four genotypes of Arabidopsis (Van-0, Ga-0, NFA-10, NFA-8) were selected from an 

initial screen of 15 genotypes, based on phenotypic variation for traits related to plant 

fitness (including rosette size and seed production) and compatibility with Hpa in the 

absence of competition (Table 3.1). Variation for flowering time was restricted to a 

window of one week so the peak requirement for resources would occur at a similar 

time. Hpa isolate Emoy2 was maintained on a susceptible host genotype, NFA-8, and 

inoculated by spraying a suspension of 5 x 104 conidiospores mL−1 in distilled water 

onto 18 day old plants as previously described (Reignault et al. 1996). After 

inoculation, plants were covered with a transparent lid to maintain high humidity (90-

100%). Control plants were sprayed with water and subjected to the same growing 

conditions as inoculated plants. Control and infected plants were grown in adjacent 

rooms of the same glasshouse to prevent Hpa infection of control plants while making 

growth conditions as similar as possible. Marginal differences in temperature and 

humidity were observed between rooms in the same experimental repeat (data not 

shown) therefore rooms were swapped between replicates as part of the split-plot 

crossover design. This experimental design was chosen over the alternative of 

conducting the experiment in the same room and spraying control plants with fungicide 

because of the range of effects such chemicals can have on plant physiology. Each 

experiment included 22 treatments, namely the four genotypic monocultures, all six 

possible two-genotype combinations (2-way mixtures) and a mixture of all four 

genotypes (4-way mixture), all in the presence and absence of the pathogen. There were 

20 replicates of each of the 11 monocultures and mixtures within each pathogen 

treatment in each experiment, and the 220 pots were completely randomised. Two 

independent experiments were carried out beginning in October 2011 and March 2012. 

During the second experiment, internal glasshouse temperatures were more variable 

(standard deviation of mean temperature in 2011 was 5.4°C compared to 6.2°C in 2012) 

and the maximum temperature was higher (2011: 32°C, 2012: 38°C) as was humidity 
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(2011: 56%, 2012: 63%). This was the result of a few days of very high external 

temperatures during March and April 2012. 

 

Measurements were taken for each focal plant to assess plant fitness. These included 

days to first flower (phase 6, Boyes et al. 2001), rosette diameter after five weeks 

growth and total seed mass. Disease severity was assessed twice. At six days post 

inoculation (dpi) the number of leaves with conidiospores present was scored and the 

proportion of leaves infected recorded. At ten dpi plants were scored using the 

following 0-4 scale to describe disease development:  

 

0 = plants showing no signs of sporulation. 

1 = a few sporulating conidiospores detectable on leaves using a hand lens (4x 

magnification). 

2 = plants with approximately 25% leaf area covered in conidiospores. 

3 = plants with 50% leaf area covered by conidiospores. 

4 = plants with 75-100% leaf area covered in conidiospores.   

 

Plants were bagged with individual clear, micro-perforated bags when the first siliques 

began to ripen to ensure all seeds were collected. RY were calculated for each genotype 

to assess mixture performance and competitive ability in the presence and absence of 

the pathogen. 
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Genotype Disease 

score 

(0-4) 

Days taken to 

flower 

Rosette 

diameter at 5 

weeks (mm) 

Seed mass (g) 

Hpa present absent present absent present absent present 

Van-0 0±0.2 49±9 52±9 72±19 68±14 0.80±0.29 0.78±0.2 

Ga-0 0.2±0.5 53±6 57±9 69±17 66±13 0.87±0.31 0.88±0.2 

NFA-10 1.8±0.6 57±9 56±7 71±20 61±11 0.93±0.32 1.10±0.3 

NFA-8 2.7±0.7 55±9 55±7 88±22 63±7 0.90±0.22 0.78±0.2 

 

Table 3.1: Mean trait values (± SD) for four Arabidopsis genotypes grown in the 

absence of competition and the presence/absence of Hpa. N=40 plants/genotype. 
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3.2.5 Experiments with Turnip yellows virus 

 

Two Arabidopsis genotypes (Col-0, Ler-1) were selected from a preliminary screen of 

12 genotypes using the same criteria for phenotypic variation as in the experiments with 

Hpa (data not shown). As there are no known Arabidopsis genotypes that are immune to 

TuYV (Stevens et al. 2005), so genotypes were selected for variation in tolerance to the 

pathogen. Tolerance occurs when the host plant compensates for damage caused by the 

pathogen (Brown and Handley 2005), and was characterized in this study by smaller 

reductions in overall plant fitness (seed production, rosette size) in the presence of high 

levels of viral antigen within infected leaf tissue, assessed by enzyme-linked 

immunosorbent assay (ELISA) (Clark and Adams 1977) four weeks after inoculation. 

Col-0 suffered greater yield loss than Ler-1 despite similar levels of viral titre within 

leaf tissue four weeks after infection with TuYV in a preliminary experiment (data not 

shown). Ler-1 is therefore judged to be more tolerant to the virus than Col-0. No 

significant effect of non-viruliferous aphids on plant fitness was found (data not shown).  

 

After 14 days in the glasshouse, plants were inoculated with TuYV isolate BrYV-GB by 

placing three viruliferous M. persicae (RRes genotype 0; Bos et al. 2010) aphids onto 

each individual plant using a paint brush. All trays of inoculated plants were covered 

with clear plastic lids to prevent the spread of aphids onto uninoculated plants. The 

experiment, beginning in October 2012, included four treatments, namely the two 

genotypic monocultures, and a mixture of both genotypes, both in the presence and 

absence of the pathogen. There were 25 replicates of each of the monocultures and the 

50 of the mixture within each pathogen treatment in the experiment, and the 200 pots 

were completely randomised. The planting design was the same as in the Hpa 

experiment except for the absence of a 4-way mixture. All pots received a compost 

drench treatment with the insecticide Intercept™ 70 WG (Scotts UK, active ingredient 

imidacloprid, 0.2g/L water) one week after inoculation to kill aphids and thus prevent 

further virus transmission. After seven days, once all aphids were dead, the plastic lids 

were removed. Virus-inoculated and control plants were grown in the same glasshouse 

compartment at 20°C during the day/18°C at night on a 16h light / 8h dark cycle, as 

above. Forty plants of each genotype per treatment (aphids/no aphids) grown amongst 

the focal plants in separate pots were tested by ELISA to confirm the presence of the 
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TuYV in the inoculated plants and the absence of the virus in the controls without 

damaging focal plants. Days to first flower, rosette diameter and total seed mass were 

measured as in the Hpa experiment. 

 

3.2.6. Statistical analysis  

 

Linear mixed modelling was used to evaluate differences in seed mass, rosette size, 

flowering time and disease scores between monocultures and mixtures of Arabidopsis 

genotypes, for each disease. The model included the main effect of each factor and all 

interactions between them. Fixed factors included genotype, presence/absence of the 

pathogen and cultivation (monoculture, 2-way or 4-way mixture). A separate linear 

mixed model analysed the effect of genotype and cultivation on each of the following 

variables: seed mass, rosette size, flowering time and disease score. All non-significant 

(P>0.05, F-test) interactions between the main terms were removed from the analysis. 

The random effect for each model was the pot in which the plants were grown. All 

statistical analysis was conducted using Genstat v.14 (VSN International 2011). 

 

3.3  Results 

 

3.3.1 Hyaloperonospora arabidopsidis  

 

The relative yields of genotypes in 2-way mixtures were altered by the presence of the 

pathogen, as shown by a significant interaction between genotype, cultivation (2-way 

mixture or monoculture) and the presence or absence of Hpa (Fig. 3.1; Table A3.1, 

F4,23=3.54, P=0.007). The outcome of specific competitive interactions in the 2-way 

mixtures was heavily dependent on the pathogen. In 2-way mixtures, Hpa reduced seed 

production in the most susceptible genotypes, NFA-8 and NFA-10 (Fig. 3.2a), which 

was associated with a reduction in rosette diameter (Fig. 3.2b) and a significant 

reduction in competitive ability, assessed by relative yield, for the most susceptible 

genotype NFA-8 (Fig. 3.1). By reducing fitness of susceptible genotypes, Hpa indirectly 

increased the competitive ability in mixtures of the more resistant genotypes, Ga-0 and 

Van-0, which had higher relative yield in 2-way mixtures when they were attacked by 

the pathogen (Fig. 3.1).  
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Fig. 3.1: Relative seed mass yields (yield in 2-way mixture/yield in monoculture) of 

four Arabidopsis genotypes grown in the presence and absence of Hpa in both 

experiments. N=1600. Error bars show 95% confidence interval of means. 

 
Fig. 3.2: Phenotypic fitness measurements taken for four Arabidopsis genotypes grown 

in monoculture and 2-way genotype mixtures and in the presence and absence of Hpa. 

a) Mean seed mass produced per plant. 95% confidence interval of mean = 0.015 

(mono), 0.007 (mix). b) Mean rosette diameter. 95% confidence interval of mean = 1.1 

(mono), 1.0 (mix).  N=1600.  
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Certain combinations of two genotypes produced significantly more seed than 

monocultures of either of the component genotypes in both the presence and absence of 

Hpa (Fig. 3.3; Table A3.1, F4,23=3.54, P=0.007). Genotypes that performed better in 2-

way mixtures than monoculture were identified by high relative yield (RY>1, Fig. 3.1), 

and classed as highly competitive. The partially resistant Ga-0 and the highly 

susceptible NFA-8 produced the least seed in monoculture and when combined together 

in 2-way mixture (Fig. 3.3). Treatments containing only these highly competitive 

genotypes were the lowest yielding overall, whereas pots containing less competitive 

genotypes, the moderately susceptible NFA-10 and the fully resistant Van-0, were the 

highest yielding overall, both in monoculture and in the respective 2-way mixture (Fig. 

3.3).  

 

 
 

Fig. 3.3: Mean seed production for an individual plant grown in competition with three 

other plants. The competing plants may be of the same genotype (single genotype name 

on chart). Two genotype names indicate the presence of two genotypes. ‘4-way mix’ 

have all four genotypes competing in the same pot. Genotype combination treatments 

are ordered by increasing mean seed production per plant summed across both pathogen 

treatments and displayed from left to right on the x-axis. N=1600. Error bars show 95% 

confidence interval of means. 
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Rosette size, flowering time, disease score, seed production and consequently 

competitive ability varied between experiments (Fig. 3.4, Fig. 3.5). The first experiment 

was conducted in a glasshouse over winter and the second experiment over spring when 

the external light levels were higher for longer. This change in light intensity and day 

length had an impact on disease progression and plant development (Fig. 3.4, Fig. 3.5a, 

b). Disease scores six days after inoculation (dai) were significantly higher for NFA-8 

and NFA-10 in the second experiment than in the first, although they remained the most 

susceptible genotypes (Fig. 3.4a; Table A3.2a, F3,8=35.43, P<0.001). By contrast, no 

overall significant difference between experimental repeats was seen for disease scores 

at ten dai indicating that by this stage the pathogen had achieved maximum disease 

levels (Fig. 3.4b; Table A3.2b, F1,8=0.85, P=0.4). However Ga-0 was more resistant in 

the second experiment at both six and ten dai (Fig. 3.4). In the second experiment 

rosette diameter was significantly greater after five weeks growth (Fig. 3.5a; Table 

A3.3, F1,16=2145.41, P<0.001), and the number of days to flower significantly fewer 

(Fig. 3.5b; Table A3.4, F1,30=3265.15, P<0.001), which ultimately led to increased seed 

production (Fig. 3.5c; Table A3.1, F1,23=209.68, P<0.001). Despite varying genotypic 

responses to the environmental conditions experienced in each replicate, the overall 

effects on plant competitive ability (relative yield) and the outcomes of competition 

under each treatment were consistent between replicates (Fig. 3.5d; Table A3.1, 

F4,23=3.54, P=0.007). 

 
Fig. 3.4:  Mean disease scores for individual plants infected with Hpa in experimental 

repeat 1 and 2. a) Proportion of leaves showing signs of sporulation six days post-

inoculation. b) Disease score (0=no disease, 4=over 75% leaf area covered in spores) 

ten days post infection. N=1600. Error bars show 95% confidence interval of means. 
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Fig. 3.5: Phenotypic fitness measurements taken for four Arabidopsis genotypes grown 

in experimental repeat 1 and 2, in the presence and absence of Hpa. a) Mean rosette 

diameter after five weeks growth. b) Mean number of days taken to flower. c) Mean 

seed mass produced per plant. d)	
  Relative yield (yield in mixture/yield in monoculture), 

an indicator of competitive ability. Error bars show 95% confidence interval of means.  

 

 

On average across treatments and genotypes, 2-way mixtures achieved greater yields 

than monocultures and 4-way mixtures (Fig. 3.6; Table A3.5, F2,31=6.76, P=0.001). 4-

way mixtures produced the lowest yields in the absence of the pathogen, and yields 

similar to the sum of the monoculture yields in the presence of Hpa. A likely cause is 

the high levels of inter-plant competition resulting from the presence of NFA-8 and Ga-

0. However yields were variable in 2-way mixtures due to high levels of variation in 

competition intensity in pots containing different competing genotypes (Fig. 3.7). Seed 

production decreased as genotypic diversity increased for the less competitive 

genotypes Van-0 (fully resistant) in the absence of Hpa, and NFA-10 (moderately 

susceptible) in the presence of Hpa (Fig. 3.8; Table A3.5, F8,31=2.44, P=0.01). Ga-0 was 
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the only genotype to significantly overyield in the 4-way mixture compared to 

monoculture, further illustrating its stronger competitive ability (Fig. 3.8, P<0.01 for 

difference from 1, LSD). Genotypic diversity and composition both contributed towards 

competitive intensity between plants, ultimately affecting yield and yield stability in this 

pathosystem. 

 

 

 
 

Fig. 3.6:  Mean seed mass yields for Arabidopsis plants grown as 1, 2 or 4 genotypes 

per pot in the presence or absence of Hpa. N=1600. Error bars show 95% confidence 

interval of means.  
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Fig. 3.7: Standard deviation of the mean seed mass produced per plant for Arabidopsis 

genotypes grown in monoculture, 2-way mixture and 4-way mixture.  

 
Fig. 3.8: Mean seed mass produced per plant for each genotype in pots containing 1, 2 

or 4 genotypes in the presence and absence of Hpa. N=1600. Error bars show 95% 

confidence interval of means.  
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3.3.2 Turnip yellows virus  

 

Col-0 and Ler-1 were susceptible to TuYV, allowing viral titre to reach similar levels in 

both genotypes (Fig. 3.9) and observed visually by a purpling of the leaves (Fig. 3.10). 

Both genotypes showed a delay in flowering time in mixtures compared to 

monocultures in the presence of TuYV but the delay was greatest for Col-0 when grown 

in mixture (Fig. 3.11a; Table A3.6, F2,7=4.12, P=0.02). Ler-1 produced a larger rosette 

after five weeks growth when grown in monoculture compared to mixture, possibly due 

to higher levels of inter-plant competition in the mixture (Fig. 3.11b; Table A3.7, 

F1,4=3.96, P=0.05). The more competitive genotype, Col-0, overyielded in uninfected 

mixtures at the expense of Ler-1, which produced less seed (Fig. 3.11c; Table A3.8, 

F2,7=6.58, P=0.002). However when the virus was present both genotypes performed as 

well in mixture as they did in monoculture, due to a large reduction in the competitive 

ability of Col-0 (Fig. 3.12). Despite changes in competitive ability due to pathogen 

infection the average yield in mixtures and the average of the monocultures was stable 

whether the pathogen was present or absent, and there was no overall yield penalty as a 

result of growing mixtures (Fig. 3.13).

 
Fig. 3.9:  Enzyme-linked immunosorbent assay (ELISA) detection of TuYV for two 

Arabidopsis genotypes grown in the absence and presence of TuYV. Readings show 

absorbance at 405 nm five weeks post inoculation.  N=400. Error bars show 95% 

confidence interval of means.  
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Fig. 3.10: Photographs of TuYV infected Arabidopsis after ten weeks growth. a) 

Monoculture of four Col-0 plants. b) Monoculture of four Ler-1 plants. 

 

 
Fig. 3.11: Phenotypic fitness measurements taken for two Arabidopsis genotypes grown 

in the presence and absence of TuYV. a) Mean number of days taken to flower. b) Mean 

rosette diameter after five weeks growth. c) Mean seed mass produced. N=400. Error 

bars show 95% confidence interval of means. 
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Fig. 3.12: Relative seed mass yields (yield in mixture/yield in monoculture) of two 

Arabidopsis genotypes grown in the presence and absence of TuYV. N=400. Error bars 

show 95% confidence interval of means. 

 

 
Fig. 3.13: Mean yields of Arabidopsis genotypes grown in monoculture and mixture and 

in the presence and absence of TuYV. N=400. Error bars show 95% confidence interval 

of means. 
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3.4 Discussion  

 

This study investigated the suitability of Arabidopsis thaliana as a model for 

understanding the effects of disease on genotypically and phenotypically diverse plant 

populations. Arabidopsis genotypes were selected to vary in competitive ability and 

compatibility with two different types of plant pathogen, an oomycete and a virus. 

Genotypic diversity enhanced ecological resistance of the plant population to attack by 

Hyaloperonospora arabidopsidis as shown by an increase in yield in 2-way mixtures 

compared to the average of the component monocultures or 4-way mixtures. Ecological 

resistance refers to the ability of the system to resist change following perturbation 

(Pimm 1984) and is not the same as resistance of individual plants to stress or disease. 

The evidence produced from this investigation supports the diversity-productivity 

hypothesis which states that greater plant diversity can lead to an increase in plant 

productivity, a theory originally proposed by Darwin (1872).  

 

Susceptible genotypes suffered greatly in the presence of both pathogens due to an 

overall reduction in plant fitness and competitive ability which led to reduced yield of 

seed production in susceptible monocultures. In mixtures containing genotypic variation 

for disease susceptibility, a reduction in competitive ability of susceptible genotypes 

consequently increased competitive ability of more resistant or tolerant genotypes via 

competitive release. In certain mixtures, fitter genotypes compensated for less fit 

genotypes in both the absence and presence of the pathogen, leading to increased yield 

in 2-way mixtures. Competitive interactions are thought to play a significant role in 

driving the diversity-productivity relationship in natural systems (Schmid 1994; Tilman 

et al. 1996; Hector et al. 1999). Increases in productivity with greater diversity are 

thought to be the result of the increased likelihood of a productive species being present 

(sampling effect and compensation) and from a greater chance of efficient exploitation 

of all available niches (complementation) (Tilman 1996; Hector et al. 1999). Evidence 

for plant diversity enhancing yield and yield stability under disease pressure is 

supported by this study and by several studies of natural systems in which plant 

pathogens promoted biodiversity by preventing competitive exclusion (Bradley et al. 

2008; Maron et al. 2011).  
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Mixtures consisting of two genotypes were identified as containing the optimum level 

of genotypic diversity required to maintain high yields in both the presence and absence 

of Hpa. 4-way mixtures produced the lowest yields in the absence of Hpa, apparently 

because of the presence of two highly competitive genotypes (Ga-0 and NFA-8) that 

outcompeted neighbours for resources and overyielded in mixture, yet produced less 

seed than weaker competing genotypes. Mixture composition rather than genotypic 

diversity had a greater effect on productivity in this study. This finding contrasts with 

several agricultural studies that show a trend towards greater yields from increased 

number of varieties in the mixture, largely because of superior disease control (Newton 

et al. 1997; Newton et al. 2008a). The highest yielding 2-way mixtures consisted of 

genotypes with relatively low competitive abilities and greater investment in 

reproductive effort (Van-0 and NFA-10), providing evidence for a fundamental tenet of 

life history theory that reproduction is costly and results in trade-offs with other fitness 

components, regularly observed in crop plants (Lemerle et al. 2006; Song et al. 2010).  

 

Compensation occurring through competitive release buffered against pathogen-induced 

alterations to host competitive ability and resulted in yield stability of the mixed 

genotype population, supporting work conducted in both agricultural (Finckh et al. 

2000) and natural systems (Tilman 1996). Mixtures had a yield advantage when plants 

were inoculated with Hpa, but not when inoculated with TuYV, yet yield stability was 

still achieved in both experiments. In the absence of the TuYV, the high yielding Col-0 

genotype maintained high yields in monoculture despite being under higher competition 

levels than Ler-1 in monoculture. This result contrasts findings from the Hpa 

experiment in which the highly competitive genotypes produced significantly less seed 

in non-diseased monocultures. A possible explanation for this finding is that the most 

competitive genotype in the TuYV experiment was less competitive than the most 

competitive genotypes in the Hpa experiment and therefore was under less competition 

in monoculture.  

 

Within-plant compensation was observed in the TuYV experiments as Ler-1 was able to 

maintain seed production in mixture despite a reduction in rosette size through 

alteration of resource allocation. No signs of within-plant compensation were observed 

in the Hpa experiment possibly due to the pathogen isolate or plant genotypes used. 

This highlights the fact the different pathogens interact with hosts in different ways 
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(Jones and Dangl 2006) and that successful plant genotypic mixtures must confer 

resistance to multiple pathogens. Further, TuYV infection resulted in a delay in 

flowering time of both genotypes in mixtures indicating an alteration of plant 

development strategy in response to pathogen. The finding that plants can have a 

developmental response to stress is supported by work on plants subjected to many 

stresses including nutrient stress (Martinez-Zapater et al. 1994), shade (Halliday et al. 

1994) and pathogen infection (Korves and Bergelson 2003). Plants may delay or 

accelerate the transition into reproductive growth in response to disease (Korves and 

Bergelson 2003). Most life history evolution studies predict that organisms at risk of 

severe disease will evolve fast reproduction strategies to reduce damage from disease 

(Forbes 1993; Angew et al. 2000). Delaying the transition into reproductive growth 

allows for greater investment in vegetative growth prior to flowering, extending the 

plants lifespan and increasing seed production (Bazzaz 1987). Pathogens can also 

benefit from an extension of the host’s life cycle as increasing the contact time between 

the host and the vector enhances the pathogens dispersal ability (Brown and Tellier 

2011). No firm conclusions regarding the effect of Hpa infection on flowering time can 

be drawn due to inconsistencies between experimental replications. Although no direct 

effect of Hpa infection on flowering could be discerned, an indirect effect caused by 

pathogen-induced alterations to plant competitive ability may have resulted in delayed 

flowering in resistant genotypes. This study indicates that host plant responses to the 

pathogens can vary greatly depending on their interaction, which must be considered 

when assessing and predicting plant population responses to multiple pathogens. In this 

study genotypic mixtures ultimately lead to yield stability in infected and uninfected 

populations through a combination of altered plant resource allocation and 

compensation by fitter genotypes. 

 

Understanding the mechanisms of plant competition increases the predictability of the 

outcome of competition for different resources. Light competition favours taller plants 

with flatter canopies than are optimal in the absence of competition (Spehn et al. 2000; 

Craine and Dybzinski 2013), competition for low levels of nutrients favours plants with 

roots longer than is optimal in nutrient rich soil (Craine 2006; Craine and Dybzinski 

2013). Understanding the mechanisms of plant competition responsible for enhanced 

yield stability in variety mixtures could greatly improve the efficient deployment of 

mixtures in agriculture (Knott and Mundt 1990). Mixtures containing diversity for 
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important functional traits relating to competitive ability (Cahill et al. 2005; Creissen et 

al. 2013) and response to environmental stresses such as drought (van Ruijven and 

Berendse 2010), herbivory (Kotowska et al. 2010) and disease (Mundt 2002) are 

predicted to have greater ecological resistance and achieve greater yield and yield 

stability in variable environments through ecological processes such as compensation, 

complementation and facilitation. Indeed this study has provided insight into 

mechanisms by which diverse plant populations buffer against disease, identifying 

favourable traits for mixture components, such as disease resistance and high 

reproductive allocation, that contribute towards high, stable yields and ecological 

resistance of the plant population to pathogen attack. 

 

In agriculture, variety mixtures can provide similar productivity to high yielding 

monocultures but with a lower risk of excessive yield loss. However, studies 

investigating plant traits and mechanisms responsible for the enhanced function of 

mixtures are rare (Wolfe 1985; Mundt 2002; Newton et al. 2008b). Arabidopsis can be 

used as a model system to identify traits that affect competitive ability and mixture 

performance such as vegetative growth capacity, establishment capability, flowering 

time plasticity and alteration of resource allocation. Information regarding the 

competitive ability of varieties is important when attempting to minimize yield losses 

associated with competition between crop plants and competition from weeds (Jordan 

1993; Lemerle et al. 2006; Song et al. 2010). Determining the suitability of a variety for 

mixture usage prior to competition studies will increase the efficiency of varietal 

mixture selection. This may support future commercial cropping systems which will 

need to be less reliant on chemical inputs, less expensive to manage and show greater 

adaptability to the changing environment if future food security is to be achieved (FAO, 

WFP, IFAD 2012; Hillocks 2012).  
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Chapter 4: 
Increased yield stability of field-grown winter barley (Hordeum   vulgare L.) 

varietal mixtures compared to monocultures 

	
  

4.1  Introduction  

 

Advances in modern agriculture, including plant breeding techniques and the 

development of inorganic fertilizers and pesticides, have led to modern arable farmers 

routinely growing a single high-yielding variety throughout an entire field in order to 

maximise yield potential, a practice termed monoculture (Trewavas 2001). Ecosystem 

services normally provided by crop diversity, such as soil improvement and pest 

control, have been replaced by chemical inputs, which can be detrimental to the 

environment (Tilman et al. 2002). Despite attempts to minimise the problems associated 

with reduced crop diversity, variety monocultures remain susceptible to severe disease 

epidemics and the associated drastic reductions in yield (Newton et al. 2008b).  

 

An alternative to the variety monoculture system is the use of varietal mixtures in which 

several genotypes are sown together at the same time to buffer against environmental 

stresses, including disease, and improve yield stability (Wolfe 1985; Lannou and Mundt 

1996; Zhu et al. 2000). To date, varietal mixtures have primarily been deployed against 

crop diseases, controlling major pathogens such as powdery mildew of barley (Wolfe 

and Barrett 1980), Rhynchosporium scald of barley (Newton et al. 1997), wheat yellow 

rust (Sapoukhina et al. 2013), and rice blast (Zhu et al. 2000). Mixtures can reduce 

disease severity by reducing pathogen spread, either by increasing the distance between 

susceptible host plants, or by resistant plants forming a barrier to prevent pathogen 

dispersal (Chin and Wolfe 1984; Zhu et al. 2000).  

 

The theory underpinning the use of mixtures is largely based on the hypothesis that 

biodiversity increases ecological stability (Yachi and Loreau 1999). This approach 

relies on beneficial ecological processes to increase the system's potential to buffer 

against adverse environmental conditions, reduce fertiliser inputs and control disease 

(Finckh and Wolfe 1998). Variation between mixture components in response to 

common pathogens allows ecologically beneficial processes
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such as compensation, complementation and facilitation to occur (Wolfe 1985). 

Complementation between crop plants can increase productivity in mixtures through 

niche differentiation and resource partitioning (Loreau 2000; Mulder et al. 2001; 

Tilman 2004). Facilitation can occur within mixed populations if the fitness of 

neighbouring plants is increased through inter-plant interactions such as provision of 

shade and deterrence of pests (Callaway 1995). When weaker individuals are harmed by 

environmental stress, stronger plants can increase their yields through compensation via 

competitive release (Tilman 1996). Compensation is thought to be the major ecological 

process contributing to yield stability in diverse mixtures (Eberhart and Russell 1966; 

Wolfe 1985; Smithson and Lenne 1996; Mundt 2002; Ostergaard et al. 2005; Cowger 

and Weisz 2008) but other beneficial processes may also be involved (Finckh et al. 

2000). For example, a mixture consisting of high yielding varieties and winter hardy 

varieties insures against excessive losses experienced in colder winters, particularly as 

stress tolerant plants are able to overyield through competitive release (Finckh et al. 

2000). The potential to exploit beneficial plant-plant interactions therefore depends on 

the presence of suitable mixture components. Field trials are necessary for accurate 

mixture assessment as it is often difficult to predict the performance of a variety in 

mixture from its monoculture yield due to the complexity of competitive interactions 

taking place within the crop and variation in field environments (Lopez and Mundt 

2000; Mille et al. 2006).  

 

Varietal mixture studies are often conducted under similar yet largely unreproducible 

environmental conditions, which reduces the strength of any conclusions drawn (Mundt 

2002). In contrast, replicated trials across multiple sites would indicate the consistency 

and any environmental dependency of such interactions taking place within the mixture. 

For disease studies, experimental plots are often either artificially inoculated at higher 

concentrations than would be present in nature to ensure disease establishment, or 

repeatedly infected with ‘spreader plants’ in a way unrepresentative of field infection 

(Finckh et al. 2000). Yield and disease data from both the level of individual plants and 

that of populations within field trial plots, can provide insight into the population 

processes occurring within mixed variety populations that lead to yield stability under 

environmental stress. In turn, this can contribute to understanding of the ecological 

mechanisms by which mixed plant genotype populations control disease in mixtures, 

and thus improve the predictability of the performance of variety mixtures. 
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This study examines the effect of varietal mixtures in stabilising yields in populations 

under natural levels of environmental stress. We test the hypothesis that compensation 

by better-adapted plants increases yield stability in phenotypically diverse mixtures, and 

that this effect is greatest when susceptible and resistant varieties are combined in the 

presence of the pathogen. We predict that genotype by environment interactions will 

alter the competitive ability and fitness of individual varieties, yet the overall mixture 

yield will be maintained through beneficial ecological processes such as compensation, 

complementation and facilitation. 

	
  

4.2.  Materials and methods  

 

4.2.1  Mixture design  

 

To assess the ability of winter barley variety mixtures to buffer against environmental 

stress and stabilise yield, UK commercial varieties were selected based on phenotypic 

information contained within the HGCA (Home Grown Cereals Authority) 

Recommended List for 2011/2012 (http://www.hgca.com). Two mixtures were designed 

to contain three varieties varying in disease resistance, competitive ability and 

classification group which is based on morphological differences in the ear (2-row or 6-

row) and the crops end-usage (malting or feed). Each variety had a set of unique 

phenotypic traits for easy identification in the field.	
  Each 3-way mixture contained the 

hybrid 6-row Element (Syngenta, Fulbourn, Cambridge, CB21 5XE), the red-awned 2-

row Winsome (Syngenta), and one other white grain 2-row variety, either Cassata 

(Limagrain UK Ltd, Rothwell, Lincolnshire, LN7 6DT) or Saffron (KWS, Thriplow, 

Hertfordshire, SG8 7RE). Information from previous trials conducted at the John Innes 

Centre (JIC) and observations made on commercial farms around the site area in 

Norfolk, indicated major biotic threats to crop yield to be the fungal diseases 

Rhynchosporium scald (caused by Rhynchosporium commune) and brown rust (caused 

by Puccinia hordei). For the present study, each mixture therefore contained one variety 

susceptible to common isolates of either Rhynchosporium or brown rust. Saffron was 

predicted to be the most susceptible variety to Rhynchosporium infection based on 

HGCA resistance ratings (Table 4.1), and was included in the mixture designed to 

investigate mixture responses to this disease (Mixture A). Element was present in both 

mixtures but was the most susceptible variety to brown rust in Mixture B (Table 4.1) 
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because other varieties in the mixture possessed good resistance to brown rust and 

Rhynchosporium.  

 

Table 4.1: Mixture composition (A and B) and information from HGCA recommended 

list 2011/2012. Ratings for the winter barley varieties used in this study. 1=poor 

resistance, 9=high resistance. 

Variety Mix 
Rhyncho-

sporium 

Brown 

Rust 

Net 

blotch 
Mildew 

Lodging 

resistance 

Straw 

height 

(cm) 

Yield 

with 

fungicide 

(t/ha) 

Yield no 

fungicide 

(t/ha) 

Element A+B 7 4 7 6 6 103 9.3 7.7 

Winsome A+B 8 6 8 7 6 93 8.6 7.0 

Saffron A 4 7 4 3 8 87 9 7.1 

Cassata B 8 7 8 4 8 87 8.5 7.0 

 

Target plant populations were set according to plant breeding companies’ 

recommendations of 300 plants/m2 for the 2-row varieties, and 200 plants/m2 for the 6-

row variety. The amount of seed required per m2 was calculated using the following 

equation: thousand grain weight (TGW) x target plant population/ 95% establishment = 

seed/ m2. All plots were 6 m2 (1.5m x 4m), so for each monoculture plot Winsome and 

Cassata (TGW 54g) required 128g seed, Saffron (TGW 64g) 150g and Element (TGW 

49g) 75g. For each mixture plot, one third of the seed mass required for each variety’s 

monoculture plot was thoroughly mixed by hand, prior to sowing in the field with a 

Hege 80 drill (Wintersteiger, Austria). 

 

4.2.2 Trial sites and experimental design  

 

Trials were sown on 30th September 2011 at three different sites ranging in soil type 

from a very light sandy clay loam (JIC; OS 52.62250, 1.2184417), to a light sandy clay 

loam (light land on a well-drained area of Church Farm, Bawburgh; OS 52.625092, 

1.1745071), and a heavy sandy clay loam (heavy land prone to water logging at Church 

farm, Bawburgh; OS 52.628713, 1.1786270). All plots received 40 Nitrogen kg/ha on 

2nd March 2012 and 100 Nitrogen kg/ha on 3rd April 2012. The experiments at each 

site consisted of four plots of each monoculture, mixture A and mixture B for both the 

fungicide and no fungicide treatments, giving 48 plots per site and 144 plots in total. 
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4.2.3. Chemical treatments  

 

Chemical treatments were based on recommendations from a local agronomist and 

applied manually using a knapsack sprayer (Cooper Pegler CP3 with 1.2 metre spray 

boom). All plots received the plant growth regulator Chormequat (BASF), and the 

herbicides Ally max (DuPont) and Oxytril (Bayer). Non-disease control plots received a 

full fungicide treatment programme consisting of full rate applications of Bravo 

(Syngeta), Opus (BASF), Cyflamid (Certis), Proline (Bayer) and Comet 200 (BASF). 

 

4.2.4. Disease scoring  

 

Disease levels were assessed twice, on 31st October 2011 and 25th June 2012, 31 and 

269 days after sowing, respectively. Disease was measured as percentage green leaf area 

covered in symptoms on the flag and first leaf (Peterson et al. 1948; James et al. 1968; 

James 1971). Ten plants of each variety per plot were scored. Diseases scored included 

brown rust, powdery mildew (caused by Blumeria graminis f. sp. hordei), 

Rhynchosporium and net blotch (caused by Pyrenophora teres).  

 

4.2.5. Plant height measurement  

 

Maximum plant height measurements were taken on 30th April 2012, 213 days after 

sowing, when height differences were greatest between sites and plots. Height 

measurements were taken from three randomly selected individual plants from within 

each plot, as it was impossible to identify individual varieties within mixture plots at 

this early stage.  Plants on the outer rows were not measured to avoid edge effects.  

 

4.2.6. Yield  

 

Plots were harvested at JIC on 25th July (299 days after sowing), at the Light land site 

on 1st August (306 days after sowing) and at the heavy land site on 5th August 2012 

(310 days after sowing). Total plot yield (g) and mean grain humidity (%) data were 

recorded using a Zurn 150 plot combine (Zurn GmbH & Co., Germany). Yield 
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component measurements were also taken for each variety in mixture and monoculture. 

Thirty ears of each variety were hand-harvested per plot and threshed using a single ear 

thresher. Measurements including mass, number of seeds and average seed mass were 

taken for each ear using the Marvin Universal seed counter (GTA Sensorik GmbH, 

Germany). For each mixture plot 100 grains were randomly selected for varietal 

identification through analysis of visually assessable phenotypic characteristics by the 

National Institute of Agricultural Botany (NIAB, 

http://www.niab.com/pages/id/21/Seed_Certification; Table A4.1). These data were 

used to estimate the relative proportions (%) contributed by each variety to the total 

mixture yield (g). Mean relative yields (RY=yield in mixture/monoculture) were 

calculated for each variety at each site under both fungicide/non-fungicide treatments as 

follows: the estimated proportions contributed by each variety to the overall mixture 

plot yield (%) were multiplied by the total mixture plot yield (g), and this value was 

then divided by the average plot yield of the variety in monoculture. 

 

4.2.7. Statistical analysis  

 

Linear mixed modelling was used to evaluate differences in yield and disease between 

monocultures and mixtures of winter barley varieties. Plot yield, disease scores, ear 

mass, mean seed mass per ear, mean number of seed per ear were analysed in separate 

models all including the main effects of variety, site and cultivation 

(monoculture/mixture A/mixture B) as fixed factors and all interactions between them. 

The plot in which the plants were grown was included as a random effect. All non-

significant (P>0.05, F-test) interactions between the main terms were removed from the 

analysis. Statistical analysis was conducted using Genstat v.14 (VSN International 

2011). 

 

4.3  Results  

 

Mean yields of mixtures and monocultures were similar across the entire experiment 

(Table A4.2, F3,10=2.23, P=0.141) but mixture yields were more stable than 

monoculture yields as shown by lower coefficient of variation in the mixtures compared 

to the sum of their component monocultures (Fig. 4.1). Mixture yields were stable, 

despite the presence of a variety with highly variable yields, Winsome, in both mixtures 
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(Fig. 4.2). Mixture performance of each variety was altered by the site and fungicide 

treatment, shown by a change in relative yield (Fig. 4.3). Element generally performed 

better in mixture indicating that inter-plant competition was greater within 

monocultures (Fig. 4.3). The success of Element in mixtures is partly due to plasticity in 

certain yield components, which allowed the variety to increase mean ear mass in 

mixture (Fig. 4.4; Table A4.3a, F3,9=3.6, P=0.013). Plasticity in mean ear mass data was 

dependent on cultivation (mixture/monoculture) and not site (Table A4.3a, F1,9=0.42, 

P=0.516). Cassata’s low competitive ability in mixtures led to a reduction in yield and 

yield components including mean mass per ear (Fig. 4.3, Fig. 4.4; Table A4.3a, 

F3,9=3.6, P=0.013). Element overyielded in mixture to compensate for under-yielding 

varieties, resulting in high and stable mixture yields across the entire experiment (Fig. 

4.2).  

 

 
Fig. 4.1: Coefficient of variation (a measure of yield stability) for 6m2 plot yields of 

winter barley monocultures and mixtures in a field trial experiment conducted over 

three different sites. White bars indicate variety monocultures. Black bars represent 

mixtures. Grey bars show the mean coefficient of variation for the mixture component 

varieties when grown in monoculture. N=1600.  



	
  

75	
  
	
  

 
Fig. 4.2: Difference from mean site yield (g) for each monoculture and mixture in a 

winter barley field trial experiment conducted over three different sites. Mix A includes 

varieties Element, Winsome and Saffron. Mix B includes varieties Element, Winsome 

and Cassata. The bottom and top of the boxes represent the first and third quartiles. 

Lines within the box represent the median. Lines outside the box display the range. 

N=1600.  

  
Fig. 4.3: Relative yields (yield in 3-way mixture/yield in monoculture) of four winter 

barley varieties grown in fungicide treated or untreated plots in a field trial conducted 

over three different sites. N=1600.  
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Fig. 4.4: Mean mass per ear (g) for four winter barley varieties grown in monoculture or 

3-way mixture in fungicide treated and untreated plots in a field experiment. N=1600. 

Error bars show 95% confidence interval of means. 

 

 

Cassata and Saffron were heavily infected with powdery mildew by 31st October 2012, 

just four weeks after drilling whereas Winsome and Element showed no signs of 

infection. Average leaf area covered in mildew colonies was 55±15% (BAPB score=7, 

Newton and Hackett 1994) for Cassata, and 25±10% (BAPB score=6) for Saffron. Low 

temperatures in January and February 2012 arrested mildew development allowing the 

plants to begin recovery from the infection. Plant development remained slower for 

Cassata and Saffron, such that in the first week of May 2012 at the light land site, 

Cassata was at GS32 (Zadoks Growth Stage, Zadok et al. 1974), whereas the other 

varieties were at GS35. At the heavy land site, Cassata was at GS41 and other varieties 

at GS49. At JIC, the most heavily diseased site and the only site showing mildew 

symptoms on 5th May 2012, Element was at ear emergence about to enter flowering 

(GS59) and Winsome had nearly finished booting (GS49), whereas susceptible varieties 

Cassata and Saffron were just entering the booting phase (GS41) with no awns yet 

visible.  
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Fig. 4.5: Mean height measurements (cm) taken for four winter barley variety 

monocultures and two 3-way mixtures in a field trial . N=1600. Error bars show 95% 

confidence interval of means.  

 

 

HGCA recommended list 2011-12 disease resistance ratings were reflected in the 

disease levels observed on the varieties used in this study, however, Winsome (brown 

rust rating=6) had significantly more brown rust than Element at JIC and on the light 

land trial (brown rust rating=4). Brown rust was by far the most prevalent disease, 

assessed by total green area covered in disease on the flag and first leaves at the end of 

the growing season, followed by powdery mildew and net blotch. Unexpectedly, the 

least prevalent disease was Rhynchosporium scald with only six plants showing signs of 

infection (data not shown).  

 

Brown rust scores, recorded as the percentage leaf area infected with the fungus, were 

heavily dependent upon interactions between variety and cultivation 

(mixture/monoculture) (Fig. 4.6; Table A4.4, F3,15=4.31, P=0.006). Disease levels were 

consistently reduced for Winsome when grown in mixture compared to monoculture, 

indicating a positive effect of mixtures in reducing disease severity for susceptible 

varieties (Fig. 4.6; Table A4.4, F3,15=4.31, P=0.006). There was no significant 

difference in disease levels between the different mixtures, as the most diseased 

varieties, Winsome and Element, were present in both mixtures (data not shown). 
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Fig. 4.6: Mean percentage green leaf area on the flag and first leaves showing signs of 

brown rust infection. Disease scores are for individual plants grown in monoculture or 

3-way mixture and were naturally infected under field conditions. Specific data for 

individual sites is not shown due to a non-significant interaction between site and 

cultivation (mixture/monoculture). N=1600. Error bars show 95% confidence interval of 

means. 

 

 

As expected, mean seed mass was greater in fungicide treated plots (Fig. 4.7; Table 

A4.3b, F3,15=4.31, P=0.006)) which led to higher yield in these plots (Fig. 4.8). Yields 

from untreated plots were greatest at the light land site, which had the lowest disease 

levels (Fig. 4.8, Fig. 4.9). The JIC site had significantly more disease than the light land 

and heavy land sites (Fig. 4.9; Table A4.4, F2,15=19.37, P<0.001) and consequently 

suffered the most from a lack of fungicide application, yielding over 50% less in 

untreated plots (Fig. 4.8).  



	
  

79	
  
	
  

 
Fig. 4.7: Mean seed mass for four winter barley varieties grown in monoculture and 3-

way mixture in fungicide treated or untreated plots in a field trial. N=1600. Error bars 

show 95% confidence interval of means. 

 

 
Fig. 4.8: Mean plot yields (per 6m2) for winter barley variety monocultures and two 3-

way varietal mixtures in fungicide treated or untreated plots in a field trial at three 

different sites. N=1600. Error bars show 95% confidence interval of means. 
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Fig. 4.9: Mean percentage green leaf area on the flag and first leaves showing signs of 

brown rust infection. Disease scores for individual plants grown in mixture and 

monoculture and naturally infected under field conditions conducted at three sites 

located in Norfolk. JIC=John Innes Centre site. Light= light land trial site at Bawburgh. 

Heavy= heavy land trial site at Bawburgh. N=1600. Error bars show 95% confidence 

interval of means. 

 

Winsome was very prone to lodging especially on the light sandy soil of JIC, indicating 

that the growth regulators had a poor effect on reducing lodging at this site. (Fig. 4.10; 

Table A4.5). Severe lodging of Winsome in monoculture resulted in a very high relative 

yield of mixtures in fungicide treated plots at JIC (Fig. 4.3). Winsome did not lodge on 

the heavy land site due to reduced plant height and fewer pigeons, which contributed to 

the severe lodging at JIC by flattening the crop to feed on grain close to the ground 

(personal observation) (Fig. 4.10). Mixtures were more resistant to lodging through 

facilitation by Element. This variety has strong straw, and therefore reduced lodging in 

neighbouring Winsome plants, which contributed to increased yield stability in mixtures 

(Fig. 4.10). 
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Fig. 4.10: Lodging of monoculture plots of winter barley variety Winsome at the John 

Innes Centre field trial site. a) Photo taken on 1st June 2012. b) Photo taken on 22nd June 

2012.  

 

4.4 Discussion  

 

This study investigated the ability of winter barley varietal mixtures to buffer against 

environmental stresses, mainly disease but also unexpected abiotic stresses, and 

stabilise yield across multiple natural environments. Mixture yields were as high as the 

best performing monocultures, indicating no yield penalty of growing mixtures. Varietal 

mixtures enhanced yield stability compared to component monocultures, providing 

further support for the hypothesis that biodiversity increases ecological stability (Yachi 

and Loreau 1999). Yield stability was largely achieved through the ecological processes 

of compensation and facilitation. In mixtures, the most competitive variety (the hybrid 

6-row variety, Element) compensated for yield losses associated with less competitive 

varieties (e.g. Cassata) through competitive release. Element also reduced lodging in 

mixtures, increasing fitness of neighbouring plants by facilitation. Previous work with 

the model plant Arabidopsis thaliana demonstrated that genotypes with the highest 

yield potential are often the most competitive, allowing them to over-yield in mixture 

b) a) b) 
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through a reduction in competition intensity compared to monoculture (Creissen et al. 

2013). Indeed in this study, the 6-row cultivar, which had the highest yield potential, 

was responsible for compensation observed within the mixtures. 

 

Ecological processes that contribute towards increased yield stability in mixtures can be 

identified under laboratory or glasshouse conditions (Creissen et al. 2013), yet 

experimentation under field conditions may be specific to the variety and particular 

combination of stresses present. Crops are grown in environments in which multiple 

stresses are present that prevent them from achieving their yield potential (Bray et al. 

2000). Abiotic stresses alone can reduce average yields by more than 50% (Bray et al. 

2000), yet plants must cope with stresses such as cold, drought and salinity whilst 

simultaneously defending themselves from pests and pathogens ranging from fungi and 

bacteria, to nematodes and insects (Hammond-Kosack and Jones 2000). Examining 

stress tolerance by exposing the plant to individual stresses may lead to inaccurate 

predications, even if care is taken to relate experimental conditions to natural or field 

conditions (Mittler and Blumwald 2010). Interactions between biotic and abiotic 

stresses experienced by plants grown under field conditions can result in varieties 

responding unpredictably (Mittler 2006; Atkinson and Urwin 2012). Abiotic stresses 

can have positive or negative effects on disease susceptibility in ways difficult to 

replicate under laboratory or glasshouse conditions. Indeed this study showed high 

levels of variation in disease severity between geographically similar sites. The most 

heavily diseased site, JIC, was slightly sheltered by nearby buildings leading to higher 

humidity and temperature, providing a more conducive environment for disease than at 

the other two sites. Studies investigating the effect of multiple stresses on plant 

productivity and stability under field conditions are vital as they more accurately 

represent the unpredictable environmental conditions experienced by crop plants in 

agricultural systems. 

 

The majority of empirical studies on variety mixtures have focussed on disease control 

(Finckh et al. 2000; Zhu et al. 2000; Mundt 2002), reporting trends in yield and disease 

severity for the population (Mundt 2002; Philips et al. 2005; Newton and Guy 2009), 

yet varietal mixtures also offer protection against unexpected stresses related to 

unpredictable environmental conditions. Few studies have focussed on the plant-plant 

interactions and ecological processes taking place within mixtures (but see Allard and 
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Adams 1969; Finckh and Mundt 1992; Revilla-Molina et al. 2009). Despite the 

prediction from HGCA recommended lists (http://www.hgca.com) that Element would 

be the most susceptible to brown rust infection, Winsome was the most susceptible in 

the trials reported here. Despite high levels of disease in Winsome monocultures, brown 

rust infection was reduced on Winsome in mixtures. This reduction in disease severity 

may act through a combination of increased distance between susceptible hosts, and 

barriers of resistant plants preventing pathogen spread (Chin and Wolfe 1984; Zhu et al. 

2000). Despite high levels of disease in mixtures, compensation by resistant plants 

increased yield stability through competitive release. 

 

Compensation did indeed play a role in enhancing yield stability in varietal mixtures in 

this study, however yield stability was also achieved by unexpected methods in 

response to unpredictable stresses such as the combination of lodging and herbivory by 

pigeons. Lodging poses a significant global threat to farming and can reduce crop yields 

by up to 60% (Rajkumara 2008). In this study Winsome proved to be highly prone to 

lodging (especially at JIC) due to a combination of weak straw, irrigation (only at JIC 

site), early ripening (especially on fungicide-untreated plots), and large numbers of 

pigeons that further flattened the plants to feed on the grain lying on the ground. The 

lodging-resistant variety Element reduced lodging of the entire plant population through 

facilitation. This finding was not totally unexpected, as Element is recommended by the 

HGCA for use in the North of the UK, where crops are more likely to experience 

environmental stresses such as rain and high winds. Such stresses increase lodging so a 

variety with stronger straw, providing increased lodging resistance, is generally 

favoured. Barley plants in this study experienced conditions more typical of a northern 

environment, with heavy wind and rain in the weeks prior to harvest that were unusual 

for East Anglia. The beneficial effect of mixtures on reducing lodging has been 

observed previously in several crops, including winter barley (Stutzel and Aufhammer 

1989) and rice (Revilla-Molina et al. 2009). Unforeseen environmental stresses due to 

climate observed in our study highlight the importance of careful mixture selection and 

experimentation under field conditions for accurate assessment of mixture performance. 

 

Despite the many advantages of growing barley varietal mixtures, such as increased 

disease resistance, increased tolerance to abiotic stresses, increased yield and yield 

stability, adoption of this practice remains restricted (Newton et al. 1997; Finckh et al. 



	
  

84	
  
	
  

2000; Mundt 2002; Newton and Guy 2009). Mixtures have historically been 

unacceptable to maltsters and millers who have issues regarding grain heterogeneity, 

grain verification and customer preference, as well as processing difficulties. However, 

grain consistency and grain quality has been shown to be equal to and even better than 

the sum of the mixture components (Newton et al. 2008a).Approximately 50% of the 

barley produced in the UK is used for animal feed for which grain consistency is less of 

a concern than it is for brewers (Newton et al. 2011). A major problem of growing 

mixtures is the uncertainty about the agronomy in which the requirements of multiple 

varieties must be considered. Variation in heading date between varieties in varietal 

mixtures may also create problems at harvest. Despite these issues the benefits of 

growing mixtures include reduced cost of chemical inputs, in turn reducing the cost of 

crop production, which makes the lack of uptake across the UK surprising. Future 

cropping systems will need to be less reliant on chemical input, less expensive to 

manage and show greater adaptability to the changing environment if future food 

security is to be achieved (FAO, WFP, IFAD 2012; Hillocks 2012). Varietal mixtures 

designed to exploit beneficial ecological processes such as compensation and 

facilitation will be more adaptable to a wider range of environments enabling them to 

achieve high and stable yields by buffering against diverse and sometimes unpredictable 

stresses.  

  

 



	
  

85	
  
	
  

Chapter 5 

General Discussion 

 

Variety monocultures able to achieve high yields dominate commercial production 

(Soliman and Allard 1991; Trewavas 2001). However such systems are only high 

yielding under specific environmental conditions and agronomic practices, which makes 

them susceptible to high yield losses associated with environmental stress (Calderini 

and Slafer 1999). Varietal mixtures have the potential to increase yield stability and 

buffer against environmental stresses whilst being less reliant on chemical inputs 

(Wolfe 1985; Altieri 1999; Zhu et al. 2000). Previous studies investigating the 

advantages and disadvantages of growing varietal mixtures have typically been large in 

scale because of the high levels of variation associated with uncontrolled environments 

and genotype by environment interactions (Ceccarelli and Grando 1991: Madden et al. 

2007). This project used a model system in which experiments could be conducted 

under more readily controlled environmental conditions, to allow for detailed 

investigation of the mechanisms and ecological processes contributing to the success of 

mixtures in plant ecosystems. Work conducted in the model system was translated into 

the crop winter barley to facilitate the exploitation of varietal mixtures in agriculture. 

 

Chapters 2 and 3 of this thesis tested the suitability of Arabidopsis thaliana (herein 

referred to as Arabidopsis) as a model for studying the mechanisms underlying the 

enhanced stability of genotypic mixtures across environments. The ability of 

Arabidopsis to grow well under glasshouse conditions means that fewer plants and 

smaller growing spaces are required to achieve consistent results across experiments. 

However, in practice this is not always the case as was observed in Chapter 2 in which 

inconsistencies in glasshouse conditions between experimental repeats affected plants 

growth and seed production. Despite these inconsistencies Arabidopsis genotypic 

diversity enhanced ecological resistance of the population to nutrient stress, and the 

combination of nutrient and heat stress, shown by an increase in yield and yield stability 

compared to the average monoculture. Yield stability was achieved through 

compensation in which the fittest, most competitive genotype with high yield potential 

overyielded in genotypic mixtures, compensating for the sub-optimal yield of others. 

The role of compensation in buffering against stress is supported by findings from 
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previous studies in agricultural (Finckh et al. 2000), and grassland systems (Tilman 

1996). The outcome of competition was predictable from above-ground traits such as 

flowering time, rosette size and seed production, yet below ground competition was 

identified as being more important than above ground competition in Arabidopsis. 

Findings from chapter 2 highlighted the importance of studying below ground 

interactions between adult plants in order to predict accurately the outcome of 

competition between genotypes, an area that has previously been overlooked in many 

competition studies (Casper and Jackson 1997). The accurate estimation of genotype 

mixing ability may increase the efficiency of mixture selection substantially in the 

future (Knott and Mundt 1990). 

 

The role of intra- and inter-genotypic competition in ecological processes operating at 

the population scale in diseased Arabidopsis populations was investigated 

experimentally in chapter 3. In these large-scale experiments I took advantage of results 

from chapter 2 that identified traits affecting competitive ability of genotypes and 

suitable experimental procedures. Phenotypically dissimilar genotypes varying in 

pathogen compatibility with the oomycete Hyaloperonospora arabidopsidis or the 

Turnip yellows virus were grown in a competitive environment to examine the effects of 

competition on seed production for both individuals and populations. Host fitness and 

competitive ability were predicted to be reduced by either susceptibility to the pathogen 

or through costs of resistance (Brown 2002; Damgaard and Jensen 2002; Tian et al. 

2003; Bedhomme et al. 2005; Pagan et al. 2009). A pathogen-induced reduction in 

competitive ability for susceptible genotypes led to an increase in competitive ability for 

resistant genotypes. Compensation occurring within diseased and non-diseased 

populations led to high and stable yields in mixtures of two genotypes supporting 

findings from previous mixture studies (Stutzel and Aufhammer 1989; Kiaer et al. 

2012). The most genotypically diverse mixtures (4-way mixtures) achieved lower and 

less stable yields than pots containing fewer genotypes. This indicates an optimum level 

of diversity, which contrasts with the majority of crop varietal mixture studies that show 

a trend towards greater yields from increased number of varieties (Mundt et al. 1994; 

Newton et al. 1997; Newton et al. 2008a). The highest yields were produced by 

mixtures and monocultures of weakly competing, relatively fecund genotypes. Mixtures 

and monocultures of highly competitive genotypes achieved the lowest yields due to 

high levels of competition forcing the plants to invest excessively in vegetative growth. 
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This reduced reproductive output and the results therefore support the findings from 

previous studies (Khalifa and Qualset 1974; Creissen et al. 2013). Results of chapter 3 

indicate that suitable mixture components are moderately high yielding but not highly 

competitive. This is valuable knowledge to those designing mixtures since high levels 

of competition can dramatically reduce plant yield.  

 

The possibilities for experimental research into ecological processes using the 

Arabidopsis model system cover a wide range of scenarios relevant to arable crops. 

Research presented in chapters 2 and 3 indicate that Arabidopsis has great potential to 

provide further insights into the mechanisms occurring within genotypic mixtures, but it 

also has potential to be exploited as a model in other areas of crop research such as 

intercropping. Experiments in which Arabidopsis and other species, such as nitrogen-

fixing clovers (Trifolium), compete for resources would for example allow for 

investigations of complementation and facilitation between intercrops. Knowledge of 

these mechanisms gained from such model systems can be translated into the crops and 

increase efficiency of intercrop selection. 

 

Arabidopsis genotypes (often referred to as accessions) are highly variable for many 

physiological traits (e.g. flowering time, pest and disease resistance) and developmental 

traits (e.g. leaf shape, size and number). Arabidopsis genotypes are often referred to as 

ecotypes as they show signs of local adaptation to specific environments which 

contribute to the high levels of trait diversity within the species. Conversely, 

domestication of crop plants has heavily shaped their evolution over the last 11,000 

years through selective breeding by man (Ceccarelli 2009). Presently, crop plants are 

bred largely for high yields and uniformity in important agronomic traits such as height 

and maturity, for ease of harvest. Widely grown varieties of heavily bred crops such as 

rice, wheat and maize are very closely related and genetically uniform. However 

Arabidopsis genotypes are considerably more phenotypically diverse due to the broad 

range of environments in which the weed occurs, which raises issues regarding its 

suitability as a model for heavily bred cereal crops. As a result of high trait diversity the 

effect of genotypic diversity on interplant competition and population processes is likely 

to be amplified in the model species relative to the crop, which may create issues when 

attempting to extrapolate findings from the model to the crop.  
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Arabidopsis has, in the work presented here, provided insight into the ecological 

processes occurring within genotypic mixtures (Chapter 2, 3). Issues can, of course, be 

raised regarding the suitability of this brassica-relative as a model for cereal varietal 

mixtures. Brassicas are cruciferous vegetables including cabbages, broccoli and 

mustards that are dramatically different from cereals in both physiology and form. An 

important difference between cereals and brassicas is that cereals, unlike most 

Brassicaceae, form mycorrhizae which can greatly affect plant growth (Khan 1975). 

Direct comparisons of traits relating to competitive ability and yield can be difficult 

between brassicas and cereals, which can restrict translational science from the 

Arabidopsis model to cereal crops. There is an argument to be made for the use of the 

wild grass Brachypodium distachyon (herein referred to as Brachypodium) as a model 

for cereal cropping systems. Brachypodium is related to small grain cereals and 

possesses model organism traits such as a short life cycle and a small genome 

(Opanowicz et al. 2008). Many important diseases of cereal crops infect Brachypodium 

allowing the model to contribute towards an understanding of the mechanisms of plant 

defence in response to fungal diseases such as fusarium head blight, eyespot and 

ramularia leaf spot (Peraldi et al. 2011: Peraldi et al. 2013). However, the use of a 

model organism to study specific crop diseases is often limited due to highly specific 

host-pathogen interactions. Despite not being useful for studying the effects of a 

specific disease of cereals, Arabidopsis may be of value for studying the effects of 

disease in general or even of a particular class of disease. Arabidopsis is ideally suited 

to ecological experiments as seeds can be sown into experimental layout quickly with 

minimal preparation time. Preparation for ecological studies in Brachypodium is more 

laborious as seed cases must be removed for synchronous germination (A. Peraldi 

personal communication), which is necessary as asynchrony of germination can 

dramatically affect the outcome of competition (Bengtsson et al. 1994). Genetic 

resources readily available to scientists are substantially less for Brachypodium than for 

Arabidopsis which has over 750 natural accessions and many mutant lines, catalogued 

at stock centres (ABRC, http://abrc.osu.edu/; NASC, http://Arabidopsis.info/). 

However, as the studies of Brachypodium as a model plant increase, the number of 

genetic resources available for research purposes is likely to increase (Mur et al. 2011). 

Presently, genotypic variation is less documented for Brachypodium than for 

Arabidopsis, which means that preliminary phenotypic assessments required for 

competition studies must be more extensive.  
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Key plant traits relating to competitive ability (vegetative growth allocation, disease 

resistance etc.), and key processes (compensation), were identified in the Arabidopsis 

studies of Chapters 2 and 3. These findings were translated into a study investigating the 

ability of winter barley varietal mixtures to buffer against environmental stresses, 

namely disease, and stabilise yield over multiple environments (Chapter 4). Predictions 

on the outcomes of competition and compensatory interactions occurring within the 

mixtures were made based on traits such as height, disease resistance, classification (2- 

or 6-row, malting or feed), and straw strength. Varietal mixtures achieved greater yield 

stability across sites and treatments and produced yields equal to the best performing 

monoculture indicating no yield penalty of growing mixtures. Compensation played a 

role in the yield stability of mixtures, which was predicted from the work conducted in 

Arabidopsis (chapters 2 and 3) and previous work in mixtures (Finckh et al. 2000). 

Unexpectedly facilitation played a major role in the ecological resistance of barley 

varietal mixtures to environmental stress. Facilitation occurred when the 6-row variety 

reduced lodging, and the subsequent damage by feeding pigeons, in mixtures that 

contained a 2-row variety prone to lodging. The role of facilitation in varietal mixtures 

is often overlooked though studies have observed its role in reducing lodging (Stutzel 

and Aufhammer 1989; Revilla-Molina et al. 2009). Facilitation may also be responsible 

for the reduction in brown rust infection in mixtures. By increasing distance between 

host plants disease was reduced for the most susceptible variety. This contrasts with 

many mixture studies that have shown an ‘averaging effect’ of mixtures in decreasing 

disease on the most susceptible varieties but increasing disease on more resistant 

varieties (Wolfe 1985). Environmental stresses experienced by crops grown under field 

conditions can result in unpredictable responses and in this case unexpected ecological 

processes (Mittler 2006; Atkinson and Urwin 2012). This finding makes the point that 

conclusions from lab based experiments on a model system, though often insightful, are 

inevitably limited. In this study, interactions between genotype, disease severity and soil 

types confirmed the need for experimentation under field conditions in which plants are 

exposed to multiple, interacting stresses (Mittler and Blumwald 2010). Results of 

Chapter 4 suggest that predicting the response of both monocultures and mixtures to 

local environmental conditions can be difficult. Higher levels of trait diversity increase 

the adaptive capability of the crop, allowing the population to respond favourably to 

environmental change. Maintenance of crop trait diversity and identification of suitable 
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mixture components designed to promote beneficial ecological processes, are necessary 

to ensure the successful exploitation of mixtures in agriculture.  

 

Alternative methods of increasing within-field genetic diversity include the use of 

composite cross populations (CCP) in which diverse genotypes are re-hybridized and 

the progeny bulked prior to the subjection to natural selection (Suneson 1956). The 

success of a CCP depends upon recombination and segregation over many generations 

and the relationship between survival and agronomic value (Allard and Hansche 1964). 

Potential advantages of CCP are similar to those of varietal mixtures such as increased 

buffering capacity against environmental stresses, and increased yield and yield stability 

compared to monocultures through compensation and complementation (Allard 1961; 

Rasmusson et al. 1967; Hockett et al. 1983; Danquah and Barrett 2002). However, 

despite the potential advantages, inter-plant competition occurring within CCP can often 

lead to natural selection for taller plants that are more prone to lodging, and later 

maturity dates which create problems at harvest (Patel et al. 1987). Arabidopsis could 

be used as a model to study competition and adaptation in CCP through the use of 

Multiparent Advanced Generation Inter-Cross (MAGIC) lines, a set of recombinant 

inbred lines descended from 19 intermated accessions (Kover et al.	
  2009). Experiments 

in which the MAGIC lines are grown in competition under glasshouse conditions would 

allow for testing of the effects of specific single and multiple stress combinations on 

population dynamics in diverse populations. As with varietal mixture, issues remain 

regarding quality consistency of end-products produced by CCP, yet evidence suggests 

that quality can be more stable in variety mixtures and CCP than monocultures 

(Sarandon and Sarandon 1995; Newton et al. 1998). Despite findings from such studies, 

many grain processers, maltsters in particular, will only accept grain from single variety 

monocultures for ease of processing (Newton et al. 2008b). The cultivation of CCP and 

varietal mixtures may be a particularly viable strategy for low-input and subsistence 

farming in developing countries in which yield stability remains the highest priority 

(Ceccarelli 1996; Danquah and Barrett 2002). Future commercial cropping systems will 

need to be less reliant on chemical inputs, less expensive to manage and show greater 

adaptability to the changing environment if future food security is to be achieved (FAO, 

WFP, IFAD 2012; Hillocks 2012). CCP and varietal mixture approaches to farming 

offer a potential solution to such important food production issues. 
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Subsistence farming, in which the main output is directly consumed, is common in the 

poorest areas of the world such as Africa and Asia (Nagayets 2005; von Braun 2005). It 

is estimated that approximately 50% of the world’s population are small-scale 

subsistence farmers (Jazairy et al. 1992). The high prevalence of subsistence farmers in 

poverty stricken areas prone to hunger and malnutrition highlights the need for 

improvement of agricultural practices. Yield stability is the main priority because crop 

failure can have hugely detrimental effects on the livelihoods of the smallholder. In 

contrast to commercial farming, subsistence farming approaches consist of very low 

levels of technology and high labour costs. The crops grown also differ substantially 

between commercial and subsistence farming systems. Commercial farmers grow high 

yielding improved varieties whereas subsistence farmers favour locally adapted, 

genetically diverse crop landraces (Smithson and Lenne 1996). Varietal mixtures are 

regularly deployed in subsistence farming, and often involve landraces, improved 

varieties and populations (Smithson and Lenne 1996). Diverse mixtures containing 

multiple species and varieties are common. The mixture hanfets is an example, 

containing multiple varieties of both wheat and barley cultivated in North Africa. 

Woldeamlak et al. (2008) showed that hanfets can achieve 50% greater yields than the 

pure crops, thought to be largely due to complementation in root architecture which 

increases water-use efficiency in drought stricken areas. The lack of research conducted 

in such unusual cropping systems restricts the potential for agronomic improvement, 

because the plant traits and ecological processes responsible for increased yield and 

yield stability remain poorly understood.  

 

Participatory plant breeding, in which farmers collect, propagate and select germplasm 

under local agro-ecological conditions leading to the creation of locally adapted 

varieties, also plays a significant role in subsistence farming. Participatory rice breeding 

in particular has led to a huge amount of varieties adapted to a wide range of 

environmental conditions such as dryland or paddy, upland or lowland (Medina 2012). 

Unfortunately a lot of this diversity has been lost though the development of high 

yielding varieties during the green revolution. Such varieties are dependent upon high 

chemical inputs, which have led to a reduction in sustainability due to depletion of soil 

organic matter, mineral deficiencies, toxicities etc. In Indonesia, for example, 

approximately 1500 rice varieties have were lost between 1975 and 1990 (Ryan 1992). 

Green revolution technologies resulted in rice farmers becoming disconnected with their 
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crop. Participatory breeding programmes provide training for farmers at all stages of the 

breeding process which increases farmer confidence in their ability to breed crops.   

 

Research into subsistence farming systems remains minimal due to the many issues 

regarding agricultural research in poor, often politically unstable areas of the world 

where subsistence farming is the dominant source of food production. Subsistence 

farming systems are highly vulnerable to climate change, as they are largely located in 

the tropics where even small changes in temperature (1-2ºC) could dramatically reduce 

productivity of the major crops such as rice and maize (Morton 2007). Various 

demographic and socioeconomic trends also restrict adaptation to change in such places. 

The future problems facing subsistence farmers accentuate the need for increased 

research efforts to improve subsistence farming practices (Morton 2007). Detailed 

knowledge of the roles of ecological processes in such systems may facilitate the 

exploitation of plant diversity in subsistence agroecosystems and contribute to increased 

food production and financial security of the world's poorest people. This project has 

provided valuable insight into the use of model systems to investigate plant traits 

responsible for determining the outcome of competitive interactions and the influence of 

such interactions on the relative roles of specific ecological processes (compensation 

and facilitation) in achieving yield stability in genotypic mixtures. Findings from these 

empirical studies should be considered by plant breeders, agronomists and 

agroecologists when selecting suitable, functionally complementary mixture 

components. Efficient mixture choice will ensure crop success in the future in which 

changing environmental conditions will expose plants to multiple, unpredictable, 

interacting stresses. 
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Appendix 1: 

 

 

 

 

 
Table A2.1: The effect of Arabidopsis genetic diversity and different growing 

conditions on seed productivity in the four-way mixture experiments. In each case, a 

linear mixed model was used to analyse each factor and the interactions between them. 

Fixed effects included growing season (autumn, winter, summer), nutrient level 

(high/low) and cultivation monoculture/mixture) and genotype. Non-significant 

interaction terms were removed from each model.  F and P values refer to ANOVA 

tests of each factor separately and the interactions between them. 

 

Table A2.1a: Analysis of combined data from all three experiments. N=1880. 
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Table A2.1b: Analysis of data from the autumn and winter seasons of the four-way 

mixture experiment. N=1260.  

 

 
 

Table A2.1c: Analysis of data from the summer season of the four-way mixture 

experiment. N= 620. 
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Table A2.2: The effect of Arabidopsis genotypic diversity and different growing 

conditions on days to flowering in all three growing seasons of a four-way mixture 

experiment. A linear mixed model analysed each factor individually and the interactions 

between them. Fixed factors include experimental season, nutrient level (high/low) and 

cultivation (monoculture/mixture) and genotype. N=1880. Non-significant interaction 

terms were removed from each model. F and P values refer to ANOVA tests of each 

factor separately and the interactions between them.   
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Table A2.3: The effect of Arabidopsis genetic diversity and different growing 

conditions on seed productivity in a pair-wise interaction experiment. A linear mixed 

model was used to analyse each factor and all interactions between them. Fixed effects 

included genotype, competition type (above ground only/above and below ground) and 

cultivation (mixture/monoculture). Non-significant terms were eliminated from the 

model. F and P values refer to ANOVA tests of each factor separately and the 

interactions between them. N=639. 
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Table A2.4: The effect of competitive group of the focal and competing plant, 

competition type (above ground only/above and below ground) on seed productivity of 

Arabidopsis plants in the pair-wise interaction experiments. A linear mixed model was 

used to analyse each factor and the interactions between them. Fixed effects included 

growing season, competition type (above/below-ground), competitive group of focal 

plant competitive group of competing plant. Non-significant interaction terms were 

removed from each model. F and P values refer to ANOVA tests of each factor 

separately and the interactions between them. N=639.  
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Table A2.5: The effect of competition (presence/absence of competitors) and 

competitive group of the focal plant on seed productivity of Arabidopsis plants in a 

pair-wise interaction experiment. A linear mixed model was used to analyse each factor 

and all interactions between them. Fixed effects included growing season, competition 

type (above/below-ground), competitive group of focal plant competitive group of 

competing plant. Non-significant interaction terms were removed from each model. F 

and P values refer to ANOVA tests of each factor separately and the interactions 

between them. N=639.  
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Table A3.1: The effect of Arabidopsis genotypic diversity and Hpa on seed mass 

produced per plant in a pair-wise interaction experiment. A linear mixed model was 

used to analyse each factor and all interactions between them. Fixed effects included 

experimental repeat, genotype, cultivation (2-way mixture/monoculture) and Hpa 

(presence/absence). Non-significant terms were eliminated from the model. F and P 

values refer to ANOVA tests of each factor separately and the interactions between 

them. N=1600. 
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Table A3.2a:  The effect of Arabidopsis genotypic diversity and Hpa on the initial 

disease score at six days after infection in a pair-wise interaction experiment. Disease 

was scored as the proportion of leaves showing sporulation. A linear mixed model was 

used to analyse each factor and all interactions between them. Fixed effects included 

experimental repeat, genotype and cultivation (2-way mixture/monoculture). Non-

significant terms were eliminated from the model. F and P values refer to ANOVA tests 

of each factor separately and the interactions between them. N=1600. 
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Table A3.2b: The effect of Arabidopsis genotypic diversity and Hpa on the second 

disease score at ten days after infection in a pair-wise interaction experiment. Disease 

was scored on a scale of 0-4, with 0=no disease and 4=over 75% of leaves covered in 

spores. A linear mixed model was used to analyse each factor and all interactions 

between them. Fixed effects included experimental repeat, genotype and cultivation (2-

way mixture/monoculture). Non-significant terms were eliminated from the model. F 

and P values refer to ANOVA tests of each factor separately and the interactions 

between them. N=1600. 
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Table A3.3: The effect of Arabidopsis genotypic diversity and Hpa on rosette diameter 

in a pair-wise interaction experiment. A linear mixed model was used to analyse each 

factor and all interactions between them. Fixed effects included experimental repeat, 

genotype, cultivation (2-way mixture/monoculture) and Hpa (presence/absence). Non-

significant terms were eliminated from the model. F and P values refer to ANOVA tests 

of each factor separately and the interactions between them. N=1600. 
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Table A3.4: The effect of Arabidopsis genotypic diversity and Hpa on days to flower in 

a pair-wise interaction experiment. A linear mixed model was used to analyse each 

factor and all interactions between them. Fixed effects included experimental repeat, 

genotype, cultivation (2-way mixture/monoculture) and Hpa (presence/absence). Non-

significant terms were eliminated from the model. F and P values refer to ANOVA tests 

of each factor separately and the interactions between them. N=1600.  
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Table A3.5: The effect of Arabidopsis genotypic diversity and Hpa on seed productivity 

in a pair-wise interaction experiment. A linear mixed model was used to analyse each 

factor and all interactions between them. Fixed effects included experimental repeat, 

genotype, cultivation (monoculture,/2-way mixture,/4-way mixture), Hpa 

(presence/absence). Non-significant terms were eliminated from the model. F and P 

values refer to ANOVA tests of each factor separately and the interactions between 

them. N=1600.  
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Table A3.6: The effect of Arabidopsis genotypic diversity and TuYV on days to flower 

in a pair-wise interaction experiment. Fixed effects included genotype, TuYV 

(presence/absence) and cultivation (mixture/monoculture). Non-significant terms were 

eliminated from the model. F and P values refer to ANOVA tests of each factor 

separately and the interactions between them. N=400. 
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Table A3.7: The effect of Arabidopsis genotypic diversity and TuYV on rosette 

diameter in a pair-wise interaction experiment. Fixed effects included genotype, TuYV 

(presence/absence) and cultivation (mixture/monoculture). Non-significant terms were 

eliminated from the model. F and P values refer to ANOVA tests of each factor 

separately and the interactions between them. N=400. 
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Table A3.8: The effect of Arabidopsis genotypic diversity and TuYV on seed 

productivity in a pair-wise interaction experiment. A linear mixed model was used to 

analyse each factor and all interactions between them. Fixed effects included genotype, 

TuYV (presence/absence) and cultivation (mixture/monoculture). Non-significant terms 

were eliminated from the model. F and P values refer to ANOVA tests of each factor 

separately and the interactions between them. N=400. 
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Table A4.1: The morphological grain characters used by NIAB to identify the amount 

of grain contributed by each winter barley variety to the mixture plot yield.  
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Table A4.2: The effect of winter barley varietal diversity on plot yield (per 6m2) in a 

field trial conducted over three different sites. A linear mixed model was used to 

analyse each factor and all interactions between them. Fixed effects included trial site, 

fungicide treatment (treated Vs untreated) and Gcomp (Genotypic composition, 6 levels 

including each monoculture and both mixtures). Non-significant terms were eliminated 

from the model. F and P values refer to ANOVA tests of each factor separately and the 

interactions between them. N=1600. 
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Table A4.3: The effect of four winter barley varietal diversity on a) mean mass per ear 

and b) mean mass per grain, in a field trial conducted over three different sites. A linear 

mixed model was used to analyse each factor and all interactions between them. Fixed 

effects included trial site, fungicide treatment (treated Vs untreated) and cultivation 

(monoculture/mixture). Non-significant terms were eliminated from the model. F and P 

values refer to ANOVA tests of each factor separately and the interactions between 

them. N=1600.  
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Table A4.4: The effect of winter barley varietal diversity on brown rust disease severity 

(measured as % green leaf area covered in disease on the flag and first leaf) in a field 

experiment conducted over three different sites. A linear mixed model was used to 

analyse each factor and all interactions between them. Fixed effects included trial site, 

cultivation and variety (mixture/monoculture). Non-significant terms were eliminated 

from the model. F and P values refer to ANOVA tests of each factor separately and the 

interactions between them. N=1600. 
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Table A4.5: Percentage of plots lodged in a field trial of mixtures and monocultures of 

winter barley. Plots not represented showed no signs of lodging. All plots contain the 

barley variety Winsome. Monocultures N=24. Mixtures N=48.  
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