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Abstract 

Climate change is affecting UK agriculture, and research is needed to prepare crops for the 

future. Wheat is the UK’s most important crop, and needs to be protected from losses 

caused by disease.  

While direct effect of the environment on pathogen spread is often reported, effect of the 

environment on host defence is not. Many wheat resistance genes are temperature 

sensitive and these were used as a starting point to investigate defence temperature 

sensitivity in wheat starting with yellow rust resistance gene Yr36, previously shown to be 

temperature-sensitive. The effect of temperature on resistance was shown to be 

independent of Yr36 in breeding line UC1041, and was more likely to be due to a 

previously-uncharacterised background temperature sensitivity. These results suggest that 

temperature changes, rather than thresholds, might influence some disease resistance 

mechanisms. Understanding this phenomenon could enable the breeding of more stable 

defence in crops. 

In order to gain further insight into how temperature changes influence resistance, plants 

were grown under different thermoperiods and challenged with different types of 

pathogens; Results showed that resistance to multiple pathogens in one cultivar Claire was 

enhanced under variable temperatures, compared to constant temperatures. Taken 

together, the research presented revealed that defence temperature sensitivity in plants is 

much more complex than previously thought, considering that both temperature changes 

and different thermoperiods can influence aspects of wheat defence. 

 To ascertain which research approaches will be most valuable in preparing for climate 

change, the effect of the environment on take-all was also investigated. Vulnerable periods 

for wheat from the threat of take-all development were identified by analysing historical 

datasets, and controlled environment experiments. Results showed a relationship between 

initial post-sowing temperatures and spring take-all levels in 2nd 3rd or 4th winter wheats, 

depending on the location.  

The work on yellow rust resistance and take-all both identify vulnerable periods for wheat 

caused by the environment, be it weakening of host defence responses, or increased threat 

from disease pressure. Further characterisation and understanding of vulnerable periods 

will be essential to control disease outbreaks under an increasingly unstable climate.  
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Chapter 1: General introduction 

1.1 The disease triangle 

Wheat is the UK’s most widely grown crop, covering about 2 million hectares and 

producing around 15 million tonnes each year (DEFRA, 2009). Wheat yield is continuously 

reduced by damage from various diseases so it is essential to control losses by 

understanding occurrence of disease outbreaks. For a disease to occur, a combination of a 

susceptible host, a pathogen able to infect the host and a suitable environment are 

required. The disease triangle (Figure 1.1) simplifies this complex relationship (Stevens, 

1960) and illustrates the delicate balance between the variables that are required for 

disease occurrence. Perhaps the least stable of the three variables, and most likely to 

influence the balance, is the effect of the environment on disease outbreaks. Environment; 

already constantly changing and impossible to control, is going to become even less stable 

with climate change. To aid with future wheat breeding strategies we need to know how 

the relationship between host, pathogen and the environment is affected both now and in 

the future. 

 

 

 

 

Current wheat disease management strategies vary depending upon which pathogen needs 

to be controlled. Breeding for resistant cultivars is a long-practised method for dealing with 

disease out-breaks but this alone is not sufficient to eliminate risk. Fungicides delivered as 

spray for foliar diseases such as yellow rust, Septoria or powdery mildew or seed treatment 

Figure 1.1 The disease triangle (Stevens, 1960) 
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for seed-borne diseases are used, usually in combination with resistant cultivars, to prevent 

spread of disease. Disease forecasting is also important for timely application of fungicides 

(Hardwick, 2006). Crop rotation is another common practise to prevent build-up of soil 

pathogens for diseases such as eyespot or take-all. These practices are constantly adapting 

with time, due to development of new technology, social-economic factors and changes in 

local climate. It is essential that we understand how the environment affects diseases, to 

manage wheat agriculture in a changing climate. 

 

1.2 Plant disease and climate change 

Climate is changing and this will affect plant diseases (Chakraborty and Pangga, 2004; 

Coakley et al., 1999; Garrett et al., 2006; Scherm and Coakley, 2003). It is unknown how 

diseases will be affected, but it is likely that it will be detrimental to some pathogens and 

beneficial to others, depending on their ability to adapt or re-locate (Garret et al., 2009). 

The UK is likely to face the emergence of diseases that are currently not a major threat to 

the wheat industry. For example brown rust or leaf rust caused by Puccinia triticina is 

present in the UK but is not generally a threat. The disease develops most successfully 

when free moisture is available and temperatures are around 20°C (Prescott et al., 1986). 

Recent reports suggest that warming UK temperatures are encouraging new isolates of 

brown rust and increased disease outbreaks (Farmers Weekly, 2007; Allison, 2011). A more 

distant threat is stem rust disease, caused by Puccinia graminis, mostly absent from the UK 

at present and typically found in warmer climates (Davies et al., 2007). In contrast, levels of 

Stagonospora nodorum which causes wheat leaf and glume blotch have declined in the UK 

in recent years (Eyal, 1999; BASF Cereal Pests and Diseases) and consequently Septoria leaf 

blotch caused by Mycosphaerella graminicola has replaced S. nodorum in importance. 

Although there are many factors that influenced this shift from S. nodorum to M. 

graminicola (such as a shift from deployment of varieties that were more susceptible to S. 

nodorum and less susceptible to M. graminicola, to those with the opposite pattern of 

responses (Arraiano et al., 2009)) there is evidence that environmental factors were key 

(BASF, The Encyclopedia of cereal diseases; Bearchell et al., 2005; Shaw et al., 2008). 

Although caution needs to be exercised on whether environment changes are key to 

changes in pathogen equilibrium, it is likely that this will be a result of climate change. 
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Pathogen population changes will affect agricultural management, so it is important to 

identify potential threats (Juroszek and von Tiedemann, 2013). 

Harvell et al (2002) argue three hypotheses why pathogens will be influenced by climate 

change. They suggest that that rising temperatures will (i) increase pathogen development 

transmission, and generation number; (ii) increase overwinter survival and reduce growth 

restrictions during this period and (iii) alter host susceptibility. Indeed, there is plenty of 

evidence to suggest that environment can affect host defence directly (Huang et al., 2006; 

Plazek et al., 2001; Webb et al., 2010) but climate change will also influence crop 

physiology and canopy architecture (Pangga et al., 2013; Porter and Gawith, 1999; Savicka 

and Škute, 2010) which may indirectly affect plant disease levels by interfering with the 

pathogens’ ability to infect host tissue or by creating a different type of microclimate that 

influences pathogen spread.  Therefore consideration of host adaptation to environmental 

change is equally valuable in predicting future disease.  

UK Government risk assessments recognise that impact on plant disease is an important 

factor in how climate change will affect agriculture as a whole and that it should be 

incorporated into crop risk models. The risk assessment indicates that the evidence for 

impact is weak, but acknowledge that this is largely due to disease treatment methods and 

improved agronomy masking the effect of climatic factors (Knox et al., 2012). Essentially, 

researchers and breeders will need to work together to assess impact and generate 

solutions. A common way to study the effect of environment on plant disease is by using 

controlled environment facilities to manipulate environmental variables to see how disease 

is affected (Brennan et al., 2005; Johannessen et al., 2005; Monteiro et al., 2009). This 

approach limits the investigation to the effect of one environmental variable only, but is 

necessary to isolate impact of that variable alone. Another approach is to manipulate 

environmental variables in the field (Latva-Karjanmaa et al., 2003; Roy et al., 2004). These 

studies may be more informative but are difficult to control, and costly. Numerous studies 

have tried to predict outcomes by generation of models using a combination of historic 

disease records and current or future climate predictions (Butterworth et al., 2009; Evans 

et al., 2008; Hannukkala et al., 2007; Madgwick et al., 2011). It is well-recognised that the 

absence of long-term disease data sets makes this approach challenging (Jeger and 

Pautasso, 2008). These models are helpful to agriculture provided pathogens do not evolve 

to tolerate new conditions, as increasing evidence suggests (Mboup et al., 2012; Milus et al 
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2009; Milus et al 2006; Peduto et al 2013). What’s more, these approaches are generally 

concerned with the effect of environment on pathogen fitness and rarely consider the 

effect of environment on the crops’ ability to fight the disease. 

Several reports about the impact of climate change on specific diseases of wheat have been 

published in the last decade (Chancellor and Kubiriba, 2006; West et al., 2012). Most 

reports are undecided about future prevalence of specific diseases so it is important to 

continue to identify threats through modelling, so management strategies can be put into 

place. These strategies could be in the form of agricultural practices, fungicide 

development, or breeding of functional resistance in warmer, more variable climates. 

Breeding of new wheat cultivars currently takes between 10-25 years so it is essential that 

new approaches are discovered and implemented without delay. 

 

1.3 Climate change in the UK  

UKCP09 is the working name for UK climate projections (UKCP09, 2009) which is funded by 

the Department for Environment, Food and Rural Affairs (DEFRA). The public can access 

these projections freely through a website which can be used to produce customized data 

for a wide range of climate variables. UKCP09 is the fifth generation of climate information 

for the UK, and is the most recent and most comprehensive package available to date. The 

UKCP09 interface indicates that as the decade progresses, all of the areas in the UK are 

going to warm, more so in summer than in winter. Increases in mean temperature will be 

greatest in Southern parts of England and least in the Scottish Islands. The biggest change 

in precipitation during winter months is a decrease seen along the west side of the UK, 

while the most significant summer precipitation change is a decrease in the most southern 

parts of England (Murphy et al, 2009). Climate change is expected to increase average 

temperatures but an increase in the frequency of temperature extremes is also predicted 

(Semenov et al., 2007). UKCP09 predicts that by 2020, average annual temperature will 

increase by 1-3 °C and by 2080 it will have risen by up to 6 °C in some areas (Figure 1.2). 

Therefore heat and drought stress are the two main threats from both rising temperatures 

and reductions in precipitation frequency. While it is important to prepare wheat crops for 

both stresses, there is some evidence to suggest that heat stress, not drought, will be the 
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main concern of climate change impact upon wheat in Europe and the UK (Semenov et al., 

2008; Semenov and Shewry, 2011). In addition, due to predictions that precipitation 

changes will mostly be on the west side of the UK it may not be a key factor in preparing for 

impact of climate change on wheat diseases, considering the majority of UK wheat is grown 

in the East of England.  

Crops are constantly exposed to temperature changes in the field on a yearly, daily and 

hourly basis. Although day and night temperatures are generally different, the daily and 

hourly patterns can also be extremely variable. For example, whereas sometimes there 

may be very stable periods with similar day and night temperatures occurring over multiple 

days, other periods are more sporadic with many temperature fluctuations occurring 

throughout the period (Figure 1.3). Where research has been conducted on how variation 

in temperature affects wheat crops, the general consensus is that UK yields are predicted 

to decrease from the onset of increased temperature variation (Mearns et al., 1997; Moot 

et al., 1996; Semenov and Porter, 1995). Models constructed by Semenov and Porter 

(1995) predicted that changes in climate variability would have a more profound effect on 

wheat yields than changes in mean temperature. To date, no research that has been 

conducted into how pathogens or plant defence respond to variations in temperature, as 

opposed to constant temperature. 

 

1.4 Effect of environment on plant defence 

Environmental impact on plant defence is difficult to determine in the field due to 

complicating factors such as multiple climatic variables, varying disease levels and perhaps 

most importantly pathogen-environment interactions. These factors make it extremely 

difficult to tease apart which environmental variables are important in maintaining 

functional crop defence. Temperature is the most recognised environmental factor that is 

able to affect resistance, but other environmental variables have been implicated. For 

example, elevated CO2 can an affect resistance to Colletotrichum gloeosporioides in 

Stylosanthes scabra (Pangga et al., 2004), whilst leaf wetness duration has been shown to 

affect Rlm6-mediated resistance to Leptosphaeria maculans in Brassica napus (Huang et al., 

2006). Carson and Vandyke (1994) demonstrated that light levels influenced defence in Zea 
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mays to Exserohilum-turcicum and the effect of ozone levels on resistance to a variety of 

fungal pathogens on various cereals has also been implicated (Plazek et al., 2001).  

Plants have several layers of defence that provide protection against invading microbes.  

Pre-formed physical structures, for example cuticle thickness or leaf surface structures, can 

affect pathogen entry, and reduced access to nutrients can prevent proliferation.  Plants 

can also recognise conserved pathogen (or microbe)-associated molecular patterns 

(PAMPs/MAMPs) by pattern recognition receptors (PRRs) which results in PAMP-triggered 

immunity (PTI; Jones and Dangl 2006). PTI results in induced defences including cell wall 

reinforcement, production of antimicrobial compounds and stomatal closure, which are 

sufficient to repel or deter most invading microbes (Melotto et al., 2006; Schwessinger and 

Ronald, 2012; Zipfel, 2009). Virulent pathogens have evolved to suppress PTI with effectors 

that interfere with PRR function or downstream signalling components. This first layer of 

defence is known as basal defence. Another level of defence is provided by R proteins 

which detect these effectors in effector-triggered immunity (ETI), a type of resistance 

typified by hypersensitive response (HR) and cell death (Jones & Dangl, 2006). This race-

specific R-gene mediated resistance is complete but often short-lived due to mutation or 

loss of the specific effector from the pathogen (de Vallavieille-Pope et al., 2012; El Jarroudi 

et al., 2011).  

In contrast, quantitative disease resistance (QDR) or partial resistance does not convey 

complete resistance, but is considered more durable due to reduced pressure on the 

pathogen to overcome defence mechanisms (Kou and Wang, 2010). QDR resistance is 

associated with phenotypes such as a delayed latent period or reduced pustule size 

(Herrera-Foessel et al., 2012; Rubiales and Niks, 1995). Most R genes are predicted to 

encode proteins with nucleotide-binding site and leucine-rich repeat (NBS–LRR) domains 

for effector recognition. However cloning of wheat QDR genes Yr36 and Lr34 have 

revealed that these genes do not fall under the major NBR-LRR class of genes suggesting 

that QDR mechanisms may be fundamentally different from those of R genes (Fu et al., 

2009; Krattinger et al., 2009). QDR resistance may be conferred by a single or several 

genes (Ballini et al., 2008; Fu et al., 2009; Poland et al., 2009), and although currently not 

proved, some mechanisms of QDR conferred resistance may be provided by both the pre-

formed and inducible PTI components of plant defence (Lloyd et al., in press). The influence 
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of temperature on the activity of R proteins, QDR genes and, more recently, proteins 

involved in basal defence has been demonstrated (Fu et al., 2009; Huang et al., 2006; 

Krattinger et al., 2009; Upchurch and Ramirez, 2011; Wang et al., 2009; Zhu et al., 2010). 

R gene temperature sensitivity has been largely studied in model plant organisms. For 

example, the N gene of tobacco confers resistance to tobacco mosaic virus at 22°C but not 

at 30°C (Whitham et al., 1996). Likewise, the hypersensitive response conferred by 

Arabidopsis RPW8 gene against powdery mildew is suppressed at temperatures above 30°C 

(Xiao et al., 2003). Zhu et al (2010) identified NB-LRR receptor; suppressor of npr1-1 

constitutive 1 (SNC1) as a temperature sensor in modulation of Arabidopsis resistance and 

growth; considering snc1-1 mutants displays a constitutive defence response and growth 

defects at 22°C but not at 28°C (Yang et al 2004; Wang et al., 2009). The authors 

hypothesise that temperature sensitivity in plants is largely regulated by NB-LRR coding 

genes rather than other signalling components due to a similar mutation in the N gene of 

tobacco, resulting in the lose loss of temperature sensitivity (Zhu et al.,2010). However 

there is evidence to suggest that the concept is more ambiguous due to evidence that 

other alleles and loci are able to modulate temperature sensitivity (Negeri et al., 2013). 

There are many examples of mutants that convey both growth and defence phenotypes 

that are temperature sensitive (Hua et al., 2001; Ichimura et al., 2006; Shirano et al., 2002). 

Indeed, defence and growth are intrinsically linked in nature due to defence being costly by 

taking resources away from growth and reproduction (Brown, 2002; van Hulten et al 2006; 

Walters et al., 2008). A recent review by Alcázar and Parker (2011) proposes that 

temperature sensitivity of defence in plants may have evolved to enable a plant to adapt to 

its local environment by balancing resources between growth and defence. They point out 

that, in contrast, ‘priming’ of resistance whereby previous exposure of plants to stress 

enables a faster response to subsequent stresses appears to be less costly (Traw et al., 

2007). Since there is evidence that priming can enhance a plant’s response to both biotic 

and abiotic stresses, it is another example of how the environment can influence plant 

resistance upstream of specific NB-LRR receptors (Beckers and Conrath, 2007; Conrath et 

al., 2006).   

There are many additional examples of R genes that are inhibited by high temperature in 

Arabidopsis but it is difficult to find examples of lower temperatures inhibiting R gene 
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mediated or any other aspects of defence. In cereals however, there is evidence to suggest 

that low temperatures of less than 5°C can enhance resistance to several fungal pathogens 

in wheat, thought to be bought about by common biotic/abiotic stress pathways induced 

by exposure of plants to cold temperatures (Atkinson and Urwin, 2012; Ergon et al., 1998; 

Gaudet et al., 2011; Kuwabara et al., 2002). Therefore exposure of plants to the cold must 

be priming plant defence responses. 

Thus there is evidence that low and high temperatures affect different aspects of plant 

defence, but little insight into how ambient temperature changes might influence plant 

defence pathways. Ambient temperature perception in plants is well recognised and 

plants have been shown to be able to detect temperature changes as little as 1°C (Argyris 

et al., 2005). There are many examples of developmental processes that take signals from 

ambient temperature cues such as flowering time, germination and circadian clock 

entrainment (Gimenez Luque et al., 2013; Kumar et al., 2012; Michael et al., 2008). 

Increased spread of viruses has long been correlated with low temperatures (Gerik et al., 

1999; Zhang et al., 2012). It has previously been shown that RNA silencing plays a role in 

plant defence against viruses (Burton et al., 2000; Ratcliff et al., 2001). Temperature may 

be  crucial to the virus induced silencing of plant defences since amounts of small 

interfering (si) RNAs increase with temperature (Chellappan et al., 2005; Szittya et al., 

2003). In contrast, Zhong et al (2013) have more recently shown that an increase in 

temperature inhibits gene silencing. Lately, Kumar and Wigge (2010) revealed that H2A.Z-

containing nucleosomes are responsible for regulation of the temperature transciptome in 

Arabidopsis. Further research might uncover a role for chromatin re-modelling in plant 

defence response to ambient temperature changes. In the study by Kumar and Wigge 

(2010), it was shown that HSP70 transcript is strongly up-regulated when plants are 

shifted from temperatures of 12°C to 27°C, and that the transcript is expressed 

proportionally within that range, making it a useful tool for measuring a plant’s ambient 

temperature perception in many species.  
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1.5 Rust resistance as a model for investigating effect of temperature on 

wheat defence   

In the 1980s and 1990s, several studies were carried out to investigate the effect of 

temperatures on various QDR resistance genes in wheat. Most of these investigations were 

done with the interaction between wheat and various fungal rust pathogens (Dyck and 

Johnson, 1983; Gousseau and Deverall, 1987; Pretorius et al., 1994; Ramage and 

Sutherland, 1995). Rusts are among the most economically important and widespread 

diseases of wheat worldwide. There are three major rusts of wheat; stem rust caused by 

Puccinia  graminis f. sp. tritici, leaf rust or brown rust caused by P. triticina and yellow or 

stripe rust caused by P. striiformis f. sp tritici (Pst). Yellow rust is currently the most 

economically important rust fungus in the UK, naturally preferring cooler, wetter 

conditions than the other rusts (Boyd 2005).  

Dyck and Johnson (1983) identified several leaf rust QDR genes as sensitive to temperature 

whilst other QDR genes appeared insensitive, maintaining a constant resistance phenotype 

across temperature regimes, confirming that plants naturally have both temperature and 

non-sensitive resistance mechanisms. Ramage and Sutherland (1995) observed a difference 

in temperature sensitivity to different rust species from broad-spectrum QDR resistance 

conferred by Lr20/Sr15. The resistance conferred by this gene was more sensitive to 

temperature when challenged with P. graminis than when challenged with P. triticina. If a 

single gene product is responsible for resistance to both rust types, this indicates that 

temperature-sensitive resistance conferred by Lr20/Sr15 must be specific to one type of 

rust. A similar differentiation in temperature sensitivity of Sr9b was observed when wheat 

plants were challenged with different isolates of P. graminis, emphasizing that differences 

can be seen at an isolate level in addition to a genus level (Gousseau et al., 1985). These 

observations support the hypothesis that temperature-sensitivity in plants is largely 

regulated by NB-LRR coding genes rather than other signalling components if Lr20/Sr15 

does encode two independent NB-LRR containing proteins. However if Lr20/Sr15 encodes 

the same NB-LRR protein or something fundamentally different then the argument put 

forward by  Zhu et al (2010) is not as straightforward as specific NB-LRR proteins being 

responsible for defence temperature sensitivity in plants. Gousseau et al (1985) argued 

that the temperature sensitivity of R genes must be due to the ability of the gene to 
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recognise the pathogen considering they saw differences between isolates but again, this 

hypothesis assumes that Sr9b is involved in recognition. Interestingly, Dyck and Johnson 

(1988) saw that resistance to leaf rust conferred by Lr20 displayed a much stronger 

temperature sensitivity in one wheat cultivar compared to others, suggesting that other 

parts of the defence signal cascade may be affecting Lr20-conferred resistance 

differentially between lines. The literature reveals that there are clear differences between 

temperature-sensitivity in R genes and/or QDR genes, and that this temperature sensitivity 

may vary between different cultivars. As our understanding of resistance has advanced, 

further investigation of temperature sensitive defence genes in wheat is long overdue. 

Yellow rust is a biotrophic fungal pathogen caused by Pst and is considered one of the most 

damaging diseases of wheat on a global scale. Indeed yield losses can be up 70% in extreme 

cases resulting of world losses of up to 20 million tonnes per annum (Clark, 2009; Chen 

2005; Kosina et al., 2007). Yellow rust is becoming more prevalent, possibly due to the 

evolution of more aggressive isolates which have evolved to tolerate higher temperatures 

(Markell and Milus, 2008; Singh et al., 2011). In parallel, several major sources of wheat 

resistance to Pst have broken down in recent years (El Jarroudi et al., 2011; Rush, 2013; 

Clarke, 2012). These developments hasten the need to identify more effective and durable 

sources of resistance. 

Several yellow rust QDR genes have also been identified in wheat as temperature-sensitive 

in that they perform better at higher or lower temperatures. Yellow rust resistance genes; 

Yr36 and Yr39 were initially designated high temperature adult plant (HTAP) genes due to 

evidence that higher temperatures are crucial to their function but can only confer 

resistance at later growth stages (Lin and Chen, 2007; Uauy et al., 2005). However, Yr36 

was later shown to confer superior temperature-dependent resistance at all growth 

stages when exposed to temperatures over 20oC (Fu et al 2009). Cloning and sequencing 

of Yr36 (WKS1) revealed that the gene includes a kinase and a putative START lipid-binding 

domain, and that both are necessary to confer resistance to Pst. Further investigation 

revealed six alternative transcript variants designated WKS1.1 to WKS1.6. Upon Pst 

challenge, WKS1.1 was shown to be up-regulated, whereas WKS1.2-6 transcripts were 

down-regulated. In addition, WKS1.2–6 encode proteins with truncated START domains 

whereas WKS1.1 encodes a complete WKS1 protein. Experiments done with temperature 
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cycles from a minimum of 10°C to a maximum of 35°C revealed a higher expression of 

WKS1.1 transcript at higher temperatures relative to WKS1.2-6  transcript. The authors 

postulated that the START domain may have the ability to bind lipids from Pst at high 

temperatures and that a subsequent change in confirmation of the domain could initiate a 

signal cascade leading to programmed cell death, revealing  a possible reason for 

temperature sensitivity of Yr36 resistance to Pst (Fu et al., 2009). However the genuine 

mechanism for the resistance conveyed by Yr36 is still to be determined.  

In contrast to Yr36, evidence suggests Lr34/Yr18 provides stronger resistance at lower 

temperatures, although the scope of how these resistance mechanisms relate to 

temperature is poorly-understood (Broers and Wallenburg, 1989; Plotnikova and Stubei, 

2013; Pretorius et al., 1994; Rubiales and Niks, 1995). Lr34/Yr18 is broad-spectrum and 

provides resistance against not only yellow rust, but also leaf rust and powdery mildew 

(Lillemo et al, 2008) although it is not known whether the temperature sensitivity of this 

gene is conveyed by challenge with all three pathogen types. Resistance gene Lr34/Y18 is 

already well-established, with wheat cultivars containing this gene occupying more than 26 

million hectares in various developing countries alone (Krattinger et al., 2009). Due to 

resistance of this gene being linked to cooler temperatures, it may be more suited to the 

UK climate, although it is not currently deployed here (Kolmer et al., 2008). Yr36 has been 

introduced into many varieties worldwide through the introgression of the closely linked 

Gpc-B1 gene (Kumar et al 2011; Randhawa et al., 2013; Tabbita et al., 2013), but its 

effectiveness and longevity in the field is yet to be determined. Several cultivars have been 

identified as containing unknown yellow rust temperature sensitive resistance genes, 

suggesting they are generally widely deployed in agriculture (Feng et al., 2011; Wan et al., 

2000; Zhang et al., 2011). Webb et al (2010), propose that temperature sensitivity in QDR 

genes contributes to longer durability by reducing selection pressure on the pathogen 

population due to variability in disease levels between the hot and cold growing season. 

However, durability may also be due to the fact that they cannot be overcome by point 

mutations in the pathogen. Hypotheses about the evolutionary development of QDR-

mediated defence at specific temperatures have been advanced. The wheat host may have 

evolved to take advantage of the warm weather conditions later in the growing season 

with resistance traits to win the battle against pathogen attack (Chen, 2013). In support of 

this, Wang et al (2009) propose that the ability to modulate defence expression could 
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provide enhanced resilience during the co-evolution between plants and their pathogens, 

due to evidence that some virulence factors are secreted most readily at temperatures 

below the optimum growth temperature for the plant (Smirnova et al., 2001). If expression 

of resistance is costly, then plants may have evolved temperature sensitive resistance 

genes to protect them against a particular pathogen within temperature ranges where they 

are at risk from invasion with the given pathogen (Figure 1.4, Alcázar 2011). However some 

temperature-sensitive resistances protect against multiple pathogens, so evolution cannot 

be due to this reason alone (Uauy et al., 2005; Krattinger et al., 2009). Importantly, Wang 

et al (2009) point out that there is no evidence that defence against necrotrophs is affected 

by temperature. Temperature modulation of resistance may therefore be a host strategy to 

deal with different types of pathogen with different virulence types attacking at different 

times. There is already evidence that plant resistance is tied into the circadian clock and 

that plants may be able to perceive an attack at dawn when pathogens are more likely to 

strike (Zhang et al., 2013; Wang et al., 2011). If this is the case then plants could also be 

using temperature to cue when to expect a challenge from a specific pathogen isolate or 

type. These hypotheses suggest that temperature-sensitive resistance genes could be 

useful in agriculture because they may be more durable. However before consideration for 

deployment of novel sources, more research is needed to evaluate how reliable they are in 

unpredictable weather conditions and their agricultural potential in the field.  

Further exploration of environmental impact on plant defence will be essential to breeding 

management strategies, considering plant evolution can be controlled far more readily 

than pathogen evolution. Resistance to yellow rust research has been advanced in recent 

years, and with cloning of temperature sensitive QDR genes Yr36 and Lr34, the interaction 

between wheat and Pst makes for an ideal system to study defence temperature sensitivity 

in wheat. 

 

1.6 Effect of environment on plant pathogens 

If resistance is temperature-sensitive and can be investigated and manipulated to manage 

disease outbreaks, then this will be a useful tool for dealing with climate change. However, 

resistance to some diseases is not available in modern wheat varieties and therefore has to 
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be controlled by other agricultural management techniques such as crop rotation or 

fungicides. Take-all disease, which is caused by Gaeumannomyces graminis var. tritici (Ggt), 

is a rare example of a disease where there is little genetic variation in resistance amongst 

common wheat cultivars (Cook, 2003; Ennaifar et al., 2007; Kwak et al., 2009). There is a 

great deal of uncertainty about how climate change will affect soil pathogens although it is 

logical that they will increase due to predicted milder, wetter winters in the UK (Murphy et 

al., 2009). Development of take-all disease specifically is encouraged by warm winters and 

wet springs (HGCA, 2006).  An example such as this is where it would perhaps be most 

useful to see how the environment affects disease outbreaks in order to prepare for 

climate change, especially considering a DEFRA funded project has already identified take-

all as an increased risk in 2030 and 2050 using UKCP09 (Thomas et al., 2010).   

In addition to extreme, temporary temperature changes, it is the impact of subtle changes 

in mean temperature (of only a few degrees) on plant pathogens that necessitate 

investigation. Although seemingly insignificant, an increase of as little as 1°C in mean 

temperature has been shown to reduce rice yields by as much as 10% (Peng et al., 2004). 

Brennan et al (2005) investigated how a change of 4°C could affect Fusarium head blight 

disease in wheat. Findings suggested that 4°C was enough to see a difference in disease 

levels, but differences between cultivars and Fusarium isolates were not consistent, 

suggesting that temperature was also affecting plant resistance or susceptibility. The 

results also indicate that different disease-causing isolates vary in their temperature-

sensitivity. Most pathogens have a temperature range which is optimal for their 

proliferation in the host. Within this range, disease severity may be affected but a 

threshold is met when pathogen proliferation starts to decline rapidly due to intolerance of 

high or low temperatures (Magarey et al., 2005). Temperature increases bought about by 

climate change will have a more severe affect on pathogens if they are maintained above 

optimum temperatures conducive to pathogen development and spread. Pathogens that 

occur nearer the equator are exposed to narrow temperature ranges, while pathogens at 

increased latitudes have evolved to tolerate more variable temperatures on a daily and 

seasonal basis. For this reason, the strongest effect of climate change is expected to be in 

the tropics due to pathogens in this region being already close to their tolerance threshold 

(Ghini et al., 2011). Increased overwintering of pathogens due to milder temperatures is 

likely to increase disease levels in the subsequent year, however this may be in conjunction 
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with increased decline of pathogens during summer months due to higher temperatures. 

There is evidence to suggest that pathogens are evolving to tolerate higher temperatures; 

for example, Milus et al (2006) found that new isolates of Pst in the US were more 

aggressive and tolerated higher temperatures than isolates obtained earlier. In support of 

this, a study by Peduto et al (2013) showed that Erysiphe necator which causes powdery 

mildew on grape plants was surviving at higher temperature than previously shown, 

indicating that new isolates are evolving to tolerate the high temperatures. It would be 

valuable to know whether pathogens can evolve to tolerate both higher and lower 

temperatures simultaneously, or whether adaption to one extreme comes with a cost of 

intolerance to the other. The argument that adaption to one environment reduced fitness 

to another has been presented by Kawecki and Ebert (2004). A study by Mboup et al (2012) 

shows that Pst isolates that are adapted to the South of France and therefore tolerant to 

higher temperatures, are still able to colonise in Northern France where temperatures are 

cooler, although as expected they colonised plants more successfully in the South. If 

pathogens generally become more aggressive when adapting to higher temperatures the 

outlook does not look good and may explain why we are seeing increasing threat from 

specific pathogens strains such as stem rust Ug99 isolates (Singh et al., 2011).        

Based on this evidence, is it possible that instead of currently problematic diseases being 

replaced by newer ones better adapted to the new UK environment, will we face both new 

diseases and increasingly aggressive isolates of existing pathogens? This is unlikely due to 

the natural population balance and it is more plausible that the best adapted pathogens 

will win the battle against less adapted types, even if the newly-adapted types are more 

aggressive. It will be valuable to know which pathogens will win the race for development 

of fungicides, new cultivars and cropping systems. 

 

1.7 Research aims 

The ultimate aim of the work presented in the following chapters is to explore different 

approaches of investigating how climate change will affect diseases of wheat, with primary 

focus on temperature. The first approach involves looking at how defence against Pst in 

wheat is affected by current temperature variables to identify ways that this could be 
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manipulated to improve disease resistance that is resilient to changing temperatures. The 

second approach looks primarily at how increased temperature affects take-all disease. 

These approaches will be critically analysed to determine the best way to prepare for 

climate change impact on plant diseases. 

 

1.7.1 Effect of temperature changes in defence against Pst 

Although plant defence gene function is clearly affected by environmental signals, very 

little work has been done in trying to understand precise environmental conditions and 

sustained condition periods required to maintain function. It is apparent that some R gene 

resistance mechanisms are dependent on temperature, but it is not known how long the 

plant must be maintained in an environment and whether a temperature threshold exists 

for resistance to be sustained. Also, previous studies have mostly focused on how average 

temperature affects resistance but this research is primarily concerned on how a change in 

temperature or continual temperature variation is affecting resistance. Concerns over 

control of yellow rust, and the recent characterisation of temperature-sensitive Pst 

resistance make this patho-system ideal for the investigation. 

 Yr36 has been shown to be temperature sensitive, but its potential in UK agriculture has 

yet to be demonstrated, and is the starting point for this investigation. It has been shown 

that Yr36 confers resistance if day temperatures are above 20°C (Uauy et al., 2005; Fu et 

al., 2009). Initial work addresses the performance of Yr36 at different and changing 

temperatures. For example, if plants are grown in one temperature regime and transferred 

to the later, how long is the effect of Yr36 sustained? Qayoum and Line (1985) reported 

that HTAP conferred resistance was not sustained when plants were returned to lower 

temperatures, however this study was done using lines with unknown HTAP resistance so it 

is difficult to draw any general conclusions. During the investigation, an effect of 

temperature change on resistance was established, although this was shown to be 

independent of Yr36. Subsequent work aimed to explore the basis for this, addressing 

hypotheses that may account for the observation.  
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1.7.2 Impact of climate change on the incidence of take-all 

The other thread of this thesis focuses on looking at how temperature affects disease levels 

of take-all which cannot be controlled by breeding for resistance. The aim is to combine 

historical datasets for disease incidence with meteorological records to identify important 

factors in disease spread. The work will assess to what extent the data from different 

regions can be combined to make predictions about whether future climate will influence 

spread. Moreover, the thesis will determine how the results could be combined with 

climate model UKCP09 to accurately predict regions that will experience an increased 

threat from take-all with climate change.  

Finally, the methodological approaches throughout the thesis will be critically assessed, as 

the overall aim of this thesis is to explore different ways in how best we can prepare wheat 

from the threat of disease under climate change. 
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Chapter 2: Materials and Methods 

2.1 Materials 

2.1.1 Plants 

Wheat varieties (Triticum aestivum) were obtained from various sources and summarised 

in Table 2.1.  

 

2.1.2 Bacterial Strains 

Pseudomonas syringae pv. oryzae strain Por36_1 was obtained from Dr Kee Sohn, The 

Sainsbury Laboratory, Norwich, UK and was originally described by Hwang et al., (2005). 

 

2.1.3 Fungal isolates 

Yellow rust (Puccinia striiformis f. sp. tritici) race 08/21 was isolated in 2008 from wheat 

cultivar Solstice and race 08/11 was isolated from cultivar Warrior. Both isolates were 

provided by NIAB, Cambridge, UK 

Take-all (Gaeumannomyces graminis var. tritici) strains were isolated at Rothamsted 

Research farm, Harpenden, UK in 2010. 

Powdery mildew (Blumeria graminis f. sp. tritici) isolate JIW48 was provided by Margaret 

Corbitt, John Innes Centre.  

Spores of Fusarium culmorum isolate Fu 42 were provided by Andy Steed, taken from the 

John Innes Centre Facultative Pathogen Collection. 

 

2.1.4 Chemicals and antibiotics 

All chemicals were from Sigma Aldrich (St. Louis, MO, USA) unless otherwise stated. 

Antibiotics were as follows: ampicillin (Sigma Aldrich), nystatin (Melford Laboratories Ltd) 
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rifampicin (Duchefa, Haarlem, The Netherlands) and streptomycin (Fischer Scientific, 

Leicestershire, UK). 

  

2.1.5 Pathogen culture media and buffers 

KB (Kings B Medium, King et al., 1954) 

 Formula per 1 litre de-ionised water: 

 20 g Protease Peptone 

pH 7.2  

 For solid 15 g M agar 

 

Mildew culture medium (Boyd et al., 1994) 

Formula per 1 litre de-ionised water: 

 0.1 g benzamidazole  

5 g M agar 

PDA 

Formula per 1 litre de-ionised water: 

39 g Potato dextrose agar  

 

PDB 

Formula per 1 litre de-ionised water: 

12 g Potato dextrose broth 

 

Sand-maize meal medium 

 Formula per 1 kg 
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 900 g Sand 

 100 g Maize meal  

 200 mL sterile de-ionised water 

TE  

Formula per 1 litre de-ionised water: 

1.21 g Tris  

 

V8TM (Campbell Soup Co.) medium  

Formula per 1 litre de-ionised water: 

200 mls V8TM juice  

18 g M agar 

 

Water agar 

Formula per 1 litre de-ionised water: 

 30 g agar 

 

2.1.6 Plant growth media 

 

Cereal mix 

40% Medium Grade Peat 

40% Sterilised Loam 

20% Horticultural Grit 

1.3kg/m³ PG Mix 14-16-18 + Te Base Fertiliser 

1kg/m³ Osmocote Mini 16-8-11 2mg + Te 0.02% B 

Wetting Agent 
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3kg/m³ Maglime 

300g/m³ Exemptor  

 

2.2 Methods 

2.2.1 Plant growth 

Seed surface sterilisation: 

When required, seeds were sterilised by washing seeds in bleach containing approximately 

1% sodium hypochlorite for 2 mins, followed by washing with 70% ethanol for 1 min. 

For disease tests: 

Seeds were sown directly into cereal mix in plantpak (p)15 cells, (p)24 cells or 1 litre pots 

depending on final experimental growth stage required. Watering was as required. 

For seed bulking: 

Seeds were placed on damp filter paper and kept in the dark for 6-8 weeks to allow for 

vernilisation requirement (when required). Seeds were then transferred to 1 litre 

containing cereal mix and grown under glasshouse conditions. 

 

2.2.2 Temperature regimes  

CE facilities: 

After sowing plants for controlled environment experiments were grown in CERs or CE 

cabinets from Sneijder (Tilburg, The Netherlands) or Sanyo (Gallenkamp PLC, UK). The 

various regimes used are outlined in each chapter. 

CE monitoring: 

CE room or cabinet humidity and temperature were frequently monitored using SL54TH® 

data loggers (Signatrol Ltd, Tewkesbury, UK). Light level consistency between cabinets was 

also checked using a Quantitherm light/ temperature sensor (Hansatech Instruments Ltd, 

Pentney, kings Lynn, UK). Controlled environment facilities were often changed between 
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experimental repeats to account for other environmental variables due to the nature of the 

experiments. 

 

2.2.3 Pathogen isolation and maintenance  

2.2.3.1 Yellow rust (Pst) 

Bulking and maintenance: 

Spores were maintained under liquid nitrogen vapour and Solstice plants were used to bulk 

spores as required. Plants were grown for 2 weeks under glass house conditions. Plants 

were sprayed with H2O containing Tween20 ® (0.01 % v/v) to encourage spore 

attachment and germination, then inoculated using a spore/talc mixture at a ratio of 1:1. 

Plants were incubated in darkness for 24 hrs at 12°C, 100% humidity. Plants were then 

returned to the glasshouse chamber. Spores were harvested from 14 days and either used 

immediately or stored in liquid nitrogen vapour until required. 

 

2.2.3.2 Take-all (Ggt) 

Isolation: 

Ggt strains were isolated from various wheat plants in fields collected from Rothamsted 

Research farm. Plant roots were washed for 2 mins in 100% ethanol followed by a wash 

with 1% sodium hypochlorite with a drop of Tween® 20. Roots were then rinsed three 

times in sterile water and cut into small pieces and placed on PDA containing 100 µg mL-1 

streptomycin 100 µg ml-1 ampicillin. Plates were incubated in darkness at 20°C. After 4 

days, plugs of mycelium were taken from the root sections and transferred to fresh PDA. 

After a further 9 days, mycelium was transferred to conical flasks containing PDB and 

shaken in darkness at 20°C for 5-7 days. Mycelium in a liquid culture was removed from the 

flask and drained using sterile filter paper and divided for use in either re-inoculating fresh 

root tissue or DNA extraction. The fresh mycelium was mixed with sterile vermiculite and 

placed in Falcon tubes into which sterile Herewood seeds were placed and incubated at 

20°C for 2 weeks. All roots grown in different inoculum sources made up from various 

isolates developed take-all disease-like symptoms. 
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DNA extraction and sequencing: 

Mycelium for DNA extraction was freeze dried for two days before being ground using the 

same procedure as in section 2.2.5. DNA was extracted using DNeasy Plant Mini Kit 

(Qiagen) and subsequently amplified by PCR using ITS primers (1a and 1b in Table 2.2) and 

cycling conditions detailed in Daval et al (2010). PCR products were used as a template in 

the BigDye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Foster City, CA, 

USA) according to manufacturers instructions. Sequencing analysis was performed by 

Genome Enterprise Ltd (John Innes Centre). All sequences were most closely matched to 

Ggt species when a BLAST (NCBI; http://blast.ncbi.nlm.nih.gov/Blast.cgi) search was 

performed.  

Maintenance: 

Ggt strains were maintained under oil submersion at 4°C. When required, strains were sub-

cultured onto PDA plates and plugs were taken from the edge of the new colony to reduce 

growth restriction from oil.  

 

2.2.3.3 Powdery mildew (Bgt) 

Maintenance: 

The isolate was maintained on detached wheat leaves of the cultivar Cerco and transferred 

to fresh leaves every 2-3 weeks. Leaves were inoculated using an assay adapted from Boyd 

et al (1994) where leaf tissue was cut from plants and placed in boxes containing mildew 

culture media and spores from previous leafs were tapped onto new leaves.   

 

2.2.3.4 P. syringae 

Antibiotic resistance selection and maintenance:  

P. syringae isolate Por36_1 was initially screened for colonies with rifampicin resistance. 

Resistant bacteria was maintained as a glycerol stock (15%) and streaked onto KB agar 

plates containing 50 mg/l rifampicin and 25 mg/l nystatin no more than 24 hrs before 

needed.  
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2.2.3.5 Fusarium culmorum 

Maintenance: 

F. culmorum conidia were suspended in ddH2O and stored at -20°C until required. 

2.2.4 Microscopy 

Tissue preparation and staining: 

Leaf segments were harvested at various time points post inoculation and prepared for 

microscopy using a method adapted from Ayliffe et al., (2011). For removal of chlorophyll, 

samples were left to clear overnight in 12 mL of 1 M KOH with 2 µL of Tween20 ® at 37°C. 

The tissue was rinsed three times in 50 mM Tris at pH 7.5, followed by staining with WGA-

FITC at 1 mg mL-1 (made up with 50 mM Tris) for 1 hr.  

Slide preparation and viewing: 

The tissue was mounted on a slide and observed under fluorescent light (465-495nm > 

515-555nm) using a fluorescence microscope (Nikon 800 Eclipse; Nikon Precision Europe 

GmbH, Langen, Germany) at 10X or 20X magnification. Images were captured using a 

Pixera Pro ES600 (World Precision Instruments, Stevenage, UK). 

 

2.2.5 Sampling tissue, storage and grinding 

Leaf tissue was flash frozen in liquid nitrogen and stored at -80°C prior to RNA or DNA 

extraction. Tissue was ground by adding two 5 mm cone grinding balls (Retsch®) and 

shaken for 2 mins at an oscillation speed of 50 1 s-1 using a tissue lyser LT (Qiagen). 

 

2.2.6 Wheat Genotyping 

DNA was extracted from plant tissue of seedlings of near isogenic lines UC1041 +/- Yr36 by 

macerating leaf tissue in Eppendorf ® tubes with a mini pestle then adding 300 µL of buffer 

made up with 200 mM Tris HCl pH7.5, 250 mM NaCl, 25mM EDTA with 0.5% SDS. Leaf 

tissue was further ground and vortexed then spun at 13 rpm for 1 min. 300 µL of solution 

was transferred to a new tube containing an equal amount of isopropanol and substrate 

was mixed and incubated at room temperature for 2 mins. Samples were spun again at 13 
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rpm for 5 mins, washed with 75% ethanol, dried and re-suspended in 100 µL TE buffer. 1 µL 

of a 1:20 dilution of the DNA was used in a 20 µL PCR reaction with 1 μL of each primers 3a 

and 3b and 3c from Table 2.2 at 10 μM, 1 μL of dNTPs, 2 μL of PCR reagent mix (Qiagen), 

13.8 μL of dH2O and 0.2  μL of Taq polymerase (Qiagen). Samples were also amplified with 

a reference gene primer from Table 2.3 to confirm that the reaction had worked for the -

Yr36 line. Cycling conditions were as follows: an initial denaturation step of 94 °C for 4 

mins, followed by 40 cycles of 94°C for 30 secs, 60 °C for 30 secs and 72 °C for 1 min; 

followed by extension at 72°C for 10 mins. 6 X loading buffer (0.1 M EDTA, 0.1% 

bromophenol blue, 0.1% xylene cyanol, 30% glycerol) was added to nucleic acid samples 

before they were run on an agarose gel containing ethidium bromide to check for the 

presence or absence of the Yr36 gene. 

 

2.2.7 RT-qPCR 

Isolation of plant RNA: 

Tissue was ground using the method detailed in section 2.2.5. RNA was extracted from a 

maximum of 100 mg of leaf tissue using RNeasy Plant Mini Kit (Qiagen) or TRI-Reagent® 

(Sigma-Aldrich) according to manufacturer’s instructions excluding the use of β-

mercaptoethanol.  

First strand cDNA synthesis: 

Prior to cDNA synthesis, contaminating DNA was removed from RNA samples by treating 

with Ambion® Turbo DNA-freeTM (Life Technologies Ltd) according to the manufacturer’s 

instructions. RNA was quantified using a Picodrop® spectrophotometer (Picrodrop Ltd, 

Cambridge, UK), discarding any samples that did not fall between 1.8 and 2.0 of the 

OD260/OD280 ratio. Samples were adjusted to the same concentration to allow a total of 1 

µg of RNA for the cDNA synthesis. First-stand cDNA was synthesised from RNA using the 

SuperScriptTM III First Strand Synthesis System (Invitrogen) in RT-PCR. 1 µg of total RNA with 

both oligo dT and random primers in equal measures was used in a 20 µL reaction following 

the supplier’s instructions. To determine whether there was any RNA remaining in the end 

product, a control for each experiment was formed by following the supplier’s instructions 

with the exception of adding dH2O instead of SuperScriptTM III. The control was run 

alongside samples in the PCR reaction.    
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Quantitative RT-PCR (qRT-PCR) and qPCR: 

5 μL of a 1:20 dilution of the cDNA or DNA was used in a 20 µL PCR reaction with 0.4 μL of 

each primer at 10 μM, 10 μL of SYBR® Green JumpStartTM Taq Readymix (Sigma-Aldrich) 

and 4.2 μL of dH2O. Two PCR replicates of each sample were run using the DNA engine 

Opticon 2 Continuous Fluorescence Detector (MJ Research Inc, Alameda, CA, USA). Cycling 

conditions were as follows: an initial denaturation step of 95 °C for 4 mins, followed by 40 

cycles of 94°C for 30 secs, 60 °C for 30 secs and 72 °C for 30 secs; followed by extension at 

72°C for 10 mins.  

Quantitative qRT-PCR analysis: 

Where possible, all samples were run on the same plate with reference genes for each 

experiment. When this wasn’t possible, amplification of each gene was done separately. A 

melt curve analysis was performed (65-95°C) to distinguish PCR products from 

amplification artefacts and data were analysed using Opticon Monitor analysis software 

v3.1 (MJ Research Inc). The average Ct (threshold cycle) was calculated from two technical 

replicates of each sample and the RNA transcript levels were normalized to the geometric 

mean of the most (or two most) stable reference genes in the given experiment (see 

section 2.2.8 for selection method). Normalised expression data were plotted directly or 

relative expression was calculated from normalised expression ratios (Pfaffl et al., 2001). 

 

2.2.8 Primers 

See Tables 2.2 and 2.3 for details and origin of primers used in various experiments. 

Primer design: 

Primers were designed using sequence data from the location specified in Table 2.2 and 2.3 

using primer3 v4.0 (Rozen and Skaletsky, 2000). Primer efficiency was calculated for each 

primer using a classical calibration dilution curve and slope calculation (http://www.gene-

quantification.info/). 

Reference gene selection and data analysis: 

For each experiment, up to five reference genes were tested to determine the most stable 

in the given treatments. The stability of reference genes was tested using genorm v3.5 

(http://medgen.ugent.be/~jvdesomp/genorm/; Vandesompele et al., 2002).  

http://medgen.ugent.be/~jvdesomp/genorm/
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2.2.9 Data analysis 

Data were analysed using the statistical package Genstat for Windows, release 12 (VSN 

international, Hemel Hempstead, UK) or Excel (Microsoft Office 2007). Details on specific 

tests are provided in each chapter. Prior to statistical analysis, all data were checked for 

normal distribution using the Genstat inbuilt “model checking” function. Data that were 

not normally distributed were transformed using the method detailed in each section. 

Residuals from analysis of variance were also checked for normal distribution. 

  



Chapter 3 

 

 

 
43 

 
 

Chapter 3: Exploring the nature of temperature sensitive 

resistance to yellow rust in wheat  

3.1 Aim: 

The work described in this chapter was undertaken to investigate the nature of 

temperature sensitive gene Yr36 to assess its potential in UK agriculture. 

 

3.2 Introduction 

The nature of yellow rust and the importance of incorporating new sources of resistance 

into the gene pool have been outlined in chapter one. Included are several yellow rust 

resistance genes that have shown temperature sensitivity in wheat. HTAP Yr36 was 

mapped in Triticum turgidum ssp. dicoccoides to chromosome 6B (Uauy et al., 2005). The 

gene was later cloned and found to include a kinase and a putative START lipid-binding 

domain which increased plant resistance at higher temperatures (Fu et al., 2009). Yr36-

mediated resistance is effective when day temperatures are maintained at 25°C or reach a 

maximum of 35°C. However the resistance is not effective when day temperatures are 

maintained at 20°C, suggesting that exposure to temperatures above 20°C are crucial for it 

to function (Uauy et al., 2005). Yr36 is not commercially deployed at present  but has been 

introduced into many varieties worldwide through the introgression of the closely linked 

Gpc-B1 gene (Kumar et al., 2011; Randhawa et al., 2013; Tabitta et al., 2013). However it is 

unclear whether the alleles would be of value in the UK as temperatures are usually cooler 

than in other wheat growing areas of the world. The temperature sensitive nature of HTAP 

resistance gene Yr39 was also briefly investigated after initial observations with Yr36 (Lin 

and Chen, 2007). Yr39 confers a similar level of resistance to Yr36 and is also a major effect 

QTL (Coram et al., 2008).  

This chapter includes an investigation of early stage Pst colonisation by microscopy. Pst can 

infect wheat plants at any growth stage provided the tissue is green (Chen 2005). 

Urediospores germinate on the wheat leaf surface, forming a germ tube that enters the 

plant through the stomata. Once inside, a sub-stomatal vesicle (SSV) is formed within the 

stomatal cavity from which infection hyphae form. A haustorial mother cell is formed at 

the end of each infection hyphae upon contact with a plant mesophyll cell. An infection 
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peg breaches the plant cell wall forming a fungal feeding structure, known as a 

haustorium, within the cell. Further hyphae develop from the infection hyphae and 

proliferate throughout the leaf (Hovmoller et al., 2011). A graphical representation of how 

Pst invades host tissue is shown in Figure 3.1. Approximately two weeks after the pathogen 

has entered the plant cells, visible symptoms can be seen either as chlorosis or as pustules 

forming on the leaf surface in susceptible wheat cultivars. In cultivars containing specific R 

genes, Pst is able to enter the plant cells and form haustoria, but HR-triggered cell death 

prevents further infection spread usually within 48 hrs (Wang et al., 2013b). This response 

can usually be detected visually as necrotic tissue begins to develop around the area of 

infection. In contrast, although Pst can form pustules in cultivars with QDR, symptoms are 

less severe and develop later than those on susceptible varieties (Krattinger et al., 2009; 

Qamar et al., 2012; Uauy et al., 2005). 

Investigations on temperature-sensitive resistance genes have explored which 

temperatures are important for gene function, but little attention has been paid to the 

longevity of gene function when plants are exposed to a temperature, crucial for function, 

for a set time period and then removed from it. Temperature regimes based on those used 

in Uauy et al., (2005) and Fu et al (2009) were used to address this question. Results reveal 

that resistance conferred by Yr36 in hexoploid breeding line UC1041 is compromised by a 

change in temperature rather than prolonged exposure to a lower temperature as 

previously reported. Findings reveal a background-sensitivity to temperature changes in 

UC1041 which was further investigated. Results uncover when a change in temperature 

in UC1041 is important and when it can first be detected microscopically. Results also 

show that sensitivity to temperature changes may vary between cultivars, so could 

inform breeding to create wheat varieties with more consistent Pst resistance under 

varying temperatures. 
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3.3 Methods 

3.3.1 Plant and pathogen material 

US wheat breeding line NILs UC1041 +/- Yr36 and cultivars Alpowa (due to the variety 

containing Yr39), Shamrock, Sappo and Solstice were used in these experiments. None of 

these cultivars had any known R genes for Pst isolate 08/21 which was the isolate used in 

all experiments. See section 2.1 for details on plant and pathogen material. 

 

3.3.2 Plant growth conditions 

Seeds were sown directly into 1 litre pots for growing to flag leaf stage (Zadoks scale 47), or 

in P15 seed trays for seedling (Zadoks scale 13-14) assays (Zadoks et al., 1974). In the case 

of Alpowa only, plants were grown to stem elongation stage (Zadoks scale 30). Plants were 

grown in Controlled Environment Rooms (CERs) with an 8 hr/16 hr dark/light cycle, a 

constant 80% relative humidity and a light intensity of approximately 350 µmol m-2 s-1. The 

two diurnal temperature regimes (based on those used in studies by Uauy et al. (2005), and 

Fu et al., (2009) were 12/18°C and 12/25°C (day temperature being the only difference 

between them). To reduce the effect of non-temperature variables influencing results, 

different CER facilities were used in each experiment for adult UC1041 plants. To 

synchronise growth stage for inoculation of flag leaves, plants were sown one week earlier 

in the 12/18°C regime. For assays on wheat seedlings, plants were sown one to two days 

earlier in the 12/18°C regime, depending on the cultivar.  

 

3.3.3 Inoculation of plants 

Inoculations were carried out on flag leaves of adult plants, and the newest fully-developed 

leaf of seedlings. Plants were always inoculated with Pst urediospores within 1 hour before 

the end of the light period. A 4 cm (seedlings) or 5 cm (adult plants) region of the adaxial 

surface of the leaf was defined and urediospores were applied with a fine brush containing 

a 1:8 spore/talc combination (young plants) or 1:4 (adult plants). The leaf surface was then 

sprayed with H20 containing Tween20 ® (0.01 % v/v) to encourage germination. In UC1041 

NIL comparison experiments and inoculation of cultivar Alpowa, the same procedure was 
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used to apply spores but whole leaves were inoculated. Plants were placed in a dew 

chamber at 12°C in darkness for 22 hrs before they were either returned to the original 

temperature regime, or transferred to the new regime. At 18 days post inoculation (dpi), 

the same 4-5 cm region (or the whole leaf for UC1041 NIL comparisons) was used to 

determine the pustule cover in the given area, taken as the percentage of leaf tissue 

(independent of chlorosis or necrosis) with sporulating uredinia. 

 

3.3.4 Transfer of plants  

Plants were transferred from one temperature regime to another by physically moving pots 

from one CER to the other, pre or post incubation with the pathogen. The majority of 

experiments involved transferring plants after incubation with the pathogen in the dew 

chamber. For experiments when plants were transferred from one temperature regime to 

the other pre inoculation, they were moved at the beginning of the dark period.     

 

3.3.5 Microscopic analysis of Pst development 

Inoculated seedlings of UC1041 plants were sampled at 1, 3, 6 and 8 dpi. The 4 cm 

inoculated region of the leaf was harvested and prepared for microscopy using the method 

outlined in section 2.2.4. Samples from early time points were examined for both spore 

germination rates and ability of germinated uredospores to form SSVs. Later time points 

were scored by measuring the size of internal fungal structures (µm) and abundance of 

hyphae in up to 50 fields of view measuring approximately 0.28 mm2. 

 

3.3.6 Photosynthesis measurements 

Gas exchange measurements were taken in flag leaves of adult UC041 plants using a 

portable photosynthesis system Li-COR LI-6400 model (Lincoln, NE, US), at 1 day, 2 days 

and 8 days post plants being changed between temperature regimes (in the absence of 

pathogen challenge). Measurements were taken by inserting a section of the leaf into a 

small micro-environment which was set to the temperature at which the chamber was 

programmed to an RH of 80% and an irradiance of 1200 µmol m-2 s-1. Assimilation rates and 
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internal CO2
 concentrations were recorded which were used to generate A-Ci curves at a 

range of external CO2 concentrations. Calculations were in accordance with Farquhar’s 

photosynthesis model (Farquhar et al., 1980) with ambient CO2 at 380 mmol mol –1. 

 

3.3.7 Statistical design and data analysis 

Where possible, four or more individual plant replicates and more than one experimental 

repeat were used to calculate means and standard error unless otherwise specified.  Data 

were analysed using the statistical package Genstat for Windows, release 12 (VSN 

international, Hemel Hempstead, UK). Percentage infection scores were transformed using 

a LOGIT+ transformation to obtain near normality (Powell et al., 2013).  
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Where Logn is natural logarithm and Pi is percentage pustule cover. A general linear 

regression model was used on the transformed data and outputs from the model provided 

predicted means where multiple experiments were performed. The effect of temperature 

regime and experiments was accounted for in the model. Pst microscopy data were also 

analysed with a general linear regression model using a LOGIT + transformation for 

percentage data. An unpaired t test was used to determine differences between 

treatments from the photosynthesis measurements. 

  

3.4 Results 

3.4.1 A reduction in day temperature compromises resistance to Pst in UC1041 

independently of Yr36  

Yr36 conferred almost complete resistance to Pst in adult UC1041 +Yr36 when plants were 

maintained in either the 12/18°C or the 12/25°C temperature regimes pre and post 



Chapter 3 

 

 

 
49 

 
 

inoculation. However Yr36 mediated resistance was significantly reduced in plants 

originally grown at 12/25°C then transferred to 12/18°C, as pustule coverage was 

significantly higher (P < 0.01, Figure 3.2a,b). As expected, UC1041 -Yr36 plants were less 

resistant than UC1041 +Yr36, and there was no significant difference in disease levels 

between plants which were maintained at 12/18°C or 12/25°C pre and post-inoculation 

(Figure 3.2a,b). Similar to results seen for UC1041 +Yr36, resistance in UC1041 -Yr36 plants 

was significantly reduced when plants were transferred from the 12/25°C regime to 

12/18°C following infection, with leaf pustule coverage increasing up to two fold (P < 0.01). 

Changing temperatures therefore affects resistance in both UC1041 NILs independent of 

the presence of Yr36. 

 

3.4.2 An increase or decrease in temperature affects Pst resistance up to 8 days pre-

inoculation in UC1041 -Yr36 

Further investigations were carried out to characterise the temperature-sensitive nature of 

the UC1041 background. As previously observed, there was no significant difference in 

percent pustule coverage of plants maintained pre and post inoculation either 12/18°C or 

12/25°C (Figure 3.3a,b), whilst plants transferred from the higher to the lower temperature 

regime were less resistant  (P < 0.01). Conversely, plants grown at 12/18°C and then 

transferred to 12/25°C post inoculation were more resistant with significantly lower 

pustule levels (P < 0.001, Figure 3.3a,b). Although the relative disease levels varied 

between experiments, the trend in adult UC1041 -Yr36 plants remained consistent. Similar 

experiments were performed with plants transferred from one temperature regime to the 

other up to 8 days before inoculation.  There was no significant difference in pustule levels 

between plants transferred from 12/18°C to 12/25°C at the time of inoculation compared 

to those transferred 1, 2, 3, 5 or 8 days prior to inoculation (Figure 3.4a,c). Adult plants 

transferred from 12/25°C to 12/18°C had increased  numbers of pustules, again regardless 

of whether they were transferred at the time of inoculation or after 1, 2, 3, 5 or 8 days pre-

inoculation (Figure 3.4b,d).  
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3.4.3 No obvious link is seen between the effect of an increase or decrease in day 

temperature on photosynthesis and the effect seen on resistance   

Considering photosynthesis and defence are intrinsically linked (Göhre et al., 2012), the 

extent to which the temperature change could affect plant photosynthesis rate was 

investigated. Various gas exchange measurements were taken and A-Ci curves determined 

for plants experiencing the four different temperature treatments in the absence of Pst. No 

significant differences in sub-stomatal CO2 conductance at ambient CO2 (Ci at Ca = 380) or 

CO2 compensation point (Comp (Γ)) were observed between treatments at any of the time 

points (Table 3.1). At 1 day post treatment photosynthetic rate at ambient CO2 in the 

presence (Ai) and absence (Aa) of stomatal limitation was significantly higher in plants that 

were grown in the 12/25°C regime then transferred to 12/18°C compared control 

treatments or the temperature change in the other direction. The A-Ci curves suggest 

photosynthesis rates were higher in this treatment at both 4 and 8 days post temperature 

treatment although the difference was not significant at ambient CO2 concentrations (Table 

3.1, Figure 3.5). Other measurements calculated from the data showed significant 

differences between treatments but did not show a consistent pattern (Table 3.1). 

 

3.4.4 A reduction in day temperature compromised Yr39 mediated resistance in 

Alpowa  

Yr39 mediated resistance in Alpowa was also exposed to the temperature change at the 

time of inoculation with Pst to determine whether the resistance was affected. As in 

UC1041 +/- Yr36, no significant difference in percent pustule coverage was seen between 

plants maintained pre and post inoculation either 12/18°C or 12/25°C (Figure 3.6a,b). In 

addition there was no significant difference seen when plants experienced a temperature 

increase post-inoculation. However when plants experienced a reduction in temperature 

from 12/25°C to 12/18°C, plant pustule coverage significantly increased compared to all 

plants grown in all other temperature treatments (P < 0.05) except for plants maintained at 

12/18°C which was almost significant (P = 0.054, Figure 3.6a,b). 
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3.4.5 An increase in temperature can affect Pst resistance in seedling UC1041 -Yr36 

but the phenotype is inconsistent  

No resistance was observed in seedling UC1041 -Yr36 plants infected with Pst 08/21, 

resulting in higher levels of pustules compared to adult plants. As in adult UC1041 plants, 

there was no significant difference in disease levels between plants which were maintained 

at either 12/18°C or 12/25°C pre and post-inoculation (Figure 3.7a,b). There was also no 

significant difference in pustule levels between plants maintained at 12/25°C and plants 

transferred from 12/25°C to 12/18°C after Pst inoculation. As in adult plants, enhanced 

resistance was occasionally observed when seedlings were transferred from 12/18°C to 12/ 

25°C (P < 0.001, Figure 3.7a,b), although the phenotype was not always observed. Further 

investigations were performed on UC1041 seedlings rather than adults, to enable a greater 

number of experiments to be performed.   

 

3.4.6 A reduction in day temperature affects later stages of Pst colonisation UC1041 

seedlings 

When enhanced resistance resulting from the transfer to a higher temperature was seen in 

UC1041 seedlings, colonisation and progression of Pst was observed microscopically. There 

was no significant difference in the percentage of germinated uredospores between all four 

temperature treatments at both 1 dpi (Figure 3.8a) and 3 dpi (Figure 3.8c). Similarly, there 

were no significant differences in percentage of germinated uredospores forming SSVs 

between the four temperature regimes at either 1 dpi (Figure 3.8b) or 3 dpi (Figure 3.8d). 

At 6 dpi, plants grown at 12/25°C then transferred to 12/18°C post-inoculation had 

significantly smaller internal fungal structures (P < 0.001) compared to all other treatments 

(Figure 3.9a). By 8 dpi, Pst sub-cellular hyphal colonisation was less in plants originally 

grown at 12/18°C post-inoculation compared to those grown at 12/25°C, regardless of the 

temperature change (P < 0.001, Figure 3.9b,c). Plants grown at 12/18°C and then 

transferred  to the higher temperature regime after Pst inoculation showed significantly 

less hyphal colonisation than plants maintained  at 12/18°C (P < 0.001). Hyphal growth in 

plants at 12/25°C pre and post Pst inoculation did not differ significantly from plants 

transferred from 12/25°C to 12/18°C after inoculation (Figure 3.9b,c).   
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3.4.7 Temperature shifts do not affect host resistance to Pst in other wheat cultivars 

To determine whether the temperature-shift induced resistance to Pst was observed in 

other wheat cultivars, the same experimental procedures were used on seedlings of 

selected UK elite varieties. Resistance to Pst in Shamrock displayed a similar phenotype to 

UC1041, with plants that were transferred from lower to higher temperatures displaying a 

significant reduction in pustule levels (P < 0.05, Figure 3.10a). However resistance in 

Solstice was not affected by transferring between temperature regimes in either direction 

as disease levels were not significantly different between all four treatments (Figure 3.10b). 

As in seedling UC1041 plants, resistance enhancement in Shamrock when plants were 

transferred from 12/18°C  to 12/25°C  was not always observed (1 in 4 experiments did not 

see any effect of increased temperature on resistance). The same experiment was carried 

out separately on Sappo plants. Like Solstice, defence in this cultivar appeared to be 

similarly uninfluenced by temperature shifts, since pustule levels in Sappo were not 

significantly different between temperature treatments (Figure 3.11) However, the 

experiment on Sappo was not run in conjunction with Solstice and Shamrock so it is not 

possible to make a direct comparison. 

 

3.5 Discussion 

Our investigations show that Yr36 can prevent uredia formation of Pst isolate 08/21 at 

temperatures as low as 18°C, rather than the higher than 20°C temperature limit previously 

reported (Fu et al.,2009). The result here provides an explanation for the earlier report 

since, in those investigations, UC1041 +Yr36 plants were exposed to similar decreases in 

temperature at the time of inoculation. In addition, we discovered that the UC1041 genetic 

background responds to changes in temperature independently of Yr36, affecting growth 

of Pst. Our results suggest that Yr36-mediated resistance may be affected by a previously-

uncharacterised background response to temperature changes present in UC1041. In the 

field, Yr36 conveys a QDR phenotype on adult plants in Mediterranean environments (Uauy 

et al.,2005). Based on the results presented here, we hypothesise that the QDR observed in 

the field is due to exposure of the UC1041 + Yr36 line to frequent temperature changes. 

Furthermore, our results also suggest that Yr36-mediated resistance should be effective in 

the field under relatively cool temperate conditions.  
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Interestingly, Yr39-mediated resistance in cultivar Alpowa is also compromised by a 

temperature reduction. Since NIL’s are not available for Yr39, it is not possible to determine 

whether temperature sensitivity conferred directly by Yr39 or is present in the Alpowa 

background as in UC1041. It is also difficult to compare with results seen in UC1041 since 

Alpowa was inoculated at a different developmental stage from UC1041 plants. Several 

studies characterising temperature-sensitive resistance genes are performed with different 

pre- and post-inoculation conditions, but the effect of temperature changes is not 

considered. As with UC1041, it is possible that genes responding to changes in temperature 

and affecting resistance may be present in other cultivars. The extent of resistance may 

therefore be affected by temperature fluctuations rather than requiring exposure to a 

temperature threshold (Broers and Wallenburg, 1989; Dyck and Johnson, 1983; Ramage 

and Sutherland, 1995). For example Broers and Wallenburg (1989) observed that a 

decrease in temperature increases Lr34/Yr18 mediated resistance. However, control plants 

were not grown at a constant lower temperature before inoculation, so it is not possible to 

assess whether it was the decrease or changes in temperature that was responsible for the 

enhanced resistance. Pretorius et al (1994) later point out that the study by Broers and 

Wallenburg (1989) does not exclude background effects from the cultivars in which the 

Lr34/Yr18 gene resides. The results with Yr36 and Yr39 in this study highlight the 

importance of controls in pathology studies when characterising temperature-sensitive 

genes.  

Studies with UC1041 seedlings revealed that a temperature increase can enhance 

resistance to Pst at an early stage of plant development. However, the results are less 

consistent than those observed in adult plants. Also in seedlings, a decrease in temperature 

does not reduce resistance to Pst as seen in adult plants of UC1041 (40% infection), but this 

could be due to the higher levels of Pst infection seen on UC1041 seedlings (90% infection). 

Differences between adult plants and seedlings could be caused by Pst inoculum levels, or 

reflect physiological differences influencing defence, with adult plants being more 

responsive to temperature changes than seedlings (Basnet et al., 2013). As in UC1041, the 

enhanced resistance observed in Shamrock was not seen in all seedling experiments. When 

the phenotype was not observed, uredia abundance was higher in both cultivars compared 

to experiments where a temperature effect was observed. This suggests that high levels of 

Pst inoculum and subsequent heavy infection loads may mask the effect of the 

temperature change.  



Chapter 3 

 

 

 
67 

 
 

The evidence indicates that Pst is able to germinate and penetrate the plant successfully, 

regardless of the temperature change, indicating that resistance conferred by initial 

recognition of the pathogen is not affected by a change in temperature. The phenotype  

observed when UC1041 and Shamrock plants were transferred from 12/18°C to 12/25°C  

resembles that of  ‘late’ or ‘slow’ rusting resistance. Slow rusting is a type of QDR normally 

associated with phenotypes such as increased latency period, or decreased infection 

frequency and uredium size (Herrera-Foessel et al., 2012; Lee and Shaner 1984; Rubiales 

and Niks, 1995; Shah et al., 2010; William et al., 2006). Disease in slow-rusting resistance is 

not generally seen early in the infection cycle, but occurs later in the season. Some aspects 

of the phenotype are comparable to HTAP yellow rust resistance which is a type of QDR 

generally effective after stem elongation and when day temperatures are 25°C–30°C 

(Coram et al., 2008). However, the enhanced resistance that was observed was induced by 

an increase in temperature rather than prolonged exposure to 25°C, and can also occur in 

seedlings. The results suggest that temperature changes, rather than exposure to a 

threshold temperature, could be influencing some QDR mechanisms.  

The basis for the observations in this chapter could be due to the modulation of hormonal 

and defence pathways by temperature changes.  Plants adapt continuously to changing 

environments and balance resources between growth and defence to achieve maximum 

productivity (Koga et al., 2004a; Mosher et al., 2010). When moved to a different 

temperature, plants need to adapt to the new conditions. Studies with the model plant 

Arabidopsis thaliana suggest a general trade-off mechanism in plants whereby hormone-

mediated growth may antagonise immune responses (Albrecht et al., 2012; Anderson et 

al., 2004). Temperature changes could alter the hormonal balance in favour of either 

defence or growth. Results showed that plants that experienced a reduction in day 

temperature have higher photosynthesis rates which could suggest a balance in favour of 

growth over defence. However evidence suggests that this isn’t the cause for reduced 

resistance since plants experiencing an increase in temperature do not have a reduced rate 

of photosynthesis. A more likely explanation is that the temperature change could have an 

indirect effect on later stage basal defence mechanisms in UC1041, thereby reducing 

pathogen abundance. For example the temperature change could trigger (i) reorganisation 

of energy supplies resulting in reduced nutrient availability to the biotrophic rust fungus 

(Grof et al., 2010; Viola & Davies, 1994) or (ii) lead to production and/or accumulation of 

pathogen-deterring metabolites (Berger et al., 2007; Hu et al., 2013; Mazid et al., 2011). 
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Although QDR mechanisms are largely unknown, Lr34 and Yr36 do not fall into the general 

NBS-LRR class of R genes so it is reasonable to hypothesise that these are not generally 

involved in pathogen recognition (Thordal-Christensen, 2003). Some QDR genes may have 

other functions that indirectly affect pathogen development when exposed to changes in 

temperature.  

Our results show that a change in temperature up to 8 days before inoculation affected 

defence against Pst in UC1041 adult plants. Thus, pre-exposure to a different temperature 

regime affects subsequent defence, which suggests an adaptive response. We have no 

evidence that the temperature change is resulting in a stress response, but the lasting 

effect of increased or decreased resistance is comparable to priming whereby previous 

exposure of plants to stress enables a faster response to subsequent stresses (Conrath et 

al., 2006). Ambient temperature changes have been shown to cause adaptive change 

through epigenetic modification of DNA activity by methylation (Kumar and Wigge, 2010). 

Correspondingly in wheat, an ambient temperature change could also epigenetically prime 

plants, affecting later stages of defence in UC1041. 

Seedlings of Shamrock demonstrated a similar resistance phenotype to UC1041 when 

plants were transferred to a higher temperature post-inoculation. However, resistance in 

Solstice seedlings was not affected by the temperature change in either direction, 

indicating that the response varies between cultivars. Observations from Sappo plants 

indicate that Solstice may not be unique in this trait, although it is difficult to say for certain 

considering the experiment was not run simultaneously on the two varieties. Results of 

Park et al (1992) support observations of differences in resistance sensitivity between 

wheat cultivars when challenged with Pst at different pre and post inoculation temperature 

regimes. The authors attributed enhanced resistance at higher temperatures to factors that 

control adult plant resistance (APR) because this was present in the cultivars used in their 

study. The presence of additional APR genes cannot be discounted as both UC1041 and 

Alpowa do have varying levels if APR. Confirmation of APR in Solstice would further 

determine whether this hypothesis is valid. If the factors that control APR resistance do 

contribute to temperature sensitivity in seedlings, then this sensitivity is not lost at adult 

growth stage in UC1041. Resistance that shows resilience against temperature fluctuations 

may also occur against other wheat pathogens. For example, a significant difference in 

response to changing temperatures was observed between wheat cultivars in defence 
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against Blumeria graminis f. sp tritici, which causes powdery mildew, although this was 

attributed to R genes showing different levels of temperature sensitivity (Ge et al., 1998).  

The results in this chapter suggest genetic diversity exists for resistance that is resilient to 

temperature changes in yellow rust. However the experimental design based on work by Fu 

et al (2009) is not ideal to explore this hypothesis, due to over complicating factors such as 

differences in average temperature between regimes. Pst is also not an ideal pathogen to 

work with considering it is an obligate biotroph and cannot be grown independently of 

plant tissue to see how the temperature treatments affect in vitro growth of the fungus. 

Further experiments are required to determine whether this phenotype is (i) seen in other 

plant–pathogen interactions (ii) consistent in adults of various cultivars and (iii) a trait that 

can be genetically mapped.  Resilience to changes in temperature could be a valuable trait 

in breeding wheat cultivars with more environmentally stable resistance to Pst and other 

pathogens, especially if its effects can over-ride QDR genes. It would also be valuable to 

know whether the temperature changes can diminish complete resistance conferred by R 

genes as this could contribute to reduced durability. Breakdown of R genes that confer 

resistance to specific isolates of Pst are generally associated with weather conditions that 

are favourable to spread of the pathogen due to increased generations cycles causing 

increased mutation rate. However there is no knowledge of whether the environmental 

impact on host defence contributes to this process. In addition, the results indicate that 

decreases in temperature could make particular cultivars more vulnerable to pathogen 

infection in the field, if temperature drops increase susceptibility (Figure 3.12). Conversely 

it is naïve to argue that plants that have never experienced a change in daily regime 

temperature are comparable to plants grown in a natural environment where they are 

exposed to frequent temperature changes and multiple stresses. A valuable research study 

could be to investigate whether warmer periods of weather followed by cooler periods 

historically results in yellow rust outbreaks and whether this could be due to compromised 

resistance. Temperature changes occur frequently in the natural environment and are 

predicted to become more common as the climate changes (Asseng et al., 2011). Further 

research has the potential to identify vulnerable periods where epidemics are more likely 

to occur and this information could be used to inform fungicide application through the use 

of modelling. 
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In conclusion, Yr36 has potential to be useful in UK agriculture considering that it does not 

need prolonged exposure to high temperatures in order to function. However, the results 

show that Yr36-mediated resistance could be compromised by temperature decreases, 

although further investigation is needed to ascertain how consistent this is. More 

importantly, findings reveal a possible novel trait for resistance stability under varying 

temperatures.  Consistent crop performance and reliable disease resistance are important 

targets in plant breeding. Understanding effects of temperature changes on plant defence 

will be essential for developing crops that are more resilient to the potential impacts of 

climate change. 
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Chapter 4: Resistance to different pathogen types under 

constant and varying temperatures 

4.1 Aim: 

This primary aim of the work described here was to determine whether there are 

differences in the disease resistance response of wheat cultivars under constant and 

varying temperatures. 

 

4.2 Introduction 

Chapter 3 described how the influence of a change in temperature on resistance to Pst may 

vary between cultivars. From the results presented, it is reasonable to hypothesise that 

defence mechanisms in some wheat cultivars are more susceptible to changes in 

temperature than in other cultivars. It was also proposed that temperature changes affect 

defence generally and may not be specific to Pst. To investigate this further, additional 

cultivars need to be tested against different pathogens. However, the temperatures used in 

chapter 3 are not conducive to some pathogens, which prevented investigation into 

general defence mechanisms beyond those that might be specific to Pst. To progress the 

study, a simplified temperature regime was developed that enabled additional cultivars 

and pathogens to be investigated and in addition to Pst, the pathogens Blumeria graminis f. 

sp tritici (Bgt), Fusarium culmorum and Pseudomonas syringae pv. oryzae were included in 

the study. Bgt causes wheat powdery mildew disease and is a biotrophic pathogen like Pst 

whereas F. culmorum is necrotrophic. Procedures for the inoculation of cereal leaves by F. 

culmorum have been developed (Chen et al., 2009). The study therefore enables 

comparison of the effects of temperature changes on resistance against necrotrophic and 

biotrophic pathogens. P. syringae is routinely used in disease resistance assays in 

Arabidopsis, and has the advantage of being readily cultivated and quantified, so could 

potentially be used for screening many wheat cultivars. Previous work identified Por36_1 

strain as compatible with wheat (Schoonbeek et al., in press).    

As discussed in chapter 3, there has been much investigation into how different average 

temperatures can affect resistance (Whitham et al., 1996; Xiao et al., 2003; Yang and Hua, 

2004) and limited exploration of the effects of a change in temperature pre- and post-
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inoculation (Park et al., 1992; Ramage and Sutherland 1995). The time of exposure of a 

plant to a particular temperature during a day/night cycle is known as a thermoperiod. The 

ability of a plant to cope with a pathogen under varying thermoperiods opposed to 

constant temperatures has not been explored, and is the subject of this chapter. 

The possible involvement of DELLA-mediated responses to temperature changes are 

discussed in this chapter. DELLA proteins are core components of the Gibberellic Acid (GA) 

pathway and act to repress GA mediated growth by interacting with the soluble GA 

receptor, GIBBERELLIN INSENSITIVE DWARF1, GID1 and the F-box protein SLY1/GID2 as 

shown in Arabidopsis (Ueguchi-Tanaka et al., 2005). When GA accumulates, DELLA proteins 

are degraded, thus releasing the growth restraint (Bonetta et al., 2005). Studies in 

Arabidopsis (Navarro et al., 2008), and more recently in wheat (Saville et al., 2012) have 

shown that DELLA proteins are implemented in increased susceptibility to biotrophic 

pathogens and reduced susceptibility to necrotrophs.  

Heat shock proteins are responsible for protein folding, translocation and degradation 

under normal conditions and in addition, can assist in protein folding under stress 

conditions (Al-whaibi, 2011). Kumar and Wigge (2010) observed that HSP70 transcript was 

expressed at a level proportional to the ambient temperature between 12°C and 27°C in 

Arabidopsis and therefore has potential to be used as an indicator of ambient temperature 

perception in plants. The expression of HSP70 can also be used as an indicator of 

temperature stress responses in Arabidopsis and rice (Goswami et al., 2010; Sung et al., 

2001). 

This chapter investigates whether there are differences in the ability of different wheat 

cultivars to defend against different pathogens under varying temperature opposed to a 

constant temperature. Results reveal that basal resistance in cultivar Claire appears to be 

more able to restrict pathogen colonisation under varying temperature conditions 

compared to constant temperature regimes in several plant-pathogen interactions. Further 

investigation reveals insight into timing of pathogen prevention and the suitability of this 

trait for mapping. The nature of Claire’s general response to temperature is also explored.  
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4.3 Methods 

4.3.1 Plant and pathogen material 

See chapter 2 for details on cultivars and pathogen isolates used in this study.  

 

4.3.2 Plant growth conditions 

Plants were sown in 1 litre pots each with 5 seeds to a pot. Pots were transferred to one of 

three separate CE cabinets (Sanyo) which were all programmed with 12/12 hr day/night 

cycles and a constant relative humidity of 80%. The first temperature regime was set to a 

constant 15°C throughout the 24hr period, hereby referred to as ‘constant’. The second 

regime was programmed to ramp from a minimum of 10°C in the middle of the dark period 

to a maximum of 20°C in the middle of the light period, hereby referred to as ‘varying’. The 

third cabinet was programmed to ramp from a minimum of 5°C in the middle of the dark 

period to a maximum of 25°C in the middle of the light period, hereby referred to as 

‘extreme varying’. Temperature ramping was in 2 hr increments and was an average of 

15°C in all CE cabinets. Figure 4.1 shows a simplified diagram of the three temperature 

regimes.       

 

4.3.3 Inoculation of plants 

Plants were initially screen using P. syringae to enable high throughput of experiments. 

After initial screening, plants were exposed to a range of UK pathogens to enable 

investigation of whether defence responses to necrotrophs and biotrophs were affected in 

the same way. When plants reached three leaf stage, the newest fully developed leaf was 

inoculated with the various pathogens detailed below. Plants remained in the temperature 

regimes described above, both pre- and post-inoculation. 
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4.3.3.1 P. syringae inoculation 

Up to 1 hr pre-inoculation, a loop was taken from a fresh Por36_1 culture and re-

suspended in sterile ddH2O with 5% KB media. The OD600 of the solution was determined 

using a spectrophotometer and then diluted to a final concentration of OD600 0.02 for 

inoculation. Plants were temporarily removed from CE cabinets and leaves were pricked 

with a pin at five points down the length of the leaf with equal distance between 

pinpricks.2 µL of the bacterial solution was dropped onto each of the pinpricks and allowed 

to dry in the CE cabinet, before being placed in a transparent bag with a tray containing 

water to create a humid environment. At 4 dpi, visual disease symptoms could be observed 

which enabled selection of two representative lesions to be sampled from each leaf. Leaf 

tissue was added to an ABgene® 2.2 mL Deep Well Plate (Thermo Fischer Scientific, 

Loughborough, UK) with 500 µL of KB media and two 5 mm smooth grinding balls. Samples 

were ground using the GenoGrinderTM (SPEX SamplePrep, LLC) at 1100 strokes min-1 for 20 

secs. The leaf tissue suspension was diluted serially in KB broth and 10 µL was plated onto 

KB media containing 25 mg mL-1 nystatin and 50 mg/l rifampicin. Plates were incubated 

overnight at 28°C. Colony number per 10 µL drop was counted from the appropriate 

dilution and used to calculate colony forming units per lesion.  

To assess in vitro growth of P.syringae in each of the temperature treatments, the same 

bacterial suspension used for inoculation was added in equal amounts to tubes and placed 

alongside plants in the different CE cabinets. The OD600 of these tubes were measured at 

various time points over the course of the experiment.  

 

4.3.3.2 F. culmorum inoculation  

Inoculum was prepared by adding deoxynivalenol at a final concentration of 25 ppm to F. 

culmorum isolate Fu 42 conidia suspended in ddH2O, at a concentration of 0.5 x 10-7 spores 

mL-1. Inoculation method was adapted from Chen et al (2009) to enable of inoculation of 

attached leaves. Plants were temporarily removed from CE cabinets and leaves were 

pricked with a pin at five points down the length of the leaf with equal distance between 

pinpricks. 4 µL of the F. culmorum inoculum was dropped onto each of the pinpricks and 

allowed to dry in the CE cabinet before being placed in a transparent bag with a tray 
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containing water to create a humid environment. At 5 dpi disease progression was 

assessed by measuring lesions with a ruler.  

To assess in vitro growth of F. culmorum in each of the temperature treatments, 10 µL of 

the conidia suspension was dropped onto agar plates containing v8 medium. Growth rate 

of hyphae was recorded over the course of the experiments by measuring the diameter of 

the colony.  

4.3.3.3 Bgt inoculation and microscopy 

3.5 cm leaf strip replicates were cut from plants and placed in plastic boxes containing 

mildew culture media and then placed in metal inoculation towers at room temperature. 

Bgt spores of isolate JIW48 (bulked on leaf strips) were collected and blown on to leaf 

strips from a height of 50 cm to enable even settling of spores on all leaf surfaces. Boxes 

were returned to the relevant temperature regime and assessed 6-10 dpi. Leaf strips for 

microscopic assessment were sampled at 24 hpi and 72 hpi and prepared using the method 

outlined in section 2.2.4 The progress of the pathogen was determined at both time-points, 

recording percentage of spores with external hyphae at 24 hp, and the percentage of 

spores with established hyphae at 72 hpi.  

 

4.3.3.4 Pst inoculation  

Inoculation of plants was as described in chapter 3, section 3.3.3 for inoculation of 

seedlings. 

 

4.3.4 Measurement of HSP70 expression   

The method originally used for screening wheat for genes involved in temperature 

perception was adapted from Kumar and Wigge (2010) by Laura Dixon and Adrian Turner 

(John Innes Centre, Norwich). Plants were grown for two weeks in CE cabinets (Sanyo) set 

to a 16/8 hr light/dark cycle with a constant temperature of 16°C. One hour following the 

15th dawn post sowing, the temperature was dropped to 12°C and leaf tissue for RNA 
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extraction was sampled after 1 hr. One hour after sampling, the temperature was raised to 

27°C.  Leaf tissue from different plant individuals was sampled precisely 24hrs after the 

original sampling time. For the expression profile under constant and varying 

temperatures, plants were grown for two weeks in CER’s set to the same conditions as the 

CE cabinets used for the pathology studies. Tissue samples were collected at the middle of 

the dark period, followed by subsequent sampling at 6hrs (beginning of light period), 12 hrs 

(middle of light period) and 18hrs (beginning of dark period). All tissue was harvested and 

stored according to section 2.2.5 ready for grinding and RNA extraction from tissue, and 

subsequent cDNA synthesis in accordance with section 2.2.7. RT-qPCR was conducted on 

samples to assess HSP70 expression levels in accordance with section 2.2.7 using primers 

4a and 4b in table 2.2 for amplify HSP70 transcript.  A reference gene was selected using 

the primers in 2.3 to normalise the data as described in section 2.2.8.   

 

4.3.5 Data analysis 

Where possible, four or more individual plant replicates and more than one experimental 

repeat were used to calculate means and standard error unless otherwise specified. 

Locations of plants in the cabinets were randomised differently for each experiment. 

Pathology assays were analysed with the un-paired t-test or general linear regression using 

the statistical package Genstat for Windows, release 12 (VSN international, Hemel 

Hempstead, UK). RT-qPCR data were analysed with the un-paired (two sample) t-test using 

the same package. 

 

4.4 Results 

4.4.1  Screening cultivars reveals Claire is more resistant to P. syringae under varying 

temperatures 

Wheat cultivars were screened for resistance against P.syringae under constant and varying 

temperatures. Bacterial growth in liquid medium was first measured to determine whether 

there was a difference in growth between temperature treatments. No significant 

difference in OD600 of bacteria suspended in 5% KB solution was observed between 

constant and varying temperatures (Figure 4.2a). Out of ten cultivars, only Claire and Pavon 
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had a significant difference in CFU per lesion between plants grown under constant and 

varying temperatures (Figure 4.2b). In cultivar Claire, significantly less CFUs were observed 

in plants grown under varying conditions when compared to CFUs formed in plants grown 

under constant temperatures (p = 0.03). Conversely, there were fewer CFUs from Pavon 

leaf tissue in plants grown under constant conditions compared to those grown under 

varying conditions (p = 0.04, Figure 4.2b).   

 

4.4.2 Further investigation reveals Claire has more consistent resistance to P.syringae 

under varying temperatures than other cultivars   

To validate the result of the previous experiment and check it wasn’t a result of Type I 

error, the experiment was repeated four times using Claire and Shamrock as a control. CFU 

counts in Shamrock plants were consistently not significantly different between the two 

temperature treatments (Figure 4.3). Increased CFU under varying temperatures was not 

seen again in Pavon plants, although Claire plants had reduced CFU counts by 

approximately two fold under varying temperatures in two out of four experiments (Figure 

4.3). Claire and Shamrock were therefore used in a series of subsequent experiments as 

examples of cultivars with resistance responses that were affected or unaffected by 

exposure to varying temperatures.   

 

4.4.3 Claire is more resistant to F. culmorum under varying temperatures 

Shamrock plants showed no significant differences in F. culmorum induced lesion size 

between temperature treatments (Figure 4.4a,b). In Claire plants, lesion size was 

approximately two fold smaller in plants that experienced varying temperatures compared 

to those grown under constant temperatures (p < 0.001, Figure 4.4a,b). In vitro growth of F. 

culmorum was not significantly different between the two temperature treatments (Figure 

4.4c). The experiment was not repeated so it has not been determined whether the result 

is inconsistent as seen with the P. syringae interaction.   
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4.4.4 Claire is more resistant to Bgt under varying temperatures  

When plants were inoculated with Bgt in the two different temperature regimes, the 

number of colonies that developed on Shamrock leaves was not significantly different 

between the two temperature regimes (Figure 4.5a,b). Claire plants showed a reduced 

number of mildew colonies under variable temperatures every 2 in 3 experiments, the 

maximum differences being two fold. Predicted means generated using general linear 

regression showed there was a significant difference overall (P < 0.01, Figure 4.5a,b).  

 

4.4.5 Increased resistance to Bgt under varying temperatures in Claire can be seen as 

early as 24 hpi 

When enhanced resistance under varying temperatures was seen in Claire plants, 

colonisation and progression of mildew was observed microscopically. At 24 hpi Shamrock 

plants in the two temperature regimes did not have a significantly different percentage of 

mildew spores that were able to form external hyphae (Figure 4.6a,c). A similar observation 

was made in Shamrock at 72hrs with no significant difference in percentage of established 

hyphae between plants grown under constant and varying temperatures (Figure 4.6b,c). 

Claire on the other hand had significantly fewer spores forming external hyphae in plants 

grown under varying conditions (P = 0.03, Figure 4.6a,c). Claire plants tended towards a 

reduced percentage of established hyphae in plants under varying conditions but variation 

was high and mildew establishment in the two temperature treatments was not significant 

at the 95% confidence interval (P = 0.11 Figure 4.6b,c).     

 

4.4.6 Claire shows an avirulent response when challenged with Pst isolate 08/21 

To determine whether there is a link between the observations in chapter 3, Claire and 

Shamrock were challenged with Pst isolate 08/21. Pustules did not develop on Claire when 

grown under a constant temperature and a necrotic response was apparent on plants 

grown at constant temperatures confirming that Claire has one or more R genes that can 

recognise this isolate (Figure 4.7). Interestingly a significantly higher level of pustules 

developed on Claire grown under varying temperatures, (P < 0.01). In Shamrock, pustule 

coverage was significantly higher on plants under varying temperatures compared to 
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pustule coverage on plants maintained at constant temperatures, which was in contrast to 

results observed for all other pathogen challenges (Figure 4.7).   

 

4.4.7 No effect of temperature treatment is seen on resistance in Claire or Shamrock to 

Pst isolate 11/08 

Due to Claire having an R gene for gene resistance response to Pst isolate 08/21, cultivars 

were also tested with Pst isolate 11/08 to see whether disease development was different 

between the two temperature regimes. No difference in pustule coverage was observed 

between plants exposed to a constant temperature compared to those exposed to varying 

temperatures in neither Claire nor Shamrock (Figure 4.8). 

 

4.4.8 Exposing plants to a more extreme variable temperature environment affects 

resistance differently depending on the pathogen   

Using both P.syringae and Bgt, the effect of exposing the plants to a more extreme varying 

temperature on plant defence was determined. Mildew colony numbers were significantly 

reduced on Claire under varying temperatures compared to plants at constant 

temperatures as previously seen. However when plants experienced more extreme varying 

temperatures, the number of mildew colonies was significantly higher than those seen in 

both of the other temperature treatments (P < 0.01, Figure 4.9a). In Shamrock there was 

no significant difference between the number of mildew colonies that developed on the 

leaf strips in all three temperature treatments. When the same experiment was performed 

using P.syringae, in vitro bacterial growth rate was measured as before. OD600 of P.syringae 

grown at constant temperatures was slightly less compared to the other temperatures 

treatments after one day of incubation but there were no significant differences in OD600 

between treatments at four days (Figure 4.9b). CFU counts in Claire appeared lower in 

plants grown under varying temperatures compared to those grown at constant 

temperatures but the difference was not quite significant at a 95% confidence level (P = 

0.058, Figure 4.9c). CFU counts in Claire plants under more extreme varying temperatures 

also appeared lower than in plants at constant temperatures but again the difference was 
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not significant (P=0.11, Figure 4.9c). Shamrock plants were not infected so could not be 

used as a control in this experiment. 

 

4.4.9 HSP70 transcript levels in Claire are more sensitive to temperature changes than 

in Shamrock 

To ascertain whether there was any difference between ambient temperature perception 

between wheat cultivars Claire and Shamrock, HSP70 transcript level was measured at two 

different temperatures. When Claire plants were transferred from 12°C to 27°C within a 24 

hr period, the fold change between HSP70 transcript levels between the two temperatures 

was significantly higher than the fold change seen in Shamrock (P < 0.01, Figure 4.10a). 

Comparison of the relative expression of HSP70 transcript indicates that the reason for the 

larger fold change in Claire is due to low levels of HSP70 transcript at 12°C compared 

Shamrock, which was approximately ten fold lower (Figure 4.10b), whereas at 27°C, HSP70 

transcript levels did not differ significantly between the two cultivars (Figure 4.10c).         

 

4.4.10 Exploratory expression profile of HSP70 transcript in Claire and Shamrock under 

constant and varying temperatures 

To link results obtained using the method adapted from Kumar and Wigge (2010) to the 

present study, HSP70 transcripts were compared between the two cultivars in the two 

different temperatures regimes. Results indicate that under constant temperatures, HSP70 

transcripts in both Claire and Shamrock increased over the 24hr period from the middle of 

the dark period to the end of the light period and transcript levels were higher in Shamrock 

than in Claire (Figure 4.11a). Under varying temperatures the steady incline of HSP70 

transcript over the 24hr period was not seen in either variety (Figure 4.11b). In the middle 

of the dark period (time 0hrs on Figure 4.11b), transcript abundance was 35 fold higher in 

Shamrock compared to Claire and over ten-fold higher than transcript levels observed at 

any other time point in either variety (Figure 4.11b). 
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4.5 Discussion 

When possible to measure, in vitro pathogen growth under constant and varying 

temperatures was the same, suggesting that pathogen growth is not affected by 

differences in thermoperiods provided the average temperature remains the same. 

Therefore, results suggest that cultivar Claire can show increased resistance or reduced 

susceptibility under varying temperatures in the four plant-pathogen interactions in this 

study. This is in contrast to defence in cultivar Shamrock which was generally at a similar 

level under constant and varying temperatures. Thus, the effect is due to a host response 

rather than influencing pathogen development, which was a concern in the previous 

chapter. The initial screen using P. syringae showed that increased resistance under varying 

temperatures in Claire might be an exception in modern wheat varieties. If this is the case 

then this trait could be a useful tool for breeding considering it may help protect plants 

against pathogen invasion under the frequent temperature changes present in field 

conditions. However, results reveal that defence in Claire plants exposed to increased 

varying temperatures between 5°C and 25°C is no more effective than plants exposed to 

varying temperatures between 10°C and 20°C. In fact, in the wheat-mildew interaction, the 

highest levels of mildew were seen under the most extreme varying temperatures 

suggesting that defence is reduced under these conditions. This may be due to the extreme 

changes triggering host stress that diminishes resistance to powdery mildew. Alternatively 

this may be due to temperature conditions being more favourable to mildew, although 

observations from Shamrock suggest otherwise as mildew levels were not significantly 

different between all three temperature conditions. Therefore, if Claire does have 

increased resistance under varying temperatures, observations suggest there is a threshold 

on this resistance. In addition, it cannot be ruled out that increased resistance in Claire may 

also be caused by an aspect of resistance that can only function above or below a threshold 

of 15°C rather than the variation in temperature causing the increased resistance. There 

are many examples of the literature of small differences in temperature being capable of 

switching on or off resistance mechanisms (Whitham et al., 1996; Xiao et al., 2003; Yang 

and Hua, 2004). However these thresholds are usually associated with R gene for gene 

interactions and HR which is not the type of resistance that has been observed here. A 

contrasting study by Koga et al (2004a) saw that a low temperature treatment of 10°C 

inhibited a novel type of resistance in rice plants to Magnaporthe grisea that was 

independent of a blast resistance gene (Koga et al., 2004b). They showed that de novo ABA 
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biosynthesis in the leaf sheaths was responsible for the reduction of resistance. This is 

clearly not the case in Claire plants, as exposure to 10°C does not reduce resistance. 

However, it would be interesting to measure levels of plant hormones that are involved in 

plant defence in Shamrock and Claire under constant and varying temperatures to see if 

there are possible candidates that are involved in the enhanced resistance observed in 

Claire.      

Microscopic observations with mildew suggest that early defence in Claire is being affected 

by the temperature variation. This could be because varying temperature is affecting i) 

innate immunity in this cultivar or ii) development of the plants so pathogens can invade 

tissue less easily. Results indicate that the increased resistance in Claire under varying 

temperature is not restricted to one type of pathogen and occurs across kingdoms, 

implying that a type of plant defence which conveys resistance to a broad spectrum of 

pathogens such as PTI. It is possible that PTI response in Claire may be strengthened by a 

10°C difference in thermoperiod or that the component is only functional above or below a 

threshold of 15°C. 

It is well documented that increased difference between day and night temperature 

increases stem elongation and subsequently plant height (Berghage and Heins, 1991; Erwin 

et al., 1989; Grimstad and Frimanslund, 1993).  If an increased thermoperiod is increasing 

plant growth, it is possible that this is indirectly affecting resistance. Although not 

measured, there were no obvious indications that there were differences in growth 

between wheat plants grown under varying compared to constant temperatures. As 

discussed in chapter 3, there is evidence that plants balance resources between growth 

and defence to achieve maximum productivity (Mosher et al., 2010). However if Claire 

plants are balancing resources in favour of growth under varying conditions more so than 

in Shamrock, then it is having a positive effect on defence responses rather than 

antagonising them. GAs have been implicated in the difference observed between stem 

elongation in several plants species under different thermoperiods due to reduction in 

differences after exogenous application of GA (Grindal et al., 1998; Ihlebekk et al., 1995; 

Zieslin and Tsujita, 1988). In addition, endogenous levels of some GAs are higher in plants 

experiencing varying temperatures opposed to constant temperatures (Stavang et al., 

2005). When GA accumulates, DELLA proteins are degraded which could explain increased 

resistance in Claire plants to biotrophic pathogen Bgt, but not increased resistance to 
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necrotrophic pathogen F. culmorum. A more rational explanation is that varying 

temperature is affecting development of pre-formed physical or chemical barriers in Claire 

plants.  

Since its release in 1999, Claire has been used as a parent in many breeding programs due 

to its high yield and durable resistance to numerous diseases (Powell et al., 2013). Disease 

resistance in this cultivar has been durable since its release with the exception of yellow 

rust, which was originally complete and broke down in 2012, and brown rust which was 

almost complete and broke down in 2005 (Figure 4.12a). For Fusarium, mildew and 

Septoria diseases, resistance has always been quantitative. It is tempting to speculate that 

the durable QDR in Claire to all pathogens is due to this cultivar being more able to convey 

resistance under varying temperatures compared to other cultivars. It will be interesting to 

see whether the newly broken yellow rust resistance in Claire will be maintained at a QDR 

level considering it was the only pathogen observed here that did not show increased 

resistance in Claire plants under varying temperatures in CE experiments. However the 

experiment was only done once, which makes it difficult to say whether increased 

resistance to Pst is never seen due to the variable phenotype observed with the other 

pathogen types. Claire’s yield, relative to the control cultivar, has declined over the years 

since its release but not enough for the cultivar to be removed from the HGCA 

Recommended List (Figure 4.12b). It would be interesting to know whether Claire is 

generally better at dealing with temperature variation which indirectly makes it more able  

to deal with pathogen attack and/or other stresses, simultaneously to temperature 

changes.  

Results showed that HSP70 expression levels in both Claire and Shamrock was higher at 

27°C, with the fold difference higher in Claire probably due to the low expression level at 

12°C. Transcript expression of HSP70 genes have been shown to increase under 

environmental stress conditions such as heat, cold and drought stress in several plant 

species (Goswami et al., 2010; Sung et al., 2001). A role for HSP70 in cold acclimatisation in 

addition to heat stress has also been implicated (Zhang et al., 2008). If HSP70 transcript 

abundance is an indicator of stress, results suggest that Shamrock plants are more stressed 

at 12°C than Claire plants at the same temperature due to higher expression levels in 

Shamrock plants. A first-look expression profile of HSP70 transcript levels in the constant 

and varying temperature regimes revealed that Shamrock showed extremely high levels of 



Chapter 4 

 

 

 
96 

 
 



Chapter 4 

 

 

 
97 

 
 

HSP70 transcripts at 10°C, again suggesting that this cultivar might be experiencing more 

stress than Claire at lower temperatures. This stress clearly does not affect resistance in 

Shamrock, considering a difference in pathogen abundance between the two temperature 

regimes was rarely observed in this variety. However it is tempting to speculate that the 

lack of stress observed in Claire under varying temperatures could somehow be related to 

the enhanced resistance observed. If a stress response wasn’t triggered in Shamrock at 

10°C under varying temperature conditions, would enhanced resistance be seen in this 

cultivar too? Using the method adapted from Kumar and Wigge (2010), HSP70 transcript at 

12°C was always expressed at a lower level in Claire compared to all other varieties 

suggesting that other varieties may be experiencing an elevated level of stress at this 

temperature (Figure 4.13). 

In chapter 3, Shamrock resistance was classed as having a defence response to Pst that was 

sensitive to a temperature change. When challenged with Pst isolate 08/21 using the 

temperature treatments in this chapter, Pst levels were significantly lower on plants that 

were grown under constant temperatures opposed to varying temperatures. It is difficult to 

compare the two experiments as plants didn’t experience a change in temperature for the 

first time, at the time of inoculation in this chapter. In addition, when Shamrock plants 

were challenged with a different UK yellow rust isolate, Pst levels were the same under 

both regimes suggesting that the temperature sensitivity observed in both chapters 3 and 4 

may be limited to the Shamrock-08/21 interaction. The fact that Solstice and Shamrock 

showed the same level of resistance in both temperature regimes during the initial screen 

also suggests that the temperature sensitive nature of cultivars between the two 

experimental methods cannot be linked.  

The next step towards identifying potential genes controlling the response to changing 

temperatures would be to screen mapping populations between Claire and a non 

temperature sensitive variety. However, due to inconsistency of results, this trait would not 

be easy to map. Results from both chapters 3 and 4 suggest that temperature sensitive 

resistance is extremely sensitive to other factors such as light levels, humidity and water 

availability. Further work would have to be done to define the environmental conditions so 

that results were more reproducible and mapping populations could be screened 

successfully.  
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Chapter 5 Temperature effects on PRR expression and using 

microarray data to identify genes that are differentially regulated by 

both a temperature change and upon disease challenge 

5.1 Aim  

Experiments conducted in this chapter were carried out to investigate the basis for how 

temperature changes affect disease resistance in wheat. Preliminary investigations were 

carried out to determine whether the effects of temperature changes on disease resistance 

are based on PAMP-triggered immunity (PTI), the first line of active defence in plants.   

 

5.2 Introduction 

Results presented in chapter 3 and 4 indicated that a temperature change can affect wheat 

resistance to pathogens, although it is unclear which components of the defence 

mechanisms are affected. It was observed that a reduction in temperature is able to 

enhance susceptibility to Pst and unexpectedly, an increase in temperature is able to 

enhance resistance. This is contrary to general observation that temperature increases are 

usually associated as being detrimental to plant defence responses (Szittya et al., 2003). 

Zhu et al (2010) argue that NB-LRR types of R genes are responsible for temperature 

sensitivity rather than other signalling components. However results presented throughout 

chapters 3 and 4 suggest otherwise, considering that temperature sensitivity in Claire 

affects resistance against widely diverged microbial taxa.  As discussed in the introduction, 

PTI is the earliest active defence in plants, induced by conserved molecules present across 

taxa. It is a reasonable hypothesis that altered PTI responses induced by temperature 

changes may be the basis for the observations in chapter 4. This chapter explores whether 

aspects of wheat defence are sensitive to temperature reductions, focusing primarily on 

PTI. 

Chapter 1 outlines how PTI occurs when essential PAMPs are detected by specific plant 

PRRs (Zipfel, 2009). Several PAMP-PRR pairs have been described in several plant species 

including crops, for example FLS2 which detects the derived peptide flg22 subunit of 

flagellin in various bacterial pathogens (Robatzek et al., 2007; Takai et al., 2008) and 
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CERK1/CEBiP can pair with chitin which is specific to fungal pathogens (Shimizu et al., 2010; 

Shinya et al., 2012). When the respective PAMP-PRR pairs converge, a MAPK signalling 

cascade is initiated, which leads to a defence response (Schwessinger and Ronald, 2012; 

Zipfel, 2009). The preliminary experiments designed here, were performed to determine 

whether there is any evidence that PTI is affected by temperature changes using an 

extreme temperature reduction as a starting point. Results show that PRR transcripts are 

affected by a temperature reduction but not overall resistance. 

Due to wheat PRR transcripts being affected by temperature reductions, it was logical to 

determine whether other wheat defence transcripts were also affected. Data from various 

microarray experiments were analysed to attempt to identify whether there are clusters of 

genes in wheat that are involved in both plant acclimatisation to a reduction in 

temperature and broad spectrum defence. No gene clusters were identified as responding 

to both temperature and general plant defence.     

 

5.3 Methods 

5.3.1 Plant and pathogen material 

Wheat line UC1041 + Yr36 was used in all qRT-PCR and pathology assays. P. syringae strain 

Por36_1 and Bgt isolate JIW48 were used in all pathology assays. See chapter 2 for details 

on wheat line and isolate details and maintenance. 

 

5.3.2 Growth conditions and cold treatment 

Plants were grown in a CE cabinet (Sneijder) at a constant 20°C with a 16 hr/8hr day/night 

cycle. Two weeks after sowing, plants were either kept at the same conditions or exposed 

to a cold night by being moved to an identically programmed CE cabinet set to 5°C in 

darkness. Tissue samples were harvested from the 2nd leaf 1 hr and 4 hrs after the start of 

the dark period (according to section 2.2.5) ready for RNA extraction from tissue, followed 

by subsequent cDNA synthesis in accordance with section 2.2.7. qRT-PCR was conducted on 

samples to assess CEBiP and FLS2 transcript expression levels in accordance with section 



Chapter 5 

 

 

 
101 

 
 

2.2.7 using primers 5a, 5b, 6a and 6b  and reference genes was selected using the primers 

in 2.3 to normalise the data as described in section 2.2.8.   

 

5.3.3 Inoculation with P.syringae 

4 hrs after the start of the dark period, two-week old plants were inoculated from both 

control and cold treated plants. Using scissors, plants were scored longitudinally in a 4 cm 

adaxial region of the leaf and then dipped in bacterial solution for 30 secs. Plants were kept 

in polythene bags to encourage bacterial growth and returned to the original temperature 

regime of 20°C (regardless of preceding control or cold treatment). At 3 dpi plants were 

removed from growth cabinets and two leaf discs were taken from the inoculation site on 

each plant using a 4 mm diameter core borer. Leaf discs were added to an ABgene® 2.2 mL 

Deep Well Plate (Thermo Fischer Scientific) with 500 µL of KB media and two 5 mm smooth 

grinding ball. Samples were ground using the GenoGrinderTM (SPEX SamplePrep, LLC) at 

1100 stokes min-1 for 20 secs. The leaf tissue suspension was diluted serially in KB broth 

and 10 µL was plated onto KB media containing 25 mg mL-1 nystatin and 50 mg/l rifampicin. 

Plates were incubated overnight at 28°C. Colony number per 10 µL drop was counted from 

the appropriate dilution and used to calculate CFU/cm2 of tissue. 

 

5.3.4 Inoculation with Bgt 

As above, two-week old plants were inoculated 4 hrs after the start of the dark period. 4 

cm leaf strip replicates were cut from plants and placed in plastic boxes containing mildew 

culture media and placed in metal inoculation towers at room temperature. Bgt spores 

from bulk plants were collected and blown onto leaf strips from a height to enable even 

settling of spores on all leaf surfaces, then left to settle for 5 minutes before being returned 

to the original temperature regime of 20°C (regardless of preceding control or cold 

treatment). The number of mildew colonies per leaf strips was recorded at 10 dpi. 
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5.3.5 Data analysis 

For experiments measuring PRR transcript abundance, three experimental repeats (each 

comprised of three pooled plant individuals) were used to calculate means and standard 

error unless otherwise specified. RT-qPCR data were analysed with the un-paired (two 

sample) t-test using the statistical package Genstat for Windows, release 12. Transcript 

abundance was compared independently at each time point. 

5.3.6 Microarray processing and analysis 

Affymetrix datasets for an experiment carried out by Laudencia-Chingcuanco et al (2011), 

investigating cold induced genes, were downloaded from PLEXdb 

(http://www.plexdb.org/modules/PD_probeset/annotation.php) along with datasets from 

various experiments involving wheat-pathogen interactions. Genes identified from 

Laudencia-Chingcuanco et al (2011) with differential expression (>4 fold) in all wheat 

cultivars, between cold treatment of 6°C for 48 hrs and their respective control of 0 hrs was 

calculated using linear modelling and an Empirical Bayes moderated t statistic (Smyth, 

2004). 232 genes were commonly differentially expressed by cold treatment at the 24hr 

time point among all varieties used in the study (see appendix for list of genes). The 

expression profile of those probe sets was exported into a tab delimited file along with the 

expression profile of the same probe sets from the pathogen induced experiments also 

available from the PLEXdb database (Bolton et al., 2008; Bozkurt et al., 2010; Coram et al., 

2008a; Coram et al., 2008b; Desmond et al., 2008; Jia et al., 2009; Tufan et al., 2009; Xin et 

al., 2011). Hierarchical clustering was performed using Cluster 3 (Eisen et al., 1998) with a 

Euclidean distance matrix and complete-linkage clustering technique.  

 

5.4 Results 

5.4.1 A cold night changes expression patterns of PRR transcripts 

To determine whether temperature had a direct affect on PRR transcript abundance, plants 

were first exposed to a temperature drop in absence of a pathogen challenge. qRT-PCR 

showed that UC1041 plants, kept at a constant 20°C showed increased expression of CEBiP 

transcript during the dark period after 1 hr, which become more apparent after 4 hrs of 

darkness (Figure 5.1a). FLS2 transcript showed a similar trend to CEBiP, upon the onset of 
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the dark period (Figure 5.1b). When plants are exposed to a 5°C cold treatment during the 

night, CEBiP transcript levels do not increase during the dark period, resulting in a 

difference of more than twofold at both 1 hr and 4 hrs, between control plants and cold 

treated plants (Figure 5.1a). FLS2 transcripts in cold treated plants are not significantly 

different from the control after 1 hr, however at 4 hrs post cold treatment control plants 

have 4 fold more FLS2 transcript abundance than cold treated plants (Figure 5.1b). 

 

5.4.2 Differential expression of PRRs induced by cold night does not affect over-all 

plant resistance when plants are challenged at midnight  

To see whether the difference in PRR transcript abundance at 4 hrs between the two 

treatments had an effect on plant defence, plants were inoculated with both Bgt and P. 

syringae. Pathogens were chosen because being a fungal pathogen, powdery mildew 

naturally contains chitin (Zhang et al., 2000) which is detected by PRR CEBiP (Shimizu et al., 

2010). Contrastingly, P. syringae contains flg22 detected by  FLS2 (Zipfel et al., 2004). When 

plants were inoculated with Bgt at 4hrs post cold treatment they did not have a 

significantly different level of mildew colonies from control plants at 10 dpi (Figure 5.2a). A 

similar trend was seen when plants from both treatments were infected with P. syringae in 

that 3 dpi, bacterial levels were not significantly different between control or cold treated 

plants (Figure 5.2b). 

 

5.4.3 Identification of genes involved in both temperature perception and disease 

resistance 

To identify clusters of genes that were differentially expressed by both a temperature 

change and broad spectrum pathogen challenge, hierarchical clustering was performed 

with various data sets downloaded from PLEXdb. No gene clusters were identified (Figure 

5.3). 
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5.5 Discussion 

5.5.1 Effect of night temperature on expression pattern of PRRs 

The preliminary experiments described here were designed to investigate whether 

temperature changes affected PTI as the basis for the observations made in the previous 

chapters. As a baseline for comparison, PRR gene expression was first determined, 

revealing that for plants grown at a constant temperature, FLS2 and CEBiP have a diurnal 

expression pattern. This is consistent with Bhardwaj et al (2011) which shows that 

Arabidopsis PRRs exhibit a diurnal expression pattern and are regulated by the circadian 

clock. Results shown here indicate that when plants are exposed to a cold night, amplitude 

of the diurnal rhythm is reduced.  

The evidence presented here indicates that a temperature change can affect PRR 

expression, but that this does not affect disease resistance. When plants were challenged 

with pathogens Bgt and P. syringae 4 hrs post dusk, no difference in eventual disease levels 

was observed between plants kept at a constant temperature and those that had been 

exposed to a cold night, despite the difference between PRR transcripts. There are a 

number of possibilities to explain why a difference was not observed. Firstly, mRNA levels 

do not always represent the level of protein present in the cell and many transcripts show 

diurnal rhythm patterns but the proteins levels do not change throughout the day (Tian et 

al., 2004). However as variations in expression patterns of PRRs have already been shown 

to influence plant defences at different times of day, it is plausible that protein levels are 

also changing (Bhardwaj et al., 2011). It is well documented that when PAMPs come into 

contact with PRRs that a defence response is initiated (Pitzschke et al., 2009), although the 

timing of these processes during plant-pathogen interactions is poorly understood. Another 

reason could be that a threshold may exist where increased PRR abundance provides 

enhanced resistance. If this is not achieved at the point at which pathogen challenge first 

occurs, no difference in resistance would occur. If the plants were challenged with the 

bacteria at an earlier time point, the increased abundance of PRRs at midnight in control 

plants may have aided with defence. However in Arabidopsis, FLS2 induction by P. syringae 

DC3000 can be detected as early as 2hrs post-inoculation (de Torres et al., 2003). The 

disease assays performed did not discriminate between PTI and other stages of resistance 

such as ETI and subsequent basal resistance, therefore the other stages of the defence 

response could have masked any differences between PTI responses in control and cold 
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treated plants. There is very limited evidence to date that PTI responses are affected by 

temperature. Arabidopsis proteins PAD4 and EDS1 show temperature sensitivity and 

contribute to both basal defence mechanisms in addition to R gene mediated defence 

(Wang et al., 2009). However it is not known whether they play a role in PTI directly. 

 

5.5.2 Identification of genes involved in both temperature perception and disease 

resistance 

Results identified that no clusters of genes were induced both during disease resistance 

and after cold treatment. This could imply that the two are not co-regulated.  However, the 

analysis was based on previously published data from several experiments with differences 

in sampling times, methods of inoculation and wheat varieties used, which would reduce 

the possibility of detecting common gene clusters induced by both treatments. In 

Arabidopsis there have been examples of proteins that are directly affected by 

temperature and resistance but studies to date have mainly focused on high temperature 

inhibition of defence responses (Wang et al., 2009; Zhu et al., 2010). However there is also 

evidence to suggest that low temperature can induce resistance responses in wheat due to 

biotic and abiotic stress responses having common pathways (Ergon et al., 1998; Kuwabara 

et al., 2002). Increased resistance is thought to be through induction of pathogenesis-

related (PR) proteins brought on by the cold treatment (plants were exposed to 

temperatures of 4°C or less) which primes plants for pathogen attack (Ergon et al., 1999). 

Additional work by Szechynska-Hebda et al (2013) showed that cold hardening can also 

prevent pathogen penetration though physical and chemical alterations of the leaf surface 

properties, interestingly in a cultivar dependent manner. In contrast low temperature has 

also been linked to susceptibility of rice to rice blast fungus caused by Magnaporthe grisea, 

implying a role for ABA has also been implicated. However the low temperature treatment 

used in the study by Koga et al (2004a) was 10°C, so not quite indicative of cold hardening. 

Although the in silico analysis of gene transcription did not identify co-regulated genes, the 

results showed that PRR expression can be affected by a temperature change. To develop 

the study, an experiment needs to be carried out to specifically investigate candidate genes 

which are commonly differentially expressed by temperature changes and upon pathogen 

challenge. As PRR and other resistance gene expression can be regulated diurnally, 
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different time points need to be considered. The approach taken could be through whole 

transcriptome analysis. Although a reference wheat genome is not currently available, such 

an investigation could provide insight into the gene classes that may be co-regulated by 

pathogen and temperature. Such an investigation could contribute to fundamental 

understanding of temperature effects on resistance in wheat, and enable the identification 

of genes affecting temperature sensitivity traits in breeding.   
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Chapter 6: Effect of temperature on take-all development   

6.1 Aim 

The research presented in this chapter was undertaken with the aim of identifying 

favourable weather conditions for take-all development from historical data and assessing 

what data would need to be available to combine with future climate scenarios from 

UKCP09 in order to model how take-all disease will be affected by climate change.  

 

6.2 Introduction 

Chapters 3, 4 and 5 explored the effects of temperature on resistance as a means to 

identify possible ways of adapting crops to likely climate change. As outlined in Chapter 1, 

there is no known resistance against take-all disease, making it difficult to build greater 

temperature resilience through breeding. As such, this chapter explores a different 

approach to preparing crops for climate change, by forecasting whether a specific disease 

will become more problematic in the UK so that management practices can be adjusted 

accordingly.   

As briefly outlined in chapter 1, take-all is an important disease of cereal crops caused by 

the root-infecting, necrotrophic fungus Ggt. Estimates predict that up to half of UK wheat 

crops are affected with yields suffering between 5-20 % losses, costing farmers up to £60 

million per year (HGCA, 2006). The disease is divided into a primary and secondary phase of 

infection, the primary infection being the transfer of inoculum from the soil to the root and 

the latter being root to root transfer (Hornby and Bateman, 1998). Winter wheat is usually 

sown in September/October; primary Ggt infection takes place between October and 

March, while secondary infection doesn’t occur until the spring. Therefore the predicted 

increase in UK mild winters might encourage increased primary infection of Ggt in the 

autumn/winter and therefore lead to a more aggressive secondary infection in spring. 

Previous research has shown that Ggt inoculum is able to develop where soil temperatures 

are between 5° and 30°C, however, severe infections are restricted to soil temperatures 

between 5° and 15°C (Hornby and Bateman, 1998). Management of the disease is largely 

through seed treatments and cropping systems. The pathogen has a wide host range 

including many wild grasses as well as cultivated species, however it does not survive well 
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in soils absent of host plants. Therefore one of the most effective methods of controlling 

take-all is through crop rotation, allowing the soil to be periodically free from Ggt hosts 

(Colbach et al., 1997; Ennaifar et al., 2007). 2nd and subsequent wheat crops will generally 

produce less yield than a 1st crop by as much as 2 tonnes per hectare, with loss due to take-

all being the main reason for this (Jones 2009). Despite these figures, according to a recent 

CropMonitor (https://secure.fera.defra.gov.uk/cropmonitor) survey, 25-30% of wheat 

grown in the UK is in 2nd wheat or more and another source thinks this figure is closer to 

40% (Hammond-Kosack, 2011; Jones, 2009). An alternative method used to control take-all 

is through continual growth of the same cereal crop taking advantage of a phenomenon 

known as take-all decline. The severity of the disease initially increases over the first few 

growing seasons but is often followed by a suppression in subsequent crops; a decline due 

to development of antagonist microbial community in the soil (Gutteridge et al., 2006; 

Weller et al., 2002). Take-all decline doesn’t normally set in until a 4th wheat crop and 

management using this method will normally produce less yield than a 1st wheat (HGCA 

2006). Different soil types have different risks associated with take-all risk for example 

crops on light sandy soils, chalky downland soils and fen peats are all high risk (Catt et al., 

1986; HGCA 2006).  Therefore there are several factors that affect take-all development 

and the disease will be managed accordingly, depending on the region and grower specific 

approach. 

UKCP09 is introduced in chapter 1 as a public online database that can output future 

climate predictions in the UK. It is a project designed to meet the needs of a wide range of 

people that are interested in assessing the potential impact of future climate change in the 

21st century. The user interface can be used to generate various maps, graphs and 

spreadsheets containing projections about an array of environmental variables within the 

UK, under various scenarios at a regional level (with a resolution of 25km2). UKCP09 also 

provides access to a series of daily and hourly future climate projections at a greater 

resolution of 5km2, which is provided by a weather generator (developed by the University 

of East Anglia). The predictions are based on various future greenhouse emission scenarios 

which are selected from the IPCC Special Report on Emissions Scenario (IPCC, 2000). Each 

scenario represents a different storyline defining social-economic driving forces which are 

key determinants of the future emissions pathway and all scenarios are based on the 

assumption that emissions will not be changed in response to concerns over climate 

change (Murphy et al., 2009). Previous UK climate projections exist, the most recent prior 

https://secure.fera.defra.gov.uk/cropmonitor/wwheat/surveys/ww_yrustmap.cfm
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to UKCP09 being UKCIP02. Projections from UKCP09 were used due to being the most up to 

date publically available data.  

In the work presented in this chapter, the climatic factors important in development of 

take-all disease are considered. The results indicate that growing subsequent wheat crops 

in some regions may become a bigger issue under climate change scenarios. Hypotheses 

about why climatic factors in particular periods are more important than in others are 

presented and the potential of UKCP09 for making predictions about take-all is also 

evaluated. 

 

6.3 Methods 

6.3.1 Historical data 

Take-all incidence and co-located weather measurements have both been recorded at 

Rothamsted experimental station since the 1970s, and the local weather has also been 

monitored for over 100 years. Taking advantage of this, a literature search was conducted 

to obtain this information and to subsequently analyse  it to enable comparison between 

take-all incidence and climate variables. Rothamsted meteorological records were obtained 

from the electronic Rothamsted Archive (e-RA) and take-all records are summarised in 

Table 6.1. Spink et al (2004) provided an additional dataset of take-all recordings collected 

over consecuative years from an Agricultural and Environmental Consultancy (ADAS UK, 

Ltd) site at Rosemaund, Herefordshire. To compare take-all incidence with climate variables 

in this region, climatic data was obtained from the weather station situated at Great 

Malvern which is approximately 16 miles from the Rosemaund site. Trials for this data set 

were grown in the same location each year. A 3rd set of data was obtained from Monsanto, 

UK Ltd and NIAB consisting of consecutive years’ worth of take-all records from several UK 

sites (Table 6.2). In order to analyse this data, climatic records were obtained from the 

nearest respective weather stations located at Wattisham for Suffolk trials, Charterhall for 

Northumberland, Coningsby for Lincolnshire and Andrewsfield for Essex. Trials for this data 

set were grown within a 20 mile radius. All data sets were analysed for relationships 

between mean temperatures and rainfall and take-all incidence in spring using a regression 

analysis. Spring take-all incidence was used for analysis as these data was more widely 
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available than data for summer take-all incidence. To identify crucial periods for take-all 

development, weather data was split into 28-day periods from sowing date, until spring 

assessment. A 28-day period was chosen as the allocated time period as it was the length 

of time for which the CE experiments were run. 

 

6.3.2 CE experiments 

Discussion of isolation and maintenance of Ggt stains is provided in Section 2.2.3.2. Three 

different strains of Ggt were used in this experiment from which agar plugs were placed in 

conical flasks containing sterile sand-maize meal medium. Flasks were kept moist and 

shaken twice a week for three weeks to encourage pathogen spread. When ready, sand-

maize meal inoculum was mixed with pre-moistened vermiculite to obtain concentrations 

of 2 g 30 mL-1 vermiculite, 0.2 g 30 mL-1 vermiculite and 0.02 g 30 mL-1 vermiculite. Falcon 

tubes were filled to 30 mL with vermiculite containing the different inoculum 

concentrations. Three sterilised Hereward seeds (see 2.2.1 for sterilisation method) were 

sown into the tubes and placed in the correct temperature regimes. Plants were grown in 

three separate controlled growth cabinets (Sanyo) with a 12 hr/12 hr day/night cycle, with 

a constant 80% relative humidity. Mean temperatures were chosen to simulate mean 

temperatures that are realistic of October indicated by the Rothamsted data; 8°C 

represented a cooler than average October, 10.5°C as an average and 13°C as a warmer 

than average October. Temperature regimes were set to minimum and maximum 

temperatures 3.5°C either side of the required mean temperature value. Cabinet 

temperature was programmed to ramp from the given minimum in the middle of the dark 

period to the given maximum in the middle of the light period with 2 hr increments 

between temperature changes. Temperatures are shown in Table 6.3.  

To monitor growth of Ggt independently of the plant, plugs of inoculum were placed in 

Petri-dishes containing PDA in each temperature regime and growth was monitored over 

the experimental period. Plant roots were scored visually for percent roots infected and 

Ggt DNA levels were measured using qPCR. Roots for DNA extraction were freeze dried for 

two days before being ground using the procedure described in section 2.2.5. 800 µL of 

CTAB buffer was added to tubes which were vortexed then incubated for 30 mins at 65°C. 

400 µL of Chloroform/Isoamylacohol (24:1) was added to tubes and vortexed for 15 secs 
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Temp regime Min temp Max temp Mean temp 

1 4.5°C 11.5°C 8°C 

2 7°C 14°C 10.5°C 

3 9.5°C 16.5°C 13°C 

 

centrifuged for 3 mins at 20000 x g. The upper phase of the samples was collected into a 

new tube and mixed with 400 µL isopropanol then incubated for 5 minutes at room 

temperature. After 15 mins at 20000 x g, the supernatant was discarded and the DNA pellet 

was washed with 300 µL 70 % ethanol by spinning for 3 mins at 20000 x g. The pellet was 

dried and re-suspended in TE buffer. DNA samples were adjusted to 10 ng/µL using a 

Picodrop® spectrophotometer. 5 µL of DNA was used in a 20 µL PCR reaction with 0.4 μL of 

Ggt primers (2a and 2b in Table 2.2) at 10 μM, 10 μL of SYBR® Green JumpStartTM Taq 

Readymix (Sigma-Aldrich) and 4.2 μL of dH2O. To determine Ggt levels in each root, a PCR 

reaction containing a serial dilution of Ggt DNA at a known concentration was run on the 

same PCR plate. 5 μL of Ggt DNA (extracted from one of the strains used in this experiment 

using the procedure outlined in 2.2.3.2) was used in the PCR reaction outlined above. 

Cycling conditions were according to section 2.2.7. A standard curve was calculated from 

the results of the Ggt serial dilution which was used to calculate the amount of Ggt in each 

root sample (Figure 6.1). 

For experiments to monitor the initial interaction between wheat and Ggt, Hereward seeds 

were sterilised according to section 2.2 and placed at one end of a 9 x 9 cm square Petri-

dish containing 1% water agar which was covered by sterilised filter paper. Plugs of the 

same three Ggt isolates described above were transferred onto the same plate at random 

locations to represent Ggt inoculum in the soil. Plates were wrapped in aluminium foil with 

an opening at one end, which exposed seeds to light, and placed in one of two CE cabinets 

(Schneider) at a 45º angle. CE’s were programmed with a 12 hr/12 hr day/night cycle, the 

first set to a constant 8°C and the second to a constant 13°C (being the lowest and highest 

October mean temperatures observed in the Rothamsted data). Plates were monitored 

over a 28 day period during which various measurements at different time points were 

Table 6.3 Mean, maximum and minimum temperatures of CERs for take-all 

experiments 
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recorded (Figure 6.2). During the monitoring, plates were given an additional 1 mL of dH2O 

on a weekly basis. As in the previous CE experiment, independent plugs of Ggt inoculum 

were placed in Petri-dishes containing PDA in each temperature regime and growth was 

monitored over the experimental period. 

 

6.3.3 Statistical analysis 

Historical data were analysed using the linear regression analysis in Microsoft Office Excel 

package. Data from CE experiments were analysed with general linear regression using the 

statistical package Genstat for Windows, release 12 (VSN international, Hemel 

Hempstead, UK). ANOVA tables can be found in the appendix. For CE experiment 15 or 

more individual plant replicates were used to calculate means and standard error unless 

otherwise specified. Locations of tubes/plates were changed throughout the experimental 

period as a means of randomisation. 

 

6.4 Results 

6.4.1 Soil temperature is strongly related to air temperature in soil type at the 

Rothamsted site 

Daily mean air temperature was compared to daily mean soil temperature at Rothamsted 

over a 10 year period between 2000 and 2010 using the data supplied by e-RA. 

Temperatures were taken at soil depths of 10 cm and 30 cm although Ggt inoculum is not 

thought to be the cause of significant infection at depths greater than 10 cm (Cotterill 

1988). Results showed that mean air temperature is extremely significantly correlated with 

soil temperature at both 10 cm (Appendix, Table A1, P < 0.001) and 30 cm (Appendix, Table 

A2, P < 0.001, Figure 6.3). The maximum temperature difference between air temperature 

and soil temperature in the 10 year period was 5.65°C and the average difference between 

soil and air temperature was 0.16°C.  
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6.4.2 Mean air temperature during early post sowing period affects spring take-all 

levels in 3rd and 4th wheat rotations sown at Rothamsted 

Rothamsted historical disease records extracted from various publications over a 30 year 

period were compared with local climate data to look for relationships between 

temperature, rainfall and spring disease levels. To identify important climatic periods for 

take-all development, mean air temperatures and rainfall were split into 28-day periods 

between sowing dates and the first take-all assessment.  Results showed no significant 

correlations between spring take-all levels in 2nd wheat and mean temperature or total 

rainfall in any of the 28 day periods (Figure 6.4b). For 3rd wheat, there was a significant 

positive correlation between mean temperature in the first 28 day period post sowing and 

spring take-all disease levels (Appendix, Table A3, P = 0.03, Figure 6.4a,b). Mean 

temperature from the subsequent 28 day periods did not show a significant correlation 

with 3rd wheat spring take-all levels (Figure 6.4a). For 4th wheat, the  positive correlation 

between average temperature in the 28 day period post sowing and spring take-all disease 

levels was even more significant (Appendix, Table A4, P < 0.01, Figure 6.4a,b). The next 28 

day period also had a significant positive correlation (Appendix, Table A5, P = 0.03), 

although no mean temperature of subsequent 28 day periods showed a significant 

correlation with spring take-all levels (Figure 6.4b). A negative correlation was observed 

between total rainfall and spring take-all levels in the 7th 28 day period after sowing in 2nd 

wheat which would be around the time plants were assessed in the spring (P < 0.01, Figure 

6.4a). Another negative correlation between total rainfall and spring take-all levels was 

observed in the 3rd 28 day period after sowing of 4th wheat, which would fall in the middle 

of winter (Appendix, Table A6, P = 0.03, Figure 6.4a). Length of time that wheat was in the 

ground before assessment was not significantly correlated with spring take-all levels (Table 

6.4).   

 

6.4.3 An effect of initial temperatures on spring take-all levels is seen in 2nd and 3rd 

wheat rotations in long term experiment sown at Rosemaund, Herefordshire 

Data from a 6 year experiment by Spink et al (2004) was analysed in the same way as the 

Rothamsted data in section 6.4.2.  Results showed no significant correlations between 

spring take-all levels in 1st wheat and temperature or rainfall in any of the 28 day periods 
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post sowing (Table 6.5). For 2nd and 3rd wheat a significant positive correlation was only 

apparent between average temperature in the first 28 day period post sowing and spring 

take-all disease levels (2nd wheat, Appendix, Table A7, P = 0.04, 3rd wheat, Appendix, Table 

A8, P = 0.01, Table 6.5). The trend was stronger and more significant in 3rd wheat than 2nd 

wheat. No correlation was observed between total rainfall and spring take-all levels in any 

of the wheat crop rotations across all the 28 day periods (Table 6.5).  

6.4.4 No effect of initial temperature was seen on 2nd wheats from various UK locations 

The relationship between temperature and rainfall and spring take-all levels was further 

investigated using data from various Monsanto Ltd/NIAB trials, grown in different UK 

regions. All wheat was in a 2nd rotation. Data showed that mean temperatures in the first 

28 day period post-sowing had no effect on spring take-all levels at any of the locations, as 

for the Rothamsted result for second wheats (Table 6.6). At one location 

(Northumberland), a weak significant positive correlation was observed between rainfall in 

this same period and spring take-all levels (Appendix, Table A9, P = 0.05, Table 6.6). No 

other location showed that rainfall levels had any effect on spring take-all levels. 

 

6.4.5 Mean temperature has the greatest effect on take-all at the highest Ggt 

concentrations 

Analysis of historical data suggested that initial temperature might be an important factor 

influencing spring take-all levels. To confirm whether the relationship between initial 

growth temperatures and take all infection could be seen under CE conditions, and to test 

whether different concentrations of Ggt inoculum were differentially affected by 

temperature, inoculum was added to the growth media in 10 fold dilutions, with plants 

grown at a range of temperatures that were realistic to UK sowing temperatures. Infection 

rates and Ggt concentrations were fitted to the generalised linear model temperature and 

inoculum concentration. Results indicated that there was an effect of both temperature 

and concentration on both percentage of roots infected and Ggt DNA levels but there was 

no interaction between the two variables. At the lowest Ggt concentration (0.02g/tube), 

the number of roots infected were significantly different between all three temperature 

regimes (P < 0.01, Figure 6.5a). Plant root Ggt levels followed a similar trend at this 

concentration although there was no significant difference between plants grown at mean 



Chapter 6 

 

 

125 
 



Chapter 6 

 

 

126 
 



Chapter 6 

 

 

127 
 



Chapter 6 

 

 

128 
 

temperatures of 8°C and 10.5°C (Figure 6.5b). At intermediate Ggt concentrations (0.2g), 

the number of roots infected was significantly different between plants grown at 8°C and 

10.5°C (P < 0.001) but there was no significant difference between plants grown at 10.5°C 

and 13°C, presumably because disease saturation had occurred in plants grown at the 

highest temperature (Figure 6.5a).  Again, plant root Ggt levels followed a similar trend to 

number of roots infected and similar to the lower Ggt concentration, there was no 

significant difference in Ggt levels between plants grown at a mean temperature of 8°C and 

10.5°C (Figure 6.5b). High Ggt concentrations (2g) gave a parallel result to intermediate 

concentrations, in that number of roots infected was significantly different between plants 

grown at 8°C and 10.5°C (P < 0.001) and once more there was no significant difference 

between plants grown at 10.5°C and 13°C (Figure 6.5a). At this concentration, plants grown 

in all three temperature regimes had significantly different Ggt levels in plant roots (Figure 

6.5b). Low and intermediate Ggt inoculum concentrations produced root Ggt level that 

differed approximately 5 fold between plants grown at 8°C and 10.5°C, whereas the highest 

Ggt inoculum concentration had a fold change of 12 between plants grown at 8°C and 

10.5°C. Likewise, fold change of Ggt levels was more extreme in the highest inoculum 

concentration between plants grown at 8°C and 13°C (Figure 6.5b). Ggt isolateswere also 

grown independently on agar plates to monitor external growth of pathogen. All three 

strains grew quickest at 13°C, slowest at 8°C and at an intermediate rate at 10.5°C (Figure 

6.6).  

 

6.4.6 Plant root growth rate and Ggt infection spread is more extreme at 13°C 

compared to 8°C 

To determine how temperature affects the initial wheat-Ggt interaction, an experiment to 

simulate the 28 day period post sowing under two different temperatures was performed. 

Plant root growth rate was three times faster at 13°C than at 8°C and roots took an average 

of 9.45 days to come into contact with a Ggt inoculum source at the lower temperature 

compared to an average of 4.47 at the higher temperature (Figure 6.7a,b,c). Despite the 

roots only taking twice as long to make contact with the Ggt inoculum at 8°C compared to 

13°C, on average it took Ggt almost five times longer to infect plant cells at the lower 

temperature the difference being an average of 9.68 days at 8°C and an average of only 

2.07 at 13°C (Figure 6.7a,c,d). Ggt induced lesions spread through the plant tissue kept at 
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13°C approximately three times the rate at which infection spread in plants at 8°C (Figure 

6.7a,e). The increased growth rate at 13°C was also observed in the in vitro Ggt colonies, 

but the increased rate of growth at 13°C was slightly higher being approximately four fold 

on average (Figure 6.7a,f). 

 

6.4.7 Current and future mean temperatures during typical UK sowing time for 

Hertfordshire and Herefordshire    

Historical data from the Met Office reveals that current mean temperatures during October 

(sowing time) in Hertfordshire and Herefordshire are similar, being about 10.5 °C (Figure 

6.8). UKCP09 climate predictions suggest that temperature increases will be greater in 

Hertfordshire compared to Herefordshire using a medium emission scenario. In 

Herefordshire, the highest recent October temperatures are projected to be commonplace 

in 2080 whereas in Hertfordshire current extreme October temperatures are projected to 

be commonplace in 2050. By 2080, mean October temperatures in Hertfordshire will be 

almost 1°C warmer than the most extreme October temperatures in recent years (Figure 

6.8).      

 

6.5 Discussion 

Results show a relationship between initial post sowing temperatures and spring take-all 

levels in winter wheat, considering a positive correlation was observed between both 3rd 

and 4th wheat rotations grown at Rothamsted, and both 2nd and 3rd wheat rotations grown 

at Rosemaund, Herefordshire. This result is supported by findings of Smiley et al (2009) 

which indicate that mean temperature for 21 days post planting shows a positive 

correlation with spring take-all levels in the US. Findings by Lucas et al (1998) also show 

that temperatures in the initial period post sowing are important. Additional support 

comes from CE experiments which showed that plants grown at a higher mean 

temperature had increased take-all symptoms 28 dpi. However no relationship was seen in 

1st and 2nd wheat rotations at Rothamsted, 1st wheat rotations at Rosemaund and 2nd wheat 

at other various UK locations. Ggt inoculum in the field is not uniformly distributed and is 

built up year on year by successive wheat crop rotations (Colbach et al., 1997). Results 
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presented in this chapter suggest that the relationship between autumn sowing 

temperature and spring take-all levels can only be seen once inoculum concentrations have 

reached a particular threshold, due to the effect not being apparent until later wheat 

rotations. This is supported by CE data in that the effect of temperature on take-all levels 

was strongest at the highest concentration compared to the low and intermediate 

concentration, which were not significantly different.  It is possible that the relationship 

between mean temperature and spring take-all levels was seen earlier at the Rosemaund 

site than the Rothamsted site due to soil Ggt levels being naturally higher at the 

Rosemaund. Generally a relationship between temperature and take-all is not seen in 2nd 

wheat rotations suggesting the experiment at Rosemaund may be an exception. This 

exception could be due to a number of factors including soil type, other climatic factors or 

agricultural practises. It is possible that the Monsanto/NIAB data may not have shown any 

correlations between initial temperatures and spring take-all because the relationship is 

not generally seen in 2nd wheat rotations. However the trials were grown at various 

locations within a 20 miles radius creating many interfering factors influencing results such 

as different soil types and local climate discrepancies.   

Given that post sowing mean temperatures impact on spring take-all levels, this knowledge 

could be used in take-all preventative agricultural management. For example, identification 

of influential climatic factors will aid in more accurate modelling of disease epidemiology. 

What’s more, if autumn and winter temperatures are predicted to be mild for the year in 

question, growers may benefit from later sowing or not risking sowing a 2nd or 3rd wheat 

rotation. Traditionally in the Hereford area, a 2nd wheat rotation would occasionally be 

grown but not a 3rd due to high risk of take-all (Spink et al., 2004). Future conditions may 

eliminate the possibility of growing even a 2nd wheat in this location. Many farmers will risk 

a 2nd or 3rd wheat (Hammond-Kosack, 2011; Jones, 2009), presumably due to increased 

profit potential if the risk pays off. In the later part of this century the risk may not be 

worth taking. Climate predictions provided by UKCP09 suggest that some areas of the UK 

will warm more quickly than other areas (Murphy et al., 2009). Results indicate that mean 

temperatures will rise more quickly in the East of England (Figure 6.8). If the East warms 

more quickly than the West, Eastern areas may face earlier problems with wheat rotations 

which is especially unfortunate due to its current status as the main wheat growing region.  

The results suggest that the effect of increasing temperatures from climate change is 

specific to sites. Therefore to assess impact of climate change on take-all using UKCP09, 
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access to more regional data would need to be obtained. Predictions by Evans et al (2008; 

in a study regarding how climate change would influence infection by phoma stem canker 

on oil seed rape) were developed using a phoma stem canker model developed by previous 

findings from various studies (Sun et al., 2000; West et al., 2001). The model was validated 

prior to combining with UKCIP02 outputs, suggesting that a similar model for take all would 

need to be developed before output could be combined with UKCP09. The high resolution 

of UKCP09 would make this possible, but would require long term monitoring of take-all at 

an equally high resolution and would have to take into account soil type. UKCP09 also only 

has air temperature as an output whereas Ggt is also soil borne, but the highly significant 

correlation between air and soil temperature enhances the value of UKCP09 for making 

climate change  predictions at a below ground level.   

Colbach et al (1997) argue that early sowing increases disease via the primary infection 

cycle. Results from analysing the Rothamsted data do not support this hypothesis as there 

was no relationship between length of time that wheat was in the ground and percentage 

of roots infected in the spring (Table 6.4). Early autumn sowings will normally have warmer 

temperatures compared to those sown later.  The reason why early sowings are correlated 

with increased take-all could be due to higher temperatures independently of the time that 

wheat is in the ground. Results indicate that temperature only appears to be important in 

the initial period after sowing and that temperature does not subsequently show a 

relationship with spring take-all levels. The only exception to this is the 2nd 28 day period 

from the 4th wheat grown at Rothamsted. This suggests that temperature has a stronger 

effect on primary, rather than secondary, take-all infection. Perhaps the Ggt ability to reach 

the plant is more strongly affected by temperature than the ability of the fungus to spread 

through the plant. However, there is no evidence that Ggt can grow in the soil as levels 

tend to decrease overtime (Bithell et al., 2009). Nevertheless, it is interesting that in vitro 

Ggt growth rate shows a bigger difference between 8°C and 13°C than growth of the 

fungus in the plant. 

In three months post harvest, Ggt inoculum can decline by between 70% and 25% 

depending on the field (Bithell et al., 2009). Results here showed that root growth was 

slower when temperatures were cooler so another hypothesis is that increase in 

temperature increases root growth, so roots come into contact with more Ggt inoculum 

before it is broken down in the soil. In addition, Ggt was strikingly slow at infecting root 

tissue at 8°C compared to 13°C, perhaps signifying that the combination of delayed contact 
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of wheat roots with a Ggt inoculum source, and an even more delayed infection time, 

contributes to decreased primary infection in years with lower mean temperatures. It may 

also be that Ggt infection success rate is reduced under lower temperatures although our 

observations suggest otherwise considering that, although infection was slower at 8°C, it 

did occur.  

Significant correlations between rainfall and spring take-all prevalence were established 

However results were too variable to draw conclusions. Lucas et al (1997) conclude rain did 

not appear to be a limiting factor unless over 500mm fell in the later period. This evidence 

suggests that rain may only have an effect on take-all only in extreme conditions. Workings 

by Roget and Rovira (1991) also observed rainfall as a take-all influencing factor although 

this was rainfall from the previous season which would not have been picked up in our 

study and maybe specific to Australian climate. 

As previously reported by Thomas et al (2010), evidence suggests that, even with a modest 

1oC increase in temperature, take-all disease of wheat in the UK will become more of a 

concern over the next century. This chapter explores where climatic factors are important 

and where wheat is most at risk, for example marginal 2nd/3rd wheat in some areas could 

no longer be viable. Considering that there are limited management strategies for this 

disease, it is worth investing in research for novel ways to deal with take-all before it arises, 

and developing modified rotation. Climate change is a gradual process, and farming 

practices will adapt continually. Although this research cannot make predictions about the 

occurrence of take-all in specific locations, the work could form the basis for evaluating the 

economic impact of the disease in the future.  
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Chapter 7: General discussion 

 

Climate change is usually regarded as a future problem but weather extremes have always 

taken place, and are continuing to do so with perhaps more frequency (Eden, 2011; Mayes, 

2006; Prior and Kendon 2011).  The results presented in the previous chapters have 

uncovered new information that could help prepare wheat for the unknown disease 

challenges that the crop will be faced with over the next few decades. The results show 

that there are vulnerable defence periods for wheat, so climate change may increase the 

risk of a specific pathogen. The results could help identify a focus for wheat improvement 

to cope with temperature changes in current and future climates. Important insights into 

the temperature-sensitive nature of wheat gene Yr36 were uncovered, along with the 

discovery of a previously-uncharacterised background temperature sensitivity of resistance 

to yellow rust that may be cultivar-dependent. Further investigation of general defence 

temperature sensitivity and how varying temperatures affect defence responses was 

explored. Influential climatic periods for take-all development were also identified. 

The work on yellow rust resistance and take-all both identify vulnerable periods for wheat 

caused by the environment, be it weakening of host defence responses or increased threat 

from disease pressure. Further characterisation and understanding of vulnerable periods 

will be essential to control disease outbreaks under an increasingly unstable climate. 

 

7.1 Increased understanding of temperature sensitivity of wheat defence 

Work presented in chapter 3 showed that resistance conferred by Yr36 is not reliant on 

high temperatures as previously thought (Fu et al., 2009; Uauy et al., 2005). This is 

consistent with observations in Segovia et al (in press), which show that Yr36 may function 

in European climates. Since resistance was lost when plants experienced a drop in 

temperature, Yr36 appears to be sensitive to temperature change. That said, UC1041 -Yr36 

plants experienced a similar reduction of defence responses when exposed to the same 

temperature decrease. It is plausible therefore, that the temperature drop affects an 

underlying mechanism of general resistance, rather than that specifically conferred by 

Yr36. It will be essential to see whether this observation is seen when the cultivars are 
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challenged with alternative isolates of Pst and importantly, the isolate used in the original 

study by Uauy et al (2005).  

Preliminary findings suggest that Yr39 may be similarly affected by temperature decreases, 

although it was not possible to confirm whether this was also seen in the Alpowa 

background. Nevertheless, our understanding of HTAP and resistance gene temperature 

sensitivity is clearly not as advanced as previously thought.  Further investigation is 

required to determine whether HTAPs have generally been misclassified as requiring high 

temperature to function, or are affected by temperature changes as discovered in this 

study. Only one gene was found to be commonly regulated by all four resistance genotypes 

when transcripts were compared using microarray technology (Chen, 2013; Coram et al., 

2008a), which suggests that defence mechanisms are not similar, perhaps due to 

background defence responses being responsible for HTAP-like phenotypes. Chen (2013) 

suggests that for breeding, clearer data on HTAP resistance can be obtained when 

germplasm is screened for both seedling and adult plants. However it may be more 

worthwhile to screen germplasm using a method similar to the ones used in chapter 3, 

where plants are grown in pre- and post-inoculation temperature before inoculation takes 

place. However, large scale screening of germplasm in this way would be difficult due to 

timing complications, caused by different cultivars taking different amounts of time to 

reach the right growth stage under different temperature regimes.  

Zhu et al (2010) hypothesise that temperature-sensitivity in plants is largely regulated by 

NB-LRR coding genes rather than other signalling components. In contrast, Wang et al 

(2009) suggest that temperature resistance sensitivity to biotrophic and hemibiotrophic 

pathogens might be controlled by a more general mechanism. Work presented here 

suggests it is more in keeping with the latter theory, considering the cultivar Claire seems 

better adapted to coping with pathogen challenge under varying temperatures. However 

this observation was general to both necrotrophic and biotrophic pathogens. This is not in 

keeping with the hypothesis by Wang et al (2009), that temperature modulation of defence 

pathways might reflect a balance of defence against pathogens with different virulence at 

different temperatures. Considering only one necrotrophic pathogen was tested on Claire 

and Shamrock at one time, this concept still needs to be explored. 

This work clearly shows that variations in temperature are affecting resistance responses, 

in addition to sustained average temperatures affecting resistance. In chapter 3 it was 
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proposed that ambient temperature increases could be priming plants for defence against 

Pst. It will be interesting to explore this idea further to define the level of temperature 

change and timescale necessary to induce these changes. In addition it would be 

interesting to know whether the increased resistance under varying temperatures seen in 

Claire was pre-determined by physical adaptation or whether inducible resistance 

mechanisms were enhanced.  Precisely when temperature is affecting defence is still a 

mystery. Examination of meteorological records taken during field trials could help identify 

temperature conditions that affect resistance gene performance, and could be useful 

information in breeding. 

Chapter 4 explores whether general temperature resilience may enable plants to cope with   

pathogens more effectively. It is worth investigating whether increased resilience to abiotic 

stresses generally makes plants more resilient to biotic stresses, as this raises the possibility 

that improvement of the two could be simultaneously developed. There are some studies 

investigating resilience in wheat to abiotic stresses (Ahmed et al., 2012; Mukhtar et al., 

2010).  Once identified, cultivars with good resilience to abiotic stresses could be screened 

for resilience to biotic stresses. As explored throughout this thesis, sensing of biotic and 

abiotic stresses in plants often induce common plant signalling pathways. Stress-induced 

signalling cascades can be in the form of changes in calcium levels, production of reactive 

oxygen species (ROS; Wojtaszek et al., 1997) and accumulation of hormones to name a 

few. WRKY transcription factors have been shown to play key roles in both response to 

biotic (Dong et al., 2003) and abiotic stress (Fowler and Thomashow, 2002; Mare et al 

2004; Wang et al., 2013a). They are generally thought to be induced by temperatures 

indicative of cold hardening but their response to ambient temperature changes could be 

explored. Plant hormone ABA can suppress WRKY gene expression (Talanova et al., 2009) 

and, as discussed in chapters 3, 4 and 5, ABA is involved in response to both biotic and 

abiotic stress and a well known negative regulator of defence. ABA-mediated abiotic stress 

signalling takes priority over biotic stress signalling (Anderson et al., 2004) and considering 

ABA is induced by cold temperatures that are not generally associated with stress 

conditions (Koga et al., 2004a), perhaps this could be a starting point to further investigate 

a mechanism for how changes in temperature and thermoperiods affect defence in wheat 

crops.  



Chapter 7 

 

 

 
140 

 
 

Insight into resistance genes both involved in defence, and affected by a temperature drop 

in chapter 5 were not successful. What is needed is a study that combines ambient 

temperature changes with pathogen challenge in different backgrounds that show 

differences in temperature sensitivity like those observed in Shamrock and Solstice. For 

example both cultivars could be exposed to a temperature increase with and without 

pathogen challenge and transcriptomes could be analysed to look for key transcripts 

involved, however time points used in this investigation would need to be determined.  

There are many factors that influence the effect of temperature on plant resistance. For 

example, the effect of a temperature change on resistance to Pst observed in chapter 3 

may  be an entirely different aspect of defence that is affected to observations in chapter 4. 

This was apparent from Shamrock showing defence sensitivity to temperature changes 

using the method in chapter 3, but not showing defence temperature sensitivity using the 

method described in chapter 4 (although it is worth pointing out that Shamrock did show 

temperature sensitivity when using the Pst 08/21 isolate). Also, different aspects of 

temperature could be affecting the same or a different aspect of defence. It could mean 

that throughout its life, a plant’s defence will experience sensitivity to temperature 

changes, sensitivity to average temperature (i.e. some genes working in a particular 

temperature range) and in addition sensitivity to thermoperiods. On top of this, a plant will 

have already adapted physical barriers defences in a location before it deals with the above 

(Figure 7.1).  With this in mind, different aspects of temperature influencing defence may 

be detrimental to some pathogens but beneficial to others which will add another level of 

complexity to an already convoluted system. Genotype x environment (G x E) interaction is 

recognised in the field, when results of several years are examined. Results here provide a 

new insight into temperature effects that could account for some of those G x E results. 

 

7.2 Mapping of traits seen in the chapters 3 and 4 

Whilst there are many factors that influence defence, it may still be possible to genetically 

map the loci that control the traits. The next logical step to advance this work would be to 

map traits observed in chapters 3 and 4. For observations in chapter 3, a mapping 

population could be developed between Soltice and Shamrock, to identify QTLs involved in 

the Pst defence temperature sensitivity observed in Shamrock. However, screening 
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seedlings developed from the crossing program would not be easy, considering the 

phenotype is sometimes not seen in Shamrock seedlings. However, provided parental 

controls were included with the offspring, it may be possible to determine that the 

temperature was affecting resistance in Shamrock. Another mapping population could also 

be developed between Claire and Shamrock, based on observations in chapter 4. However, 

since results were more subtle and less consistent, further experiments would first be 

recommended before mapping is begun, to determine that differences in temperature are 

responsible for the results observed in chapter 4. 

 

7.3 UKCP09 to help with forecasting for both plant defence and disease 

forecasting 

UKCP09 could provide a useful tool for making predictions about future pathogen 

prevalence and disease spread in the UK, considering it can provide local climate readouts.  

Thus, general trends about the influence of climate change on plant diseases could be 

made, which may affect management practices. However, this work illustrates that UKCP09 

will not be appropriate for modelling how temperature affects disease responses, 

considering they are highly complex in nature and influenced by many factors. Limitations 

of UKCP09 include pathogens that are highly influenced by factors that are not included in 

the model. Soil pathogens like Ggt and Oculimacula yallundae (the casual agent of wheat 

eyespot) will be affected by soil type as well other factors. It was also a concern that 

UKCP09 temperature readouts being limited to air temperature would prevent below 

ground investigation. Results from this work, however, show that air temperature is highly 

correlated with soil temperature, so this should not be an issue. Models to predict take-all 

levels in winter wheat have been advanced (Ennaifar et al., 2007; Gosmel et al., 2013). This 

study indicates that these could be combined with UKCP09 climate projection models to 

predict outcomes, provided they accurately account for soil type. Similar models for other 

current and potential pathogen threats could also be combined with the most up to date 

UKCP interface, like those already produced by Evans et al (2008) and Madgwick et al 

(2011). UKCP09 visual representations act as a powerful tool for raising awareness at a 

local scale which will help to inform policy making decisions.  
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7.4 Overall conclusion 

The most realistic approach to prepare wheat for future disease threat is through 

manipulation of host defence. The work in this investigation illustrates that temperature 

sensitivity in defence is complex, and there are many factors that can influence it. 

However, the work also suggests that there may be genetic variation that could enable 

development of more temperature-stable resistance. Whilst controlled environment 

experiments could help identify factors affecting defence, the results ultimately need to be 

applied in the field. The results indicate that greater use of environmental data from field 

experiments could help identify varieties from breeding programmes with defence that is 

more resilient to temperature changes, which will have both immediate and long term 

benefits for agriculture and food security. Provided accurate biological data is available, 

UKCP09 could also have potential in predicting long-term trends that affect diseases 

including those caused by soil pathogens. Preparation of wheat cultivars through breeding 

is a slow process (Shimelis and Laing, 2012), and we cannot prepare host defences if we do 

not have an idea of which pathogens will be prevalent in the future. Therefore a 

combination of both preparing host defence and disease forecasting of potential threats is 

required.  
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Appendix 

A1 ANOVA tables 

Table A1 
       

         Regression Statistics 
       Multiple R 0.9573875 
       R Square 0.9165909 
       Adjusted R 

Square 0.9165835 
       Standard Error 1.598998 
       Observations 11320 
       

         ANOVA 
        

  df SS MS F 
Significance 

F 
   Regression 1 318000.38 318000.38 124374.64 0.0000 
   Residual 11318 28937.8 2.5567945 

     Total 11319 346938.18       
   

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% Upper 95% 
Lower 
95.0% 

Upper 
95.0% 

Intercept 0.9351233 0.0293118 31.902582 6.14E-214 0.877667 0.9925796 0.877667 0.9925796 

X Variable 1 0.9208235 0.002611 352.66788 0 0.9157055 0.9259416 0.9157055 0.9259416 

 

 

Table A2 
       

         
Regression Statistics 

       
Multiple R 0.9467276 

       
R Square 0.8962932 

       Adjusted R 
Square 0.896284 

       
Standard Error 1.7829735 

       
Observations 11320 

       

         
ANOVA 

        

  df SS MS F 
Significance 

F 
   

Regression 1 310958.32 310958.32 97816.563 0.0000 
   

Residual 11318 35979.861 3.1789946 
     

Total 11319 346938.18       
   

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% Upper 95% 
Lower 
95.0% 

Upper 
95.0% 

Intercept -0.0670639 0.0357524 -1.8757898 0.0607099 -0.1371447 0.0030169 -0.1371447 0.0030169 

X Variable 1 0.983719 0.0031453 312.7564 0 0.9775536 0.9898844 0.9775536 0.9898844 
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Table A3 
        

         Regression Statistics 
       Multiple R 0.6661111 
       R Square 0.443704 
       Adjusted R Square 0.3818933 
       Standard Error 16.650221 
       Observations 11 
       

         ANOVA 
        

  df SS MS F 
Significance 

F 
   Regression 1 1990.07687 1990.0769 7.17844 0.02523663 
   Residual 9 2495.06859 277.22984 

     Total 10 4485.14545       
   

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% 
Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept -6.48313 21.72063 -0.298478 0.77211 -55.618601 42.6523 -55.6186 42.6523 

X Variable 1 5.9562825 2.22311 2.6792605 0.02524 0.92726526 10.9853 0.927265 10.9853 

 

 

Table A4 
       

         Regression Statistics 
       Multiple R 0.952491 
       R Square 0.9072391 
       Adjusted R 

Square 0.8840489 
       Standard Error 12.362009 
       Observations 6 
       

         ANOVA 
        

  df SS MS F 
Significance 

F 
   Regression 1 5978.5363 5978.5363 39.121614 0.00333204 
   Residual 4 611.27706 152.81926 

     Total 5 6589.8133       
   

         

  
Coefficient

s 
Standard 

Error t Stat P-value 
Lower  
95% 

Upper 
95% 

Lower 
95.0% 

Upper 
95.0% 

Intercept 
-

114.85623 27.610944 
-

4.1598083 0.0141474 -191.5165 
-

38.1960 

-
191.516

5 
-

38.1960 

X Variable 1 17.293896 2.764932 6.2547273 0.003332 9.6172 24.9706 9.6172 24.9706 
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Table A5 
       

         
Regression Statistics 

       
Multiple R 0.8575971 

       
R Square 0.7354728 

       Adjusted R 
Square 0.6693411 

       
Standard Error 20.875731 

       
Observations 6 

       

         
ANOVA 

        

  df SS MS F 
Significance 

F 
   

Regression 1 4846.6288 4846.6288 11.121321 0.028974 
   

Residual 4 1743.1845 435.79614 
     

Total 5 6589.8133       
   

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% Upper 95% 
Lower 
95.0% 

Upper 
95.0% 

Intercept -20.902477 24.284848 -0.860721 0.4379261 -88.328023 46.523069 -88.328023 46.523069 

X Variable 1 11.555409 3.465031 3.3348645 0.028974 1.9349405 21.175877 1.9349405 21.175877 

         

         

         
Table A6 

       

         
Regression Statistics 

       
Multiple R 0.853233 

       
R Square 0.7280066 

       Adjusted R 
Square 0.6600083 

       
Standard Error 21.116861 

       
Observations 6 

       

         
ANOVA 

        

  df SS MS F 
Significance 

F 
   

Regression 1 4774.1461 4774.1461 10.70624 0.0307301 
   

Residual 4 1783.6873 445.92182 
     

Total 5 6557.8333       
   

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% Upper 95% 
Lower 
95.0% 

Upper 
95.0% 

Intercept 123.3904 16.688953 7.3935376 0.0017846 77.054438 169.72636 77.054438 169.72636 

X Variable 1 -0.8511602 0.2601314 -3.2720391 0.0307301 -1.5734008 -0.1289196 -1.5734008 -0.1289196 
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Table A7 

       

         
Regression Statistics 

       
Multiple R 0.8919862 

       
R Square 0.7956395 

       Adjusted R 
Square 0.7275193 

       
Standard Error 3.0090753 

       
Observations 5 

       

         
ANOVA 

        

  df SS MS F 
Significance 

F 
   

Regression 1 105.7564 105.7564 11.679938 0.0419168 
   

Residual 3 27.163603 9.0545343 
     

Total 4 132.92       
   

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% Upper 95% 
Lower 
95.0% 

Upper 
95.0% 

Intercept -13.639605 6.5161863 -2.0931883 0.1273891 -34.377018 7.0978084 -34.377018 7.0978084 

X Variable 1 2.092897 0.6123893 3.4175924 0.0419168 0.144001 4.0417931 0.144001 4.0417931 

         

         

         
Table A8 

       

         
Regression Statistics 

       
Multiple R 0.985651 

       
R Square 0.9715079 

       Adjusted R 
Square 0.9572619 

       
Standard Error 1.2575581 

       
Observations 4 

       

         
ANOVA 

        

  df SS MS F 
Significance 

F 
   

Regression 1 107.8471 107.8471 68.194972 0.014349 
   

Residual 2 3.1629046 1.5814523 
     

Total 3 111.01       
   

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% Upper 95% 
Lower 
95.0% 

Upper 
95.0% 

Intercept -19.179345 3.3210579 -5.7750708 0.0286992 -33.468704 -4.8899858 -33.468704 -4.8899858 

X Variable 1 2.4127335 0.2921684 8.2580247 0.014349 1.1556345 3.6698324 1.1556345 3.6698324 
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Table A9 
       

         Regression Statistics 
       Multiple R 0.8733654 
       R Square 0.762767 
       Adjusted R 

Square 0.6836894 
       Standard Error 2.6352608 
       Observations 5 
       

         ANOVA 
        

  df SS MS F 
Significance 

F 
   Regression 1 66.986202 66.986202 9.6457979 0.0530562 
   Residual 3 20.833798 6.9445994 

     Total 4 87.82       
   

         

  Coefficients 
Standard 

Error t Stat P-value Lower 95% Upper 95% 
Lower 
95.0% 

Upper 
95.0% 

Intercept -1.0897017 2.7421173 -0.3973943 0.7176627 -9.8163426 7.6369393 -9.8163426 7.6369393 

X Variable 1 2.5570019 0.8233073 3.1057685 0.0530562 -0.0631294 5.1771332 -0.0631294 5.1771332 
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A2 Gene expression 

The table contains genes identified in chapter 5 from Laudencia-Chingcuanco et al (2011) 

with differential expression (>4 fold) in all wheat cultivars, between cold treatment of 6°C 

for 48 hrs and their respective control of 0 hrs. Calculation used linear modelling and an 

Empirical Bayes moderated t statistic (Smyth, 2004). M = Fold change log2, P = FDR adjusted 

P value. The colour represent fold change differences indicated in the diagram below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  M = > 6 

  M = 3 - 6 

  M = 0 - 3 

  M = -3 - 0 

  M = -6 - -3 
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