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ABSTRACT 

 

Nod factor (NF) can induce two separate calcium responses in legume root hairs. Nuclear-

associated calcium spiking is central to the symbiosis signalling (Sym) pathway, which is 

necessary for the activation of genes required for nodule formation and bacterial infection. In 

addition NF activates a tip-focused calcium influx, which is less-well studied but is thought to 

be involved in bacterial infection. NF also activates ROS transient production at the tip of root 

hair cells. In this thesis I used fluorescent probes (Ca2+-sensitive Cameleons YC2.1 and YC3.6 

and the ROS-sensitive CM-H2DCFDA dye) to characterise the NF-induced calcium influx and 

ROS transient responses in Medicago truncatula. Along with being spatially and temporally co-

incident, the responses require similar concentrations of NF to be activated, are inhibited by 

the NADPH oxidase inhibitor diphenyleneiodonium and are dependent on the NF receptor NFP 

but independent of the Sym pathway components DMI1 and DMI2. These results suggest the 

NF-induced calcium influx and ROS transient are part of a common signalling pathway during 

bacterial infection. 

ROP signalling is associated with ROS production and calcium influx during developmental root 

hair elongation. I assessed the role of ROPs during rhizobial infection in M. truncatula and 

found a ROP-activating protein, MtGAP1, was upregulated in root hairs during bacterial 

infection and is involved in normal root hair curling and infection thread development. Two 

pieces of evidence directly link ROP signalling with the NF-induced calcium influx: gap1 

mutants were hypersensitive for induction of the calcium influx, and there was a reduction in 

the number of calcium influx responses in ROP9 RNAi knockdown lines. Drawing parallels 

between developmental root hair elongation and bacterial infection I propose a model for the 

regulation of ROP signalling by NF leading to root hair curling, the activation of the calcium 

influx and ROS transient, and infection thread formation. 
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CHAPTER 1: GENERAL INTRODUCTION 

 

1.1 Calcium signalling in plants 

In plants, calcium is a ubiquitous signal involved in a number of developmental processes 

including pollen tube and root hair apical growth, regulation of stomatal aperture and 

responses to abiotic and biotic stresses (Dodd et al., 2010, Feijo et al., 2001, Foreman et al., 

2003, McAinsh et al., 1995). A calcium signal can consist of a single elevation in free calcium  

ions (Ca2+)  within a cellular compartment, for example the sustained elevations of free Ca2+ in 

the cytoplasm and nucleus caused by the recognition of pathogen associated molecular 

patterns (PAMPs) during innate plant defence (Dodd et al., 2010). The signal can also exhibit 

oscillatory behaviour, such as the tip-focused Ca2+ gradients in pollen tubes and root hair cells, 

which oscillate with the same period as the oscillations in cell growth (Feijo et al., 2001, 

Monshausen et al., 2008). In Arabidopsis thaliana root hairs the oscillations in Ca2+ have a 

period of about 30 seconds but Ca2+ oscillations can have a much longer period; for example 

oscillations with a period of 24 hours are involved in circadian clock regulation (Love et al., 

2004). Calcium signals can activate downstream signalling pathways via regulation of Ca2+-

binding proteins, including CALCIUM-DEPENDENT PROTEIN KINASESs (CDPKs), Calmodulins 

(CaMs) and the CALCINEURIN-B-LIKE (CBL) phosphatases (Harper et al., 2004). The activation of 

these signalling pathways can lead to changes in gene expression and/or physiological changes 

in cells. 

Calcium signalling is involved in the establishment of symbioses between members of the 

legume family of plants and nitrogen-fixing bacteria known as rhizobia. Legume-rhizobia 

symbioses start with an exchange of signals. Prior to any physical contact, the plant releases 

flavonoids into the soil. The rhizobia respond by producing lipochitooligosaccharides called 

Nod factors (NFs) (Denarie et al., 1996, Long, 1996, Spaink et al., 1991). NFs are first perceived 

by the legume at the root epidermis and are capable of activating two different calcium 

responses in root hairs; nuclear-localised calcium oscillations (spiking) and a tip-focused 

calcium influx.  
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1.2 Overview of legume-rhizobia symbiosis 

Globally, the availability of nitrogen and phosphorus limit plant growth, resulting in the 

widespread use of chemical fertilisers in agriculture. Many plants have overcome these 

limitations through symbiotic interactions with soil microbes. The most widespread symbiotic 

interactions are with mycorrhizal fungi that provide the plant with nutrients including 

phosphate in exchange for carbon. Arbuscular mycorrhizal (AM) symbioses have existed for 

over 400 million years and are found in 70-80% of land plant species (Parniske, 2008b). In 

addition to forming symbioses with mycorrhizal fungi, many members of the legume family of 

flowering plants, including the crop plants pea (Pisum sativum) and soybean (Glycine max), are 

capable of forming symbioses with nitrogen-fixing bacteria known collectively as rhizobia. The 

bacteria are housed in specialised organs in the plant roots called nodules, which provide a low 

oxygen environment to maximise nitrogen-fixation by the rhizobia. The development of a 

successful symbiosis requires the co-ordination of nodule organogenesis with infection of the 

rhizobia into the plant root. 

In many legumes, including the model plants Medicago truncatula and Lotus japonicus, 

rhizobia infect into the root through root hair cells (Figure 1.1). After rhizobia attach to the 

surface of growing root hairs, the root hairs curl to entrap rhizobia within an infection pocket. 

During this process the rhizobia divide resulting in a small, but growing population. The next 

stage is the initiation of the infection thread, started by the invagination of plant cell 

membrane. This requires the degradation of cell wall by NODULATION PECTATE LYASE (NPL) 

(Xie et al., 2012). The infection thread extends to guide the dividing rhizobia down through the 

root hair cell and into the cortical layers of the root. The progression of the growing infection 

thread down to the base of the root hair cell is preceded by movement of the nucleus, which is 

normally found at the tip of growing root hair cells, but travels to the base of root hair cells 

during bacterial infection (Lloyd et al., 1987, Rae et al., 1992). The close association of the tip 

of the infection thread and the nucleus is likely to be for the production and delivery of new 

cell membrane and wall materials to the growing tip. Periodically the tip of the infection 

thread can be free of rhizobia, suggesting that infection thread growth does not always require 

direct contact from the rhizobia (Fournier et al., 2008). 
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Figure 1.1: The stages of rhizobial infection into the Medicago truncatula root.  

[1] A Rhizobium attaches near to the tip of a root hair cell. [2] The root hair curls entrapping 
the dividing rhizobia in a pocket known as an infection focus. [3] The infection thread initiates 
from an invagination of the plant cell membrane and elongates to guide the dividing rhizobia 
down through the root hair cell towards the cortical layers of the root. [4] In the cortex, host 
cells divide to make a nodule primordium. When the infection thread reaches the cortex it 
branches (ramifies) to enable the rhizobia to infect cells within the nodule primordium. 

NF is required for bacterial infection but it is not sufficient. When legumes are inoculated with 

exopolysaccharide-deficient Sinorhizobium meliloti mutants, the infection threads abort in root 

hair cells (Pellock et al., 2000). M. truncatula roots treated with wildtype (exopolysaccharide- 

producing) rhizobia more strongly express genes involved in translation and protein 

degradation, and have lower expression of defence-related genes than roots treated with 

exopolysaccharide-deficient rhizobia (Jones et al., 2008, Jones and Walker, 2008). This suggests 

that exopolysaccharides are signals that promote bacterial infection by preparing the cells for 

invasion and downregulating defence responses.  

Alongside bacterial infection, cortical cells in the root divide to produce nodule primordia. 

Once an infection thread reaches a nodule primordium it branches (ramifies) to enable the 

bacteria to infect into cells in the nodule. Once they have infected into cells within the nodule 

they differentiate into bacteroids, which are specialised for nitrogen fixation. As the rhizobia 

differentiate into bacteroids the Nod genes (including Nod factor synthesis genes) are switched 
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off (Marie et al., 1992, Marie et al., 1994). The bacteroids are fully surrounded by plant 

membranes that are specialised for nutrient exchange between the bacteroid and the plant 

cell. Together, a bacteroid and its surrounding plant membrane are referred to as a 

symbiosome. Within the nodule a low oxygen environment is maintained because rhizobial 

nitrogenase is inhibited by oxygen-binding to its metal cofactors. ATP is required for nitrogen 

fixation so the bacteroids express a cytochrome oxidase (cbb3) with a high affinity for O2 

(Mandon et al., 1994, Preisig et al., 1993) to enable them to carry out respiration in a low 

oxygen environment.  

 

1.3 Calcium spiking 

In legumes, after NF addition there is a delay of 10-15 minutes before calcium spiking starts 

around the nuclear region of legume root hair cells (Ehrhardt et al., 1996, Miwa et al., 2006a). 

Use of both nuclear-targeted and nuclear-excluded calcium reporters confirms that the spiking 

originates from the periphery of the nucleus and can be observed both in the nucleoplasm and 

the nuclear-associated cytoplasm, suggesting that the nuclear envelope and nuclear-

associated endoplasmic reticulum (ER) are the calcium sources (Capoen et al., 2011, Sieberer 

et al., 2009). The response can be activated by NF concentrations as low as 10-12 M and can 

also be activated by chitin oligomers, NF analogues and mycorrhizal-produced 

Lipochitooligosaccharides (Myc-LCOs) (Genre et al., 2013, Oldroyd et al., 2001a, Walker et al., 

2000). Once activated by NF, calcium spiking is very robust and can be observed in a root hair 

cell for many hours (Miwa et al., 2006b, Walker et al., 2000). In Medicago truncatula the spikes 

have a period of around 90 seconds, although this can vary over the course of the spiking 

response and between cells (Kosuta et al., 2008, Miwa et al., 2006b, Sun et al., 2007). 

Calcium spiking is central to the common symbiosis (Sym) signalling pathway required to form 

symbioses with rhizobia and mycorrhizal fungi (Figure 1.2). The pathway has a core set of 

genetic components required for both symbioses that are involved with generating, or 

“encoding” the calcium spiking response and “decoding” it to lead to the activation of 

downstream genes. Downstream of calcium decoding, differential transcription factors induce 

genes required for nodule formation and bacterial infection in the rhizobial symbiosis, or to 

facilitate fungal infection during the AM symbiosis. During nodulation, genes induced by the 

Sym pathway include EARLY NODULIN11 (ENOD11) and the transcription factors NODULE 
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INCEPTION (NIN) and ETHYLENE RESPONSE FACTOR REQUIRED FOR NODULATION1 (ERN1) 

(Journet et al., 2001, Marsh et al., 2007, Middleton et al., 2007, Schauser et al., 1999). 

 

Figure 1.2: The Sym pathway. 

The Sym pathway (shown in orange) is shared between nodulation and mycorrhization. NFs 
from rhizobia are perceived by NOD FACTOR PERCEPTION (NFP) and LYSM RECEPTOR-LIKE 
KINASE 3 (LYK3) at the plasma membrane and mycorrhization factors (MycF) are perceived by 
currently unidentified receptors. The signals from both symbionts activate DOESN’T MAKE 
INFECTIONS 2 (DMI2) also located at the plasma membrane and then nuclear calcium spiking is 
mediated by the cation channel DMI1, nucleoporins, the Ca2+-ATPase MCA8 and an 
unidentified calcium channel. Downstream of calcium spiking CALCIUM-CALMODULIN-
DEPENDENT PROTEIN KINASE (CCaMK) is activated and with its interacting partner, 
INTERACTING PROTEIN OF DMI3 (IPD3) promotes appropriate gene expression for either 
nodulation or mycorrhization via activation of GRAS transcription factors (TFs). Parallel 
signalling may also be involved. 

 

In Lotus japonicus calcium spiking is dependent on the NF receptors NOD FACTOR RECEPTOR 5 

(NFR5) and NFR1 of the LysM receptor kinase-like family (Miwa et al., 2006a). In M. truncatula 

the homologues are NFP and LYK3 respectively, but interestingly only NFP is required for NF-

induced calcium spiking (Ben Amor et al., 2003, Smit et al., 2007, Wais et al., 2000). Another 

plasma membrane component, a LRR-receptor kinase called DMI2/SymRK is required for NF 

induction of calcium spiking and is required for both rhizobial and mycorrhizal symbioses 

(Endre et al., 2002, Stracke et al., 2002, Wais et al., 2000). It is likely that these receptors act in 

a complex to bind NF and activate downstream signalling.  
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1.3.1 Secondary messengers: linking Nod factor (NF) recognition at the plasma 

membrane with nuclear calcium spiking 

From the plasma membrane the signal generated by NF recognition must be relayed to the 

nucleus probably via by secondary messengers, to generate calcium spiking, but the 

mechanism for this is unclear. There is evidence for the involvement of phospholipase C (PLC) 

and phospholipase D (PLD) in the Sym pathway. Inositol trisphosphate (IP3) along with 

diacylglycerol (DAG) are the products of phosphatidylinositol 4,5-bisphosphate (PIP-2) 

hydrolysis by phospholipase C (PLC) and the PLC inhibitor U73122 blocks both NF-induced 

calcium spiking and pENOD11-GUS expression (Engstrom et al., 2002, Pingret et al., 1998). PLD 

can catalyse the conversion of DAG to phosphatidic acid, which can also act as a signal 

molecule. NF activates PLD activity in legumes (den Hartog et al., 2001, den Hartog et al., 2003) 

and a PLD inhibitor n-butanol inhibits both calcium spiking and pMtENOD11-GUS expression 

suggesting PLD may also be involved in the Sym pathway (Charron et al., 2004, Sun et al., 

2007). 

Interestingly, the G-protein agonist mastoparan (or its synthetic analogue Mas7) can activate 

calcium oscillations similar to NF-induced calcium spiking and can induce pMt-ENOD11-GUS 

expression (Pingret et al., 1998, Sun et al., 2007). However, there are some differences in NF 

and Mas7-induced calcium spiking signatures. Mas7 leads to calcium oscillations with a slower 

initial release of calcium, greater period variability and the oscillations are not confined to the 

nucleus but can be observed all over the cell (Sun et al., 2007). Unlike the NF response, it is 

independent of NFP and DMI2, suggesting it either acts downstream of these receptors or by 

an independent mechanism. Several monomeric G-proteins have been identified as having 

roles in nodulation including members of the ROP (Rho of Plants) GTPase family and a Rab 

GTPase (Blanco et al., 2009, Ke et al., 2012). L. japonicus ROP6 is able to bind to NFR5 and the 

gene is expressed in nodules and infection threads after inoculation with Mesorhizobium loti 

(Ke et al., 2012). In ROP6 RNA interference (RNAi) lines, infection thread development into the 

cortex was impaired and few nodules were formed (Ke et al., 2012). G-proteins can activate 

multiple signalling pathways including IP3 production and in pollen tube tips PIP-2 

accumulation is dependent on ROP-GTPases (Kost et al., 1999). Mastoparan activates PLC and 

PLD in the legume Vicia sativa (den Hartog et al., 2001). Altogether these results suggest that 

NF receptor activation could result in the activation of ROP-GTPases leading to the production 

of IP3 and DAG to activate calcium spiking in the nucleus. However, there is no direct evidence 

for IP3 induction of calcium spiking and mastoparan-induced calcium release during the 
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activation of plant mitogen-activated protein kinase (MAPK) signalling occurs independently of 

G-proteins (Miles et al., 2004) so care should be taken in interpreting these Mas7 results.  

Multiple secondary messengers may be interacting in a signalling pathway so even if IP3/DAG 

are involved in generating NF-induced calcium spiking, it is possible that other secondary 

messengers are also required. The MAP kinase kinase SYMRK-INTERACTING PROTEIN (SIP2) 

interacts with DMI2/SymRK (Chen et al., 2012a). In L. japonicus SIP2 RNAi plants produced 

fewer nodules and three nodulation marker genes including NIN were downregulated 

suggesting a MAPK signalling cascade may be involved in generating calcium spiking. An 

enzyme known as HMGR1 (3-hydroxy-3-methylglutaryl coenzyme A reductase1) also interacts 

with MtDMI2 (Kevei et al., 2007). HMGRs catalyse the production of mevalonate, a precursor 

required for isoprenoid biosynthesis. Treatment with lovastatin, an HMGR inhibitor led to 

reduced numbers of nodules in M. truncatula plants inoculated with Sinorhizobium meliloti, 

and MtHMGR RNAi lines produced fewer nodules than wildtype suggesting that mevalonate is 

required for nodule formation (Kevei et al., 2007). It may be that mevalonate is required for 

the production of isoprenoid compounds such as cytokinins or phytosteroids but it is also 

possible that mevalonate or a downstream compound is acting as a secondary messenger to 

relay the NF signal to the nucleus to activate calcium spiking. 

 

1.3.2 Generating calcium spiking: the nuclear envelope machinery 

Once the NF signal reaches the nucleus there are several genes that are required to induce 

calcium spiking. Medicago truncatula DMI1 encodes a protein that localises preferentially to 

the inner nuclear membrane with structural similarity to the pore domain of MthK, a calcium-

activated potassium channel in Methanobacterium thermoautotrophicum (Ane et al., 2004, 

Capoen et al., 2011, Charpentier et al., 2008, Edwards et al., 2007, Imaizumi-Anraku et al., 

2005, Miwa et al., 2006a, Riely et al., 2007, Venkateshwaran et al., 2008, Wais et al., 2000). In 

L. japonicus there are two homologues of DMI1 required for calcium spiking known as CASTOR 

and POLLUX (Charpentier et al., 2008). CASTOR has ion channel activity in vitro with 

preferential mobilisation of potassium, and POLLUX can complement a potassium ion (K+)-

transport-deficient yeast mutant, providing evidence that they are functional K+-permeable 

channels (Charpentier et al., 2008). Although M. truncatula has a gene orthologous to CASTOR, 

it is not required for calcium spiking. L. japonicus castor and pollux mutants can be 

complemented by DMI1 suggesting that DMI1 in M. truncatula can fulfil the roles of both 
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CASTOR and POLLUX. (Venkateshwaran et al., 2012). NUCLEOPORIN85 (NUP85), NUP133 and 

NENA encode subunits of the nucleopore and are also required for NF induction of calcium 

spiking (Groth et al., 2010, Miwa et al., 2006a, Saito et al., 2007). These proteins possibly 

function in the transport of membrane proteins to the inner nuclear membrane (Groth et al., 

2010, Kanamori et al., 2006, Saito et al., 2007), and obvious substrates would be DMI1, 

POLLUX and CASTOR. 

For the initiation of a calcium spike, where the Ca2+ concentration in the nucleus and the 

nuclear-associated cytoplasm increase, Ca2+-permeable channels must be present in the 

nuclear membrane to allow calcium release from the nuclear periplasm (Figure 1.3). The 

genetic identity of the channel is still unknown. Its absence among nodulation mutants 

identified in several forward genetic screens conducted over the last two decades suggests 

that there may be multiple different genes involved or they may have other roles in 

development. 

To return the calcium released into the nucleus and the nuclear-associated cytoplasm back to 

its store, a Ca2+-pump is required that actively transports calcium across the nuclear 

membrane against its electrochemical gradient. A role for plant type IIA [SERCA 

(SARCO/ENDOPLASMIC RETICULUM Ca2+-ATPase)] Ca2+-ATPases was suggested by an inhibitor 

cyclopiazonic acid (CPA) and two activators, gingerol and butylated hydroxynanisole, that can 

block calcium spiking (Capoen et al., 2009, Capoen et al., 2011, Engstrom et al., 2002). RNA 

interference (RNAi) of a nuclear-localized SERCA Ca2+-ATPase [MEDICAGO Ca2+ ATPase (MCA8)] 

resulted in a large reduction in the number of root hair cells with NF-induced calcium spiking 

(Capoen et al., 2011). MtMCA8 is localized to the nuclear membranes, but has no preference 

for the inner or outer membranes. This location coupled with the phenotype of RNAi suggests 

MCA8 acts to return Ca2+ to the nuclear envelope during NF- induced calcium spiking.  

 

1.3.3 Modelling calcium spiking 

To further understand how the NF-induced calcium oscillations in the nucleus may be 

generated, Granqvist et al. (2012) developed a mathematical model to simulate the 

oscillations. It consists of three membrane components: a Ca2+-activated K+ channel (based on 

DMI1), a voltage-gated Ca2+-permeable channel and a Ca2+-pump (based on MCA8) (Figure 

1.3). Assuming that the nuclear membrane potential is more negative on the nucleoplasmic 

side than in the nuclear envelope lumen the model can simulate self-sustaining calcium 
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oscillations in the nucleoplasm similar to those experimentally observed in M. truncatula. 

However, the calcium oscillations in this model continue indefinitely, suggesting additional 

components or activities are required for the cessation of the response. 

 

Figure 1.3: Model of calcium spike generation at the nuclear membranes. 

[1] Prior to the start of a calcium spike the membrane potential is negative on the 
nucleoplasmic side close to the potassium resting potential and DMI1 (shown in red) is weakly 
conducting potassium. This drives a transient influx of Ca2+ through the Ca2+-permeable 
channel (yellow) into the nucleoplasm leading to the depolarization of the membrane until it 
reaches the calcium equilibrium potential. [2] The conductivity of DMI1 increases, resulting in 
the flow of potassium ions down their electrochemical gradient into the nuclear lumen. This 
hyperpolarizes the inner nuclear membrane, generating the large Ca2+ flow into the 
nucleoplasm that forms the upwards part of the calcium spike. [3] Once the membrane returns 
to the potassium ion equilibrium potential the K+ and Ca2+ currents almost cease and the 
downwards part of the calcium spike is formed by the action of MCA8 (purple) returning 
calcium ions to the nuclear envelope lumen. Since the electrochemical gradient of Ca2+ is so 
large once the membrane potential returns to the starting value the conductance of the 
voltage-activated Ca2+-permeable channel increases leading to a transient release of Ca2+ that 
restarts the cycle. The frequency and shape of calcium spikes can be modulated by altering 
concentrations of calcium-binding proteins (green) in the nucleus. 

 

The addition of Ca2+-binding proteins, which act as Ca2+ buffers, improves the ability of the 

model to simulate calcium spiking. By altering buffer concentrations they can stop the 

oscillations or alter the period of the oscillations, to simulate the observed variation in 

experimental data. When the model was set up with high levels of unbound Ca2+-binding 

proteins at the start, rapid calcium oscillations preceded the regular spiking pattern. This is 

very similar to experimental observations where, in about 50% of cases calcium spiking 

appeared to start with a rapid oscillatory phase before the regular spiking pattern was 

established (Granqvist et al., 2012). Experimentally adding additional NF after the induction of 

calcium spiking led to a short stage of rapid oscillations before the regular spiking pattern 
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resumed in M. truncatula root hair cells, suggesting NF may increase calcium buffering 

capacity in the nucleus by regulating Ca2+-binding proteins. 

While the model can simulate calcium oscillations it is not without its limitations. For simplicity 

only the nucleoplasm and the nuclear membrane lumen are included and within those 

compartments it does not include any spatial information. Nevertheless, it proposes a 

mechanism for how a relatively small number of genetic components can generate robust 

calcium spiking and predicts that Ca2+-binding proteins are important modulators. It indicates 

that the currently unidentified Ca2+-permeable channel could be voltage-gated, although a 

ligand-gated or a dual-regulated channel could also be possible (Granqvist et al., 2012).  

The function of the cation channel DMI1 can also be hypothesized using the model. It could be 

acting to counter-balance the flow of the positively-charged Ca2+ into the nucleoplasm when 

Ca2+-permeable channels are activated, or alternatively it could directly trigger the activation 

of a voltage-gated calcium channel by polarizing the inner nuclear membrane potential.  

Charpentier et al. (2013) predicted that calcium spiking is only initiated when DMI1 and the 

calcium channel are activated simultaneously with DMI1 conductance dependent on the 

membrane potential and Ca2+ concentration (Figure 1.3). It indicates that although the main 

function of DMI1 is to act as a counter-ion channel, initial low-level K+ conductance is required 

to activate a transient calcium ion flux. In turn this activates both DMI1 and the Ca2+-

permeable channel by depolarisation of the nuclear membrane. The conclusions from the 

model are supported by the following evidence: the homology of DMI1 to a Ca2+-activated K+-

permeable channel, DMI1 interferes with galactose-induced cytosolic calcium transient 

increases in yeast cells and when expressed in HEK (Human Embryonic Kidney) cells is 

sufficient to drive calcium-induced calcium release (Edwards et al., 2007, Peiter et al., 2007, 

Venkateshwaran et al., 2008). This all indicates the ability of DMI1 to coordinate calcium 

channels in diverse cell types. From the model it seems possible that the calcium spiking 

machinery could be primed for activation even in the absence of NF, suggesting DMI1 or the 

Ca2+-permeable channel may be negatively regulated and NF perception releases them 

enabling calcium spiking to be initiated. 

It is still not clear whether the calcium spiking in the nucleoplasm and the nuclear-associated 

cytoplasm is a consequence of calcium fluxes across both the inner and outer nuclear 

membrane, or due to calcium fluxes across only one side with Ca2+ flowing from the 

nucleoplasm to the cytoplasm or vice versa through nuclear pores to generate the spiking 

response on the other side. So far using current imaging techniques it has not yet been 
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possible to distinguish between these scenarios (Capoen et al., 2011). However, modelling 

suggests that diffusion through the nuclear pore is insufficient to explain calcium release inside 

and outside the nucleus. Calcium spiking in the nucleoplasm has a clear function since this is 

where the downstream components of the Sym pathway including the Calcium/Calmodulin –

dependent Kinase (CCaMK)  and transcription factors such as NODULATION SIGNALLING 

PATHWAY1 (NSP1) and NSP2 are located (Hirsch et al., 2009, Kalo et al., 2005, Levy et al., 2004, 

Mitra et al., 2004, Riely et al., 2007). The question remains whether calcium spiking in the 

nuclear-associated cytoplasm is just a consequence of the presence of machinery on the inner 

and outer nuclear membranes and/or the permeability of calcium through nuclear pores, or 

whether it has a biologically relevant function in nodulation. 

 

1.3.4 Decoding calcium spiking in the nucleus 

Mutants defective for CCaMK retain calcium spiking but lack NF-induced gene expression and 

nodulation suggesting CCaMK is positioned downstream of calcium spiking (Levy et al., 2004, 

Mitra et al., 2004, Miwa et al., 2006a) and likely acts to decode this signal. CCaMK has a kinase 

domain at the N-terminal end, a calmodulin (CaM)-binding domain/autoinhibitory domain and 

three Ca2+-binding EF hand motifs, making it highly unusual as it is capable of perceiving both 

free Ca2+ and Ca2+-bound to calmodulin (Patil et al., 1995). The kinase and CaM-binding 

domains have sequence similarity to Calmodulin-dependent Protein Kinase II (CaMKII) in 

animals, which is capable of frequency-dependent activation by calcium, making CCaMK a 

good candidate for the decoding of calcium spiking (De Koninck and Schulman, 1998, Patil et 

al., 1995). 

There are several gain-of-function mutations in CCaMK, including truncated “kinase only” 

forms and point mutations of the threonine at position 271 (T271) in M. truncatula (or 

equivalent in other species). These result in the activation of nodulation gene expression and 

spontaneous nodule formation even in the absence of rhizobia (Gleason et al., 2006, Hayashi 

et al., 2010, Takeda et al., 2012, Tirichine et al., 2006). These gain-of-function mutations 

demonstrate that CCaMK activation is sufficient to activate downstream components of the 

Sym pathway and also that T271 has a crucial role in the regulation of the protein. CCaMK 

kinase activity can be regulated by autophosphorylation and mutations of the equivalent 

threonine residue in Lilium longiflorum CCaMK resulted in lower levels of autophosphorylation 

and substrate phosphorylation, supporting a role for T271 in regulation (Sathyanarayanan et 
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al., 2001). In L. japonicus Sym pathway mutants that are unable to produce calcium spiking, 

expression of autoactive CCaMK T265D and T265I (equivalent to T271) variants restored 

nodulation and AM colonisation demonstrating that the primary purpose of generating nuclear 

calcium spiking is the activation of CCaMK (Hayashi et al., 2010, Madsen et al., 2010). 

However, the infection process was delayed and was less efficient with fewer functional 

nodules, probably due to deregulated CCaMK activity and ectopic expression, especially in the 

case of CCaMKT265D, which was expressed under control of a constitutive promoter. 

The CaM-binding and EF hand domains appear to play different roles in the activation of 

CCaMK. Calmodulin binding to CCaMK decreases phosphorylation of CCaMK (Takezawa et al., 

1996). The autoinhibitory domain of CCaMK overlaps with the CaM-binding domain so CaM-

binding may release autoinhibition of the protein (Patil et al., 1995). The Ca2+-binding affinities 

to calmodulin and that of calmodulin binding to CCaMK suggest that CaM-binding to CCaMK 

may only occur at significant levels at the higher concentrations of Ca2+ generated by calcium 

spiking (Swainsbury et al., 2012). In contrast, the affinities of calcium binding to the EF hands 

suggests that at basal Ca2+ concentrations before calcium spiking starts some of the EF hands 

may be occupied by calcium. Ca2+ binding to the EF hands negatively regulates CCaMK by 

promoting phosphorylation of T271, whereas CaM binding to CCaMK blocks T271 

phosporylation to activate CCaMK (Miller et al., 2013). Therefore the EF hands and the CaM-

binding domain provide CCaMK with mechanisms for sensing both high and low levels of 

calcium to faciliate the switch from the inactive to active state during calcium spiking (Figure 

1.4). 

Point mutations in T271 and the CaM-binding domain of CCaMK have provided some insights 

into the mechanism of activation of the protein. Interestingly, both phospho-ablative (T-A) and 

phospho-mimic (T-D) mutations in T271 result in spontaneous nodule formation in legumes 

(Gleason et al., 2006, Takeda et al., 2012, Tirichine et al., 2006). A possible explanation of how 

these “opposite” mutations could have the same phenotypes has been provided by homology 

modelling of L. japonicus CCaMK with Caenorhabditis elegans CaMKII (Shimoda et al., 2012). 

This homology modelling predicted that CCaMK residue T271 forms a hydrogen bond network 

with neighbouring residue R323 in the CaM-binding/autoinhibitory domain. According to the 

model, mutation or phosphorylation of T271 would disrupt the hydrogen bond network, 

weakening the link between the kinase and CaM-binding/autoinhibitory domain, thus 

preventing effective autoinhibition even in the absence of Ca2+ (Shimoda et al., 2012). 

However, this model is not consistent with the evidence that EF hands negatively regulate 
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CCaMK via phosphorylation of T271 (Miller et al., 2013). Building on the L. japonicus CCaMK 

homology model, and developing their own for M. truncatula CCaMK, Miller et al., (2013) 

predicted a different hydrogen bond network with bonds forming between phosphorylated 

T271, R323 (two bonds) and S322. In the model both unphosphorylated T271 and the 

phospho-mimic T271D substitution only formed one hydrogen bond with R323 (Miller et al., 

2013). Therefore, this model predicts that phosphorylation of T271 stabilises the inactive state 

of the protein, which is consistent with the experimental data, and also accounts for the 

autoactivity of both phospho-ablative and phospho-mimic T271 mutants. This suggests that 

calcium-binding to the EF hands at low calcium concentrations promotes autophosphorylation 

of T271 to stabilise the inactive state of CCaMK (Figure 1.4). 

CCaMK can be negatively regulated by phosphorylation of residues in the CaM-binding domain 

(Figure 1.4). The ccamk-14 mutant in L. japonicus has a serine to asparagine mutation at 

position 337 (equivalent of S343 in M. truncatula) that causes uncoupling of infection and 

nodule organogenesis (Kosuta et al., 2011, Liao et al., 2012). The mutant is defective in 

mycorrhizal infection and during rhizobial infection produces more infection threads in the 

epidermis but the infection threads are impaired in progression through to the cortex, 

although nodule formation is unaffected (Kosuta et al., 2011). The phospho-mimic variant 

CCaMKS337D is unable to complement ccamk-1, suggesting CCaMKS337D is not active. A 

neighbouring serine residue in M. truncatula, S344, also negatively regulates CCaMK activation 

when phosphorylated (Routray et al., 2013). A phosphor-mimic S344D mutation reduced CaM-

binding to CCaMK and impaired CCaMK interaction with IPD3 (Routray et al., 2013). The S344D 

mutation also suppressed spontaneous nodule formation in the phosphor-ablative T271A 

mutant. This indicates that phosphorylation of S344 can occur after the activation of CCaMK 

and inactivate it. Unlike its neighbouring residue (S343), the phosphomimic S344D mutation 

blocked both the formation of nodules and reduced colonisation by AM fungi (Routray et al., 

2013), suggesting that CCaMK activity may be fine-tuned by the differential phosphorylation of 

individual residues in the CaM-binding domain. 

CCaMK interacts with and phosphorylates IPD3 (CYCLOPS in L. japonicus), a protein of 

unknown function with two nuclear localisation signal motifs and a C-terminal coiled-coil motif 

thought to mediate protein-protein interactions (Messinese et al., 2007, Yano et al., 2008). 

IPD3/CYCLOPS is required for both rhizobial and AM infection (Yano et al., 2008). Although the 

mechanisms are currently unclear, CCaMK/IPD3 complex activation and recruitment of several 

GRAS transcription factors including NSP1, NSP2 and REQUIRED FOR ARBUSCULAR 
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MYCORRHIZATION 1 (RAM1)  are involved in the activation of specific nodulation or 

mycorrhizal gene expression (Gobbato et al., 2012, Heckmann et al., 2006, Kalo et al., 2005, 

Smit et al., 2005). 
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Figure 1.4: Model of CCaMK regulation. 

[A] Inactive CCaMK with a hydrogen bond network linking the kinase and CaM-
binding/autoinhibitory domains. At basal calcium concentrations some of the EF hands are 
occupied by calcium ions, promoting Threonine 271 phosphorylation to drive the hydrogen-
bond network, deactivating CCaMK. [B] At the onset of calcium spiking higher Ca2+ 
concentrations result in full occupancy of the EF hands and calcium-bound to calmodulin 
(CaM). CaM binds to the CaM-binding domain, inducing a conformational change that releases 
the inhibition of the kinase domain, resulting in phosphorylation of CCaMK targets (e.g. 
IPD3/CYCLOPS). [C] Inactivation of CCaMK by phosphorylation of serines 343-344 in the CaM-
binding domain, which prevents CaM binding and restores autoinhibition of the kinase domain 
by association with the CaM-binding/autoinhibitory domain.  

 

1.3.5 Do calcium spiking signatures encode specificity between nodulation and 

mycorrhization? 

One of the most interesting questions regarding Sym pathway function is how activation of a 

shared signalling pathway can result in the differential outputs required to establish either the 

rhizobial or mycorrhizal symbiosis. Either specificity must be encoded within the pathway itself 

or a parallel pathway exists that modulates the output of the Sym pathway to induce the 

appropriate changes in gene expression. If specificity is encoded within the pathway it would 



CHAPTER 1: GENERAL INTRODUCTION 
 

30 
 

be expected that the calcium spiking signatures would be different between the symbioses 

and CCaMK would be capable of differential activation, as is CaMKII in animal systems (De 

Koninck and Schulman, 1998). 

The concept of different calcium spiking signatures is supported by mathematical analyses of 

calcium spiking signatures in M. truncatula produced by NFs and the mycorrhizal fungus 

Rhizophagus irregularis (previously Glomus intraradices). Kosuta et al. (2008) found that the 

duration of a mycorrhizal-induced calcium spike was shorter than a NF-induced spike and 

there were also differences in shape. However, this experimental set up was not optimal 

because when using the fungus it is impossible to determinate when the plant root first 

perceives the fungus and the concentrations of the then unidentified diffusible signal factors 

dubbed “Myc factors”. Using a different experimental set up Sieberer et al. (2012) studied 

calcium spiking signatures during the progression of infection of rhizobia and mycorrhizal 

fungi. They found that for both symbioses cortical cells switched from low frequency calcium 

oscillations prior to the microbes reaching the cell to high frequency oscillations during 

apoplastic entry. The high frequency oscillations appeared to be similar in both symbioses so it 

seems likely during the infection process at least calcium oscillations do not encode symbiont 

specificity. Myc-LCOs and chitin oligomers from fungal exudates that are capable of activating 

calcium spiking have recently been identified and if mathematical analyses of these calcium 

spiking signatures with those produced by NFs is carried out it may lead to some clarification 

(Genre et al., 2013, Maillet et al., 2011).  

Instead of spike duration and shape encoding specificity, CCaMK could be differentially 

activated by the number of calcium spikes that occur. In M. truncatula NF-induced calcium 

spiking only leads to ENOD11 expression after about 36 individual spikes have occurred (Miwa 

et al., 2006b). It could be possible that during AM colonisation a different number of calcium 

spikes occur, perhaps due to differences in nuclear Ca2+-binding protein concentrations that 

terminate spiking sooner or later than during nodulation.  

CCaMK activation does not appear to be associated with differential induction of symbiotic 

specific responses. The autoactive CCaMK1-314 (kinase only) variant activated both the 

nodulation marker NIN and mycorrhizal marker subtilase (SbtM1) expression when expressed 

in L. japonicus (Takeda et al., 2012). Interestingly, SbtM1 is expressed in multiple cell layers in 

CCaMK1-314 expressing plants and is associated with the formation of fungal infection-like 

structures, but NIN expression is restricted to the epidermis (Takeda et al., 2012). However the 

snf1 mutant, which expresses autoactive CCaMKT265I induced nodulation specific gene 
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expression but not AM-specific gene expression, indicating that the phosphorylation status of 

threonine 265 may be important in activating rhizobial associated responses (Takeda et al., 

2011).  

At this stage it seems unlikely that differences in calcium spiking responses can allow CCaMK to 

discriminate between the rhizobia and AM fungi and instead alternative signalling may define 

the specificity of the response. There is evidence for the existence of parallel signalling 

pathways in NF signalling. The Sym pathway mutants dmi1, dmi2 and dmi3 retain root hair 

deformation and the NF-induced calcium influx (Miwa et al., 2006a). An autoactive CCaMK 

variant induces spontaneous nodule formation in NF receptor mutants but does not support 

bacterial infection (Hayashi et al., 2010). These results suggest that there are parallel signalling 

pathways downstream of the NF receptors that mediate rhizobial infection alongside the Sym 

pathway. 

 

1.4 The calcium influx 

In addition to calcium spiking, NF treatment also induces a calcium influx into the cytoplasm 

that originates in the tip of root hair cells (Miwa et al., 2006a, Shaw and Long, 2003a, Walker 

et al., 2000). Using ion selective electrodes Felle et al. (1998) were able to detect the calcium 

influx occurring within seconds of NF addition with Ca2+ moving into the cytoplasm from the 

extracellular matrix. To initiate the calcium influx response higher concentrations of NF must 

be used than those required to initiate calcium spiking, with 10-9 M required for half maximal 

induction and 10-8 M typically used to induce the response reliably (Felle et al., 2000, Miwa et 

al., 2006a, Shaw and Long, 2003a). Non-sulphated NFs and chitin oligomers, which are able to 

activate calcium spiking, do not activate the calcium influx suggesting it has higher NF 

stringency (Felle et al., 1999a, Miwa et al., 2006a, Shaw and Long, 2003a, Walker et al., 2000). 

In addition to being temporally and spatially separate it is also possible to genetically separate 

calcium spiking and the calcium influx. Both responses are dependent on the NF receptor NFP 

(in L. japonicus NFR5 and NFR1) but the Sym pathway mutants dmi1 and dmi2 both retain the 

calcium influx response (Ben Amor et al., 2003, Miwa et al., 2006a). Altogether these results 

suggest that the calcium influx is involved in a parallel pathway independent of calcium 

spiking. However, Shaw and Long (2003a) reported that the calcium influxes observed in dmi1 

and dmi2 after NF addition appeared to be shorter in duration than in wildtype M. truncatula, 

so it is possible that DMI1 and DMI2 can modulate the calcium influx. 
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The requirement for higher concentrations of NF and the higher stringency suggest the calcium 

influx may be involved in bacterial infection (Miwa et al., 2006a, Shaw and Long, 2003a). In the 

early stages of establishment of the symbiosis before rhizobia attach to the root surface the NF 

concentrations perceived by the plant are likely to be low, but presumably high enough to 

activate calcium spiking to induce early nodulation gene expression. When rhizobia attach to 

root hair cells (Figure 1.1) and as they divide within the infection foci and infection threads the 

local NF concentrations on the plant membrane surface are likely to rise, perhaps to the 

threshold required for calcium influx activation. Thus, the calcium influx could be associated 

with root hair curling and/or infection thread formation. 

The infection process also has more stringent requirements for NF than induction of the Sym 

pathway, demonstrated by the nodO/nodE double mutant of Rhizobium leguminosaurum bv. 

viciae, which induces root hair deformation and many infection foci on vetch but rarely forms 

infection threads (Walker and Downie, 2000). The nodO gene encodes a secreted protein that 

is capable of forming cation-selective pores in membranes (Sutton et al., 1994) and restoration 

of it or nodE (involved in attachment of acyl groups to NF) rescued infection thread 

development by the mutant, suggesting that an ion flux across the plant membrane induced by 

NodO could compensate for defective NF structures.  

Rhizobia with a mutation in nodL produce NFs missing an O-linked acetyl group on the N-

acylated glucosamine residue (Ardourel et al., 1994). Medicago sativa inoculated with nodL 

rhizobia produce nodules but there is a delay in bacterial infection with a lower frequency of 

root hair curling and infection thread formation (Ardourel et al., 1994). The absence of the O-

linked acetyl group on nodL NF results in a marked reduction in the activation of the calcium 

influx but does not affect activation of calcium spiking, providing further evidence for the 

involvement of the calcium influx in bacterial infection (Morieri et al., 2013). Along with nodE, 

the nodL infection phenotype indicates the presence of different receptor complexes that have 

different NF stringencies for the activation of calcium spiking and the calcium influx. 

 

 1.4.1 A role for the apyrase LECTIN NUCLEOTIDE PHOSPHOHYDROLASE (LNP) in NF-

induced calcium signalling 

Calcium spiking and the calcium influx are both dependent on LNP. LNP antisense lines in L. 

japonicus did not form nodules or infection threads and the lines were defective for calcium 

spiking and the calcium influx, but maintained root hair deformation (Roberts et al., 2013). LNP 
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has apyrase (hydrolysis of phophoanhydride bonds of nucleoside triphosphates and 

diphosphates) activity. It is found on the surface of root hairs and is activated by NF-binding 

(Etzler et al., 1999, Etzler et al., 2000). ADP treatment partially rescued Soybean LNP (GS52) 

RNAi lines, which are defective for nodule development and infection, suggesting ADP may 

have a role in promoting nodulation (Govindarajulu et al., 2009). 

Extracellular ATP is a signal molecule involved in a wide range of processes in plants including 

root gravitropism, growth, pollen germination and stress responses (Jeter et al., 2004, Kim et 

al., 2006, Song et al., 2006, Steinebrunner et al., 2003, Tang et al., 2003, Wu et al., 2007). In A. 

thaliana, high or very low levels of extracellular ATP or ADP can inhibit root hair elongation 

(Clark et al., 2010). ATP and ADP are able to induce increases in cytosolic free Ca2+ in plants 

(Demidchik et al., 2003, Demidchik et al., 2009, Demidchik et al., 2011, Jeter et al., 2004). In 

root cells ATP treatment induced NADPH oxidase-dependent ROS production triggering an 

elevation in cytosolic free Ca2+ (Demidchik et al., 2009). Extracellular ATP is a well-established 

signal in animals, and is perceived by purinoreceptors on the cell surface (Burnstock, 2007). No 

homologues of animal purinoreceptors have been found in plants, but recently a plant ATP 

receptor has been identified (Choi et al., 2014). DORN1 (DOES NOT RESPOND TO NUCLEOTIDES 

1) is a lectin receptor kinase that binds ATP. It is required for ATP-induced elevation in 

cytoplasmic free Ca2+, mitogen-activated protein kinase activation, and gene expression (Choi 

et al., 2014).  It is possible that during nodulation LNP regulates extracellular ADP/ATP levels to 

modulate NF-induced calcium responses. 

 

1.4.2 The calcium influx is spatially and temporally coincident with other NF 

responses including transient reactive oxygen species (ROS) production 

At the tip of a legume root hair after NF addition there is an efflux of chloride ions, intracellular 

alkalisation and plasma membrane depolarisation, all occurring a few seconds after the 

calcium influx (Ehrhardt et al., 1992, Felle et al., 1996, Felle et al., 1998, Kurkdjian, 1995). The 

Ca2+ inhibitor nifedipine inhibits these responses and the responses can be mimicked by 

treatment with the calcium ionophore A32187 and the Ca2+-ATPase inhibitor 2,5-di(t-butyl)-

1,4-benzohydroquinone (BHQ), providing further evidence that the calcium influx acts 

upstream of these responses (Felle et al., 1998, Felle et al., 1999b). After membrane 

depolarisation there is an efflux of K+ from the cell and membrane repolarisation. Like the 

calcium influx, the membrane depolarisation is not induced by non-sulphated NFs or chitin 
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oligomers and is dose-dependent with a maximal response produced at 10-8/10-7 M NF 

(Ehrhardt et al., 1992, Felle et al., 1996, Shaw and Long, 2003a). Felle et al. (1998) suggested a 

model where the NF–induced calcium influx acts as a secondary messenger leading to the 

activation of the chloride efflux and intracellular alkalinisation, perhaps by inhibition of proton 

pumps, to generate the membrane depolarisation. They also suggested that membrane 

repolarisation is achieved by the efflux of potassium ions through K+-permeable channels, 

which is activated once the membrane potential becomes more positive than the potassium 

equilibrium potential. 

Other responses to NF also occur at the tip of root hair cells. Within 3-6 minutes of NF addition 

cytoskeletal changes occur in legumes (Cárdenas et al., 1998, Weerasinghe et al., 2003, 

Weerasinghe et al., 2005). The cytoskeletal changes precede NF-induced root hair deformation 

where the root hairs start to swell, bend and branch. There is also a transient increase in 

reactive oxygen species (ROS) production starting around one minute after NF addition with 

ROS levels restored to normal levels by around three minutes (Cárdenas et al., 2008, Shaw and 

Long, 2003b). Chitin oligomers were unable to produce the response, and the fungal elicitor 

chitin produced a larger, more sustained increase in ROS production more like the ROS burst 

seen during PAMP recognition in plant defence. Pretreatment of root hair cells with 

diphenyleneiodonium (DPI), an inhibitor of NADPH oxidases and other flavin-containing 

enzymes, inhibited the response, suggesting that the main source of the ROS may be from 

NADPH oxidases (Cárdenas et al., 2008). During the apical growth of root hair cells and pollen 

tubes, Ca2+, protons and ROS interact to drive polar growth so it is possible that during 

nodulation the transient ROS production may be involved with the calcium influx and 

intracellular alkalinisation that lead to membrane depolarisation (Foreman et al., 2003, 

Monshausen et al., 2007, Monshausen et al., 2008). Although the ROS transient appears to be 

occurring later than the calcium influx and membrane depolarisation, these processes have 

not been measured concurrently and the differences may be associated with technical 

differences in the experiments.  

Reactive oxygen species can as signal molecules in plants and there is evidence that ROS levels 

are regulated throughout the nodulation process (Apel and Hirt, 2004). Increased superoxide 

production can be detected in infection threads formed during the M. sativa-S. meliloti 

symbiosis, and there is an accumulation of hydrogen peroxide during nodule development and 

bacterial infection (Rubio et al., 2004, Santos et al., 2001). A ROS-sensitive peroxidase 

[RHIZOBIUM-INDUCED PEROXIDASE (RIP1)] is induced by NF treatment, suggesting that ROS 
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levels are regulated by NFs (Cook et al., 1995, Ramu et al., 2002). ROS levels in M. truncatula 

roots start to decline 30-60 minutes after NF treatment (Lohar et al., 2007, Shaw and Long, 

2003b). The response can be activated by 100 pM NF but is not activated by sulphated 

chitotetraose or non-sulphated NFs. The decline was absent in nfp mutants but was present in 

Sym pathway mutants, suggesting it is involved in a separate signalling process. Exogenous 

ROS treatment prevented NF-induced root hair swelling and branching, suggesting that the 

ROS decline is involved in root hair deformation, perhaps by preventing the activation of plant 

defence responses (Lohar et al., 2007). It seems likely that the transient ROS increase and the 

later, more gradual decline in ROS may have separate signalling roles in nodulation.  

 

1.4.3 Calcium and ROS signalling in root hairs: lessons from apical growth 

Gradients of Ca2+, pH and ROS production are required for apical growth of root hairs 

(Foreman et al., 2003, Herrmann and Felle, 1995, Jones et al., 1995). These gradients oscillate 

with the same period but out of phase with oscillations in rate of cell expansion (Monshausen 

et al., 2007, Monshausen et al., 2008). Ca2+ influxes across the plasma membrane at the tip of 

cells are responsible for the calcium gradient (Herrmann and Felle, 1995, Very and Davies, 

2000). The A. thaliana rhd2 mutant lacks the tip-focused Ca2+ gradient, tip ROS production and 

has stunted roots and short root hair cells (Foreman et al., 2003, Schiefelbein and Somerville, 

1990, Wymer et al., 1997). RHD2 encodes a plasma membrane NADPH oxidase [RESPIRATORY 

BURST OXIDASE HOMOLOGUE C (AtRBOHC)] and ROS treatment to rhd2 roots raised 

cytoplasmic Ca2+ levels in the root hairs and restored cell expansion but this was not limited to 

the tip, suggesting the sub-cellular localisation of ROS production is important for appropriate 

polar cell expansion (Foreman et al., 2003). Although NADPH oxidases produce in ROS as 

superoxide (O2
−) on the external surface of the cell, O2

−  is highly reactive and is rapidly 

converted to hydrogen peroxide (H2O2), which can enter cells via plasma membrane water 

channels (aquaporins) (Bienert et al., 2007, Dynowski et al., 2008, Hooijmaijers et al., 2012). 

Therefore, NADPH oxidase-mediated ROS production can lead to ROS increases both inside 

and outside cells. The annexin AtANN1 has been proposed to be a ROS-dependent Ca2+ 

permeable channel involved in root hair growth (Laohavisit et al., 2012). A. thaliana ann1 

mutants have short root hairs and lack the ROS-dependent Ca2+ permeable conductance, and 

AtAnn1 can mediate a ROS-dependent Ca2+ permeable conductance across lipid bilayers 

(Laohavisit et al., 2012).  
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Plant NADPH oxidases (RBOHs) contain calcium-binding EF-hand motifs and Ca2+ have been 

shown to regulate their activity in vitro, suggesting a positive-feedback loop between Ca2+ and 

ROS is involved in regulating apical growth (Keller et al., 1998, Sagi and Fluhr, 2001, Takeda et 

al., 2008). Elevation of the pH of the external medium surrounding rhd2-1 mutants to 6.0 

restored normal root growth along with the tip-focused Ca2+ gradient (Monshausen et al., 

2007). However, the mutants had lower ROS levels in root hairs and lacked the oscillations in 

ROS production at the tip, suggesting either pH lies downstream of ROS or that they may act 

together to regulate root hair growth.  

The Ca2+ gradients are thought to provide directional regulation of apical growth by regulating 

exocytosis and actin reorganisation (He et al., 2006, Rato et al., 2004). Alongside any signalling 

roles, ROS and pH may also directly regulate cell wall structure. ROS are involved in 

peroxidative-cross linking of cell wall polysaccharides and pH is involved in cell expansion 

(Bibikova et al., 1998, Cosgrove, 1999, Kerr and Fry, 2004, Kjellbom et al., 1997). Artificially 

raising the pH of the external medium surrounding A. thaliana roots to 8.0 or application of 

ROS arrested root tip growth, whereas decreasing the external pH to 4.5, or treatment with 

the ROS scavenger MCLA (methoxylated Cypridina luciferin analogue) caused root tip bursting, 

suggesting ROS and a rise in apoplastic pH promote cell wall hardening during the slower 

growth phases. 

Root hair apical growth is co-ordinated by ROP (RHO OF PLANTs) GTPases, which associate 

with the plasma membrane at the apex of the cell (Figure 1.5). There are 11 members of the 

ROP GTPase family in A. thaliana and they are involved in processes including abscisic acid 

(ABA) responses, pollen tube growth, cell shape formation and the low oxygen response 

(Craddock et al., 2012). ROP GTPases switch between an activate state when they are bound to 

GTP and an inactive state when they are bound to GDP (Figure 1.5). ROPs are regulated by 

RopGEFs (GUANINE EXCHANGE FACTORS), which exchange the GDP for GTP to return the ROP 

to its active state, RopGAPs (GTPase ACTIVATING PROTEINS), which promote the intrinsic 

GTPase activity of the ROP to inactivate it, and RhoGDIs (GDP DISSOCIATION INHIBITOR), which 

sequester ROPs in the cytosol to prevent them being activated by the RopGEFs (Berken and 

Wittinghofer, 2008, Bos et al., 2007, Carol et al., 2005, Kost, 2008). The A. thaliana 

supercentipede1 (scn1) mutant is defective in a RhoGDI and develops multiple root hair initials 

(Carol et al., 2005). AtROP2 is mis-localised in this mutant demonstrating the importance of 

the regulation of ROP GTPase subcellular localisation for regulation of polar growth. In A. 

thaliana ROP genes can have redundant and non-redundant functions and AtROP2, AtROP4 
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and AtROP6 are involved in root hair apical growth (Duan et al., 2010, Jones et al., 2002, Jones 

et al., 2007, Molendijk et al., 2001, Yang et al., 2007). AtROP2 and AtSCN1 are required for 

AtRBOHC-mediated ROS production during root hair growth (Carol et al., 2005, Jones et al., 

2007). The FERONIA (FER) receptor-like kinase lies upstream of ROP signalling during root hair 

growth, interacting with AtRopGEF1 (Duan et al., 2010). 

 

 

Figure 1.5: ROP signalling during developmental root hair elongation. 

The FER receptor-like kinase is activated resulting in the activation of RopGEFs, which promote 
ROP signalling activity by exchanging ROP-bound GDP for GTP. ROP signalling is negatively 
regulated by RopGAPs, which assist the intrinsic GTPase activity of the ROPs to return them to 
the GDP-bound state, and the RhoGDIs, which bind to the ROP-GDP bound state and remove 
them from the plasma membrane. Together, the activities of RopGEFs, RopGAPs and RopGDIs 
maintain a zone of active ROP GTPases at the tip of the growing cell, which results in the 
localised activation of RBOH-dependent ROS production and Ca2+ influx through annexins  
(Ann) and/or other Ca2+-permeable channels to generate tip gradients of ROS and Ca2+. ROS in 
the form of H2O2 can enter cells through plasma membrane aquaproins. ROP signalling and the 
tip calcium gradient regulate vesicle trafficking and cytoskeletal remodelling at the tip leading 
to root hair elongation. 
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Regulation of polar growth is essential during rhizobial infection to mediate root hair curling 

around attached bacteria and the development of the infection thread. It seems likely that the 

mechanisms for regulating the processes for root hair growth may have been co-opted for 

rhizobial infection. NF treatment induces root hair elongation, but unlike apical growth this is 

independent of ethylene, indicating that if NF can activate the apical growth machinery it does 

so downstream of the ethylene receptors (Oldroyd et al., 2001b). Spot inoculation of NF to the 

surface of M. truncatula root hairs is sufficient to alter the axis of polar growth to generate 

root hair curling (Esseling et al., 2003). Recently evidence has been emerging of the 

involvement of ROP GTPase signalling in nodulation. Three M. truncatula ROP GTPase genes 

are up-regulated in roots and root hairs after inoculation with S. meliloti (Liu et al., 2010). RNAi 

knockdown of MtROP9 inhibited a NF-induced ROS response and resulted in the formation of 

fewer nodules (Kiirika et al., 2012). In Lotus japonicus LjROP6 is up-regulated after inoculation 

with M. loti and the protein interacts with the NF receptor NFR5 in planta (Ke et al., 2012) 

(Figure 1.6). LjROP6 RNAi lines showed an inhibition of infection thread growth through the 

cortex suggesting ROP6 may promote infection thread development from the epidermis into 

the cortex, perhaps through regulation of the cytoskeleton (Ke et al., 2012). The RNAi lines also 

produced fewer nodules and the early nodulation genes NIN and ENOD40 are down-regulated 

compared to wildtype after inoculation with S. meliloti. These results indicate that either 

LjROP6 may be involved in the Sym pathway or it may lie in a parallel pathway, perhaps 

primarily involved in regulating infection but with a role in positive feedback of the Sym 

pathway as part of the co-ordination of nodule development and bacterial infection. 

Part of the function of ROP GTPases in nodulation may involve the regulation of NADPH-

dependent ROS production. The MtRBOHA gene is upregulated in nodules during the M. 

truncatula-S. meliloti symbiosis and expression of MtRBOHA appears to be restricted to the 

nitrogen-fixing zone of the nodules (Marino et al., 2011). Plants inoculated with S. meliloti 

mutant strains nitrogen fixationH (nifH) and bacteroid developmentA (bacA), which are unable 

to form functioning nodules, had lower MtRBOHA expression and MtRBOHA RNAi lines had 

lower nitrogen fixation activity in nodules (Marino et al., 2011). Coinciding with the decline in 

ROS after NF treatment, MtRBOH2 and MtRBOH3 are transiently down-regulated at one hour 

in an NFP-dependent manner in M. truncatula (Lohar et al., 2007). Another member, PvRBOHB 

is expressed in several tissues including developing nodules and in infected root hairs in 

Phaseolus vulgaris (Montiel et al., 2012). RNAi lines had reduced ROS production, fewer 

nodules and the infection threads were impaired in progression from the epidermal cells into 

the cortex. The few nodules that formed in the PvRBOHB RNAi lines had infection threads that 
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were wider and more irregular in shape, indicating that PvRBOHB is involved in infection 

thread development. It would be very interesting to know if any of the ROP GTPases or RBOHs 

that are involved in bacterial infection are also required for the induction of the calcium influx. 

In summary, drawing on parallels between rhizobial infection in legumes and polar root hair 

growth in A. thaliana it seems likely that NF induction of the calcium influx is mediated by ROP 

GTPase signalling (Figure 1.6). At the root hair tip, perception of NFs by the NF receptors 

NFR5/NFR1 leads to the activation of ROP6, which could promote RBOH-dependent ROS 

production. The ROS production may promote cell wall remodelling and/or the activation of 

the calcium influx and membrane depolarisation. In A. thaliana ROP GTPases are master 

regulators of polar growth, so in legumes the calcium influx may be involved in ROP GTPase 

regulation of cytoskeletal rearrangement and vesicle trafficking leading to root hair curling and 

infection thread formation. 
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Figure 1.6: Initiation of the NF-induced calcium influx.  

ROP6 signalling is activated by NF binding to ROP6-interacting partner NFR5. ROP6 activates 
RBOH activity producing ROS, promoting cell wall remodelling and activating a calcium influx. 
Ca2+ and ROP GTPases regulate cytoskeleton rearrangement and vesicle trafficking to generate 
root hair curling around attached rhizobia and regulate infection thread formation. ROP6 also 
induces NIN and ENOD40 gene expression, perhaps via the Sym pathway. Cycling of ROP 
GTPases between GDP and GTP bound states by RopGEFs and RopGAPS (not shown) and 
sequestering in the cytoplasm by RhoGDIs ensure ROP activity can be appropriately localised 
to drive new membrane formation in the appropriate location and direction.  
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1.5 Research objectives 

The NF-induced nuclear calcium spiking and tip-focused calcium influx are separate calcium 

signals with different roles in legume-rhizobia symbioses. The focus of this project was to 

further characterize the calcium influx and the NF-induced ROS transient, and investigate 

whether they are part of a common signalling pathway involved in bacterial infection, perhaps 

regulated by ROP GTPases. To do this, new tools for imaging Ca2+ and ROS in M. truncatula 

were developed and discussed in Chapter 3. In Chapter 4 a pharmacological approach was 

taken to identify new components required for the calcium influx and ROS transient. Next, a 

selection of M. truncatula nodulation and bacterial infection mutants were phenotyped for 

Ca2+ and ROS responses in Chapter 5. Finally, in Chapter 6 a reverse genetics approach was 

used, based on the parallels between developmental polar root hair growth and bacterial 

infection, to identify a ROPGAP gene (regulator of ROP GTPase) that modulates bacterial 

infection and the calcium influx. These different approaches provide insights into the signalling 

pathways involved in establishing the legume-rhizobia symbioses. 
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CHAPTER 2: MATERIALS AND METHODS 

 

2.1 Plant Material 

All Medicago truncatula lines used are listed in Table 2.1. Jemalong A17 or R108-1 were used 

as wild type for all experiments as appropriate. 

Table 2.1: Plant Material 

Line Background Description  Source (if applicable) 

 

Jemalong 

A17 

  

Wild type 

 

Van den Bosch and 

Stacey (2003) 

dmi1-1 A17 Single point mutation G1264A at 5’ 

splice site at third intron leading to 

missplicing of DMI1 mRNA 

Giles Oldroyd, JIC 

dmi2-1 Jemalong A5 Frame shift mutation leading to a 

premature stop codon in DMI2 

Giles Oldroyd, JIC 

nfp-1 A17  Ben Amor et al. (2003) 

nin-1 A17 Fast neutron deletion allele at position 

1850-1861 in NIN 

Marsh et al. (2007) 

skl A17 Single point mutation (Q894stop) in 

MtSkl1 

Penmetsa and Cook 

(1997) 

hcl-1 A17 Point mutation (G2443A) in LYK3 Wais et al. (2000) 

rit-1 A17 Fast neutron deletion-insertion allele 

resulting in truncated RIT1 

Miyahara et al. (2010) 

bit1-1 A17 Deletion of ERN1 gene and 4 adjacent 

genes 

Middleton et al. 

(2007) 

R108-1 

 

 Wild type Hoffmann et al. (1997) 

Continued overleaf 
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Line Background Description  Source (if applicable) 

 

YC2.1 

 

R108-1 

 

Transgenic line carrying YC2.1 gene 

under control of 35S promoter 

 

Miwa et al. (2006b) 

NF0457 

(cbs1-2) 

R108-1 Tnt1 insertion line with insertion in an 

exon of CBS1 

Jeremy Murray, JIC 

NF10271 

(gap1-1) 

R108-1 Tnt1 transposon insertion line with 

insertion in an exon of MtGAP1 

Samuel Roberts Noble 

Foundation, USA 

NF11438 

(gap1-2) 

R108-1 Tnt1 transposon insertion line with 

insertion in an exon of MtGAP1 

Samuel Roberts Noble 

Foundation, USA 

A17 YC3.6 A17 Transgenic line carrying YC3.6 gene 

under control of 35S promoter 

This study 

R108 YC3.6 R108-1 Transgenic line carrying YC3.6 gene 

under control of 35S promoter 

This study 
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2.2 Bacterial Strains 

All bacterial strains used are listed in Table 2.2. 

Table 2.2: Bacterial strains 

Strain  database 

no. 

Plasmid Resistance Description Source 

      

DH5 α 25 - - Escherichia coli J. A. Downie, 

JIC 

YC3.6  XP464 pcDNA3 Amp, Neo DH5α strain containing 

pcDNA3 plasmid with YC3.6 

under control of 2x35S 

promoters 

(Nagai et al., 

2004) 

pB7WG2 1178 pB7WG

2 

Sp/Str E. coli expressing pB7WG2 

binary vector: 35S 

promoter and terminator, 

BASTA plant selection 

(Karimi et al., 

2002) 

AGL1 X234 - - disarmed Agrobacterium 

tumefaciens  

J.A. Downie, 

JIC 

pK7GWI

WG2(II)-

dsRED 

1350 pK7GWI

WG2(II)-

dsRED 

Sp/Str A. rhizogenes QUA1 

carrying pK7GWIWG2(II) 

plasmid containing dsRED 

plant expression marker  

(Kiirika et al., 

2012) 

ROP9i 1351 pK7GWI

WG2(II)-

dsRED 

Sp/Str As pK7GWIWG2(II)-dsRED 

but with MtROP9 sequence 

in sense and antisense 

orientations between attR1 

and attR2 

(Kiirika et al., 

2012) 

Sm 2011 A1371 - Str Wildtype Sinorhizobium 

meliloti 2011 

J. Dénarié, 

INRA-CNRS 

      

    continued overleaf 
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Strain  database 

no. 

Plasmid Resistance Description Source 

      

Sm 2011 

lacZ 

D5190 pXLGD4 Str & Tet Wildtype S. meliloti 

expressing lacZ gene 

J.A. Downie, 

JIC 

Sm 1021 19 - - Wildtype S. meliloti 1021 (Meade et al., 

1982) 

Sm SL44 

(nodΔD1

ABC) 

  Tet S meliloti nodΔD1ABC 

mutant. 

J.A. Downie 

JIC 

 

 

2.3 Media 

The composition of the media used for plant and bacterial growth is given in table 2.3. 

Table 2.3: Media used for plant and bacterial growth 

Solution Composition (for 1 l) 

 

Rhizobium 

complete 

medium (TY) 

 

 

5 g Difco tryptone, 3 g Difco yeast extract, 1.325 g CaCl2 [containing 15 

g LabM No.1 agar (Formedium, UK) for solid medium]. 

Luria-Bertani (LB) 10.0 g tryptone, 5.0 g yeast extract, 5.0 g NaCl, [containing  10.0 g Lab 

M No.1 agar (Formedium, UK) for solid medium]. 

 

SOC 20.0 g tryptone, 5.0 g yeast extract, 0.58 g NaCl, 0.19 g KCl, 2.03 g 

MgCl2, 2.46 g MgSO4.7H2O, 3.6 g glucose. 

 

Water agar (DWA) 

 

1.5 % (w/v) Lab M No. 1 agar (Formedium, UK, pH 5.7 (adjusted with 

KOH). 

 

continued overleaf 
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Solution Composition (for 1 l) 

 

Fahraeus plant 

medium (FP) 

 

 

0.1 g CaCl2. 2H2O, 0.12 g MgSO4, 0.01g KHPO4, 0.150 g NaHPO4.12H2O, 

5 mg ferric citrate, 2.86 g H3BO3, 2.03 g MnSO4, 0.22 g ZnSO4.7H2O, 0.08 

g CuSO4.5H2O, 0.08 g H2MoO4.4H2O, pH 6.3-6.7. For solid medium 0.5% 

(w/v) LabM No. 1 agar was added. 

  

Modified FP FP medium containing 0.5 mM NH4NO3 

 

Buffered nodulation 

medium (BNM) 

 

390 mg MES, 344 mg CaSO4.2H2O, 0.125 g KH2PO4, 122 mg 

MgSO4.7H2O, 18.65 mg Na2EDTA, 13.9 mg FeSO4.7H2O, 4.6 mg 

ZnSO4.7H2O, 3.1 mg H3BO3, 8.45 mg MnSO4.H2O, 0.25 mg 

Na2MoO4.2H2O, 0.016 mg CuSO4.5H2O, 0.025 mg CoCl2.6H2O, pH 6.5. 

For solid medium 11.5 % (w/v) LabM No. 1 agar (Formedium) was 

added. 

 

Medicago mix 

(compost) 

6:6:1 Mix of Levington F2 compost, John Innes No. 2 compost and 4 

mm grit.  

 

Terragreen: Sand 1:1 mix of terragreen (Oil-dry UK ltd, UK)  and sharp sand (BB Minerals, 

UK) 

 

 

2.4 Growth selection of bacteria and Medicago truncatula 

Antibiotics were used for selection of growth of bacteria and Medicago truncatula. Stock 

solutions of antibiotics were dissolved in water followed by sterilisation through filtration with 

a 0.2 μm filter, except for tetracycline, which was dissolved in ethanol. The final concentrations 

of antibiotics used for bacteria were kanamycin 50 μg/ml; tetracycline 5 μg/ml; spectinomycin 

200 μg/ml (50 μg/ml for Agrobacterium tumefaciens), streptomycin 200-400 μg/ml, rifampicin 

20 μg/ml. All antibiotics were supplied by Sigma (UK) except for kanamycin (Formedium, UK). 

For selection of transformed M. truncatula roots or plants the final concentration of 

kanamycin used was 25 μg/ml. The concentration of ammonium glufosinate used was 3 mg/l. 
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2.5 Plasmids 

The plasmids used in are listed in Table 2.4. 

Table 2.4: Plasmids 

Name Description Reference 

   

pDONR201 Vector for gateway cloning. KnR Clontech® 

pB7WG2 Binary vector. Bacterial selection Sp/Str, 

Plant marker BASTA, 35S promoter and 

terminator. 

(Karimi et al., 2002) 

pB7WG2-YC3.6 pB7WG2 vector containing YC3.6 gene 

expressed behind the CaMV 35S promoter 

This study 

 

E. coli DH5α was used for construction of plasmids, using competent cell and heat shock 

transformation (Inoue et al., 1990). The resultant constructs were introduced into 

Agrobacterium tumefaciens by electroporation (see 2.12.8).  

 

2.6 Chemicals 

Oregon Green-dextran MW 10,000, Texas Red-dextran MW 10,000 and 5-(and-6)-

chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-H2DCFDA) dyes were supplied by 

Molecular Probes (Life Technologies, Eugene, USA). X-Gal (5 bromo-4-chloro-3-indoyl-β-D-

galactopyranoside) was supplied by Formedium Ltd. (Norfolk, UK). All other chemicals were 

supplied by Sigma-Aldrich Ltd. (Poole, UK) unless otherwise stated. 

Nod factors (NFs) purified from Sinorhizobium meliloti were obtained from Allan Downie 

(Morieri, 2010). The sulphated mycorrhizal lipochitooligosaccharide S-Myc-LCO [LCO-

IV(C16:0,S)] and non-sulphated NS-Myc-LCO [LCO-IV(C18:1D9Z)], which were synthesised in E 

E. coli, were provided by Jean Denarie (Maillet et al., 2011). 
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2.7 M. truncatula seed sterilisation and plant growth 

Seeds of M. truncatula were scarified using sandpaper and sterilised in commercial bleach 

solution (1:10 dilution) for two-three minutes and washed seven times with sterile deionised 

water. The seeds were then left in water to imbibe for 1-4 hours at room temperature. 

Subsequently, seeds were left for three days in plates with water agar (DWA) medium at 4°C in 

the dark.  

2.7.1 On agar plates 

Seedlings with 1-2 cm long roots were transferred to Fahraeus nitrogen-free plant agar 

medium (Fahraeus, 1957) agar (FP) plates containing 0.1 μM L-α-(2-aminoethoxyvinyl glycine) 

(AVG). AVG was added in order to prevent the inhibition of nodulation by ethylene 

accumulation in the roots. The region of the plates containing the roots was wrapped in black 

plastic and the plates were incubated vertically in a controlled environment (20°C/15°C, 

day/night cycles of 18/6 h with 32% relative humidity, 300 μmol m-2 s-1 light intensity). 

2.7.2 In compost 

Plants were germinated on DWA agar as described above, then the plates were placed upside 

down at room temperature overnight. Seedlings with 10-15 mm long roots were transferred to 

soil in Medicago Mix compost or terragreen:sand (Table 2.3). The plants were grown in a 

controlled environment room (20 °C, 16 h photoperiod) or a greenhouse and watered 

regularly. In the greenhouse additional heat was provided during the winter. For the first two-

three days a clear glass lid was placed on top of the pots to protect the plants from drying out. 

 

2.8 Cross fertilisation of M. truncatula 

 
M. truncatula plants were grown in soil as described above (2.7). Once the plants started 

flowering cross fertilisation was carried out between the plants starting with the emasculation 

of a flower from a nodulation and/or bacterial infection mutant plant (female parent) using 

suction generated by a vacuum pump connected to a micropipette tip. Pollen from a YC3.6- 

expressing (male parent) flower was applied to the stigma of the female parent. After cross-

fertilisation the stem holding the cross-fertilised flower was placed in a Falcon tube containing 

water covered with cotton wool to maintain a humid environment to prevent the flowers from 
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drying out. When a seed pod formed, the stem and pod were carefully removed from the 

Falcon tube and netting tied around them to enable the pod to mature and dry out. The F1 

progeny were screened for YC3.6 fluorescence using a fluorescence microscope and grown in 

Medicago mix compost. The F2 progeny from the crosses were screened and the plants that 

had YC3.6 fluorescence and the desired mutant phenotype from the female parental line were 

kept and allowed to self-fertilise to produce seed. Experiments were carried out using the F3 

progeny. 

 

2.9 Calcium imaging with Oregon Green 

2.9.1 Plant preparation 

Seedlings of M. truncatula were germinated and grown on FP+AVG agar plates overnight as 

described above. A small chamber was made on a 48 mm x 64 mm cover glass thickness no. 

1.5 (Agar Scientific, Essex, UK) using high vacuum grease (Dow Corning, USA) and a seedling 

with a 2-3 cm long root was placed onto this and anchored in place using high vacuum grease 

and fragments of glass cover slips. The chamber was then filled with 200 μl of liquid FP 

medium.  

2.9.2 Dye preparation 

Oregon Green-dextran MW 10,000 and Texas Red-dextran MW 10,000 (Molecular Probes, 

Eugene, USA) were dissolved in sterile water to a final concentration of 5 mM. Texas Red 

(calcium-insensitive dye) was used as a reference to eliminate the background fluctuation. For 

each experiment, 1 μl 5x injection buffer [0.75 M KCl, 0.45 M 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (HEPES), pH 7.0] was added to 4 μl of dye solution. Due to the 

higher fluorescence of Texas Red, 0.4 μl aliquots of Texas Red were added to 3.6 μl of Oregon 

Green, and then 1 μl 5x injection buffer was added to the mixed dye solution. The solution of 

dye was spun at 12,000 rpm in a microcentrifuge (Centrifuge 5424, Eppendorf) for one minute 

to remove any particulate matter and the upper solution was used for microinjection. 

2.9.3 Needle Preparation 

Thin needles for microinjection were made using Borosilicate Glass Capillaries (1B120F-4; 

World Precision Instruments Inc.) and a computer-controlled electrode puller (model P1000 

Flaming/Brown Micropipette Puller, Sutter Instruments Ltd., USA). The optimized setting for 
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pulling very thin needles was a heat intensity setting of about 554 and a pulling force setting of 

about 52. The tips of these needles were examined under the light microscope and only 

needles with thin tips were selected for use in injection. 

2.9.4 Microinjection 

The microinjection system was essentially the same as that described by Wais et al. (2000). 

The needle was first loaded with about 0.2 μl of dye solution containing Oregon Green and 

Texas Red using a long thin pipette tip (Microloader; Eppendorf) and then the needle was 

back-filled with 10 μl of 1 M KCl. A prepared seedling (2.9.1) was placed on an inverted 

epifluorescence microscope. The reference electrode was placed into the FP medium in the 

bath. The needle was controlled by an electro-manipulator (PatchMan NP2; Eppendorf) and 

the tip of the needle was targeted to the apex of the growing root hair cells. The precise 

position of the needle tip was monitored by measuring the voltage through the needle. When 

the tip entered in the cytoplasm, the voltage changed slightly. Then dyes were injected into 

the root hair cell by iontophoresis using a direct current (DC) set at 10 nA. Injection proceeded 

until cells dimly fluoresced when viewed under illumination from a 100 W mercury bulb 

through a GFP filter block. After microinjection, root hairs were left at least 20 min before NF 

addition and only cells showing active cytoplasmic streaming were used for analysis. NFs were 

added in a small volume (2 µl) directly to the edge of the incubation chamber at the 

concentrations stated in the text. 

2.9.5 Imaging by fluorescent microscopy 

Fluorescence was imaged using a Nikon TE2000U inverted microscope coupled to a 

Hamamatsu Photonics digital CCD camera. An image splitter (Cairn Research, Faversham, Kent, 

UK) with optimised polychromatic mirror was used to monitor both Oregon Green and Texas 

red fluorescence and each image was sequentially collected every five seconds with a 1 s 

exposure using MetaFluor software. For Oregon Green the excitation wavelength was 488 nm 

and an 11 nm bandpass was selected using an Optoscan Monochromator (Cairn Research, 

Faversham, Kent, UK) with an emission filter of 545 (± 15) nm. For Texas Red, an excitation 

wavelength of 570 nm was used and the fluorescence was monitored with an emission filter of 

620 (± 20) nm. After taking a series of images, the ratiometric traces were calculated by 

dividing Oregon Green fluorescence by that of Texas Red at each time point. Traces were 

generated using Microsoft Excel. 
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2.10 Calcium Imaging with Cameleon YC2.1/YC3.6 

Seeds of the M. truncatula YC2.1 or YC3.6 transgenic lines were germinated, grown on FP+AVG 

plates overnight and placed in a small chamber filled with 200 μl of liquid FP as described 

above (2.9.1).  CYAN FLUORESCENT PROTEIN (CYP) and YELLOW FLUORESCENT PROTEIN (YFP) 

fluorescence was imaged using a Nikon Eclipse Ti inverted fluorescence microscope coupled to 

a Qimaging RETIGA-SRV camera. A Nikon 40x working lens was used for imaging. The CFP 

component of YC2.1/YC3.6 was excited with a wavelength of 437 nm and an 11 nm bandpass 

using an Optoscan Monochromator (Cairn Research, Faversham, Kent, UK). Emitted 

fluorescence was separated by an image splitter with a dichroic mirror 515 nm, and then 

passed through an emission filter of 485 (± 20) nm for CFP fluorescence or 535 (± 15) nm for 

YFP fluorescence. Images were collected every one or five seconds with 750-1000 milliseconds 

exposure and analyzed using MetaFluor software. Traces were generated using Microsoft 

Excel. 

For inhibitor treatments, seedlings were set up on the microscope ready for imaging prior to 

treatment with the chemical. Image acquisition commenced and the seedlings were incubated 

with the chemical for 15 minutes prior to the addition of 10 nM NF. 

 

2.11 ROS imaging using CM-H2DCFDA 

On the day of use, CM-H2DCFDA dye was dissolved in dimethyl sulphoxide (DMSO) to make a 

100 mM stock solution. The dye was then diluted in liquid FP to a final concentration of 40 µM 

(containing 0.04% (w/v) DMSO). M. truncatula seeds were germinated and placed in a small 

chamber filled with 200 μl of liquid FP medium as described above (2.9.1).  The prepared 

seedling was placed on the inverted fluorescence microscope and then the FP solution was 

replaced with 200 µl of the 40 µM dye solution. After 15 minutes the dye solution was 

removed and the chamber washed carefully three times using liquid FP, and then 200 µl liquid 

FP was added to the chamber. For treatment with diphenylenoidonium (DPI), 50 uM DPI 

[dissolved in DMSO, final concentration 0.2% (v/v)] was added to the chamber at this point. 

Root hairs were left at least 5 min before starting the imaging and NF added. Only cells that 

retained the dye within the cytoplasm and not the vacuole were included in the analysis. To 

check that any fluctuations in CM-H2DCFDA fluorescence were not due to photo-oxidation or 

photo-bleaching, fluorescence intensities from a reference region away from the root hair cells 
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were also included to monitor background dye fluorescence. Any fluctuations in CM-H2DCFDA 

intensity in the root hair cells that were also visible in the reference region were discounted 

from the analysis.  

Fluorescence was imaged using a Nikon TE2000U inverted microscope coupled to a 

Hamamatsu Photonics digital CCD camera. The excitation wavelength was 488 nm with an 11 

nm bandpass using an Optoscan Monochromator (Cairn Research, Faversham, Kent, UK). An 

emission filter of 535 with a 30 nm bandpass was used. Images were collected at one second 

intervals with 500 millisecond exposure. False colour mapping images of fluorescence insensity 

were generated using MetaFluor Software (Cairn, UK). 

 

2.12 Physiological Techniques 

2.12.1 Root and root hair length measurement 

Seeds were sterilised and germinated on DWA plates as described in section 2.7. Seedlings 

with 10-20 mm long roots were placed on sterile filter paper on BNM agar in square (100 x 100 

mm) plates. A second piece of filter paper was placed on top of the seedlings.  Plates were 

incubated vertically in a growth chamber for approximately 72 hours (20°C/15°C, day/night 

cycles of 18/6 h with 32% relative humidity, 300 μmol m-2 s-1 light intensity).  

To measure seedling root length photographs of the seedlings on agar plates were taken using 

a digital camera and root lengths measured using ImageJ software (National Institutes of 

Health, USA). 

Root hair lengths were  measured using seedlings placed on Fahraeus slides and viewed under 

a light microscope (Zeiss Axiophot) using a Zeiss 20 x objective lens. Working from the tip of 

the root, images were taken at the point where the root hairs first appear to be fully 

vacuolated at the tip (mature root hairs). Root hair lengths were measured from the images 

using ImageJ software (National Institutes of Health, USA). 

2.12.2 Root hair deformation 

Seeds were sterilised and germinated on DWA plates as described in section 2.7. Seedlings 

with 10-20 mm long roots were transferred to BNM + 0.1 μM AVG square (120 x 120 mm) agar 

plates and incubated vertically overnight in a growth chamber (20°C/15°C, day/night cycles of 

18/6 h with 32% relative humidity, 300 μmol m-2 s-1 light intensity). The seedlings were then 
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transferred to Fahraeus slides filled with BNM solution containing 10 nM NF (negative controls 

had no NF added). After NF was added, the samples were left in the dark at room temperature 

for approximately 24 hours. Root hairs were examined under a light microscope and root hair 

deformation was scored without prior knowledge of the identity of the plant line (i.e. wildtype 

or mutant) or the treatment (NF or no treatment). Roots containing branching root hair cells 

were considered positive for this response. Images were taken using a light microscope (Zeiss 

Axiophot ) with a QICAM 12-bit monochromatic camera (QImaging, UK). 

2.12.3 Nodulation experiments 

Seeds were sterilised and germinated on DWA plates as described in section 2.7. The plates 

were then transferred to room temperature overnight. The seedlings were then sown into 

terragreen:sand 1:1 mix and placed into a controlled environment room (20 °C/15 °C, 16 h 

photoperiod). After 6 days a culture of S. meliloti 2011 (2.2) was grown overnight in 5 ml TY 

broth at 28 °C with strepinomycin (2.4) with vigorous shaking until 0.3 < OD600 < 0.8 

(exponential phase). The culture was diluted in sterile deionised water to OD600 = 0.001 and 

this was used to water the plants. After a period of time (7, 10, 14 or 21 days) plants were dug 

up, the roots washed in water and the nodules counted. 

2.12.4 Infection thread staining and quantification 

M. truncatula seeds were sterilised and germinated on DWA plates as described in section 2.6. 

The plates were then transferred to room temperature and incubated overnight. Seedlings 

were placed on top of filter paper on BNM + 0.1 μM AVG square (120x120 mm) agar plates. A 

culture of S. meliloti 2011 lacZ (2.2) was grown overnight in 5 ml TY broth with streptinomycin 

and tetracycline (2.4) at 28 °C with vigorous shaking until 0.3 < OD600 < 0.8 (exponential phase). 

The S. meliloti 2011 lacZ culture was diluted in sterile deionised water to OD600 = 0.001 and was 

used to inoculate the plants using an intranasal Mucosal Atomization (MADS) device (LMA, San 

Diego, USA) for even coverage (1 ml per plate) and another sterile filter paper placed on top. 

Plates were incubated in a growth chamber (20 °C/15 °C, day/night cycles of 18/6 h with 32 % 

relative humidity, 300 μmol m-2 s-1 light intensity). 

After 6 days the roots were fixed in Z buffer (100 mM sodium phosphate pH 7.0, 10 mM KCl 

and 1 mM MgCl2) containing 2.5% (w/v) glutaraldehyde under vacuum in a fume hood for 15-

30 mins. Then fresh Z buffer with 2.5% (w/v) gluteraldyhde was added and the roots left for at 

least one hour at room temperature. The roots were then washed 3 times in Z buffer (no 

gluteraldehyde). 
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To stain the roots X-Gal staining solution was made up. For 1 ml: 880 µL Z buffer, 50 µl 

K3[Fe(CN)6] (potassium ferricyanide) 100 mM, 50 µl K4[Fe(CN)6] · 3H2O (potassium 

ferrocyanide) 100 mM and 20 µl 5-bromo-4-chloro-3-ondolyl-beta-D-galactopyranosid (X-Gal)  

4% (w/v) in dimethylformamide. The X-gal staining solution was added to the roots and 

incubated in the dark at 28 °C overnight.  

The roots were washed in Z buffer with one quick wash followed by one for an hour. The 

stained roots were then placed in 5 ml fresh Z buffer with 2-3 drops of 0.5 M Na-EDTA to 

inhibit fungal growth. 

Stained roots were viewed under a light microscope (Zeiss Axiophot) using a Zeiss 20X 

objective lens to quantify the infection events (represented by blue stained bacteria). The 

infection events were classified into three stages: infection foci, infection threads in the 

epidermis and ramifying infection threads in the cortex. Images were taken using a QICAM 12-

bit monochromatic camera (QImaging, UK) using a RGB colour filter. 

 

2.13 Molecular Biology Techniques 

2.13.1 DNA extraction from plants 

Genomic DNA extractions were carried out by Richard Goram (John Innes Centre) using 

DNeasy Plant kit 96 protocol (Qiagen, UK) as per manufacturer’s instructions.  

2.13.2 Plasmid extraction from bacteria 

To prepare for extraction of plasmid DNA E. coli cultures were grown in LB broth with the 

appropriate antibiotic (2.2 and 2.4) at 37 °C for 12-16 h (to reach stationary phase) with 

vigorous shaking. Cultures of Agrobacterium tumefaciens were grown in TY broth with the 

appropriate antibiotic (2.2 and 2.4) at 28 °C for 2 days (to reach stationary phase with vigorous 

shaking. Extraction of plasmid DNA from E. coli and A. tumefaciens was carried out using a 

QIAprep Spin Miniprep Kit (Qiagen, UK), as per manufacturer’s instructions.  

2.13.3 Amplification of DNA by polymerase chain reaction (PCR) 

DNA was amplified by PCR using 1 to 20 ng of template DNA in reaction volumes of 10-50 µl. 

For cloning purposes the Phusion polymerase (New England Biolabs, Hertfordshire) was used 
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as per manufacturer’s instructions. For all other purposes GoTaq polymerase kit (Promega, 

Southampton) was used as per manufacturer’s instructions, unless otherwise stated. 

For genotyping of Tnt1 insertion lines for insertions in MtGAP1 and CBS1 the primers used are 

listed in Table 2.5. 

 

Table 2.5: Primers used for genotyping insertions in Tnt1 lines 

DNA target Forward primer 

5’-sequence-3’ 

Reverse primer 

 5’-sequence-3’ 

 

MtGAP1 

 

AGGCTGCTCTTCTTGACTGG 

 

TTCTCAACCGTGACCAGTGT 

CBS1 CAAACTCGCGGTGTTTAATG TTGGAAGACCCTGTTGAACC 

Tnt1 TCCTTGTTGGATTGGTAGCC CAGTGAACGAGCAGAACCTGTG 

 

2.13.4 Agarose gel electrophoresis 

DNA fragments were separated by electrophoresis in horizontal agarose gels. The gels were 

prepared in 1 X TBE (89 mM Tris-borate and 2 mM EDTA, pH 8.3) containing 1-1.5% (w/v) 

agarose. For PCR products from GoTaq reactions the samples were loaded directly into the 

wells but for all other DNA the samples were mixed with 1 x loading dye (0.25% (w/v) 

bromophenol blue and/or 0.25% (w/v) xylene cyanol FF in 40% (v/v) glycerol/distilled water) 

and loaded into the wells. To estimate size of DNA bands a DNA ladder (2-log or 1 kb, New 

England Biolabs, Hertfordshire) was loaded into one of the empty wells. Electrophoresis was 

carried out at 90 to 120 V until the desired separation was achieved. When electrophoresis was 

completed, gels were transferred to a tank containing 1 mg/ml ethidium bromide and left for 

15 to 30 min. The DNA was detected by fluorescence of the DNA-ethidium bromide complex 

exposed to ultraviolet (UV) light from a transilluminator, and photographed using a Gene Flash 

(Syngene Bio Imaging) video camera system. 

 

For further analysis of DNA after gel electrophoresis the area of gel containing the DNA was 

excised from the gel and DNA extracted using a QIAQuick Gel Extraction Kit (Qiagen, UK) as per 

manufacturer’s instructions.  
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2.13.5 Gateway Cloning 

To generate the pB7WG2-YC3.6 binary vector for plant transformation Gateway Cloning 

Technology (Invitrogen, UK) was used. The sequence of the forward and reverse attB PCR 

primers (Table 2.6) and the amplification of the attB PCR product were done following the 

manufacturer’s protocol. After purification of the attB PCR product a 10 µl BP recombination 

reaction was carried out by mixing 2 µl BP Reaction Buffer, 1 µl of pDONR201 (entry) vector 

(150ng/µl), 5 µl attB PCR product and 2 µl BP Clonase II (Invitrogen). The sample was incubated 

overnight at 25 °C and 1 µl Proteinase K (Invitrogen) solution was added to terminate the 

reaction incubating the sample at 37°C for 10 min. 3 µl of the BP reaction mix was used to 

transform E.coli DH5α (see below). To ensure the entry clones had correctly assembled a 

region across the fusion sites and the inserted region was amplified by PCR (section 2.12.3) 

and sequenced (section 2.12.6). 

 For the LR reaction 0.6 µl of the entry clone was mixed with 0.3-0.6 µl of the destination 

vector (pB7WG2) and 0.3-0.6 µl Clonase Reaction Buffer (Invitrogen) to a final volume of 2.5 µl. 

Next, 1 µl LR Clonase II (Invitrogen) was added and the sample was incubated at 25 °C 

overnight. To terminate the reaction 0.5 µl Proteinase K (Invitrogen) was added and the 

sample incubated at 37°C for 10 min. Next, 3 µl of the LR reaction mix was used to transform 

E.coli DH5α (see 2.12.6). To ensure the entry clones had correctly assembled a region across 

the fusion sites and the inserted region was amplified by PCR (section 2.12.3) and sequenced 

(section 2.12.6). 

Table 2.6: Primers used for Gateway Cloning 

Gene Forward primer 

5’-sequence-3’ 

Reverse primer 

 5’-sequence-3’ 

 

attB1-YC3.6-attB2 

 

GGGGACAAGTTTGTACAAAAAA

GCACCCTTAATACGACTCACTATA 

 

GGGGACCACTTTGTACAAGAAAGCTGG

GTCATACGATTTAGGTGACACTATAG 

 

2.13.6 DNA sequencing 

DNA was sequenced by cycle sequencing using the di-deoxy chain termination method (Sanger 

et al., 1977). Each sequencing reaction had a final volume of 10 µl containing 100 ng of plasmid 

DNA as a template, 0.2 µM of sequencing primer and 2.5 µl Big Dye Sequencing Kit Version III 
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(Perkin Elmer, Massachusetts, USA). Samples were initially denatured at 94 °C for 2 min. The 

reaction was then cycled 25 times with denaturation (94 °C for 10 sec), annealing (50 °C for 5 

sec), and elongation (60 °C for 4 min). After this cycle, the sample was held at 12 °C. The 

dideoxy PCR products were sent to Genome Enterprise Ltd (Norwich, UK) or Eurofins Ltd. 

(Germany) for sequencing. Alternatively, the DNA and primer were sent to Eurofins for the 

sequencing reaction and sequencing. 

2.13.7 Transformation of Escherichia coli 

Competent cells of E. coli DH5α were prepared as described (Inoue et al., 1990). In each 

transformation, 50 µl of competent cells were mixed with 2 µl ligation mix and incubated on 

ice for 30 min. The cells were heat shocked at 42 °C for 90 sec and chilled for 5 min on ice. The 

cells were mixed with 450 µl of LB medium and incubated for one hour at 37 °C. The 

transformation mix was plated on LB agar medium containing appropriate antibiotics and 

incubated at 37 °C overnight 

2.13.8 Transformation of Agrobacterium tumefaciens  

A. tumefaciens AGL1 was transformed with the pB7WG2-YC3.6 plasmid by electroporation 

using the protocol of McCormac et al. (1998).  The transformation mix was plated on L agar 

medium containing spectinomycin and rifampicin and incubated at 28 °C for 2-3 days. 

 

2.13.9 A. tumefaciens-mediated stable transformation of M. truncatula 

Stable transformations of M. truncatula R108 and A17 with Cameleon YC3.6 using A. 

tumefaciens AGI1 (pB7WG2-YC3.6) were carried out by Matthew Smoker (The Sainsbury 

Laboratory, Norwich). For R108 leaf tissue was used as described by Trinh et al. (1998). For A17 

transgenic shoots were recovered from cotyledonary node explants as described by Zhou et al. 

(2004). The shoots were placed on rooting media to develop roots and then were transferred 

to Medicago mix soil (2.3) for seed production. 

2.13.10 Agrobacterium rhizogenes-mediated hairy root transformation of M. 

truncatula for RNAi knockdown of ROP9 

Seeds of M. truncatula A17 YC3.6 were sterilised and germinated as described in section 2.6. 

Under sterile conditions the tip of the radicle was removed (approximately 3 mm). Cultures of 

A. rhizogenes QUA1 pK7GWIWG2(II)-dsRED and ROP9i [(2.2) provided by Kiirika et al (2012)] 

were grown for 2 days at 28 ° C in 5 ml TY broth with spectinomycin (2.4)  and then 
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sedimented by brief centrifugation and resuspended in an equal volume of fresh TY broth. A 

large drop of bacteria was placed in a Petri dish and the cut seedlings were dipped in the 

bacterial culture. Ten seedlings were transferred onto each modified FP plate (poured on a 

slant). The plates were placed vertically in a growth chamber (20°C/15°C, 16 h photoperiod). 

After one week the seedlings were transferred to fresh modified FP medium containing 25 

µg/ml kanamycin and black bags were placed over the bottom of the plates. The plates were 

incubated for 3-4 weeks in a growth room (23 °C, 16 h photoperiod) to allow formation of 

hairy roots. Roots were examined using a fluorescence microscope (Leica DMR/MZFLIII) with a 

green filter to visualise the DsRED marker gene. Plants containing hairy roots with strong 

fluorescence had all roots except the largest transformed root removed and were transferred 

to fresh modified FP plates and were returned to the growth chamber with black bags on the 

plates covering the roots. 

To image calcium, short sections (5-10 mm) of lateral root were excised and set up for YC3.6 

fluorescence imaging as described in section 2.9, except the chambers contained only 100 µl of 

modified FP. Expression levels of ROP9 and two housekeeping genes EF1 and Tip41 in empty 

vector and ROP9 RNAi roots were quantified using qRT-PCR (2.12.13). 

2.13.11 RNA Extraction and DNase treatment 

For each sample, RNA was extracted from approximately 100 mg root tissue using the RNeasy 

Plant Mini Kit (Qiagen) according to the manufacturer’s protocol. The RNA was eluted with 30 

μl RNase free water. Isolated RNA was treated with Turbo DNase (Ambion, Life Technologies, 

UK) according to the manufacturer’s protocol. The RNA was quantified with NanoDropR ND-

1000 Spectrophotometer (NanoDrop Technologies) and the quality was assessed by running a 

sample on a 1% (w/v) agarose gel and checking the ribosomal RNA bands were of similar 

intensity. 

2.13.12 Reverse transcription polymerase chain reaction (RT-PCR) 

Complementary DNA (cDNA) was prepared from 100-500 ng of RNA using SuperScript II first 

strand synthesis (Life Technologies, Invitrogen) according to the manufacturer’s protocol, using 

oligo(dT) primers (Life Technologies, Invitrogen). 

Amplification of cDNA by PCR was carried out as described in section 2.12.3 using the primers 

listed in Table 2.7. The products were run on 1% agarose gel. 
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Table 2.7: Primers used in RT-PCR 

Gene Forward primer 

5’-sequence-3’ 

Reverse primer 

 5’-sequence-3’ 

   

EF1 CTTTGCTTGGTGCTGTTTAGATG ATTCCAAAGGCGGCTGCATA 

MtGAP1 ATGACTCGCCTTTTTCGATCGAA TCAAGCCCAAGCTTCTCCTCC 

 

2.13.13 Quantitative reverse transcription polymerase chain reaction (qRT-PCR) 

cDNA was prepared from RNA as described above. Quantitative RT-PCR was performed using a 

CFX96 Real-Time System (BIO-RAD) and using SYBR Green Master Mix (Sigma). Each 10 μl PCR 

reaction contained 2 μl cDNA 1:2, 5 μl SYBR Green Master Mix (Sigma), 2.6 μl MgCl2 solution 

(Sigma) and 0.2 μl of each primer (10 μM, designed to amplify a fragment of 50-150 bp, shown 

in Table 2.8). An initial denaturation step of 95°C for 4 min was followed by 50 cycles of 94°C 

for 30 seconds, 60°C for 30 seconds, and 72°C for 30 seconds. At the end of the reaction, the 

samples were heated at 72°C for ten minutes. Reactions were undertaken in 96-well white 

microplates (Biorad, UK). The Elongation Factor 1 (EF1) and TAP42-interacting protein (TIP41) 

genes were used as internal positive controls. Results were expressed as a threshold cycle (CT) 

value. Normalised expression values for MtGAP1 were calculated from the CT values using the 

qBASE model using two housekeeping genes (EF1 and TIP41) (Hellemans et al., 2007). The 

qBASE model allows primer specific efficiencies to be taken into account. 

Table 2.8: Primers used for qPCR 

Gene Forward primer 

5’-sequence-3’ 

Reverse primer 

 5’-sequence-3’ 

 

EF1 

 

CTTTGCTTGGTGCTGTTTAGATG 

 

ATTCCAAAGGCGGCTGCATA 

TIP41 GCTTTGCCACCTGTTGAAGT AGCACCGCTTCCACAATAAG 

MtROP9 CCTGTATTCCCCTCCCCTTC GCCACCTTATGCTTCAAGGAG 
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2.14 Bioinformatics 

2.14.1 Identification of M. truncatula GAP family 

The protein sequences of the nine Arabidopsis thaliana RopGAPs (TAIR database) were used to 

search the M. truncatula genome (IMGAG vr 4.0) using BLAST. The top M. truncatula hits were 

then used as subject sequences to search the A. thaliana genome (TAIR database) to check 

that the A. thaliana RopGAPs were the top hits (reverse BLAST).  

The location of introns and exons in MtGAP1 were predicted from the genome and coding 

sequence (CDS) sequences using the Gene Structure Display Server (Guo et al., 2007). The 

protein domains in MtGAP1 were predicted using InterPro (Hunter et al., 2012). 

2.14.2 Phylogenetic Tree Construction 

To construct a phylogenetic tree of the RopGAP family the protein sequences of the M. 

truncatula and A. thaliana GAPs were entered into the “1 Click mode” tree option on the 

Phylogeny.fr server (Dereeper et al., 2008, Dereeper et al., 2010). 

2.14.3 Root hair gene expression analysis 

Using the root hair microarray data generated by Breakspear et al. (unpublished) the 

expression of the ROP GTPase, RopGEF and RopGAP families in wildtype and infection mutant 

root hairs after inoculation with Sinorhizobium meliloti 1021 were analysed. To do this 

probesets were identified for the gene family members by BLAST search of the Medicago Gene 

Expression Atlas (MGEA) database. The geometric means of the normalised expression values 

for three replicates were calculated. For analysis of gene expression in wildtype root hairs the 

fold change in expression compared to control root hairs inoculated with Sinorhizobium 

meliloti SL44 nodD1ABC (unable to infect into the root) at each time point (1,3 and 5 days post 

inoculation) were calculated. For analysis of the infection mutant lines at 5 days post 

inoculation the fold changes versus wildtype root hairs inoculated with wildtype S. meliloti 

1021 were calculated. 
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CHAPTER 3: DEVELOPING TOOLS FOR IMAGING CALCIUM AND 

REACTIVE OXYGEN SPECIES IN MEDICAGO TRUNCATULA ROOT HAIRS 

 

3.1 Introduction 

Fluorescent dyes and proteins can provide insights into calcium and ROS dynamics in individual 

cells. Of these, the Ca2+-sensitive fluorescent probes are the most developed and have been 

used to image free Ca2+ in a range of situations in plants including root hair and pollen tube 

growth (Foreman et al., 2003, Holdaway-Clarke et al., 1997, Michard et al., 2008, Monshausen 

et al., 2008).  

The Ca2+-sensitive Oregon Green-dextran dye has been widely used for imaging NF-induced 

calcium responses in legume root hairs (Miwa et al., 2006a, Shaw and Long, 2003a, Walker et 

al., 2000). It has single excitation and emission wavelengths, is non-ratiometric and the 

fluorescence is proportional to the concentration of calcium ions in that cell region. 

Unfortunately, the fluorescence intensity also depends on the concentration of dye in a region 

so any fluctuations in the cell such as cytoplasmic streaming or a change in the cell volume can 

affect the signal. Including a non-calcium sensitive dye such as Texas Red and calculating the 

ratio of the fluorescence from the two dyes (pseudoratiometric) reduces the noise from cell 

fluctuations to improve signal quality (Shaw and Long, 2003a). Fura-2 is a Ca2+-sensitive dye 

that allows ratiometric imaging by having excitation at two wavelengths (one calcium-

dependent the other not) with emission measured at a single wavelength (Grynkiewicz et al., 

1985). However, Fura-2 was found to be somewhat toxic in alfalfa root hair cells (Ehrhardt et 

al., 1996) so its use in legumes has been limited, although it has since been used successfully in 

Sesbania rostrata and Medicago truncatula (Capoen et al., 2009). To prevent the fluorescent 

dyes from being pumped into the vacuole the dyes are often linked to dextrans and 

microinjected into cells. Unfortunately, microinjection is invasive and can generate noise in 

calcium signals, as shown by a dose-response curve of the NF-induced calcium influx response, 

where even at very low concentrations (10-12M) of NF the number of cells apparently inducing 

calcium changes never reached zero (Morieri, 2010). 

The development of the ratiometric Cameleon fluorescent proteins was a major advancement 

in cellular calcium imaging. The most widely used are the Yellow Cameleons (such as YC2.1 and 
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YC3.6) consisting of Cyan Fluorescent Protein (CYP) and Yellow Fluorescent Protein (YFP) linked 

by the Ca2+-binding domain of calmodulin and the M13 calmodulin-binding peptide from the 

mammalian myosin light chain kinase (Miyawaki et al., 1997, Miyawaki et al., 1999). When no 

Ca2+ is bound to the probe, excitation of the CYP domain results in an emission maximum 

around 480 nm. When Ca2+ binds, the conformation of the protein is changed so that the CYP 

and YFP are brought closer together and some energy is passed from CFP to YFP by Förster 

Resonance Energy Transfer (FRET) resulting in an enhanced emission around 540 nm from YFP 

and correspondingly lower emission from CFP. The ratio of YFP to CFP fluorescence is 

proportional to the concentration of Ca2+ ions in the region of interest (Miyawaki et al., 1997). 

A Medicago truncatula stable line expressing YC2.1 was developed by Miwa et al. (2006b) and 

has been used in studies into symbiosis calcium signalling (Granqvist et al., 2012, Kosuta et al., 

2008, Morieri et al., 2013, Sun et al., 2007). However, this reporter has a relatively small 

dynamic range with a maximal FRET change of 40% from zero to saturating (micromolar) 

calcium concentrations (Miyawaki et al., 1997). The result is that there is only a two-fold 

change in YFP/CFP signal across its Ca2+-responsive range. Newer versions of Yellow Cameleon 

have been developed such as YC3.6, which has a circular version of YFP (cYFP) (Nagai et al., 

2004). The dynamic range of the YC3.6 FRET signal is 84%, resulting in a six-fold change in 

YFP/CFP ratio across the calcium-response range, a significant improvement on YC2.1. The 

increased sensitivity of YC3.6 over YC2.1 revealed novel aspects of calcium signalling. For 

example, when YC3.6 was used to image Ca2+ in growing Arabidopsis thaliana root hair cells it 

became apparent that the previously described tip-calcium gradients (observed using YC2.1) 

are made up of oscillations that have the same period but are out of phase with the observed 

oscillations in growth rate (Bibikova and Gilroy, 2002, Monshausen et al., 2008). Therefore, the 

study of symbiosis calcium signalling could benefit from use of the YC3.6 reporter. 

The tools available to image ROS in cells are much more limited. There are several fluorescent 

dyes such as OxyBURST Green (H2HFF-BSA) and dihydrodichlorofluorescein (H2DCF) derivatives 

that have been used to image ROS responses in a number of plant processes including root 

hair and pollen tube growth (Foreman et al., 2003, Liu et al., 2009, Monshausen et al., 2007). 

The H2DCF derivative 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate (CM-

H2DCFDA) has been used to characterise the NF-induced ROS transient in Phaseolus vulgaris 

root hairs (Cárdenas et al., 2008). Unfortunately, these dyes all share a limitation. Their change 

in fluorescence in response to ROS is effectively irreversible so it is not possible to directly 

measure declines in ROS levels (Choi et al., 2012). There are also other technical limitations; 
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for example the H2DCF derivatives are susceptible to photoxidation and photobleaching from 

the fluorescence illumination system (Choi et al., 2012), so experiments must be carried out in 

a low light environment with as low fluorescence excitation intensity as possible. Also, the 

H2DCF derivatives are not specific for a particular ROS species so it is impossible to infer which 

species is responsible for any change in dye fluorescence(Choi et al., 2012). 

Some genetic GREEN FLUORESCENT PROTEIN (GFP)-based probes have been developed. The 

roGFPs have point mutations that make them oxidation sensitive by introducing two cysteines 

that can form disulphide bonds in an oxidising environment (Dooley et al., 2004, Hanson et al., 

2004). This shifts the GFP excitation peak from 400 to 499 nm so the roGFPs can be used for 

spatio-temporal ratiometric analysis of oxidative status within cells. HyPer is another 

ratiometric probe but it is H2O2 specific. It consists of the regulatory domain of the Escherichia 

coli transcription factor OxyR (OxyR-RD) inserted into cYFP (Belousov et al., 2006, Nagai et al., 

2001). When OxyR-RD binds H2O2, an intramolecular disulphide bond between two cysteine 

residues leads to a conformational change in HyPer that shifts the cYFP excitation maximum 

from 420 nm to 500 nm (Belousov et al., 2006, Choi et al., 2001). The disulphide bond is 

reduced when H2O2 is scavenged so the changes in HyPer fluorescence caused by ROS are fully 

reversible. The first report of HyPer use in plants came from Costa et al. (2010) where they 

used the probe and a peroxisome targeted version to image H2O2 in the cytoplasm and 

peroxisomes of A. thaliana and tobacco leaf cells.  

However, HyPer is not without limitations. The fluorescence from HyPer is affected by pH 

because deprotonation of HyPer as pH rises leads to an increase in HyPer fluorescence. A pH 

change from 7.0 to 7.5 leads to a 3-fold increase in HyPer fluorescence, which could appear to 

be a 100 nM increase in H2O2 (Belousov et al., 2006). Therefore, the pH sensitivity of HyPer can 

lead to the erroneous identification of H2O2 increases and so it is important that when using 

HyPer the pH dynamics in the cell are also considered. Since NF activates an intracellular 

alkalisation in the tips of legume root hair cells alongside the calcium influx and ROS transient 

(Cárdenas et al., 2008, Ehrhardt et al., 1992, Felle et al., 1996, Felle et al., 1998, Kurkdjian, 

1995), the current forms of HyPer are of limited value in this system. 

This chapter describes the development of Medicago truncatula YC3.6-expressing stable lines 

and the results demonstrate that it can provide more insights into the spatial and temporal 

characteristics of NF-induced calcium signalling over other reporters. A method for imaging the 

NF-induced ROS transient in M. truncatula root hairs using a H2DCF derivative (CM-H2DCFDA) is 

also described. This probe was chosen because it has been previously shown to be suitable for 
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imaging ROS in root hair cells, including the NF-induced ROS transient in Phaseolus vulgaris 

(Cárdenas et al., 2008), and being a dye it is easy to load into plant cells and avoids any delay in 

studying M. truncatula mutant lines that would result from using a genetic probe. Importantly, 

it also does not suffer from the pH sensitivity that currently plagues the HyPer probe. By 

studying the NF-induced ROS transient in M. truncatula it will be possible to utilise the forward 

and reverse genetic tools available in this model legume to elucidate how it relates with other 

NF responses in root hair cells. 

 

3.2 Results 

3.2.1 Analysis of calcium responses in Medicago truncatula root hair cells expressing 

Cameleon YC3.6 

The Gateway cloning technique (Chapter 2.12.5) was used to insert the YC3.6 gene (Nagai et 

al., 2004) into the pB7WG2 binary vector (Karimi et al., 2002) where it is under the control of 

the 35S promoter (Figure 3.1). Agrobacterium tumefaciens-mediated transformation (Chapter 

2.13.9) was used to generate stable Cameleon YC3.6-expressing lines in both the wildtype 

Jemalong A17 and R108 ecotypes. For each ecotype 100 plants were used and shoots were 

recovered from two A17 and nine R108 independent calli. 

 

Figure 3.1: pB7WG2-YC3.6 binary vector for A. tumefaciens-mediated transformation.  

The vector has the YC3.6 gene under control of the 35S promoter and terminator with BASTA 
resistance for plant selection and spectinomycin resistance for bacterial selection. 
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The shoots that developed roots after transfer to rooting medium were then transferred to soil 

(2.13.9). From these plants, seeds were produced for both A17 independent lines, and five of 

the nine R108 independent lines. Seedlings from the T1 generation were germinated and 

grown on FP+0.1 µM AVG plates overnight (Chapter 2.7) before screening root hairs for YC3.6 

expression using an inverted fluorescence microscope (Chapter 2.10), checking that the 

protein was present in the cytoplasm and nucleus and not in the vacuole. Transformed lines 

with the highest fluorescence were propagated (Table 3.1). A. tumefaciens-mediated 

transformation can result in multiple insertions of the gene of interest and this can be 

indicated by the segregation of YC3.6 fluorescence in the transformant lines.  Neither the A17 

nor R108 transformant lines showed the expected 3:1 ratio of plants expressing YC3.6 to plants 

not expressing YC3.6 with the T1 generations having ratios of 1.73:1 and 4.4:1 respectively 

(Table 3.1). This indicates that in both cases there may be multiple copies of YC3.6 inserted 

into the genome. This could lead to variable YC3.6 expression levels between individuals in 

these plant lines, but since relative Ca2+ levels are calculated by the ratio of CFP/YFP 

fluorescence this should not greatly affect the overall signal, therefore this is not considered to 

be a major issue in regard to using these lines. T1 individuals with the highest levels of YC3.6 

fluorescence were selected for propagation, on the assumption that they are the most likely to 

be homozygous for the insertion(s). 

Table 3.1: YC3.6 expression in transgenic lines of M. truncatula 

Generation Parental Line Number of plants with YFP/CFP 

fluorescence 

   

T1 A17 YC3.6 3A 139/219 

T2 #1 8/9 

 #2 55/55 

 #4 11/11 

 

T1 

 

R108 YC3.6 7A 

 

22/27 

T2 #1 18/23 

 #3 14/15 

 

* T1 and T2 seedlings used for initial calcium imaging experiments. 

* A17 YC3.6 3A and R108 YC3.6 7A used as parental lines for crosses. 
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Initial experiments were carried out using Jemalong A17 YC3.6 T1 transformant seedlings as 

these lines were available first. To compare the NF-induced calcium responses from Cameleon 

YC3.6 to those obtained from YC2.1, seedlings of both the A17 YC3.6 and the previously 

established R108 YC2.1 line (Miwa et al., 2006) were germinated and grown as described 

above and an inverted fluorescence microscope was used for YFP/CFP fluorescence ratio 

acquisition at 5 second intervals (Chapter 2.10). After the start of image acquisition seedlings 

were treated with 10 nM NF from Sinorhizobium meliloti and recording was resumed. At this 

concentration of NF the calcium influx and calcium spiking responses were both observed 

when using YC2.1 or Oregon Green/Texas Red (Figure 3.2) (Miwa et al., 2006b, Morieri et al., 

2013, Shaw and Long, 2003a). In the YC3.6-expressing plants, increases in cytosolic free Ca2+ 

were observed shortly after 10 NF addition, similar to the calcium influx response previously 

observed using other reporters (Miwa et al., 2006a, Morieri et al., 2013, Shaw and Long, 

2003a) (Figure 3.2A). Ten minutes after NF addition, Ca2+ oscillations were observed in the 

YC3.6 expressing plants, similar to the nuclear calcium spiking previously observed (Shaw and 

Long, 2003a) (Figure 3.2A). The greater dynamic range of YC3.6 over YC2.1 is very evident here 

with the calcium responses having much greater amplitudes (greater changes in YFP/CFP 

ratio). No calcium responses were observed in root hairs of the negative control plants (water 

addition; 8 cells, 3 plants). 
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Figure 3.2: Cameleon YC3.6 versus Cameleon YC2.1. 

Comparison of the NF-induced calcium responses observed in M. truncatula wildtype root 
hairs expressing Cameleon YC3.6 and YC2.1 [A]. The traces show data of the ratio of YFP to CFP 
fluorescence (arbitrary units) collected at 5 second intervals. YFP and CFP fluorescence 
intensities are shown for the highlighted section of the YC3.6 YFP/CFP trace [B]. The black 
vertical lines indicate 10 nM NF additions (except for the negative control where the same 
volume of dionised water was added). 
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Further analysis of calcium responses in the A17 YC3.6-expressing line was carried out using 

two concentrations of NF (10 nM and 0.1 nM) and data collected from three cell regions: the 

tip, non-tip and the whole of the root hair cell (Figure 3.3). There was no increase in cytosolic 

free Ca2+ at 0.1 nM NF (Figure 3.3B), and this is consistent with observations of the NF-induced 

calcium influx using YC2.1, Oregon Green/Texas Red and ion-selective electrodes (Felle et al., 

1998, Felle et al., 1999b, Miwa et al., 2006b, Shaw and Long, 2003a). At 10 nM NF the increase 

in cytosolic free Ca2+ was most prominent in the tip region (Figure 3.3A), but was also visible in 

the non-tip region, again consistent with previous observations of the calcium influx. Since the 

characteristics of the increase in cytosolic free Ca2+ observed in the YC3.6-expressing lines are 

consistent with previous observations of the calcium influx, from now on it shall be referred to 

as the calcium influx. 

The characteristics of the Ca2+ oscillations were also consistent with published observations of 

nuclear calcium spiking with the response being present at 0.1 nM NF and having a period of 

around 90-120 ms (Kosuta et al., 2008, Shaw and Long, 2003a, Sun et al., 2007). I shall refer to 

this response as calcium spiking from now on. Calcium spiking is characterised as a nuclear-

localised response so it is interesting that it is also present in the tip region of the cell. 

Moreover, the calcium spiking signal visible in the tip region does not always reflect what is 

seen in the non-tip region or the overall cell, with some of the peaks absent or much reduced 

in the tip. 

Prior to the addition of NF, the tip regions of the cells had peaks of Ca2+ that were not visible or 

are much smaller in amplitude in the non-tip and whole cell regions. The peaks were irregular 

and highly variable with some cells having large low frequency peaks like those at the 

beginning of the trace in Figure 3.3C , and others having smaller higher frequency spikes as 

seen towards the end of the trace. The nature of the oscillations also varied over a period of 

time. The smaller lower frequency spikes are similar to the tip Ca2+ oscillations observed in 

growing A. thaliana root hair cells (Monshausen et al., 2008).  
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Figure 3.3: Calcium responses in M. truncatula A17 expressing YC3.6.  

Representative traces of the ratio in YFP to CFP fluorescence (arbitrary units) collected at 5 
second intervals in three cell regions (tip, non-tip and whole trunk of the cell) are shown, 
indicated by the areas highlighted in the images of the root hair cells on the right. The black 
vertical line indicates when NF ([A] =10 nM, [B] =0.1 nM) was added with incidences of calcium 
influx and calcium spiking indicated. In [C] no NF was added and the long dashed line highlights 
a time of larger low frequency tip oscillations and the short dashed line highlights a time of 
smaller higher frequency tip oscillations. The numbers indicate the number of cells with a 
calcium influx response/number of cells analysed from the number of plants shown in 
brackets.  
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To characterise the NF-induced calcium influx further experiments were carried out using 10 

nM NF but switching from five second acquisition intervals to one second intervals (Figure 3.4). 

When imaging at this frequency, it was more apparent that the calcium influx starts at the tip 

and that the peak at the non-tip region occurred a few seconds later, consistent with the 

observations of Shaw and Long (2003a). It was also apparent that the calcium influx is in fact 

made up of several peaks of Ca2+ so is not just a single influx event. It should be noted that 

there was variation in the timing of the calcium flux after NF addition, but we could not 

discriminate between technical and biological reasons for these differences. 
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Figure 3.4: Imaging of YC3.6 at one second intervals in M. truncatula A17 root hair cells.  

Traces of the ratio in YFP to CFP fluorescence (arbitrary units) over a period of time (minutes) 
for three cells from three different plants are shown. In each cell three regions were analysed 
(tip, non-tip and whole cell), indicated by the areas highlighted in the images of the root hair 
cells on the right. The black vertical line indicates when 10 nM NF was added. 
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3.2.2 Analysis of the NF-induced ROS transient in M. truncatula root hair cells using 

CM-H2DCFDA 

To analyse the NF-induced ROS transient wildtype Jemalong A17 seedling germinated and 

grown as above were placed on slides and incubated in FP plant growth solution containing 

CM-H2DCFDA dye. Imaging was done at 1 second intervals with an inverted fluorescence 

microscope (Chapter 2.11). In 7/9 cells imaged the fluorescence intensity at the tip of the root 

hair cells started to increase shortly after NF addition with a peak in fluorescence intensity 

within 1-3 mins, consistent with the observations in P. vulgaris (Figure 3.4) (Cárdenas et al., 

2008). After this point, fluorescence intensity started to decline, again consistent with previous 

observations. The oxidation of CM-H2DCFDA that is responsible for the fluorescence is 

effectively irreversible so this decline in fluorescence intensity is probably due to a 

combination of fewer CM-H2DCFDA molecules being oxidised and movement of already 

oxidised molecules away from the tip due to cytoplasmic streaming. Although this makes it 

impossible to comment on the spatial and temporal characteristics of the decline, the results 

do show that the ROS production is transient, tailing off after the peak at 1-3 mins. It should be 

noted that these experiments did not include a “water only” control treatment. Therefore, it is 

possible that the observed ROS response could be due to a “touch response” in the root hair 

cell caused by the addition of a solution to the media surrounding the plant. However, the 

absence of a ROS transient response in the NF receptor mutant nfp (see Chapter 5.2.2), 

alongside evidence from Cardenas et al. (2008) that the ROS transient is NF-specific indicate 

that the ROS transient responses observed here are unlikely to be an artefact caused by a 

touch response. 
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Figure 3.5: Reactive oxygen species (ROS) transient production in M. truncatula A17 root hairs 

after NF treatment.  

[A] False colour images [high (white) to low (purple) fluorescence insensity] of a root hair after 
NF treatment (0 min), 1 min and 4 mins. The region highlighted in red corresponds to the red 
trace in [B], where the intensity of CM-H2DCFDA fluorescence is shown against time (minutes) 
and the addition of NF is indicated by the vertical black line. The black trace in [B] is from the 
tip region of another cell from a different plant. The black horizontal lines indicate the increase 
phase of ROS transient production. 
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3.3 Discussion 

It has been known since the late 1990’s that NF can induce a calcium influx at the tip of legume 

root hair cells (Felle et al., 1998, Felle et al., 1999b), but how it is generated and its role in 

nodulation is poorly understood, especially when compared to our understanding of NF-

induced nuclear calcium spiking. The NF-induced ROS transient was first observed more 

recently (Cárdenas et al., 2008) and is even more poorly characterised. In this chapter, stable 

plant lines expressing YC3.6 and a protocol for imaging using CM-H2DCFDA were established to 

image calcium and ROS in M. truncatula.  

The improved FRET dynamics of YC3.6 over YC2.1 make it a better tool for spatio-temporal 

imaging of calcium in cells and it has provided further insights into NF-induced calcium spiking. 

Although NF-induced calcium spiking originates around the nucleus, it is clear from the use of 

YC3.6 that it is also present away from the nucleus in the tip region. It appears that the NF-

induced calcium spiking observed at the tip may not always reflect what is happening at the 

non-tip region at the same point in time suggesting that the tip spiking is not just the result of 

simple diffusion of free calcium ions in the cytoplasm from the nucleus. It may be that nuclear-

localised calcium spiking activates calcium spiking in the tip region. Since the nuclear 

membrane, the calcium store for nuclear-localised calcium spiking, is contiguous with the 

endoplasmic reticulum it is possible that tip-localised calcium spiking may be activated by 

calcium-induced calcium release along the ER starting near the nucleus. Whether the NF-

induced calcium spiking observed at the tip has a function in nodulation signalling or is just an 

artefact of nuclear calcium spiking remains to be analysed. 

The calcium influx has been previously described as a rapid increase in calcium originating at 

the tip and travelling along the shaft of the root hair cell (Miwa et al., 2006b, Morieri et al., 

2013, Shaw and Long, 2003a). The observations in this chapter are consistent with this but also 

provide further information regarding the spatio-temporal characteristics. Using YC3.6 

revealed that the calcium influx is made up of many individual peaks of calcium, and is not just 

one single calcium influx into the cytoplasm. The subsequent peaks may be the result of 

influxes through Ca2+-sensitive Ca2+-permeable channels along the plasma membrane from the 

site of NF activation of an initial influx of Ca2+, which is presumably the Ca2+ current observed 

by Felle et al. (1998) using ion selective electrodes. It is also apparent that there is large 

variation in the shape of the calcium influx even when using YC3.6, which may help account for 

the difficulties in identifying the calcium influx with less sophisticated imaging methods (e.g. 

Oregon Green, YC2.1). 
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A limitation of the calcium and ROS imaging methods used here is that they cannot be used 

simultaneously so it is not possible to determine the timing of the responses relative to one 

another. The most accurate timing of the calcium influx come from experiments conducted 

using ion selective electrodes where an increase in intracellular Ca2+ (measured indirectly as a 

decrease in extracellular Ca2+ was initiated within seconds of NF treatment) (Felle et al., 1998, 

Felle et al., 1999b). There is greater variation in the timing of the initiation of the Ca2+ and ROS 

responses in the experiments in this chapter but the responses are occurring in a similar 

timescale after NF addition.  

The A. thaliana rhd2 mutant is defective for RBOHC-mediated ROS production and also lacks 

the tip-focused Ca2+ gradient at the root hair tip (Foreman et al., 2003). ROS treatment 

elevated cytoplasmic Ca2+ levels in the root hairs and restored cell growth suggesting that ROS 

may precede Ca2+ in root hair growth. However, the activity of RBOH proteins can be regulated 

both by calcium ions binding to EF-hand domains and by calcium-dependent protein kinases 

(CPKs), suggesting there is positive feedback between ROS and calcium (Asai et al., 2013, 

Dubiella et al., 2013, Keller et al., 1998, Kobayashi et al., 2007, Sagi and Fluhr, 2001, Takeda et 

al., 2008). It is therefore possible that positive feedback exists between the NF-induced 

calcium influx and ROS transient in legume root hairs with both responses being 

interdependent. 

Using the tools for imaging Ca2+ and ROS in M. truncatula developed in this chapter it will be 

possible to undertake further experiments, which will hopefully enable the identification of 

regulators of these responses. Pharmacological approaches can be a starting point and few 

experiments testing compounds on the calcium influx or ROS transient have been attempted 

previously. Also, there are many M. truncatula nodulation and bacterial mutants, some of 

which have not been characterised for the calcium influx at all or their characterisations are 

tentative due to the limitations of the imaging method used. Moreover, none of these mutants 

have been characterised for the ROS transient. The next two chapters will present the findings 

from these experiments. 
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CHAPTER 4: REACTIVE OXYGEN SPECIES ARE REQUIRED FOR THE 

NOD FACTOR-INDUCED CALCIUM INFLUX 

 

4.1 Introduction 

The identification of compounds that inhibit ligand-induced responses can provide clues to the 

identity of proteins that may be involved. For example, NF-induced calcium spiking is inhibited 

by the SERCA-type Ca2+-ATPase inhibitor cyclopiazonic acid (CPA) (Capoen et al., 2011, 

Engstrom et al., 2002). Further investigation into this family of Ca2+-ATPases in Medicago 

truncatula led to the discovery that one member, MCA8, is required for calcium spiking 

(Capoen et al., 2011). Inhibitor approaches can be especially useful in identifying components 

that may not appear in forward genetic screens because they belong to multigene families or 

they are also required for normal growth and development. 

There are several inhibitors that have been shown to block calcium spiking including U73122 

(PLC inhibitor) and the Ca2+-ATPase inhibitor 2,5-di-(t-butyl)-1,4-hydroquinone (BHQ) 

(Engstrom et al., 2002), but only one compound, the calcium channel inhibitor nifedipine, has 

been reported to inhibit the calcium influx (Felle et al., 1998). The NADPH oxidase (and other 

flavin-containing enzyme) inhibitor diphenyleneiodonium (DPI) is the only compound that has 

been reported to inhibit the NF-induced ROS transient (Cárdenas et al., 2008). 

Extracellular ATP is involved in a number of signalling processes in plants including cell viability, 

root gravitropism, growth, inhibition of pollen germination and plant defence (Chivasa et al., 

2005, Chivasa et al., 2009, Demidchik et al., 2003, Kim et al., 2006, Steinebrunner et al., 2003, 

Tang et al., 2003, Wu et al., 2007). In addition, extracellular ATP has been reported to inhibit 

calcium spiking in preliminary work by Miwa (2005). This effect was thought to be related to an 

ectoapyrase enzyme known as LNP, which has ATP/ADP hydrolysis activity, and was identified 

by its ability to bind NFs (Etzler et al., 1999, Etzler et al., 2000). Suppression of LNP reduces 

nodule numbers and bacterial infection (Govindarajulu et al., 2009, Roberts et al., 2013) and a 

Lotus japonicus LNP antisense line was defective for both the calcium influx and spiking 

responses, suggesting that LNP may regulate ATP/ADP levels during nodulation (Roberts et al., 

2013). 
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The spatial and temporal similarities between the calcium influx and ROS transient suggest 

that they may be involved in a common signalling pathway. The aim of this chapter was to use 

inhibitors to test whether the calcium influx and ROS transient are involved in a common 

pathway. A secondary aim was to investigate the role of extracellular ATP on NF-induced 

calcium signalling. Compounds that are known to block calcium and ROS signalling in plants 

and other eukaryotic organisms were tested for their effects on calcium signalling and the ROS 

transient in M. truncatula.  

 

4.2 Results 

4.2.1 The NADPH oxidase inhibitor diphenyleneiodonium (DPI) inhibits the calcium 

influx and the ROS transient but not calcium spiking 

The NADPH oxidase inhibitor DPI inhibits ROS accumulation and root hair growth in 

Arabidopsis thaliana resulting in short root hairs that resemble those of the NADPH oxidase 

mutant rhd2 (Foreman et al., 2003). This suppression of root hair growth results from the lack 

of the tip focused calcium gradient found in root hair cells (Schiefelbein and Somerville, 1990, 

Wymer et al., 1997). DPI also inhibits the NF-induced ROS transient in Phaseolus vulgaris root 

hairs (Cárdenas et al., 2008). To validate this I assessed the effect of DPI on the NF-induced 

ROS transient in M. truncatula. Wild type seedlings were loaded with CM-H2DCFDA (Chapter 

2.11) and 50 µM DPI [dissolved in DMSO, final concentration 0.2 % (v/v)] was added 10 

minutes prior to addition of 10 nM NF. None of the cells pretreated with DPI produced the ROS 

transient after NF addition (Figure 4.1), suggesting, not surprisingly, a role for NADPH oxidase 

in the ROS transient. 

DPI was then tested for its ability to inhibit NF-induced calcium signalling in root hair cells. M. 

truncatula seedlings expressing Cameleon were treated with DPI at least 10 minutes prior to 

addition of 10 nM NF (Chapter 2.10). Pretreatment with 50 µM DPI inhibited the NF-induced 

calcium influx but not calcium spiking (Table 4.1, Figure 4.2). Adding 10 µM DPI did not inhibit 

either calcium response, suggesting that the inhibition is dose-dependent. Inhibition of the 

calcium influx by DPI suggests that the ROS transient may be associated with the activation of 

the calcium influx and this is consistent with an overlap between the temporal and spatial 

nature of these responses. It should be noted that a DMSO only control treatment prior to 10 

nM NF addition was not carried out. However, 0.2 % DMSO treatment was carried out using 

A17-YC3.6 lines (Table 4.1; Figure 4.2). The treatment was not lethal to the cells during the 
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period of Ca2+ imaging (over 45 mins) and did not inhibit the calcium influx or calcium spiking 

(Table 4.1). Therefore, the absence of a ROS transient after DPI treatment (Fig 4.1) is not due 

to a loss of cell viability, but it is possible that DMSO alone could inhibit the ROS transient. 

 

 

Figure 4.1: Diphenyleneiodonium (DPI) inhibits the NF-induced ROS transient in root hairs.  

M. truncatula A17 seedlings were treated with CM-H2DCFDA dye prior to 50 µM DPI treatment 
and fluorescence intensity (arbitrary units) in root hairs was recorded. The black horizontal line 
indicates the increase phase of ROS transient production. 
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Table 4.1: Summary of NF-induced calcium responses in M. truncatula root hair cells after 

inhibitor treatments. 

 

Treatment Target               No. of cells with 

Calcium influx   Calcium spiking 

Number 

of plants 

 

Control (no pretreatment) 

 

  

11/12 

 

12/12 

 

5 

Control (0.2% DMSO)*  7/8 8/8 3 

 

200 µM ATP 

 

 13/14 14/14 5 

2 mM ATP 

 

 0/3 3/3 2 

100 µM nifedipine Ca2+ channel 

blocker 

2/10 8/10 5 

10 µM DPI 

(Diphenyleneiodonium) 

Inhibitor of 

Flavin-containing  

9/13 9/13 5 

50 µM DPI 

 

enzymes 0/10 7/10 3 

50 µM LaCl3  

(Lanthanum chloride)  

Ca2+ channel 

blocker 

6/6 6/6 2 

100 µM LaCl3 

 

 4/12 12/12 3 

500 µM suramin * 

 

Purinoreceptor 

antagonist 

8/11 11/11 3 

40 µM CPA * 

(cyclopiazonic acid) 

SERCA-type Ca2+-

ATPase 

antagonist 

0/5 0/5 3 

  

In all cases 10 nM NF was added. All experiments were conducted using seedlings expressing 
YC2.1 except for those denoted with (*), which were carried out using the YC3.6 line. 
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Figure 4.2: NF-induced calcium responses in M. truncatula root hairs after treatment with 

inhibitors.  

Inhibitors were applied to roots of [A] YC2.1-expressing (R108) or [B] YC3.6-expressing (A17) 
wildtype lines. 10 nM NF was added as indicated and calcium influx responses marked by a 
black horizontal line. Representative traces are shown for each treatment. 
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4.2.2 Two Ca2+-channel blockers inhibit calcium influx but not spiking 

The Ca2+ channel blockers lanthanum (La3+) and nifedipine both abolish the cytosolic free Ca2+ 

gradient in A. thaliana root hairs leading to the cessation of root hair growth (Monshausen et 

al., 2008, Schiefelbein et al., 1992). Pretreatment with 100 µM (but not 50 µM) lanthanum 

chloride (LaCl3), or 100 µM nifedipine [dissolved in DMSO, final concentration 0.1% (v/v)] 

resulted in a reduction in the number of cells that produced the NF-induced calcium influx, but 

spiking was unaffected (Table 4.1 and Figure 4.2). However, in both cases this was not a total 

inhibition with some cells still able to produce the calcium influx response. Pretreatment of 

seedlings with 40 µM CPA [dissolved in DMSO, final concentration 0.2% (v/v)] inhibited calcium 

spiking, as expected from previous reports (Capoen et al., 2011, Engstrom et al., 2002), but 

also inhibited the calcium influx. This suggests that members of the SERCA-type Ca2+-ATPase 

family may be required for Ca2+ homeostasis that is necessary for an appropriate calcium influx 

(Table 4.1, Figure 4.2). 

 

4.2.3 ATP treatment does not inhibit NF-induced calcium signalling 

It has been previously reported that 40 µM ATP can inhibit calcium spiking (Miwa, 2005). To 

assess whether ATP also inhibits the calcium influx, 200 µM ATP was added to root hair cells 

prior to 10 nM NF treatment. However, no difference was observed in the calcium spiking or 

calcium influx of these cells compared to the control (NF treatment only; Table 4.1 and Figure 

4.2). A higher concentration of 2 mM ATP was also assessed and although none of the cells 

produced a calcium influx, the cells still retained calcium spiking. However, at this high 

concentration cytoplasmic streaming was affected suggesting pleiotrophic effects. These 

findings are inconsistent with Miwa’s preliminary findings so the experiment was repeated 

using his protocol with 40 µM ATP addition after the establishment of 1 nM NF-induced 

calcium spiking (Miwa, 2005). In 9/9 cells (3 plants) calcium spiking was retained after 40 µM 

ATP treatment. Having been unable to repeat Miwa’s findings I conclude that ATP treatment 

does not inhibit either the calcium influx or calcium spiking. 

Extracellular ATP is able to induce increases in cytosolic free Ca2+ and ROS in plants (Cárdenas 

et al., 2008, Demidchik et al., 2003, Demidchik et al., 2009, Jeter et al., 2004, Sun et al., 2012). 

In animals, extracellular ATP can activate purinergic receptors (Burnstock, 2007). Although no 

homologues of these receptors are present in plants, inhibitors of purinergic receptors 

including pyridoxalphosphate-6-azophenyl-2',4'-disulfonic acid (PPADS ) and suramin can 
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inhibit ATP-induced Ca2+ and ROS elevations in plant cells (Jeter et al., 2004, Song et al., 2006, 

Sun et al., 2012). To test whether ATP may promote the NF-induced calcium influx and/or 

spiking, seedlings were pretreated with 500 µM suramin prior to 10 nM NF addition. Suramin 

treatment had no effect on the numbers of cells producing the calcium influx or calcium 

spiking responses (Table 4.1, Figure 4.2).  

 

4.3 Discussion 

A pharmacological approach was taken to investigate NF-induced calcium and ROS signalling. 

The NADPH oxidase inhibitor DPI inhibited the ROS transient, consistent with previous findings 

by Cardenas et al. (2008), and also inhibited the calcium influx but not calcium spiking. This 

suggests that NADPH oxidases may be required for the generation of the ROS transient and the 

calcium influx. There are seven NADPH oxidase (RBOH) genes in M. truncatula and two have 

already been identified as being involved in nodulation (Marino et al., 2011, Montiel et al., 

2012). MtRBOHA is strongly upregulated in M. truncatula nodules and appears to be involved 

in nodule development (Marino et al., 2011). Phaseolus vulgaris RBOHB is expressed in 

infected root hairs and PvRBOHB RNAi lines had lower ROS accumulation, fewer nodules and 

were impaired for infection thread progression into the cortex (Marino et al., 2011, Montiel et 

al., 2012). RBOH-dependent ROS production can induce calcium influxes but RBOH proteins 

can also be regulated by Ca2+ binding to their EF-hand domains and by calcium-dependent 

proteins kinases (Asai et al., 2013, Dubiella et al., 2013, Foreman et al., 2003, Keller et al., 

1998, Kobayashi et al., 2007, Laohavisit et al., 2012, Sagi and Fluhr, 2001, Takeda et al., 2008). 

NF perception could lead to the activation of RBOHs with the resulting ROS production 

activating a Ca2+ current across the plasma membrane. Positive feedback from the Ca2+-

permeable channel to the RBOH could then drive further ROS production and Ca2+ currents 

resulting in the ROS transient and calcium influx responses observed. 

The SERCA-type Ca2+-ATPase inhibitor CPA is an established inhibitor of calcium spiking and in 

this chapter I demonstrate that it can also inhibit the calcium influx. There are at least 10 

SERCA-type Ca2+-ATPases in M. truncatula (Capoen et al., 2011). One of these, MCA8 is 

required for calcium spiking to return Ca2+ to the nuclear periplasm (Capoen et al., 2011). The 

nuclear-membrane location of MCA8 means it is unlikely to be involved in generating the tip-

focused calcium influx across the plasma membrane. It is unlikely that a Ca2+-ATPase would be 

directly involved in the release of calcium across the plasma membrane, but it is possible that 
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Ca2+-ATPases are necessary to sustain the appropriate Ca2+ homeostasis and this may be 

necessary for the calcium influx. In CPA treated cells, regulation of cytoplasmic Ca2+ levels 

would be compromised, and subsequent NF treatment may be unable to activate Ca2+-

permeable channels to generate the calcium influx. 

ATP treatment did not inhibit either calcium influx or calcium spiking. This is inconsistent with 

the preliminary findings of Miwa (2005) who reported that ATP treatment inhibited calcium 

spiking in M. truncatula. Here, two experimental set-ups were used to examine the effect on 

calcium spiking; treatment prior to NF addition and treatment after NF-induced calcium spiking 

was initiated. Both produced similar results: no effect on either the calcium influx or calcium 

spiking. Furthermore, suramin, an animal purinergic receptor antagonist, had no effect on 

either calcium influx or calcium spiking. These results are puzzling when considered with the 

involvement of the apyrase LNP in nodulation (Govindarajulu et al., 2009, Roberts et al., 2013). 

Although ATP does not appear to directly modulate NF-induced calcium signalling it may still 

be playing a role in nodulation. In A. thaliana root hairs, high or very low levels of extracellular 

ATP inhibit root hair growth (Clark et al., 2010) and this may be relevant during rhizobial 

infection, but not for early signalling. 

In conclusion, the results in this chapter indicate that the NF-induced ROS transient and 

calcium influx may both be dependent on NADPH oxidases. It would be interesting to find out 

whether the NADPH oxidase RBOHB, which has already been characterised as having a role in 

bacterial infection (Montiel et al., 2012), is required to generate the ROS transient and calcium 

influx. However, as a member of a multigene family this may prove difficult if there is any 

functional redundancy. 

 



 

84 
 

CHAPTER 5: ANALYSIS OF NF-INDUCED CALCIUM INFLUX AND ROS 

TRANSIENT RESPONSES IN NODULATION AND INFECTION MUTANTS 

5.1 Introduction 

There are several genes that are required for NF-induced calcium spiking but not for the NF-

induced calcium influx including DMI1, DMI2, NENA, NUP133 and NUP85 (Groth et al., 2010, 

Miwa et al., 2006a, Wais et al., 2000). However, the only genes found to be required for the 

calcium influx are NFP and LNP, which are also required for calcium spiking (Ben Amor et al., 

2003, Roberts et al., 2013). These observations suggest that calcium spiking and the calcium 

influx are involved in separate signalling pathways downstream of NF perception. However, 

since NFP is required for all NF responses and the role of LNP in nodulation and bacterial 

infection is currently unclear, they do not provide much in the way of mechanistic information 

as to how the calcium influx is generated or its role in bacterial infection. The NF-induced ROS 

transient has not yet been studied in any nodulation or bacterial infection mutants. 

The calcium influx has been implicated in bacterial infection (Morieri et al., 2013) and in 

Medicago truncatula there are several genes that have been shown to play a role in bacterial 

infection. Plants with mutations in NIN, which encodes a transcription factor that acts 

downstream of the Sym pathway (Marsh et al., 2007), have excessive root hair curling but 

produce few infection threads and do not develop nodules (Borisov et al., 2003, Marsh et al., 

2007). M. truncatula hcl also has excessive root hair curling and does not form nodules 

(Catoira et al., 2001) and the gene encodes a LysM receptor-like kinase family member like the 

NF receptor NFP (Smit et al., 2007). The bit1-1 allele has a mutation that blocks the function of 

the ERN1 transcription factor, which is required for infection thread initiation and nodule 

formation (Middleton et al., 2007). (REQUIRED FOR INFECTION THREAD) RIT1 encodes a 

SCAR/WAVE (suppressor of cAMP receptor/WASP-family verprolin homologous protein) 

component involved in the regulation of the actin cytoskeleton that is required for normal 

infection thread, root hair and trichome development (Miyahara et al., 2010). 

All these genes with roles in bacterial infection appear to play no role in activation of calcium 

spiking (Marsh et al., 2007, Miyahara et al., 2010, Morieri et al., 2013, Wais et al., 2000). In a 

study by Morieri et al. (2013), nin-1, bit1-1 and hcl-1 were found to retain the calcium influx 

response in at least some of the cells tested, but fewer cells appeared to respond than in the 

wildtype. However, these experiments were conducted using microinjection of a Ca2+- 
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responsive dye and it is not clear whether the reductions in the numbers of cells that 

responded are biologically relevant or reflect damage or increased changes in calcium 

generated by this invasive technique. In preliminary studies also using microinjection, the rit1-

1 mutant was reported to be abnormal for induction of the calcium influx with only 4 of 12 

cells showing this response, a significant reduction from the wildtype (Morieri, 2010). 

However, the Lotus japonicus orthologues of RIT1 are NAP1 and PIR1 and nap1/pir1 double 

mutants retain the calcium influx response (Morieri, 2010), so it is puzzling that the rit1-1 

mutant of M. truncatula appears be at least partly defective for the calcium influx. 

This chapter describes the analysis of the NF-induced calcium influx in M. truncatula 

nodulation and infection mutants using YC3.6 expressing lines. Also, several nodulation 

mutants were characterised for the NF-induced ROS transient to provide insights as to where 

the response may lie in relation to the known signalling pathways. 

 

5.2 Results 

5.2.1 ERN1 and RIT1 are not required for the NF-induced calcium influx 

To generate M. truncatula nodulation and bacterial infection mutant lines expressing YC3.6, 

the bit1-1, rit1-1, nfp-1, dmi1-1 and dmi1-2 mutants were cross fertilised (Chapter 2.8) with 

the wildtype A17-YC3.6 expressing line developed in Chapter 3. The F2 seedlings were screened 

for YC3.6 fluorescence. In all the mutant populations YC3.6 fluorescence segregated and the 

ratios of positive/negative plants were fairly close to the expected ratio of 3:1 for segregation 

of a single YC3.6 gene insertion within the populations (Table 5.1). Seedlings that were positive 

for YC3.6 fluorescence were planted and inoculated with Sinorhizobium meliloti 2011 (Chapter 

2.12.3) to identify plants which were defective for the symbiosis (Table 5.2). In each line the 

mutant phenotype was segregating within the population. The rit1-1 YC3.6 F2 population 

segregated with a ratio of 1:11 instead of the expected ratio of 1:3, but this is similar the 

previously observed 1:9 segregation of a rit1-1 x wildtype A20 F2 mapping population (Richens, 

2008). Plants displaying the appropriate mutant phenotype were kept for seed production. 

Ca2+ imaging experiments (Chapter 2.10) were carried out using the progeny (F3 generation) of 

these plants. 
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Table 5.1: YC3.6 expression in F2 generation of YC3.6 nodulation mutant lines. 

Plant line Number of plants with 

YC3.6 fluorescence 

Ratio (YC3.6 fluorescence/no YC3.6 

fluorescence) 

 

nfp-1 YC3.6 

 

 

40/55 

 

2.7:1 

bit1-1 YC3.6 

 

46/60 3.3:1 

rit1-1 YC3.6 

 

35/50 2.3:1 

dmi1-1 YC3.6 

 

21/29 2.6:1 

dmi2-1 YC3.6 

 

40/55 2.7:1 

cbs1-2 YC3.6 

 

42/57 2.8:1 

 

Table 5.2: Segregation of mutant phenotypes in F2 generation of YC3.6 nodulation mutant 

lines. 

Plant line Mutant phenotype  

(21 dpi with rhizobia) 

No. of plants with 

mutant phenotype 

Ratio (mutant 

phenotype/wildtype) 

 

nfp-1 YC3.6 

 

 

Nod- 

 

7/33 

 

1:4.7 

bit1-1 YC3.6 

 

Small white nodules 8/38 1:4.7 

rit1-1 YC3.6 

 

Small white nodules 2/22 1:11 

dmi1-1 YC3.6 

 

Nod- 9/32 1:3.2 

dmi2-1 YC3.6 

 

Nod- 4/15 1:3.8 

cbs1-2 YC3.6 

 

Small white nodules *           

 

8/32 1:4 

 
For each mutant line, plants with YC3.6 fluorescence were planted and inoculated with S. 
meliloti 2011. After 21 days (21 dpi) plants were screened for the appropriate mutant 
phenotype: no nodules (nod-) or small white nodules. * Owing to the relatively weak 
phenotype of cbs1-2 mutants, these plants were also genotyped by PCR for the Tnt1 insertion 
in CBS1 (2.13.3) to confirm the phenotyping results. 
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Consistent with previous studies, the nfp-1 mutant lacked both the NF-induced calcium influx 

and calcium spiking responses (Figure 5.1) (Ben Amor et al., 2003). It retained the tip-focused 

calcium oscillations observed in wildtype prior to NF addition (not shown). The calcium influx 

was observed in 9 out of 15 cells in the bit1-1 mutant (Figure 5.1). This was lower than in the 

wildtype A17 but was not a statistically significant difference (Fisher’s test, two-tailed P= 

0.0914). The calcium influx was only observed in 3 of 6 cells in the rit1-1 mutant, but this was 

not a significant difference from the wildtype (P= 0.0833). There were fewer root hair cells on 

rit1-1 and these were abnormal in appearance being much broader and more vacuolated than 

wildtype, consistent with previous observations (Miyahara et al., 2010). Together with the 

previous studies these results demonstrate that ERN1 and RIT1 are not required for the 

induction of the calcium influx (Morieri, 2010, Morieri et al., 2013). However, more cells will 

need to be analysed in order to define whether there is a significant reduction in the total 

number of responsive cells. 
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Figure 5.1: The NF-induced calcium influx is dependent on NFP, but not ERN1 or RIT1. 

Wildtype A17, nfp, bit1-1 and rit1-1 seedlings expressing YC3.6 were treated with 10 nM NF. 
Representative traces of the ratio in YFP to CFP fluorescence (arbitrary units) collected at 5 
second intervals for the whole shank of the cell are shown. The black vertical line indicates 
when 10 nM NF was added and calcium influx responses are indicated. The numbers represent 
the number of cells with a calcium influx or calcium spiking response/number of cells analysed 
from the number of plants shown in brackets.  
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The dmi1 and dmi2 mutants both retain the calcium influx response (Miwa et al., 2006a, Shaw 

and Long, 2003a). However, it was reported by Shaw and Long (2003a) using microinjection of 

Oregon Green and Texas Red that the calcium influxes observed in these mutants appeared to 

be different having only a single peak that was shorter in duration than in the wildtype and the 

cytoplasmic calcium returned to the baseline concentration more rapidly. This suggested that 

DMI1 and DMI2 might modulate the calcium influx response. To clarify whether there might be 

any difference in the calcium influx responses of the dmi1 and dmi2 versus wildtype I collected 

YC3.6 fluorescence images at one second intervals from seedlings treated with 10 nM NF. The 

calcium influxes of the dmi1-1 and dmi2-1 mutants were similar to the wildtype with a large 

initial peak of calcium most prominent in the tip-region with a gradual decline often containing 

additional peaks (Figure 5.2). The decline of the calcium influx in the wildtype is generally 

noisier than in the dmi1-1 and dmi2-1 mutants (Figure 5.2), but this is likely to be due to the 

initiation of calcium spiking that starts around 10 minutes after NF treatment.  
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Figure 5.2: Analysis of the calcium influx in M. truncatula wildtype A17, dmi1 and dmi2 root 

hair cells.  

Traces of the ratio in YFP to CFP fluorescence (arbitrary units) collected at one second intervals 
for three regions were analysed (tip, non-tip and whole cell), indicated by the areas highlighted 
in the images of the root hair cell at the top right. The black vertical line indicates when 10 nM 
NF was added. The numbers represent the number of cells with a calcium influx or calcium 
spiking response/number of cells analysed from the number of plants shown in brackets. 
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5.2.2 NFP, but not DMI1 or DMI2 is required for the NF-induced ROS transient 

To investigate the ROS transient response in nodulation mutants, seedlings were treated with 

CM-H2DCFDA dye prior to addition of 10 nM NF (Chapter 2.11). The ROS transient was not 

observed in any of the nfp-1 cells (Figure 5.3). This suggests that the ROS transient lies 

downstream of the NF receptor NFP, which is also required for the NF-induced calcium influx 

and calcium spiking responses (Ben Amor et al., 2003). On the other hand, the ROS transient 

was observed in the majority of the dmi1-1 and dmi1-2 mutant cells (Figure 5.3), suggesting it 

either lies upstream of calcium spiking in the Sym pathway or may be in a parallel pathway 

downstream of NFP. 

 

Figure 5.3: The NF-induced ROS transient is dependent on NFP but not DMI1 or DMI2. 

Wildtype A17, nfp-1, dmi2-1 and dmi1-1 seedlings were treated with CM-H2DCFDA dye prior to 
10 nM NF addition and fluorescence intensity (arbitrary units) in root hairs recorded with 
representative traces of tips of root hairs shown. Black lines indicate ROS transient production. 
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5.2.3 CBS1 is not required for NF-induced calcium responses or the ROS transient 

M. truncatula plants with mutations in CBS1 are defective for bacterial infection producing 

many infection foci that fail to progress to infection threads (Guan, D., Sinharoy, S., personal 

communications). CBS1 encodes a cystathionine beta-synthase (CBS) domain-containing 

protein (Sinharoy S., personal communication). In A. thaliana the CBS domain-containing 

proteins CBSX1 and CBSX2 can interact with and directly regulate thioredoxins, thereby 

regulating H2O2 levels (Yoo et al., 2011). This suggests that CBS1 may be involved in regulation 

of ROS levels during nodulation. The infection threads of the cbs1-2 mutant appear to 

accumulate higher levels of ROS than wildtype (Liu, C., personal communication). I therefore 

analysed the cbs1-2 mutant for NF-induced calcium signalling and the ROS transient. 

To image calcium, root hairs were microinjected with Oregon Green and Texas Red prior to 

addition of 10 nM NF (Chapter 2.9). Fluorescence was measure at five second intervals. The 

cbs1-2 mutant retained the calcium influx and calcium spiking responses with all five cells 

tested with 10 nM NF (Figure 5.4). Therefore, cbs1 is not required for either the NF-induced 

calcium influx or calcium spiking. Since CBS1 may have a role in the regulation of ROS I thought 

it was possible that it may act as a negative regulator of the calcium influx and ROS responses 

so the experiments were repeated using a lower concentration of NF to test for increased 

sensitivity. By this point the F3 progeny of a cross of the cbs1-2 mutant with R108-YC3.6 

(Chapter 2.8; Tables 5.1 and 5.2) was available so these experiments were carried out using 

this line (Chapter 2.10). After 0.1 nM NF addition none of the seven cells in the cbs1-2-YC3.6 

line produced the calcium influx but they retained calcium spiking (Figure 5.4). This is similar to 

the wildtype R108 so the cbs1-2 mutant does not appear to be more sensitive for induction of 

the calcium influx. 
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Figure 5.4: CBS1 is not required for NF-induced calcium responses.  

Wildtype R108 and cbs1 root hairs were microinjected with Oregon Green and Texas Red 
fluorescent dyes and treated with 10 nM NF [A]. Wildtype R108 and cbs1 root hairs expressing 
YC3.6 were treated with 0.1 nM NF [B]. Representative traces of Oregon Green/Texas Red [A] 
or YFP/CFP [B] fluorescence collected at five second intervals for the whole shank of the cells 
are shown. 
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To analyse the ROS transient in cbs1-2, seedlings were treated with CM-H2DCFDA dye prior to 

addition of 10 nM or 0.1 nM NF. After 10 nM NF addition, both wildtype R108 and cbs1-2 

mutant root hairs produced the ROS transient (Figure 5.5). At 0.1 nM NF the ROS transient 

response was absent from both wildtype R108 and cbs1-2 root hairs (Figure 5.3). These results 

suggest that CBS1 is not required for the NF-induced ROS transient, and that it also does not 

appear to be a negative regulator of the response. The results also demonstrate that in the 

wildtype the ROS transient is only activated by higher concentrations of NF; it was not 

activated at 0.1 nM NF, a concentration that can reliably induce nuclear calcium spiking (Miwa 

et al., 2006a, Morieri et al., 2013, Shaw and Long, 2003a). 

 

 

Figure 5.5: CBS1 is not required for the NF-induced ROS transient.  

Seedlings were treated with CM-H2DCFDA prior to 10 nM or 0.1 nM NF treatment and 
fluorescence intensity (arbitrary units) recorded. Representative traces of tips of root hairs are 
shown. Black lines indicate ROS transient production. 
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5.2.4 A sulphated mycorrhizal lipochitooligosaccharide (MycA) can induce a tip-

focused calcium influx 

AM fungi produce lipochitooligosaccharides (LCOs) that are similar in structure to rhizobial NFs 

and can activate nuclear calcium spiking (Czaja et al., 2012, Genre et al., 2013, Maillet et al., 

2011). The calcium influx has a higher stringency for NF structure than calcium spiking. Single 

modifications such as the loss of the NodL acetylation resulted in 100-fold lower activity for 

activation of the calcium influx in M. truncatula while calcium spiking was unaffected (Morieri 

et al., 2013). I analysed the ability of a sulphated Myc-LCO [S-Myc-LCO; LCO-IV(C16:0,S)] and a 

non-sulphated Myc-LCO [NS-Myc-LCO; LCO-IV(C18:1D9Z)] produced by Rhizophagus irregularis 

(Maillet et al., 2011) to activate a tip-focused calcium influx in A17-YC3.6-expressing plants 

using fluorescence acquisition intervals of 5 seconds. 

Addition of 10 nM S-Myc-LCO to M. truncatula seedlings can activate nuclear calcium spiking 

(Sun, J., personal communication). NS-Myc-LCO can also activate nuclear calcium spiking but at 

a higher concentration of 100 nM (Sun, J., personal communication). For reliable activation of 

the NF-induced calcium influx, approximately 100-fold higher concentrations of NF are 

required than those needed to activate calcium spiking (Miwa et al., 2006a, Morieri et al., 

2013). Therefore, to test whether S-Myc-LCO and NS-Myc-LCO could activate the calcium influx 

the seedlings were treated with 1 µM S-Myc-LCO or 10 µM NS-Myc-LCO. Addition of 1 µM S-

Myc-LCO produced tip-focused calcium influx responses in most cells (Figure 5.6). The shape 

and timing of the calcium influxes were very similar to those observed after addition of 10 nM 

NF with a rapid influx consisting of several peaks followed by a slower decline (Figure 5.6). 

However, treatment with NS-Myc-LCO did not induce the calcium influx in any of the cells 

observed (Figure 5.6). This is consistent with previous observations that non-sulphated LCOs 

are able to activate calcium spiking but not the calcium influx (Shaw and Long, 2003a).  
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Figure 5.6: Sulphated Myc-LCO can induce a tip-focused calcium influx.  

M. truncatula A17 expressing YC3.6 seedlings were treated with 10 nM NF, 1 µM MycA or 10 
µM MycB at the time indicated by the vertical line. Traces of the ratio in YFP to CFP 
fluorescence (arbitrary units) collected at five second intervals for three regions were analysed 
(tip, non-tip and whole cell), indicated by the areas highlighted in the images of the root hair 
cell at the top right. The numbers represent the number of cells with a calcium influx or 
calcium spiking response/number of cells analysed from the number of plants shown in 
brackets.  

 



CHAPTER 5: CALCIUM AND ROS SIGNALLING IN MUTANTS 

97 
 

5.3 Discussion 

This chapter describes the use of some M. truncatula nodulation and bacterial infection 

mutants to further characterise the NF-induced calcium influx and ROS transient responses. 

Consistent with previous studies, I found that the NF-induced calcium influx is dependent on 

the NF receptor NFP but not the Sym pathway components DMI1 and DMI2, which are 

required for nuclear calcium spiking (Ben Amor et al., 2003, Miwa et al., 2006a, Shaw and 

Long, 2003a).  

Like the NF-induced calcium influx, the ROS transient is dependent on NFP but does not 

require DMI1 or DMI2. This suggests that the ROS transient may either lie upstream of calcium 

spiking in the Sym pathway or may belong to a parallel pathway downstream of NFP. The first 

possibility seems unlikely because the ROS transient was activated by 10 nM NF but not 0.1 

nM treatment, demonstrating that it requires higher concentrations of NF than calcium 

spiking, which can be reliably activated at picomolar concentrations of NF (Morieri et al., 

2013). The NF-induced calcium influx and the ROS transient require similarly high (nanomolar) 

concentrations of NF for activation (Miwa et al., 2006a, Morieri et al., 2013, Shaw and Long, 

2003a), so it is possible that they belong to the same parallel pathway downstream of NFP. 

The infection genes ERN1 and RIT1 are not required for NF-induced calcium responses. This is 

perhaps not surprising because ERN1 encodes a transcription factor and RIT1 encodes a 

SCAR/WAVE component involved in regulation of the actin cytoskeleton (Middleton et al., 

2007, Miyahara et al., 2010), so they would be more likely to act downstream of the calcium 

influx.  

CBS1 is not required for NF-induced calcium influx, calcium spiking or the ROS transient. After 

the NF-induced ROS transient increase in root hair cells there is a decline of ROS in legume 

roots (Lohar et al., 2007, Shaw and Long, 2003b) and it may be that CBS1 is involved in this 

response to down-regulate defence responses during infection. 

The sulphated Myc-LCO activated a tip-focused calcium influx in root hairs but the non-

sulphated Myc-LCO did not. The structure of S-Myc-LCO is very similar to S. meliloti NF 

[NodSm-IV (C16:2, S, Ac)], so it is not surprising that it can activate a calcium influx. However, 

S-Myc-LCO does not appear to be as active as NF because a calcium influx has not been 

observed at 10 nM S-Myc-LCO concentrations (Sun, J. personal communication), whereas 10 

nM NF can activate a calcium influx in most cells (Miwa et al., 2006a, Morieri et al., 2013, Shaw 

and Long, 2003a).  
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Interestingly, S-Myc-LCO [LCO-IV(C16:0,S)] lacks the O-acetylation on the terminal non-

reducing sugar of S. meliloti NF. NF produced by S. meloliti nodL mutant bacteria [LCO 

IV(C16:2, S)] is also missing this acetylation, and has 100 fold lower activity for the calcium 

influx, requiring a concentration of 1 mM to induce it in the majority of M. truncatula cells 

(Morieri et al., 2013). This is the same as the concentration of S-Myc-LCO used in this chapter 

to activate a calcium influx, providing further evidence for the importance of the O-acetylation 

for induction of calcium influx. 

Whether the activation of the calcium influx by S-Myc-LCO is biologically relevant for 

colonisation of AM fungi remains to be seen, however, because the site of contact and 

infection by fungi is generally non-root hair (atrichoblast) epidermal cells. As yet there are no 

reports of whether atrichoblasts produce a calcium influx in response to NF or Myc-LCO 

treatment. With the exception of root hair curling, which does not occur during 

mycorrhization, the infection processes of rhizobia and mycorrhizal fungi are very similar with 

invaginations of the plant cell membranes guiding the microbes to the cortex (Parniske, 

2008a). It is therefore possible that the calcium influx could be a signal during both processes. 

The NF-induced calcium influx and ROS transient have several characteristics in common. Both 

originate at the tip of root hair cells and are activated within 1-2 minutes of NF addition 

(Chapter 3) (Cárdenas et al., 2008, Felle et al., 1998, Miwa et al., 2006a, Shaw and Long, 2003a, 

Walker et al., 2000). The NADPH oxidase inhibitor DPI inhibits both the NF-induced calcium 

influx and the ROS transient but not calcium spiking (Chapter 4) (Cárdenas et al., 2008). The 

calcium influx and ROS transient are activated by similar concentrations of NF (1-10 nM) 

(Cárdenas et al., 2008, Miwa et al., 2006a, Morieri et al., 2013, Shaw and Long, 2003a) and 

require the NF receptor NFP, but not DMI1 and DMI2 (this chapter) (Ben Amor et al., 2003, 

Miwa et al., 2006a, Shaw and Long, 2003a). Taken together these shared spatial, temporal, 

pharmacological and genetic characteristics indicate that the NF-induced calcium influx and 

ROS transient may be involved in a shared pathway downstream of NFP, parallel to calcium 

spiking. This possibility is explored further in the next chapter using a reverse genetics 

approach to investigate the involvement of ROP signalling in the regulation of calcium and ROS 

production during bacterial infection. 
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CHAPTER 6: A ROPGAP IS INVOLVED IN BACTERIAL INFECTION 

 

6.1 Introduction 

In many legumes, infection by rhizobia during the establishment of symbiosis occurs through 

root hair cells and requires changes in the normal polar growth of the root hairs. The curling of 

root hairs entraps rhizobia within infection pockets (Chapter 1 Figure 1.1), from which 

infection threads develop to guide the dividing rhizobia through the root hair cell into the root 

cortex. NF treatment induces growth of Medicago truncatula root hairs (Oldroyd et al., 2001b) 

and spot inoculation of NF to root hairs is sufficient to induce root hair curling (Esseling et al., 

2003), suggesting that local activation of NF signalling is able to alter the axis of polar growth 

during bacterial infection. 

Developmental polar growth of root hairs is regulated by members of the ROP GTPase family, 

which are monomeric G proteins that regulate vesicle trafficking and cytoskeletal changes to 

enable polarised cell expansion (Kost, 2008). The ROP GTPases are regulated by the RopGEFs, 

which activate ROP signalling activity by exchanging ROP-bound GDP for GTP (Figure 1.5). In 

contrast RopGAPs assist the intrinsic GTPase activity of the ROPs to convert GTP to GDP to thus 

return the ROP to an inactive state (Kost, 2008). In addition, RhoGDIs can regulate the ROPs by 

binding to ROP-GDP bound forms and removing them from the plasma membrane, which has 

been suggested to be necessary for recycling the ROPs back to the growing root hair tip (Carol 

et al., 2005, Klahre et al., 2006).  

In root hairs and pollen tubes, ROP GTPases localise to the growing apex (Kost et al., 1999, Li et 

al., 1999, Molendijk et al., 2001). The activities of RopGEFs, RopGAPs and RhoGDIs are thought 

to maintain a zone of active ROP GTPases at the tip, thus maintaining polar growth (Craddock 

et al., 2012, Kost, 2008). Any disturbance of this regulation can lead to alterations in cell 

growth. Overexpression of ROPs or ROPGEFs can lead to broader localisation and loss of polar 

growth in root hairs and pollen tubes (Gu et al., 2006, Jones et al., 2002, Kost et al., 1999, Li et 

al., 1999, Molendijk et al., 2001, Zhang and McCormick, 2007). Overexpression of RopGAPs 

reduces pollen tube growth and an RNAi double knockdown of AtGAP1 and AtGAP3 led to an 

increase in pollen tube length (Fu et al., 2001, Hwang et al., 2010, Klahre and Kost, 2006).  

Several ROP GTPases have already been implicated in rhizobial infection in legumes. Three M. 

truncatula ROPs were upregulated in roots and root hairs upon inoculation with Sinorhizobium 
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meliloti (Liu et al., 2010). RNAi knockdown of MtROP9 inhibited a NF-induced ROS response 

and fewer nodules were formed (Kiirika et al., 2012). LjROP6 interacts with the NF receptor 

LjNFR5 (Ke et al., 2012) and RNAi knockdown of LjROP6 led to a defect in infection thread 

progression and fewer nodules (Ke et al., 2012).  

It is possible that NF may activate root hair curling and infection thread formation via the 

existing regulators of polar growth. To investigate this possibility a reverse genetics approach 

was used to identify candidates of the ROP, RopGEF and RopGAP families that might be 

involved in bacterial infection. To do this, gene expression in M. truncatula root hairs during 

infection with S. meliloti was analysed using microarray data generated by Breakspear et al. 

(unpublished). From this analysis a RopGAP gene, MtGAP1 emerged as a promising candidate 

and Tnt1 insertion mutant lines were characterised for bacterial infection and nodulation. In 

addition, the NF-induced calcium signalling responses of MtROP9 RNAi knockdown lines were 

also examined. 

 

6.2 Results 

6.2.1 Expression of M. truncatula ROPs, RopGAPs and RopGEFs in root hairs during 

bacterial infection 

Seven ROP and ten RopGEF genes have been identified in M. truncatula (Liu et al., 2010, Riely 

et al., 2011) (Table 6.1). To identify the M. truncatula RopGAP genes, the protein sequences of 

the nine Arabidopsis thaliana RopGAPs in the TAIR database were used to search the M. 

truncatula genome (IMGAG vr 4.0) using BLAST, followed by reverse BLAST of the top hits 

against the A. thaliana genome (TAIR) (Chapter 2.14.1). This process identified 12 MtRopGAP 

family members (Table 6.2).  
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Table 6.1: M. truncatula ROP and RopGEF families 

IMGAG number Gene name (if 

applicable)  

Genbank 

Accession 

MGEA probeset(s) 

    

Medtr8g075240 MtROP6 AF498359 Mtr.40463.1.S1_at Mtr.51873.1.S1_s_at 

Medtr5g022600 MtROP9 AF498358 Mtr.43489.1.S1_at 

Medtr4g073250  AF498357 Mtr.47026.1.S1_at 

Medtr4g088055  EU178798 Mtr.41157.1.S1_at 

Medtr2g090875  EU164777 Mtr.50278.1.S1_s_at Mtr.50278.1.S1_at 

Medtr6g087980  DQ836313 Mtr.15539.1.S1_s_at Mtr.35940.1.S1_at 

Medtr3g078260  EU625287 Mtr.5759.1.S1_at 

    

Medtr4g075640 RopGEF1 JF340147 Mtr.34189.1.S1_at Mtr.31727.1.S1_at 

Medtr8g030850 RopGEF2 JF340143   Mtr.38441.1.S1_at Mtr.10136.1.S1_at 

Medtr7g077690 RopGEF3 JF340144.1 Mtr.26010.1.S1_at Mtr.39957.1.S1_s_at 

Medtr3g069590 RopGEF5 JF340145.1 Mtr.13888.1.S1_at 

Medtr5g081410 RopGEF6 JF340142.1 Mtr.13731.1.S1_at Mtr.7515.1.S1_at 

Medtr7g065220 RopGEF7a JF340146   

Medtr4g019770 RopGEF7b JF340151    Mtr.45538.1.S1_at 

Medtr6g087700 RopGEF8  JF340148  Mtr.15948.1.S1_at 

Medtr2g101830 RopGEF12 JF340149.1 Mtr.6541.1.S1_at 

Medtr5g025960 RopGEF14 JF340150.1 Mtr.10377.1.S1_s_at Mtr.10377.1.S1_at 
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Table 6.2: M. truncatula RopGAP family 
 

   Gene MGEA probeset(s) 

   

 

 

 

CRIB domain 

+GAP domain 

Medtr8g026680 (MtGAP1) Mtr.9886.1.S1_at Mtr.37069.1.S1_at  

Medtr1g089500 Mtr.6812.1.S1_at Mtr.1434.1.S1_at 

Mtr.4727.1.S1_at 

Medtr2g086580 Mtr.41759.1.S1_at 

Medtr4g052850  

Medtr5g064420  

Medtr7g081615  

Medtr7g104900 Mtr.757.1.S1_s_at Mtr.35205.1.S1_at 

Medtr7g107560 Mtr.39712.1.S1_at 

Pleckstrin 

Homology 

domain +GAP 

Medtr3g100580  

Medtr5g065960  

Medtr5g089490 Mtr.9907.1.S1_at 

GAP domain  

only 

Medtr4g029530 Mtr.41371.1.S1_s_at Mtr.39180.1.S1_at  

 

Breakspear et al. (unpublished) carried out microarray experiments to analyse gene expression 

in M. truncatula root hairs during infection with S. meliloti 1021, using both wildtype and 

mutant plant lines. I analysed the expression of the ROPs, RopGAPs and RopGEFs in wildtype 

A17 root hairs after identifying MtGEA (Medicago truncatula Gene Expression Atlas) probesets 

(Benedito et al., 2008, He et al., 2009) for each gene where possible (Tables 6.1 and 6.2; 

Chapter 2.14.3). There were no significant changes in expression of the seven MtROP genes 

present on the chip in wildtype A17 root hairs at one, three, or five days after inoculation with 

S. meliloti 1021 relative to the control root hairs [inoculated with S. meliloti SL44 (nodΔD1ABC), 

a strain unable to produce NFs] (Figure 6.1A). 

I also analysed the expression of the ROPs, RopGAPs and ROPGEFs in root hairs of three 

mutant lines. The hypernodulation mutant skl-1 forms many more infection threads than 

wildtype (Penmetsa and Cook, 1997). Infection-related genes are more highly upregulated in 

the mRNA extracted from skl-1 root hairs than wildtype, which is likely to be due to the 

increased numbers of infected root hairs within the skl-1 root hair samples (Breakspear A., 

personal communication). The nin-1 and bit1-1 mutants are defective for the transcription 
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factors NIN and ERN1, respectively, which are both required for bacterial infection and nodule 

formation (Marsh et al., 2007, Middleton et al., 2007). There were no significant differences in 

expression of the ROPs in skl-1, nin-1 or bit1-1 compared to wildtype root hairs at five days 

(Figure 6.1B).  

 

Figure 6.1: Expression of ROP, RopGAP and RopGEF families in M. truncatula root hairs. 

 [A] Wildtype A17 root hairs at 1, 3 and 5 days after inoculation with S. meliloti 1021 (WT). Fold 
changes of the geometric mean expression values ± SEM relative to control root hairs 
inoculated with S. meliloti SL44 nodΔD1abc, which is unable to produce NFs. [B] skl, nin and 
ern mutant root hairs 5 days after inoculation with S. meliloti 1021. Fold changes of the 
geometric mean expression values ± SEM relative to wildtype A17 inoculated with S. meliloti 
1021. Student’s t tests were performed comparing each condition to the appropriate control 
(*P < 0.05; **P < 0.01). Root hair expression data were generated by A. Breakspear (n=3). 
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Probesets were found for seven RopGAPs and nine RopGEFs. One RopGAP 

(MtGAP1/Medtr8g026680) and one RopGEF (RopGEF14/Medtr5g025960) were significantly 

up-regulated in wildtype root hairs at three and five days after inoculation with S. meliloti 1021 

(Figure 6.1A). Also, both were upregulated in the hypernodulatoin mutant skl-1 and 

downregulated in nin-1, but there was no change in expression in bit1-1 compared with the 

wildtype (Figure 6.1B). These data suggest that MtGAP1 and RopGEF14 may be involved in 

bacterial infection, regulated directly or indirectly by NIN. 

One RopGAP (Medtr2g089500), and two RopGEFs RopGEF3 and RopGEF12 showed no change 

in root hair expression following inoculation of wildtype but were upregulated in the bit1-1 

infection mutant (Figure 6.1). This suggests that they may be negatively regulated, either 

directly or indirectly by ERN1. 

 

6.2.2 The M. truncatula RopGAP family 

The expression profile of MtGAP1 made it a good candidate for further investigation of a 

possible role in bacterial infection. A. thaliana is reported to have ten RopGAPs but I could only 

find evidence for nine in the literature and in the TAIR database (Hwang et al., 2008, Schaefer 

et al., 2011a, Schaefer et al., 2011b, Wu et al., 2000). The members segregate into three 

subfamilies, with all three having a conserved GAP catalytic domain, which is responsible for 

aiding the intrinsic GTPase activity of the ROP GTPases (Schaefer et al., 2011a, Schaefer et al., 

2011b, Wu et al., 2000). Members of two of the subfamilies have an additional domain, either 

a Cdc42/Rac INTERACTIVE BINDING (CRIB; ROP-binding) domain or a Pleckstrin Homology 

domain (suggesting they may be regulated by phosphoinositides) (Bos et al., 2007, Hwang et 

al., 2008, Schaefer et al., 2011a, Schaefer et al., 2011b, Wu et al., 2000). A phylogenetic tree of 

the A. thaliana and M. truncatula RopGAP protein sequences was drawn using the 

Phylogeny.fr Server (Chapter 2.14.2). The MtRopGAPs segregate out into the same three 

subfamilies as the A. thaliana RopGAPs (Figure 6.2, Table 6.2).  
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Figure 6.2: Phylogenetic analysis of M. truncatula and Arabidopsis thaliana RopGAP families.  

The tree was constructed based on protein sequences using the Phylogeny.fr server. The scale 
bar represents a phylogenetic distance of 0.7 (arbitrary units). Red numbers refer to bootstrap 
values for each branch. 

 

MtGAP1 (Medtr8g0266800) belongs to the CRIB-domain subfamily along with AtGAP1, AtGAP2 

and AtGAP3 (Figure 6.2) (Schaefer et al., 2011a, Schaefer et al., 2011b, Wu et al., 2000). For 

this reason I have called it MtGAP1 and shall refer to it by this name from now on. I acquired T1 

generation seeds of two Tnt1 transposon insertion lines with insertions in MtGAP1 from the 

Samuel Roberts Noble Foundation (R108 ecotype background) (Tadege et al., 2008). These 

seeds were segregating populations so the plants were genotyped for the GAP1 Tnt1 insertions 

using PCR to amplify a region of the MtGAP1 gene that included the sites of the insertions 

(Chapter 2.13.3). Individuals that were homozygous or heterozygous for a Tnt1 insertion in 
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MtGAP1 were kept to produce seed. The first experiments were done using the progeny of the 

homozygous T1 individuals (T2) and later experiments using the T3 generation. 

For both lines the Tnt1 insertions are within the final exon of the coding sequence (Figure 

6.3A). The Tnt1 transposon is around 5 kb long (Grandbastien et al., 1989) so insertions into 

exons would be expected to generate null mutants. To check this was the case, expression of 

the full length MtGAP1 mRNA in root tissue from the Tnt1 lines was examined using reverse 

transcription (RT)-PCR (Chapter 2.13.12). The gap1-1 mutant did not express the GAP1 mRNA 

and thus appears to be a null allele (Figure 6.3B). However, surprisingly the gap1-2 mutant 

retained some expression, although the expression was weaker than the wildtype R108, 

suggesting that the Tnt1 insertion may be spliced out of the gap1-2 allele, at least some of the 

time. 

 

Figure 6.3: M. truncatula gap1 Tnt1 insertion alleles.  

[A] The structure of the GAP1 gene with exons marked with arrows. The positions of the Tnt1 
insertions in gap1-1 and gap1-2 alleles are marked with triangles with numbers referring to 
the nucleotide position from the start of the coding sequence. [B] RT-PCR of full length GAP1 
mRNA and EF1 (housekeeping gene) in wildtype R108 and the gap1 mutant alleles. [C-D] The 
predicted protein structures of the [C] wildtype and [D] gap1-2 GAP1. The CRIB and GAP 
protein domains and the conserved arginine 196 residue are highlighted. The numbers refer to 
the amino acid position from the N-terminus. 
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The mRNA for GAP1 was slightly smaller in gap1-2 compared to wildtype (Figure 6.3B). On 

closer inspection this band was found to be made up of three individual bands (data not 

shown). The most abundant band was amplified by PCR and sequenced (Chapter 2.13.6). This 

band had a 165 bp deletion from positions 921-1086, resulting in a frame shift and an early 

stop codon. If this mRNA was translated the resulting protein would be truncated, missing the 

final 34 amino acids of the GAP domain and the C-terminus (Figure 6.3C). However, this 

protein would still have the arginine residue at position 196 (equivalent to Arg-159 in 

AtRopGAP2), which is highly conserved within plant and animal GAP proteins and is important 

for catalytic activity, slotting into the ROP protein to stabilise the transition state of GTP 

hydrolysis (Bos et al., 2007, Schaefer et al., 2011a, Schaefer et al., 2011b). Therefore, it is 

possible that the protein expressed in the gap1-2 allele is at least partially functional and so 

the gap1-2 Tnt1 insertion line may be a weak allele. 

 

6.2.3 gap1 mutants produce fewer infection threads after inoculation with 

Sinorhizobium meliloti 

To investigate whether MtGAP1 is involved in bacterial infection wildtype R108 and gap1 

seedlings were grown on BNM agar containing 0.1 µM AVG and inoculated with a lacZ-

expressing strain of S. meliloti 2011 (Chapter 2.12.4; S. meliloti 2011 was used because 

inoculation of S. meliloti 1021 onto wildtype R108 only resulted in low levels of bacterial 

infection and nodule formation that was difficult to quantify). After six days the roots were 

stained with X-Gal to visualise the bacteria. The blue-stained bacteria made it possible to 

identify infection events on the root and these were separated into three categories: infection 

foci, infection threads in the root hairs and ramifying infection threads in the root cortex. 

The gap1 mutants had less than half the number of total infection events compared to the 

wildtype R108 (Figure 6.4A). Both gap1 mutants had fewer infection events at each stage 

(infection foci, infection threads in the epidermis and ramifying infection threads), suggesting 

MtGAP1 may be involved early in infection thread development perhaps in root hair curling 

and/or infection thread initiation. The infection threads in the gap1 mutants were abnormal in 

appearance. Instead of the tight curls that formed in the wildtype to entrap the rhizobia 

(Figure 6.4B), the gap1-1 mutant infection threads seemed to have formed from root hairs 

that had bent over onto the root surface (Figure 6.4C) or in some cases the infection thread 

seemed to have initiated from the tip of the root hair with no curl at all (Figure 6.4D). Also, the 
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infection threads were often thicker compared to the wildtype and sometimes branched 

within the root hair. Many of the infection threads on gap1-2 also looked very similar to those 

on gap1-1 (Figure 6.4E) but some also looked like the wildtype (Figure 6.4F). The lack of curling 

in gap1 infection threads suggests that MtGAP1 may be involved in normal root hair curling.
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Figure 6.4: gap1 mutants produce fewer infection events after inoculation with S. meliloti. 

 Seedlings were inoculated with a S. meliloti 2011 strain expressing lacZ. After 6 days roots 
were stained using X-Gal and infection events were quantified in three groups: infection foci, 
infection threads in root hairs and ramifying infection threads in the cortex [A]. Y- axis: mean ± 
SEM of two independent trials sampling a total of n ≥ 18 plants. Student t-tests were done 
comparing each mutant to the wildtype (*P < 0.05; **P < 0.01). Representative images of 
infection threads [B-F]: R108 [B], gap1-1 [C-D], gap1-2 [E-F]. Scale bars: 50 μm.  
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To find out whether nodule formation is affected in the gap1 mutants, plants were grown in 

low nutrient conditions (terragreen-sand mix) and inoculated with S. meliloti 2011 (Chapter 

2.12.3) to count the number of nodules formed. At all four timepoints (7, 10, 14 and 21 days 

post inoculation) the gap1-1 plants had significantly fewer nodules than the wildtype (Figure 

6.5). However, the gap1-2 plants had similar numbers of nodules to the wildtype at all four 

timepoints. The infection thread and nodule phenotypes support the earlier prediction that 

gap1-2 is a weaker allele. By 21 days both gap1 mutants and the wildtype had mature pink 

nodules. The pink colour is due to the presence of leghaemoglobin and indicates that the 

nodules were infected and fixing nitrogen so mutations in gap1 do not appear to affect nodule 

function. 

 

 

Figure 6.5: Nodule formation in gap1 mutants. 

Wildtype R108 and gap1 mutant plants were inoculated with S. meliloti 2011. Mean nodule 
number ± SEM at 7, 10, 14, or 21 days post inoculation (n ≥ 14 for each timepoint, two 
independent trials). Student t-tests were performed comparing each mutant to the wildtype 
(*P < 0.05; **P < 0.01).  

 

6.2.4 NF-induced root hair deformation is retained in the gap1 mutants 

NF treatment can induce root hair deformation in legumes, where the root hairs swell, change 

growth axis and sometimes branch (Kurkdjian, 1995). To analyse this response in the gap1 

mutants, seedlings were placed in Fahraeus slides and treated with 10 nM NF (Chapter 2.12.2). 

Twenty-four hours later the seedlings were scored as either positive or negative for root hair 



CHAPTER 6: A ROPGAP IS INVOLVED IN BACTERIAL INFECTION 

111 
 

deformation. Both gap1 mutants retained NF-induced root hair deformation (Figure 6.6). It 

appears that the response may have been more pronounced in the gap1 mutants but it is not 

possible to quantify. Nevertheless, GAP1 is not required for NF-induced root hair deformation. 

This suggests that the lack of root hair curling during infection in the gap1 mutants is not due 

to an inability to detect NFs and activate cell expansion. 

 

 

Figure 6.6: MtGAP1 is not required for NF-induced root hair deformation.  

Root hair responses in wildtype R108 and gap1 mutants 24 hours after NF addition. Untreated 
root hairs [A-C] and 10 nM NF treated root hairs [D-F]. [A and D] wildtype R108, [B and E] 
gap1-1 and [C and F] gap2-1. Number of plants ≥ 5 in one trial.  Scale bars: 60 μm. 

 

6.2.5 gap1 mutants have longer root hairs 

To check whether the bacterial infection phenotypes of the gap1 mutants could be due to a 

defect in developmental growth of the root or root hairs, seeds were germinated and grown 

on BNM agar for 72 hours (Chapter 2.12.1). There was no difference in the root length of the 

gap1 mutants and wildtype (Figure 6.7F). To assess root hair length, hairs were measured at 

the point along the root where the root hairs first become fully vacuolated, indicating they are 

mature. The gap1 mutant root hairs were significantly longer than wildtype with gap1-1 root 
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hairs longer than gap1-2 (Figure 6.7E). This suggests that MtGAP1 may be a negative regulator 

of root hair growth.  

 

Figure 6.7: MtGAP1 is a negative regulator of developmental root hair growth.  

After 72 hours on BNM agar plates mature root hairs of R108 [A], gap1-1 [B] and gap1-2 [C] 
root hairs were measured from microscope images (n ≥ 20 from at least 3 plants, ImageJ). Y- 
axis: mean ± SEM of one trial [E]. The seedling root lengths [F] were measured from 
photographs using ImageJ (n ≥ 7). Student t-tests were performed comparing each mutant to 
the wildtype (*P < 0.05; **P < 0.01). Scale bars: 100 μm.  

 

6.2.6 The gap1-1 mutant is hypersensitive for the NF-induced calcium influx 

Having found that MtGAP1 is involved in bacterial infection I wanted to find out whether it is 

involved in the generation of the NF-induced calcium influx. No gap-1-1 mutant line expressing 

YC3.6 was available, so seedlings of the gap1-1 allele were microinjected with the Oregon 

Green and Texas Red dyes for pseudo-ratiometric imaging of cytosolic free Ca2+ (Chapter 2.10). 

After 10 nM NF addition the majority of the gap1-1 root hairs produced a calcium influx, which 

was similar to that in the wildtype R108 (Figure 6.8A and B). Given that the GAPs are generally 

considered to be negative regulators of ROP GTPase signalling and the gap1 mutants had 
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longer root hairs I considered the possibility that gap1-1 could be more sensitive to NF for 

activation of the calcium influx due to a loss of negative regulation. Seedlings were treated 

with a lower concentration of NF. Addition of 0.1 nM NF induced a calcium influx in five of ten 

gap1-1 cells, but not in the wildtype. This suggests that GAP1 may be a negative regulator of 

the calcium influx (Figure 6.8C and D). 

 

 

Figure 6.8: The gap1-1 mutant is hypersensitive for the calcium influx.  

Wildtype R108 [A and C] and gap1-1 [B and D] root hairs were microinjected with Oregon 
Green and Texas Red fluorescent dyes and treated with 10 nM [A-B] or 0.1 nM [C-D] NF. 
Representative traces of changes in Oregon Green/Texas Red fluorescence against time (min) 
for the whole shaft of the cell are shown. 
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6.2.7 MtROP9 appears to be involved in NF-induced calcium signalling 

If MtGAP1 is a negative regulator of ROP signalling and NF-induced calcium influx, then it is 

possible that the ROP GTPases that are involved in bacterial infection may also be required for 

activation of the calcium influx. To test this idea Agrobacterium rhizogenes was used to 

generate transformed roots of M. truncatula A17-YC3.6 expressing a MtROP9 RNAi construct 

made by Kiirika et al. (2012) (Chapter 2.13.10). The construct has been previously shown to 

silence MtROP9 but not other closely-related ROP GTPase family members (Kiirika et al., 2012). 

Small sections of transformed lateral roots were cut off and used for calcium imaging with 

YC3.6. The root hairs in the ROP9 RNAi knockdown lines were wider and more highly 

vacuolated than the vector control plants but otherwise appeared to be healthy. In the ROP9 

RNAi knockdown lines the percentage of cells with the NF-induced calcium influx was 

significantly reduced compared to the vector control (Fisher’s Test; Figure 6.9). There was also 

a smaller, but statistically significant reduction in the percentage of cells with NF-induced 

calcium spiking. MtROP9 expression was efficiently knocked down in roots of the MtROP9 

RNAi knockdown lines with average normalized expression of 0.08 relative to the vector 

control roots (1.0). These data suggest that MtROP9 may be involved in NF-induced calcium 

signalling. 
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Figure 6.9: ROP9 is involved in the activation of the calcium influx.  

Calcium responses in YC3.6-expressing ROP9 RNAi lines after 10 nM NF addition. 
Representative traces of changes in YFP/CFP fluorescence against time (min) for the whole 
shaft of the cell are shown, with the horizontal line indicating 10 nM NF addition [A]. Individual 
root hairs were scored as positive or negative for the calcium influx and calcium spiking and 
the percentages of cells producing responses shown [B]. The Fisher’s statistical test was 
carried out for each response using the number of positive and negative cells (*P = 0.011 and 
**P = 0.0004). Normalised expression of ROP9 in vector control and ROP9 RNAi lines 
(individual plants) [C]. 
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6.3 Discussion 

Using a reverse genetics approach I found that a M. truncatula RopGAP is involved in bacterial 

infection. MtGAP1 was upregulated in root hairs during bacterial infection and gap1 mutants 

had fewer, and abnormal-looking infection events compared to the wildtype. MtGAP1 also 

appears to be a negative regulator of the NF-induced calcium influx as gap1-1 mutants were 

hypersensitive for calcium influx induction. 

The gap1-1 allele generates a null mutant with no detectable expression of the MtGAP1 

mRNA. However, the gap1-2 mutant retained some MtGAP1 expression, although below 

wildtype levels. The frame shift deletion in the GAP1-2 mRNA would result in a truncated 

protein that lacks the end of the GAP domain and the C-terminus. It is possible that this 

truncated protein could still be at least partially functional because it retains the arginine 

residue at position 196, which is crucial for the activity of other GAP proteins and is highly 

conserved amongst both animal and plant RopGAPs (Schaefer et al., 2011a, Schaefer et al., 

2011b). This could account for the discrepancies between the gap1-1 and gap1-2 phenotypes. 

Both alleles had a similar reduction in infection events after inoculation with S. meliloti but 

only gap1-1 had a reduction in nodule numbers. The C-terminus of MtGAP1 is not a recognised 

protein domain but could have a regulatory role, so the gap1-2 allele may encode a functional 

but less tightly regulated protein. Perhaps tight regulation of MtGAP1 activity is required 

during bacterial infection but not so important during nodule formation. Another possibility is 

that the observed reduction in nodule numbers in gap1-1 is due to the presence of a 

background mutation because Tnt1 insertion lines have an average of 25 insertions (Tadege et 

al., 2008). Complementation of the gap1-1 mutant with MtGAP1 would clarify whether it has a 

role in nodule formation as well as bacterial infection.  

What role is MtGAP1 playing in bacterial infection? RopGAPs are generally considered to be 

negative regulators of ROP signalling. RNAi double knockdowns of AtGAP1 and AtGAP3 

increased pollen tube length (Hwang 2010). The gap1 mutants had longer root hairs than 

wildtype, suggesting MtGAP1 may play a similar role to AtGAP1 and AtGAP3 (Hwang et al., 

2010) as a negative regulator of polar cell growth. Using computer modelling,  van Batenberg 

et al. (1986) predicted that rhizobia could induce root hair curling by attaching to the growing 

tip area and re-directing tip growth. Spot inoculation of NF can induce root hair curling even in 

the absence of rhizobia (Esseling et al., 2003). Presumably, during bacterial infection, locally 

high concentrations of NF on the root hair surface can induce a change in the axis of cell 

expansion resulting in root hair curling. If GAP1 is a negative regulator of ROP signalling then it 
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is possible that in a gap1 mutant, a lower concentration of NF can lead to a sufficiently high 

enough level of ROP signalling activation to change the growth axis. However, instead of a 

locally high concentration of NF activating a change in growth axis, the lower NF concentration 

may be present in many locations over the root surface so there would be cell expansion in 

multiple directions, effectively preventing root hair curling. By negatively regulating ROP 

signalling MtGAP1 may maintain a threshold for the realignment of polar growth during 

infection.  

The subcellular localisation of the RopGAPs suggests that they may act to limit the area in 

which ROPs are active. ROP GTPases are associated with the apex of tip growing cells (Kost et 

al., 1999, Li et al., 1999, Molendijk et al., 2001), whereas in tobacco pollen tubes, NtRhoGAP1 

(of the CRIB domain subfamily) localises to the plasma membrane at the flanks of the tip but 

not at the apex itself (Klahre and Kost, 2006). It maybe that during root hair curling and/or 

infection thread formation, MtGAP1 flanks the area of active ROP GTPases to maintain the 

zone of polarised cell expansion. However, REN1, an A. thaliana RopGAP belonging to the 

Pleckstrin-Homology domain subfamily is localised to the tip of pollen tubes where it appears 

to function as a global inhibitor of ROP signalling (Hwang et al., 2008). The subcellular 

localisation of MtGAP1 during bacterial infection may provide some insights into its function. 

During bacterial infection the axis of polar growth needs to change, but still must be tightly 

regulated to enable root hair curling and infection thread formation. It is therefore not 

surprising that a RopGEF gene is also upregulated during infection with a similar expression 

pattern to that of MtGAP1. It is possible that MtGAP1 and RopGEF14 are upregulated to 

mediate the shifts in polar growth axis during root hair curling and/or infection thread 

formation. 

The involvement of MtGAP1 in bacterial infection implicates members of the ROP GTPase 

family and two members have already been found to be involved in bacterial infection (Ke et 

al., 2012, Kiirika et al., 2012). However, in the root hair microarray data no ROP GTPases were 

upregulated during rhizobial infection in root hairs. This is puzzling because three ROPs 

(including MtROP6 and MtROP9) have been found to be upregulated in root hairs after 

inoculation with rhizobia using promoter:GUS fusions (Liu et al., 2010). Different controls were 

used in these experiments. The microarray experiments here used root hairs inoculated with S. 

meliloti SL44 (nodΔD1ABC), which does not produce NF so cannot infect the plant; in contrast 

Liu et al. (2010) used uninoculated root hairs. Using S. meliloti SL44 (nodΔD1ABC) could induce 

plant genes due to the presence of other bacterial signals such as exopolysaccharides (Jones et 
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al., 2008), which are also required for bacterial infection, or  conserved bacterial PAMPs, which 

can activate defence responses in the plant (Monaghan and Zipfel, 2012). Therefore, it seems 

that the ROPs are not upregulated in response to NF during bacterial infection but may instead 

be upregulated by other bacterial signals. 

MtROP9 RNAi lines produce fewer nodules and lack a NF-induced ROS response (Kiirika et al., 

2012). I was able to use the ROP9 RNAi construct made by Kiirika et al. (2012) to knock down 

MtROP9 expression in wildtype YC3.6 expressing plants. There was a significant reduction in 

the percentage of cells that produced the NF-induced calcium influx, suggesting that MtROP9 

may be involved in generating this response and this warrants further investigation. In future it 

would be interesting to find out whether MtROP6 is also involved in NF-induced calcium influx 

and whether MtGAP1 can directly bind to either or both of these ROP GTPases. Interestingly, 

there was also a slight but significant reduction in the calcium spiking responses in the MtROP9 

RNAi lines, suggesting that MtROP9 may also play a role in early nodulation signalling. 
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CHAPTER 7: GENERAL DISCUSSION 

 

7.1 MtGAP1: a novel gene involved in bacterial infection 

Infection of legumes by rhizobia through root hairs requires alterations in polar growth; root 

hair curling is necessary to entrap the rhizobia within infection pockets and the formation of 

infection threads to guide the rhizobia to the developing nodule (Figure 1.1). Polar growth of 

root hairs and pollen tubes is regulated by ROP GTPases and recently two legume ROP GTPases 

with roles in bacterial infection have been identified (Ke et al., 2012, Kiirika et al., 2012). In this 

thesis I found MtGAP1, a member of the family of ROP-GTPase-Activating Proteins (RopGAPs), 

is involved in rhizobial infection (Chapter 6).  

MtGAP1 has a different role in bacterial infection than previously identified genes such as NIN, 

ERN1 and LYK3. Compared to wildtype, gap1 mutants form fewer infection threads and many 

of these appear to form from root hairs that have not properly curled. This is different to the 

excessive root hair curling found in nin and lyk3 (hcl) mutants (Borisov et al., 2003, Catoira et 

al., 2001, Marsh et al., 2007). The infection threads that do form in gap1 mutants are able to 

progress into the cortex and infect developing nodules so that mature (pink) nodules form on 

the mutants on a similar timescale to the wildtype. This suggests that the MtGAP1 is involved 

in the early stages of infection in root hair curling and the initiation of infection threads. 

However MtGAP1 may be less important for infection thread progression and is not required 

for nodule formation and function. This is different from NIN, ERN1 and LYK3, which are all 

required for bacterial infection but are also required for development of mature nodules 

(Borisov et al., 2003, Catoira et al., 2001, Marsh et al., 2007).  

 

7.2 The NF-induced calcium influx and ROS transient could belong to a 

common signalling pathway in bacterial infection 

The RopGAPs assist the intrinsic GTPase activity of the ROPs to hydrolyse GTP to GDP (Kost, 

2008). ROP GTPases can activate a number of downstream responses including Ca2+ influxes, 

ROS production, F-actin assembly, and polar exocytosis (Craddock et al., 2012). In growing root 

hairs and pollen tubes ROPs regulate the tip-focused NADPH oxidase-dependent ROS and Ca2+ 

gradients that are required for polar growth (Figure 1.5)  (Carol et al., 2005, Foreman et al., 
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2003, Herrmann and Felle, 1995, Jones et al., 1995, Jones et al., 2007). The Ca2+ influxes and 

ROS production are both dependent on each other and linked by positive feedback (Asai et al., 

2013, Dubiella et al., 2013, Foreman et al., 2003, Keller et al., 1998, Kobayashi et al., 2007, Sagi 

and Fluhr, 2001, Takeda et al., 2008). During nodulation, NFs induce a calcium influx and ROS 

transient at the tip of root hair cells (Cárdenas et al., 2008, Felle et al., 1998, Miwa et al., 

2006a, Shaw and Long, 2003a, Walker et al., 2000) and I investigated whether it is possible 

that these responses could be generated using similar mechanisms to the developmental tip 

Ca2+ and ROS gradients. 

There is evidence to suggest that the NF-induced calcium influx and ROS transient may lie in a 

common pathway. The responses are temporally co-incident and are activated by similar 

concentrations of NF (Figure 7.1) (Chapter 3 and 5) (Cárdenas et al., 2008, Miwa et al., 2006a, 

Morieri et al., 2013, Shaw and Long, 2003a). They both depend on the NF receptor NFP but are 

independent of the Sym pathway components DMI1 and DMI2 (Chapter 5) (Ben Amor et al., 

2003, Miwa et al., 2006a). Furthermore, both responses are inhibited by the NADPH oxidase 

inhibitor DPI (Chapter 4) (Cárdenas et al., 2008). This suggests that, like the Ca2+ and ROS 

gradients in polar root hair growth, the NF-induced calcium influx and ROS transient are both 

dependent on NADPH oxidases. The calcium influx has been implicated in bacterial infection 

(Morieri et al., 2013) and as two ROPs and a NADPH oxidase have recently been found to be 

involved in bacterial infection (Ke et al., 2012, Kiirika et al., 2012, Montiel et al., 2012), it seems 

possible that NF-activation of ROP signalling may be responsible for the activation of the 

calcium influx and ROS transient. This hypothesis is supported by the observations in this 

thesis that gap1 mutants appeared to be hypersensitive for the NF-induced calcium influx, and 

that there was a reduction in calcium influx responses in ROP9 RNAi knockdown lines (Chapter 

6). 
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Figure 7.1 NF-induced calcium and ROS signalling 

NF is perceived at the plant cell surface by the NF receptors NFP and LYK3. Low concentrations 
of NF are sufficient to activate the Sym pathway (yellow), leading to the production of nuclear-
localised calcium spiking and the activation of CCaMK and IPD3, leading to changes in gene 
expression required for nodule formation and bacterial infection. At higher NF concentrations, 
a parallel signalling pathway downstream of the NF receptor NFP but independent of calcium 
spiking is proposed. Its activation leads to ROS transient production and a calcium influx at the 
tip of root hair cells. Both the ROS transient and calcium are inhibited by the NADPH oxidase 
inhibitor DPI. 

 

 

From the findings of this thesis it is possible to up-date the model of calcium influx activation 

proposed in Chapter 1 (Figure 1.6). In the model, NF perception leads to the activation of ROP 

GTPases by direct binding to NF receptors (Figure 7.2). The ROPs, which are regulated by 

MtGAP1 and MtRopGEF14, activate the NF-induced ROS transient and calcium influx, root hair 

curling and infection thread formation. However, this model is over-simplistic because it does 

not take into account the various stages of bacterial infection where different polar growth 

processes take place. 



CHAPTER 7: GENERAL DISCUSSION 
 

122 
 

 

Figure 7.2: ROP signalling during bacterial infection 

ROP6/ROP9 signalling is activated by NF binding to NF receptors. ROP6/ROP9 activate RBOHB, 
producing a ROS transient. This promotes cell wall remodelling and the activation of a calcium 
influx. ROS as H2O2 can enter the cell through plasma membrane aquaporins. Ca2+ and ROP 
GTPases regulate cytoskeletal rearrangement and vesicle trafficking to generate root-hair 
curling around attached rhizobia and to regulate infection thread formation. There may also be 
crosstalk with the Sym pathway via ROP6 induction of NIN and ENOD40 gene expression. 
Cycling of ROP GTPases between GDP- and GTP- bound states by RopGEF14 and GAP1 and 
sequestering in the cytoplasm by Ca2+-regulated RhoGDIs ensure ROP activity can be 
appropriately localised to drive new membrane formation in the appropriate location and 
direction.  
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7.3 ROP signalling during root hair curling 

To generate a root hair curl around the attached rhizobia, the axis of root hair polar growth 

needs to shift from its position at the tip of the root hair cell during normal development. 

Before root hair curling begins root hair elongation stops and the tip swells (Sieberer et al., 

2005), suggesting that the axis of polar growth is eliminated, leading to some isotropic cell 

expansion (swelling) before polar growth is re-established in a new position. Spot inoculation 

of NF is sufficient to generate root hair curling (Esseling et al., 2003) and LjROP6 can interact 

directly with the NF receptor NFR5 (Ke et al., 2012), suggesting that localised activation of NF 

signalling may shift the zone of active ROPs from their normal location at the tips of growing 

root hair cells (Kost, 2008) towards the site of NF perception (Figure 7.3). In their new position 

the ROPs would continue to regulate the actin cytoskeleton and vesicle trafficking to drive cell 

expansion as they do during normal root hair growth (Kost, 2008). To shift and maintain the 

small zone of active ROPs required for polar growth, RopGEFs and RopGAPs would also need to 

be present to regulate ROP activity. MtGAP1 was upregulated during bacterial infection and 

gap1 mutants lacked normal root hair curling (Chapter 6). MtRopGEF14 was also upregulated 

during bacterial infection and therefore may also be involved in root hair curling alongside 

MtGAP1. 

Does NF activate a unique set of ROP signalling machinery to normal root hair growth or does 

it utilise the same components? The phenotype of the gap1 mutants suggests that there could 

be convergence early on.  Alongside the defect in rhizobial infection the gap1 mutants had 

longer root hairs than wildtype (Chapter 6), so MtGAP1 also appears to be involved in 

developmental root hair growth and may simply shift its location during root hair curling. 

Could this also be the case for MtRopGEF14? Further investigation of MtRopGEF14 and 

MtROPGEF2, which regulates normal root hair elongation but is not upregulated during 

rhizobial infection (Riely et al., 2011), would be an interesting area for future study.  

In pollen tube growth there appears to be two distinct roles for RopGAPs. The CRIB-domain 

containing RhoGAP1 is localised to the flanks of the tip but not the tip itself and this is thought 

to limit the zone of active ROPs to tip (Klahre and Kost, 2006). However, the Pleckstrin 

Homology (PH)-domain containing GAP, REN1, is localised to the tip of the cell and in this 

location acts as a global inhibitor of ROPs (Hwang et al., 2008). Following this example it is 

possible that there are other RopGAPs with different roles in root hair curling. 



CHAPTER 7: GENERAL DISCUSSION 
 

124 
 

 

Figure 7.3: Model of polar growth during root hair curling and infection thread formation.  

[A] A growing root hair cell has a region of active ROP GTPases and their regulators (RopGEFs 
and RopGAPs, including GAP1) at the tip of the cell driving cell expansion by regulating vesicle 
trafficking and the cytoskeleton. [B] NF perception: when rhizobia are nearby, NF perception in 
a localised region of the cell shifts the location of ROP6/9, RopGEF14 and GAP1 towards the 
site of NF perception, shifting the axis of cell expansion. [C] Root hair curling: NF-promoted cell 
expansion in root hairs continues to entrap the rhizobia in an infection pocket (infection 
focus). [D] Infection thread formation: The NF concentration in the infection focus rises until it 
reaches a threshold that activates the ROS transient and calcium influx. This leads to a switch 
in ROP GTPase signalling from cell expansion to promote cell ingrowth, which produces an 
infection thread. 
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Which ROPs are involved in root hair curling? Three ROPs are upregulated in root hairs during 

rhizobial infection including ROP6 and ROP9 (Ke et al., 2012, Liu et al., 2010), although this 

upregulation appears to be independent of NFs (Chapter 6). RNAi knockdowns of ROP6 and 

ROP9 both resulted in the formation of fewer nodules but the bacterial infection phenotypes 

reported appear to be subtly different (Ke et al., 2012, Kiirika et al., 2012). Lotus japonicus 

ROP6 RNAi lines had large numbers of infection threads in the epidermis but few in the cortex 

(Ke et al., 2012), suggesting that there is a defect in infection thread progression from the 

epidermis into the cortex. M. truncatula ROP9 RNAi lines were delayed for bacterial infection 

and root hair development appeared to be abnormal with basal and/or tip swelling (Kiirika et 

al., 2012). Also, the ROP9 RNAi lines were impaired for root growth. On the basis of these 

results, it appears that ROP9 is a better candidate for a ROP GTPase involved in normal root 

hair growth and is recruited for root hair curling during rhizobial infection. However, it is also 

possible that ROP6 may be involved in root hair curling instead of, or alongside ROP9. 

Identification and characterisation of stable mutants for these genes would be very useful in 

determining their roles in bacterial infection. 

 

7.4 ROP signalling during infection thread formation 

Infection thread formation requires a different kind of polar growth from root hair elongation. 

During root hair elongation ROP GTPases accumulate at the tip to drive deposition of new 

membrane and cell wall outwards, but during infection thread formation new membrane and 

cell wall are deposited to produce an ingrowth (Figure 7.3D).   

Infection thread formation has similarities with the formation of ingrowths in leaf pavement 

cells. Leaf pavement cells fit together like a jigsaw due to the formation of outgrowths (lobes) 

and ingrowths (indentations). In A. thaliana, two ROP GTPases, ROP2 and ROP6 act 

antagonistically to promote the formation of outgrowths and ingrowths (Fu et al., 2005). 

AtROP2 promotes outgrowth formation via interaction with RIC4, which mediates changes in 

the actin cytoskeleton. AtROP6 promotes the formation of ingrowths by interacting with RIC1, 

which promotes microtubule rearrangement (Fu et al., 2005). Infection thread formation could 

be similar to formation of pavement cell lobes, but with the result of a tube instead of a leaf 

indentation. Interestingly, the closest Lotus japonicus homologue of AtROP6 is LjROP6 (Ke et 

al., 2012), so it is possible that during bacterial infection LjROP6 mediates ingrowth of the 

membrane to generate infection threads (Figure 7.3D).  
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If ROP6 does indeed mediate cell ingrowth during infection thread formation in a similar way 

to leaf indentation in A. thaliana, it seems unlikely that it also mediates cell expansion during 

root hair curling, supporting the idea that other ROPs (e.g. ROP9) could be involved in root hair 

curling with LjROP6 recruited later. However, it is also possible that the same ROPs are 

involved throughout bacterial infection but they are differentially regulated or modified during 

root hair curling and infection thread formation so that they interact with different ROP 

effectors (RICs, RIPs etc.) for cell expansion or ingrowth, respectively. ROP effectors include 

SCAR/WAVE components, which regulate actin polymerization (Hussey et al., 2006). AtPIR121 

interacts with AtROP2 (Basu et al., 2004) and AtSCAR2 interacts specifically with the active 

form of AtROP7 (Uhrig et al., 2007). The legume SCAR/WAVE mutants rit1-1, nap1 and pir1 all 

have short root hairs and trichomes and after inoculation with rhizobia develop swollen 

infection threads that abort in root hairs (Miyahara et al., 2010, Yokota et al., 2009). It is 

possible that during bacterial infection ROP6/ROP9 interact directly with MtRIT1/LjNAP1 to 

regulate actin polymerisation.  

The flotillins FLOT2 and FLOT4 and the remorin SymREM1 are required for bacterial infection 

(Haney and Long, 2010, Lefebvre et al., 2010) and may interact with ROP GTPases. Flotillins are 

associated with lipid rafts and are required for the activation of the Rho-GTPases Rac1 and 

cdc42 in animal cells (Langhorst et al., 2008). SymREM1 can interact with the NF receptors NFP 

and LYK3 (Lefebvre et al., 2010). Since LjROP6 interacts with NFR5 (homologous to NFP) (Ke et 

al., 2012), it is possible that ROP6 and SymREM1 may belong to the same complex during 

bacterial infection. 

Like root hair curling, the zone of active ROPs during infection thread formation would be 

expected to be regulated by the activities of RopGAPs and RopGEFs. The root hair microarray 

data suggests that MtGAP1 and MtRopGEF14, which were the only members up-regulated 

during bacterial infection, are the most likely candidates (Chapter 6). However, it is possible 

that other RopGAPs and RopGEFs are involved. If MtGAP1 and MtRopGEF14 are involved in 

both root hair curling and infection thread formation they may need to be able to bind 

multiple ROP GTPases. A. thaliana RopGAP2 binds with higher affinity to AtROP1, ROP7 and 

ROP9 than ROP2, ROP3 and ROP4 (Schaefer et al., 2011a). Likewise, MtRopGEF2 binds 

preferentially to MtROP5, ROP6, ROP9 and ROP11 (Riely et al., 2011), suggesting that although 

there is some specificity, it is possible for individual RopGAPs and RopGEFs to have high affinity 

binding with several ROPs.   
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7.5 The role of the NF-induced calcium influx and ROS transient in 

bacterial infection 

Although there are several similarities between the NF-induced calcium influx and ROS 

transient compared with developmental tip Ca2+ and ROS gradients in root hairs, there is one 

crucial difference. The NF-induced calcium influx and ROS transient responses appear to be 

transient events in root hair cells, whereas the tip Ca2+ and ROS gradients are maintained 

throughout polar growth (Foreman et al., 2003, Herrmann and Felle, 1995, Jones et al., 1995, 

Monshausen et al., 2007, Monshausen et al., 2008). Therefore, it is more likely that, instead of 

being involved directly in promoting membrane and cell wall deposition during infection, the 

NF-induced calcium influx and ROS transient may have a signalling or co-ordinating role at a 

specific stage of bacterial infection. 

Both the calcium influx and ROS transient require higher concentrations of NFs to be activated 

than other NF-responses including nuclear calcium spiking and root hair deformation (Chapter 

5) (Catoira et al., 2000, Miwa et al., 2006a, Morieri et al., 2013, Shaw and Long, 2003a). This 

suggests the calcium influx and ROS transient are activated later than other NF-responses once 

a threshold concentration of NF has been reached. A NF lacking the NodL-determined acetyl 

group, equivalent to that made by the S. meliloti nodL mutant is 100 fold less active at inducing 

the calcium influx than wildtype NF (Morieri et al., 2013). S. meliloti nodL mutants are delayed 

for infection into legumes, forming enlarged infection foci but few infection threads (Ardourel 

et al., 1994), suggesting that the calcium influx may be required for infection thread initiation.  

The NF-induced calcium influx and ROS transient could act as signals for the transition from 

root hair curling to infection thread growth (Figure 7.3). During root hair curling the local NF 

concentration on the plant cell surface closest to the rhizobia would gradually increase as the 

rhizobia become trapped within the infection foci and continue to divide. The increasing 

concentration of NF could lead to increasing levels of ROP9 and/or ROP6 signalling. 

Presumably, at some point NF may reach a threshold level required for activation of the 

calcium influx and ROS transient, which could lead to the recruitment of the machinery 

required for infection thread initiation and growth. The gap1 mutants appeared to be 

hypersensitive for induction of the calcium influx and infection threads formed in root hairs 

that had not properly curled to form enclosed infection pockets (Chapter 6). This suggests that 

negative regulation of ROP signalling by MtGAP1 may help to ensure that the calcium influx is 
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only activated after root hair curling when the population of rhizobia trapped with the 

infection pocket is sufficiently large to support infection thread development. 

In A. thaliana leaf pavement cells, a calcium-dependent protein kinase CPK3 phosphorylates 

RhoGDI1, promoting its binding to ROP GTPases (Wu et al., 2013). RhoGDIs bind to GDP-bound 

ROPs and sequester them in the cytosol. In growing root hair cells RhoGDI1 is required for the 

correct localisation of ROP2 (Carol et al., 2005), demonstrating that RhoGDIs can regulate the 

subcellular location of ROPs. In M. truncatula, the calcium-dependent protein kinase CDPK1 is 

involved in normal root and root hair development and is also required for efficient rhizobial 

and mycorrhizal colonisation (Ivashuta et al., 2005). CDPK1 RNAi roots had short abnormal-

looking root hairs (swollen tips, growth redirection and branching), which lacked the tip ROS 

gradient observed in wildtype and had an altered actin cytoskeleton (Ivashuta et al., 2005). 

When inoculated with S. meliloti infection threads on CDPK1 RNAi roots were defective for 

progression into the cortex and few nodules were formed.   It is possible that during bacterial 

infection the calcium influx could lead to CPK-dependent phosphorylation of RhoGDIs leading 

to the removal of ROPs from the curling root hair tip and the accumulation of ROPs at the site 

of infection thread initiation. 

If root hair curling uses the same mechanisms as normal polar growth, then localised gradients 

of Ca2+ and ROS should be present, but instead of being tip-focused these gradients would be 

shifted to the new growth axis. It would be technically challenging to observe Ca2+ and ROS 

dynamics during bacterial infection of root hair cells but recent studies examining nuclear 

calcium spiking during bacterial infection (Sieberer et al., 2012) suggest that it might be 

possible.  

 

7.5 Hormones and bacterial infection 

The plant hormones ethylene and auxin both promote normal root hair elongation (Muday et 

al., 2012, Pitts et al., 1998, Strader et al., 2010, Tanimoto et al., 1995). It is thought that 

ethylene promotes root hair elongation by modulating auxin signalling (Muday et al., 2012). 

Auxin can activate ROP signalling (Lin et al., 2012, Tao et al., 2002, Xu et al., 2010) with 

feedback via ROP regulation of auxin transporters (Chen et al., 2012b). What roles do these 

hormones play in bacterial infection? 
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Auxin promotes nodule formation (de Billy et al., 2001, Takanashi et al., 2011), but its role in 

bacterial infection has been little studied. In the symbiosis between Casuarina glauca and the 

Nitrogen-fixing actinomycete Frankia, expression of the AUX1 auxin-influx transporter is 

associated with infected plant cells (Peret et al., 2007), so it is possible that auxin may promote 

bacterial infection during the legume-rhizobia symbiosis. Ethylene is an inhibitor of bacterial 

infection and nodule formation and skl (orthologue of A. thaliana EIN2) mutants produce many 

more infection threads and nodules than the wildtype (Oldroyd et al., 2001b, Penmetsa et al., 

2008). Ethylene inhibits both NF-induced calcium spiking and the calcium influx (Morieri et al., 

2013, Oldroyd et al., 2001b), suggesting that ethylene inhibition of nodulation and bacterial 

infection is mediated via inhibition of NF-signalling. NF promotion of root hair elongation is 

independent of ethylene (Oldroyd et al., 2001b), suggesting NF uses a parallel pathway to 

activate ROP signalling, which may or may not involve auxin. 

 

7.6 Is there crosstalk between ROP signalling and the common symbiosis 

(Sym) pathway? 

To establish a successful symbiosis, nodule formation and bacterial infection need to be co-

ordinated. Much of this co-ordination is achieved by the Sym pathway, which upregulates 

many genes involved in nodule formation and/or bacterial infection (Oldroyd et al., 2011). This 

includes the transcription factors NIN and ERN1, which are required for both processes (Marsh 

et al., 2007, Middleton et al., 2007). Both MtGAP1 and MtRopGEF14 were downregulated root 

hairs of the nin mutant relative to wildtype (Chapter 6) suggesting they may be regulated 

directly or indirectly by NIN. Therefore, the Sym pathway may modulate ROP signalling to 

promote root hair curling and infection thread formation. 

 It appears that the Sym pathway may be differentially activated during bacterial infection. 

Genre et al. (2012) found that the frequency of nuclear calcium spiking in individual cells 

changes during bacterial infection. Outer cortical cells have low frequency calcium spiking prior 

to contact with bacteria. This then switches to a higher frequency when the infection thread 

containing the bacteria reaches the cell and continues to grow through it. This suggests that 

high frequency calcium spiking may be associated with the progression of infection threads. It 

is possible that this shift in frequency of calcium spiking leads to the altered regulation of ROP 

signalling to promote infection thread progression through the cortical cell.   
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ROP signalling may also be able to modulate the Sym pathway. Lotus japonicus ROP6 RNAi 

lines had decreased NIN and ENOD11 expression (Ke et al., 2012). This could be a consequence 

of the lines having reduced bacterial infection and nodule formation rather than ROP6 

regulation of the Sym pathway. However, in this work I found that ROP9 RNAi lines had a 

small, but statistically significant reduction in NF-induced calcium spiking alongside the much 

larger reduction in the calcium influx (Chapter 6). This suggests that alongside a role in 

bacterial infection ROP9 could be involved in feedback regulation of calcium spiking. Therefore 

it is possible that ROP signalling may provide the Sym pathway with feedback regarding the 

progress of bacterial infection. 

 

7.7 Conclusions and future work 

NF can induce two separate calcium responses in legume root hairs. Nuclear calcium spiking is 

central to the Sym pathway, which is required for the activation of genes required for nodule 

formation and bacterial infection. The tip-focused calcium influx is less-well studied but it has 

been proposed to be involved in infection thread initiation during bacterial infection (Morieri 

et al., 2013). NF also induces a ROS transient in the tip of root hair cells. In this thesis I studied 

the NF-induced calcium influx and ROS transient responses in M. truncatula. I found that, 

along with being spatially and temporally co-incident (Chapter 3), the responses require similar 

concentrations of NF to be activated (Chapter 5), are both inhibited by the NADPH oxidase 

inhibitor DPI (Chapter 4) and are both dependent on the NF receptor NFP but independent of 

the Sym pathway components DMI1 and DMI2. These shared characteristics suggest that the 

NF-induced calcium influx and ROS transient are part of a common signalling pathway during 

bacterial infection. 

I found a ROP-activating protein MtGAP1 is upregulated in root hairs during bacterial infection 

and is involved in normal root hair curling and infection thread development (Chapter 6). Two 

pieces of evidence directly link ROP signalling with the NF-induced calcium influx: gap1 

mutants were hypersensitive for induction of the calcium influx, and there was a reduction in 

the number of calcium influx responses in ROP9 RNAi knockdown lines (Chapter 6). Drawing 

parallels between developmental root hair elongation and bacterial infection, I propose that 

local perception of NF on the root hair surface shifts the intracellular localisation of ROPs and 

their regulators to change the axis of cell expansion for root hair curling. Once the rhizobia are 

entrapped within an infection focus, the rising NF concentration triggers the ROS transient and 
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calcium influx, which signal for the recruitment of ROPs to the site of infection thread 

initiation. 

There are several experiments that are already planned for the continuation of this project. 

Complementation of gap1 mutants with MtGAP1 will confirm whether the observed 

phenotypes are due to mutations in MtGAP1 instead of other background mutations present 

in the Tnt1 insertions lines. This will be especially useful because although the infection thread 

phenotype is consistent between the two gap1 alleles, only gap1-1 has a reduction in nodule 

number. Calcium imaging using a gap1-1-YC3.6 stable line will be carried out to confirm the 

observed hypersensitivity for NF-induced calcium influx in gap1-1 by constructing a dose 

response curve for this mutant over a range of NF concentrations. The gap1-1 line will also be 

tested for the NF-induced ROS transient. 

In the longer term there are many directions that further investigations could take. Acquiring 

stable mutant lines for ROP6, ROP9, RopGEF14 and RBOHB would be a useful starting point for 

further studies on these genes as RNAi knockdown lines still retain some expression and the 

expression of other closely-related genes can also be affected. It is possible to construct 

dominant negative and constitutively active versions of ROP GTPases (Jones et al., 2002, Li et 

al., 1998, Li et al., 1999), which could also be used to provide insights into their roles in 

symbiosis. Apart from the NFR5-ROP6 interaction, all the other interactions between proteins 

proposed in Figure 7.2 are theoretical, based on ROP signalling in other systems. Finding out 

which ROPs can interact with which RopGAPs and RopGEFs would demonstrate whether the 

model is valid and could also potentially identify other candidates in these families worthy of 

investigation. RhoGDIs are another family of ROP regulators, so investigating this family in the 

context of rhizobial infection could also be informative. 

 It would also be interesting to identify the Ca2+-permeable channels involved in generating the 

NF-induced calcium influx. Members of the annexin, CNGC (cyclic nucleotide gates channels) 

and GLR (glutamate-like receptors) families are implicated in mediating Ca2+ influxes in plants 

(Finka et al., 2012, Ma et al., 2010, Michard et al., 2011, Swarbreck et al., 2013, Wang et al., 

2013). Of these, the annexins are the most promising candidates for mediating the ROS-

induced Ca2+ influxes observed during polar root hair growth. Several plant annexins have been 

shown to mediate calcium influxes in vitro (Hofmann et al., 2000, Laohavisit et al., 2009, 

Laohavisit et al., 2010). Arabidopsis thaliana ann1 mutants lack ROS-induced Ca2+ conductance 

required for root hair cell growth and ANN1 reconstitutes ROS-induced Ca2+ conductance in 

lipid bilayers (Laohavisit et al., 2012). Three Medicago truncatula annexins MtAnn1, MtAnn2 



CHAPTER 7: GENERAL DISCUSSION 

132 
 

and MtAnn3 are upregulated in roots during symbiosis (de Carvalho-Niebel et al., 2002, Gong 

et al., 2012, Niebel et al., 1998). It is possible that they or other annexin family members may 

mediate the NF-induced calcium influx. 

Drawing on parallels with developmental root hair elongation, the results presented in this 

thesis provide a link between the NF-induced calcium influx and ROS transient responses and 

ROP signalling during rhizobial infection in legumes. Future investigations will provide further 

insights into rhizobial infection and may also prove useful for understanding ROP signalling in 

other contexts including polar growth of root hairs and defence signalling. 
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