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Abstract. It is a classical result that any finite tree with positively
weighted edges, and without vertices of degree 2, is uniquely determined
by the weighted path distance between each pair of leaves. Moreover,
it is possible for a (small) strict subset L of leaf pairs to suffice for
reconstructing the tree and its edge weights, given just the distances
between the leaf pairs in L. It is known that any set L with this property
for a tree in which all interior vertices have degree 3 must form a cover
for T – that is, for each interior vertex v of T , L must contain a pair
of leaves from each pair of the three components of T − v. Here we
provide a partial converse of this result by showing that if a set L of leaf
pairs forms a cover of a certain type for such a tree T then T and its
edge weights can be uniquely determined from the distances between the
pairs of leaves in L. Moreover, there is a polynomial-time algorithm for
achieving this reconstruction. The result establishes a special case of a
recent question concerning ‘triplet covers’, and is relevant to a problem
arising in evolutionary genomics.
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1. Introduction

Any tree T with positively weighted edges, induces a metric d on the set
of leaves by considering the weighted path distance in T between each pair of
leaves. Moreover, provided T has no vertices of degree 2, and that we ignore
the labeling of interior vertices, both T and its edge weights are uniquely
determined by the metric d. This uniqueness result has been known since
the 1960s and fast algorithms exist for reconstructing both the tree and
its edge weights from d (for further background the interested reader may
consult [1] and [10] and the references therein).

The uniqueness result and the algorithms are important in evolutionary
biology for reconstructing an evolutionary tree of species from genetic data
[6]. However in this setting one frequently may not have d-values available
for all pairs of species, due to the patchy nature of genomic coverage [9].

This raises a fundamental mathematical question – for which subsets of
pairs of leaves of a tree do we need to know the d-values in order to uniquely
recover the tree and its edge weights? In general this appears a difficult
question (indeed determining whether such a partial d-metric is realized by
any tree is NP-hard [5]). However, some sufficient conditions (as well as some
necessary conditions) for uniqueness to hold have been found, in [3, 8, 13],
and more recently in [4], and [7]. In this paper we consider the uniqueness
question for trees that are ‘fully-resolved’ (i.e. all the interior vertices have
degree 3) as these trees are of particular importance in evolutionary biology,
and because the uniqueness question is easier to study for this class of trees.

The structure of this paper is as follows. First we introduce some back-
ground terminology and concepts, and then we define the particular type
of subsets of leaf pairs (called ‘stable triplet covers’) which we show suffice
to uniquely determine a fully-resolved tree. Moreover, we show how this
comes about by establishing two combinatorial properties of stable triplet
covers - a ‘shellability’ property and a graph-theoretic property related to
tree-width, which we show is quite different to shellability. We conclude by
providing a proof that a polynomial-time algorithm will reconstruct a tree
and its edge weights for any set of leaf pairs that contains a stable triplet
cover (or more generally a shellable subset). Our result answers a special
case of the question posed at the end of [4] of whether every ‘triplet cover’
of a fully-resolved tree determines the tree and its edge weights.

2. Preliminaries

We now introduce some precise definitions required to state and prove our
main results. We mostly follow the notation and terminology of [10] and [4].

2.1. X−trees, edge-weightings and distances. For the rest of the pa-
per, assume that |X| ≥ 3. An X−tree T = (V,E) is a graph theoretical tree
whose leaf set is X and which does not have any vertices of degree 2. We call
an X−tree fully-resolved if every interior vertex of T , that is, every non-leaf
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vertex of T , has degree three. Moreover, we call two distinct leaves x and y
of T a cherry of T , denoted by x, y, if the parent of x is simultaneously the
parent of y. For any subset Y ⊆ X, we denote by T |Y the Y -tree obtained
by restricting T to Y (suppressing resulting degree two vertices).

An example of a fully-resolved X−tree for X = {a, b, c, d, e, f, g}, and
having two cherries, is shown in Fig. 1(i).

In case |Y | = 4, say Y = {a, b, c, d}, and the path from a to b does not
share a vertex with the path from c to d in T |Y , we refer to T |Y as a quartet
tree and denote it by ab||cd. Note that by deleting any edge e ∈ E from
T the leaf sets Ae and Be := X − Ae of the resulting two trees induce a
bipartition of X. We refer to such a bipartition as X−split and denote it
by A|B where A := Ae and B := Be and Ae and Be are as above. We say
that two X−trees T = (V,E) and T ′ = (V ′, E′) are equivalent if there exists
a bijection φ : V → V ′ that is the identity on X and extends to a graph
isomorphism from T to T ′.

Suppose for the following that T = (V,E) is an X−tree. Then we call a
map w : E → R≥0 that assigns a weight, that is, a non-negative real number,
to every edge of T an edge-weighting for T . Note that this definition allows
that some of the edges of T might have weight zero. We denote an X−tree
T together with an edge-weighting w by the pair (T,w) and call an edge-
weighting that assign non-zero weight to every edge of T that is not incident
with a leaf of T proper. Note that for any edge-weighting w of T , taking
the sum of the weights of the edges on the shortest path from some x ∈ X
to some y ∈ X induces a distance between x and y and thus a distance
d = d(T,w) on X.

For example, in the tree in Fig. 1(i), if each edge has weight 1, then
d(a, b) = 2, d(c, e) = 4, and d(c, f) = 5.

a

b c d e f

g

a
e

f

g

c

d
b

(i) (ii)

Figure 1: (i) A fully-resolved tree X−tree T for X = {a, b, c, d, e, f, g}; (ii)
the graph (X,L) corresponding to a strong lasso L for T (discussed further
in Example 1).
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2.2. Lassos. We call a subset of X of size two a cord of X and, for a, b ∈ X
distinct write ab rather than {a, b} for the cord containing a and b. Also, for
any non-empty set L ⊆

(
X
2

)
of cords of X, we denote the edges of the graph

(X,L) whose vertex set is X and whose edge set is the set {{a, b} : ab ∈ L}
by ab rather than {a, b}, ab ∈ L.

Suppose for the following that L ⊆
(
X
2

)
is a non-empty set of cords of

X. If T ′ = (V ′, E′) is a further X−tree and w and w′ are edge-weightings
for T and T ′, respectively, such that d(T,w)(x, y) = d(T ′,w′)(x, y) holds for all
xy ∈ L then we say that (T,w) and (T ′, w′) are L-isometric. Moreover we
say that L is

(i) an edge-weight lasso for T if for any two proper edge-weightings w
and w′ for T such that (T,w) and (T,w′) are L-isometric we have
that w = w′.

(ii) a topological lasso for T if for any other X−tree T ′ and any two
proper edge-weightings w and w′ for T and T ′, respectively, such
that (T,w) and (T ′, w′) are L-isometric we have that T and T ′ are
equivalent.

(iii) a strong lasso for T if L is simultaneously an edge-weight and a
topological lasso for T .

If L is a strong lasso for an X−tree then the graph (X,L) must be connected
and non-bipartite [4]. An example of a strong lasso L of the tree in Fig. 1(i)
is the set of cords corresponding to the edges of the graph in Fig. 1(ii).

2.3. Shellability and 2d-trees. Suppose we have a subset L of
(
X
2

)
with

X =
⋃
L and an X−tree T . Then we say that

(
X
2

)
\ L is T–shellable if

there exists an ordering of the cords in
(
X
2

)
\ L as, say, a1b1, a2b2, . . . , ambm

such that, for every µ ∈ {1, 2, . . . ,m}, there exists a pair xµ, yµ of ‘pivots’
for aµbµ, i.e., two distinct elements xµ, yµ ∈ X − {aµ, bµ}, for which the
tree T |Yµ obtained from T by restriction to Yµ := {aµ, bµ, xµ, yµ}, is the
quartet tree aµxµ||yµbµ, and all cords in

(
Yµ

2

)
except aµbµ are contained in

Lµ := L∪
{
aµ′bµ′ : µ′ ∈ {1, 2, . . . , µ−1}

}
. Any such ordering of

(
X
2

)
\L will

also be called a shellable ordering of
(
X
2

)
\ L, and any subset L of

(
X
2

)
for

which a shellable ordering of
(
X
2

)
\ L exists will also be called an shellable

lasso for T . In [4, Theorem 6], it was established that every shellable lasso
for an X−tree is in particular a strong lasso for that tree.

A concept that is seemingly similar to shellability but, as we will see later
on, quite distinct is that of a 2d-tree where a graph G = (V,E) is called a 2d-
tree if there exists an ordering x1, x2, . . . , xn of V such that {x1, x2} ∈ E and,
for i = 3, . . . , n the vertex xi has degree 2 in the subgraph of G induced by
{x1, x2, . . . , xi}. 2d-trees are examples of kd-trees which were characterized
in [11] and also studied in e. g. [7].

2.4. Example 1. Consider the seven-taxon tree, shown in Fig. 1(i), and
the lasso L = {ab, bd, ad, bc, bf, ag, dg, eb, ef, fg, gc} (the edges of the graph
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in Fig. 1(ii)). The remaining ten chords in
(
X
2

)
\L have a shellable ordering,

described as follows:

bg, cd, ac, cf, ce, af, df, ae, eg, ed,

where the corresponding cord pivots are:

(a, d), (b, g), (b, d), (b, g), (b, f), (b, g), (b, g), (b, f), (a, f), (b, f),

and so L is a shellable (and hence strong) lasso for T . By considering the
vertex ordering a, b, d, g, c, f, e, it is easy to check that the graph in Fig. 1(ii)
is also a 2d-tree. 2

2.5. Covers, triplet covers. A necessary condition for L ⊆
(
X
2

)
to be an

edge-weight lasso or a topological lasso for a fully-resolved X−tree is that
L forms a cover for T – that is, for each interior vertex v of T , L contains
a pair of leaves from each pair of the three components of T − v. However
this condition is not sufficient for L to be either an edge-weight lasso or a
topological lasso (examples are given in [4]).

A particular type of cover for a fully-resolved X−tree is a triplet cover
which is defined as any subset L of

(
X
2

)
with the property that for each

interior vertex v of T we can select leaves a, b, c from each of the three
components of T − v so that ab, ac, bc ∈ L. It can be shown that if L is a
triplet cover for a fully-resolved X−tree T then L is an edge-weight lasso.
However it is not known whether or not every triplet cover of every such T
is also a topological (and thereby a strong) lasso for T .

3. A special class of triplet covers

Suppose that T = (V,E) is a fully-resolved X−tree, and let

clus(T ) :=
⋃
e∈E
{Ae, X −Ae},

where Ae|(X − Ae) denotes the X−split associated with edge e ∈ E. We
call the elements in clus(T ) ‘clusters’ (in biology, they are also sometimes
referred to as ‘clans’ [12]). Thus a cluster is a subset of X that corresponds
to the leaf labels on one side of some edge of T .

Given a collection C of non-empty subsets of X we say that any function
f : C → X is a stable transversal for C if it satisfies the two properties:

• (transversality) f(A) ∈ A, for all A ∈ C;
• (stability) f(A) ∈ B ⊆ A =⇒ f(A) = f(B) for all A,B ∈ C.

Mostly we will be concerned with stable transversals for clus(T ), which
were introduced in [2], though for a different purpose.
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3.1. Example 2. An example of a stable transversals for clus(T ) is as fol-
lows: Consider any stable transversal g for 2X (equivalently, the function
g(A) = minA under some total ordering of X), and consider any proper
edge weighting w of T . For a cluster A ∈ clus(T ), consider the subset Aw
of leaves of T in A that are a closest to the edge e whose deletion induces
the split A|(X \ A). Here ‘closest’ refers to the path distance in T from
each leaf in A to e under the edge weighting w. If we let f(A) = g(Aw),
for each A ∈ clus(T ) then f is a stable transversal for clus(T ). Notice that
this holds also for the corresponding function in which ‘closest’ is replaced
by ‘furthest’ throughout. 2

3.2. Example 3. Consider the fully-resolved X−tree shown in Fig. 2(i),
and the function f defined as follows: f({x}) = x for all x in X, and

f({a, a′}) = a, f({b, b′}) = b, f({c, c′}) = c

and

f(X \ {a, a′}) = b, f(X − {b, b′}) = c, f(X \ {c, c′}) = a.

Then f is a stable transversal for T . Note that the choices of b, c, a in the
last line could be replaced by, for example, c, a, b or c, c, a and we would still
have a stable transveral. 2

a

a′

c′

c

b′

b

(ii)

a
a′

b

b′

c′
c

(i)

Figure 2: (i) A fully-resolved X−tree for the set X = {a, a′, b, b′, c, c′}; the
graph (X,L) where L = L(T,f) forms a stable triplet cover for T , and where
f is as defined in Example 3.

4. Stable triplet covers are minimal strong lassos for T

Given a fully-resolved X−tree T , a stable transversal f of clus(T ) defines
a triplet cover for T as follows: For each interior vertex v of T , consider the
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three components of the graph T − v, and let A1
v, A

2
v, A

3
v denote their leaf

sets. Then let

L(T,f) :=
⋃

v∈Vint

{f(A1
v)f(A2

v), f(A2
v)f(A3

v), f(A3
v)f(A1

v)}

where Vint denotes the set of interior vertices of T . We say that L is a stable
triplet cover (generated by f) if L = L(T,f) for some stable transversal f of
clus(T ). For example, for the pair (T, f) described in Example 3, we have:

L(T,f) = {ab, ac, bc, aa′, a′b, bb′, b′c, cc′, c′a},

and the graph (X,L) for L = L(T,f) is shown in Fig. 2(ii). Notice that
not all triplet covers are stable; indeed the set of triplet covers of a fully-
resolved X−tree T is precisely the set of subsets of

(
X
2

)
of the form L(T,f)

where f is required to satisfy only the transversality property above for some
f : clus(T )→ X.

Interestingly, Fig. 2(ii) shows that for the set L = L(T,f) with T and f from
Example 3, the graph (X,L) is a 2d-tree as a, b, c, a′, b′, c′ is an acceptable
vertex ordering for the graph in that figure. Theorem 4.1 below establishes
that both observations are not a coincidence.

4.1. Main result. We can now state our first main result which relates
stable triplet covers with 2d-trees and shellable lassos.

Theorem 4.1. If L is a stable triplet cover of a fully-resolved X−tree T
with n := |X| ≥ 3, then

(i) (X,L) is a 2d-tree.
(ii) L is a shellable lasso for T , and so L is a strong lasso for T .
(iii) |L| = 2n− 3, and so L is also a strong lasso for T of minimal size.

Proof. We prove parts (i)–(iii) simultaneously by induction on n = |X|.
Shellability holds trivially for n = 3 (since then

(
X
2

)
\ L = ∅), so suppose

that it holds when n = k ≥ 3, and that T is a fully-resolved tree with k + 1
leaves, and that L is a triplet cover for T generated by a stable transversal
f of clus(T ). Select any cherry x, y of T . Without loss of generality, we may
suppose that f({x, y}) = x. Let

z := f(X \ {x, y}), X ′ := X − {y}, T ′ := T |X ′,L′ := L \ {xy, yz},
and define f ′ : clus(T )→ X by setting

f ′(A) =

{
f(A), if x 6∈ A;
f(A ∪ {y}), if x ∈ A.

Note that, since f is a stable transversal for clus(T ), it follows that y is not
an element of any cord of L′, and so L′ ⊆

(
X′

2

)
. Moreover, y 6= f ′(A) for

any A ∈ clus(T ′), and so f ′ : clus(T ′) → X ′. It can now be checked that
f ′ is a stable transversal for clus(T ′) and so L′ is a stable triplet cover of
T ′, generated by f ′. By the inductive hypothesis (applied to T ′ and L′) it



8 KATHARINA T. HUBER AND MIKE STEEL

follows with regards to (i) that (X ′,L′) is a 2d-tree. Clearly adding y to the
vertex set of that graph and xy and zy to its edge set preserves the 2d-tree
property. By the definition of L′ it is easy to see that the resulting graph is
(X,L).

Note that regarding (ii) and (iii) the induction hypothesis implies that
|L′| = 2k− 3, and so |L| = 2(k+ 1)− 3 and that

(
X′

2

)
\L′ is shellable. So let

us fix an ordering of
(
X′

2

)
\ L′ that provides such a shelling. This will form

the initial segment of a shellable ordering of
(
X
2

)
\ L.

To describe this extended ordering, let v be the interior vertex of T ad-
jacent to leaves x and y, and let u be the interior vertex of T adjacent to v.
Consider the three components of the graph T −u. One component contains
x, y, and we will denote the leaf sets of the other two components by X2

and X3, where, without loss of generality, z ∈ X3. Notice that
(
X
2

)
\ L is

the disjoint union of the three sets:(
X ′

2

)
\ L′, {ty : t ∈ X2} and {ty : t ∈ X3 \ {z}}.

We order
(
X
2

)
\ L as follows: the elements of

(
X′

2

)
\ L′ come first, ordered

by their shellable ordering, followed by the elements ty with t ∈ X2 (in any
order), followed by the elements ty with t ∈ X3 \ {z} (in any order).

We claim that any such ordering provides a shellable ordering of
(
X
2

)
\L.

To see this, observe first that, for any leaf t ∈ X2, the elements x, z provide
‘pivots’ for the pair t, y, since T |{x, y, z, t} = xy||zt and all cords in

({x,y,z,t}
2

)
except ty are contained in L ∪ (

(
X′

2

)
\ L′). Also, for any leaf t ∈ X3, if we

select any leaf z′ ∈ X2 then the pair x, z′ provides a ‘pivot’ for t, y, since
T |{x, y, z′, t} = xy||z′t, and all cords in

({x,y,z′,t}
2

)
except ty are contained in

L ∪ (
(
X′

2

)
\ L′) ∪ {t′y : t′ ∈ X2}. In all cases, the cords required for pivoting

come earlier in the ordering.
Thus, we have established that L′ is an shellable lasso for T , and so, by

Theorem 6 of [4], L is also a strong lasso for T . Moreover, we showed that
|L| = 2|X|−3, and since this equals the number of edges in any fully-resolved
X–tree, linear algebra ensures that no smaller subset of L′ could be an edge
weight-lasso for T . Hence, L is a minimum size strong lasso for T , which
completes the proof of the induction step, and thereby of the theorem.

�

4.2. Remarks.
(1) Just because a graph (X,L) is a 2d-tree, it does not follow that
L forms a strong (let alone a shellable) lasso for every given fully-
resolved X−tree T . A simple example is furnished by X = {a, b, c, d}
and L = {ab, ac, bc, ad, bd}, for which (X,L) is a 2d-tree, and yet L
fails to be a strong lasso for T = ab||cd.

However, if (X,L) forms a 2d-tree, or more generally if L contains
a subset L′ such that (X,L′) is a 2d-tree, then L is a strong lasso for
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at least one fully-resolved X−tree. The proof is constructive based
on the ordering x1, x2, . . . , xn in the definition of a 2d-tree: Start
with the tree consisting of leaves x1 and x2, and construct a fully-
resolved tree as follows: for each i > 2, if xi is adjacent to xj and
xk in (X,L′) (where j, k < i) then let xi be the leaf that is attached
by a new edge to a new subdivision vertex on the path connecting
xj and xk in the tree so-far constructed.

It should be noted however that, in general, the concept of shella-
bility and 2d-tree are quite distinct. For example consider the graph
(X,L) in Fig. 3(ii).

a’

x

y

b

a’’b’

(i)

a

(ii)

a’

a’’

a

y

b
b’

x

Figure 3: (i) A fully-resolved tree X−tree T for X = {x, y, a, a′, a′′, b, b′};
(ii) the graph (X,L).

Then it is easy to check that the remaining ten cords in
(
X
2

)
\ L

have a shellable ordering for the tree in Fig. 3(i) given by:

ab, ab′, b′x, b′y, xa′, xa′′, ya′, ya′′, ba′, ba′′

where the corresponding cord pivots are:

(x, y), (a′, a′′), (a, b), (a, b), (a, b′), (a, b′), (a, b′), (a, b′), (a, b′), (a, b′).

But (X,L) is not a 2d-tree as any such graph must necessarily con-
tain a degree two vertex which is not the case for (X,L). Morevover,
there exists no subset L′ ⊆ L such that (X,L′) is a 2d-tree since any
2d-tree on seven leaves must have 2× 7− 3 = |L| edges.

(2) Suppose that T is a fully-resolved X−tree, and L ⊆
(
X
2

)
contains a

stable triplet cover. A natural setting in which this situation arises
is the following. Suppose (T,w) is a properly edge-weighted fully-
resolved X−tree, and L ⊆

(
X
2

)
has the property that, for any interior

vertex, v, L contains every chord xy for which x is a closest leaf to v
in one subtree of T − v and y is a closest leaf to v in another subtree
of T − v. Then, as noted in Example 2 above, L contains a stable
triplet cover.



10 KATHARINA T. HUBER AND MIKE STEEL

Now, when L contains a stable triplet cover for T , it follows by
Theorem 4.1 that L is a shellable, and thereby also a strong lasso
for T (since any superset of a strong lasso for a tree is also a strong
lasso for that tree). However, it is perhaps not clear how one might
efficiently construct (T,w) from the distances induced by L, partic-
ularly when the subset of L corresponding to the stable triplet cover
is not also given explicitly. Thus, in the next section we describe
a polynomial-time algorithm for reconstructing (T,w) whenever L
contains some (unknown) shellable lasso for T .

5. An algorithm for reconstructing (T,w) from d(T,w)|L when L
contains an shellable lasso for T .

Suppose that L ⊆
(
X
2

)
and that T is a fully-resolved X−tree, w is a

proper edge-weighting of T and d = d(T,w). Starting with L∗ = L add cords
to L∗ and extend the domain of d to those cords, by repeated application of
the following extension rule (R), described in [7] (Section 6.2, page 246):

(R) Whenever x, y, z, u ∈ X and(
{x, y, u, z}

2

)
− {xz} ⊆ L∗, xz 6∈ L∗, and

d(x, y) + d(u, z) < d(x, u) + d(y, z)
add xz to L∗, and let d(x, z) := d(x, u) + d(y, z)− d(y, u).

Let clR(L) be the set of resulting set of cords obtained from the initial set
L when this extension rule no longer yields any new cords.

Note that clR(L) can be computed in polynomial time, and that d−values
are assigned for all cords in clR(L). Moreover, if clR(L) =

(
X
2

)
, then clR(L)

is a strong lasso for T , however the converse does not hold (Example 6.2 of
[4] provides a counterexample).

Theorem 5.1. If L ⊆
(
X
2

)
contains an shellable lasso for a fully-resolved

X−tree T , and d = d(T,w), for some proper edge weighting w, then clR(L) =(
X
2

)
. Consequently, T and w can be reconstructed in polynomial time from

the restriction of d to L.

Proof. Suppose that L′ ⊆ L is a shellable lasso for T ; we will show that
clR(L′) =

(
X
2

)
and so clR(L) =

(
X
2

)
. Suppose to the contrary that clR(L′)

is a strict subset of
(
X
2

)
, and consider any shelling a1b1, . . . , ambm of the

cords in
(
X
2

)
\ L′ (such a shelling exists by the assumption that L′ is an

shellable lasso for T ). Let j ∈ {1, . . . ,m} be the smallest index for which
ajbj 6∈ clR(L′). Then the condition on the shelling ensures that there exists
pivots xj , yj ∈ X − {aj , bj} so that for Y = {aj , bj , xj , yj} we have T |Y
is the quartet tree ajxj ||bjyj and that each cord in

(
Y
2

)
− {ajbj} either is

an element of L′ or it occurs earlier in the ordering for the shelling than
ajbj , and so, by the minimality assumption concerning j, all these cords lie



TREE RECONSTRUCTION FROM TRIPLET COVER DISTANCES 11

in clR(L′). Consequently, ajbj ∈ clR(clR(L′)) = clR(L′), a contradiction.
Thus, our assumption that clR(L′) is a strict subset of

(
X
2

)
is not possible,

as required.
Finally, to efficiently recover (T,w), once d has been defined on all of

(
X
2

)
,

one can apply standard distance-based reconstruction methods for fully-
resolved trees, such as the Neighbor-Joining method [6]. �
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