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Steady two-dimensional nonlinear flexural–gravity hydraulic falls past a submerged
obstruction on the bottom of a channel are considered. The fluid is assumed to be
ideal and is covered above by a thin ice plate. Cosserat theory is used to model the
sheet of ice as a thin elastic shell, and boundary integral equation techniques are then
employed to find critical flow solutions. By utilising a second obstruction, solutions
with a train of waves trapped between two obstructions are investigated.
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1. Introduction
The classic hydroelastic problem concerning the interaction between a deformable

body and a moving fluid is a widely studied area in mathematics and engineering,
because of its vast range of physical applications (Korobkin, Părău & Vanden-Broeck
2011). One such application involves the modelling of an ice plate floating on top
of water as a thin elastic sheet (Squire et al. 1996). During the winter months, the
ocean in the Arctic and Antarctic regions is frozen so that vast continuous ice plates
cover the water. These ice plates are used for transportation links, in the form of
aircraft runways, roads and railway lines for trains. The interaction of the deformable
floating ice plate and the underlying ocean water waves is therefore of concern and
can indeed be fatal. The moving load on the ice plate results in waves propagating
through the fluid. There is also much interest in shallower-water applications, such as
ice plates floating on rivers and lakes. Experiments with moving loads have been done
at Lake Saroma in Hokkaido, Japan (see Takizawa 1985, 1988) and Lake Diefenbaker
in Southern Saskatchewan, Canada (see Eyre 1977). Again, transportation links over
the ice plates are of importance (for example, railways have been placed over the
river Ob and the lake Baikal in Siberia, Russia (see Squire et al. 1996 for more
details)). Air-cushioned vehicles are sometimes used to break the ice, and the resulting
deformation of the ice plate is also of concern (Ashton 1986).

When the ice deformations and water waves are of small amplitude, linear theories
have been used to model the ice plate (see, for example, Squire et al. 1996). However,
the linear theory fails when the moving load is near critical speed. Further, Squire
(2011) provides detailed insight into how global warming can have significant effects
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on the Antarctic and Arctic sea-ice conditions due to, for example, warmer summers
resulting in increased melting of the ice and thus rougher sea conditions. The linear
theory is therefore becoming increasingly limited, and so nonlinear models have been
developed.

Kirchhoff–Love elasticity models have been adopted, and periodic waves (Forbes
1986, 1988b), elevation and depression solitary waves with decaying oscillations in
their tails (Părău & Dias 2002) and generalized solitary waves (Vanden-Broeck &
Părău 2011) have been obtained. Părău & Dias (2002) considered nonlinear effects
when the load speed is near critical, in both shallow and deep water. Elevation
and depression solitary waves with decaying oscillations in their tails were found
for particular water-depth ranges, using a forced nonlinear Schrödinger equation.
Milewski, Vanden-Broeck & Wang (2011) obtained pure hydroelastic solitary waves
for the full nonlinear model in deep water.

The Kirchhoff–Love model does not appear to have a conservative form, however,
so recently Plotnikov & Toland (2011) have considered the ice plate as a thin elastic
shell and used the special Cosserat theory of hyperelastic shells, satisfying Kirchhoff’s
hypothesis (see Antman 2005 for more details), to model the interactions between the
ice plate and an infinite ocean. Guyenne & Părău (2012) and Wang, Vanden-Broeck &
Milewski (2013) have used this Cosserat formulation to compute pure solitary wave
solutions with near-critical wave speeds in infinite depth. Guyenne & Părău (2014)
studied solitary waves in finite depth. They compared their fully nonlinear results with
weakly nonlinear solutions of a forced nonlinear Schrödinger equation and a fifth-order
Korteweg–de Vries (KdV) equation. A fifth-order KdV equation was also derived by
Xia & Shen (2002) for shallow water waves in channels covered by ice.

In this paper, we use Cosserat theory with boundary integral equation techniques
to investigate flexural–gravity hydraulic falls (conjugate flows) over submerged
obstructions. We therefore look for flows where the depth of the fluid under the
ice plate is different upstream and downstream of the obstacle (see, for example,
Dias & Vanden-Broeck 2002). In the absence of an ice plate, when the forces of
both gravity and surface tension are considered, gravity–capillary hydraulic falls have
been obtained (Guayjarernpanishk & Asavanant 2012; Page, Grandison & Părău
2014). The flexural–gravity problem has similarities to the gravity–capillary problem,
but has additional complexity in the dynamic boundary condition.

In the next section, the problem is formulated mathematically. Our results are then
presented and discussed in § 3, and we conclude with a summary of the results and
a discussion about the physical relevance of our findings in § 4.

2. Formulation
We consider an inviscid, incompressible fluid flowing along a channel. One or

multiple submerged obstructions exist on the bottom of the channel, and the fluid
is covered above by a thin continuous sheet of ice. The ice plate is modelled as an
elastic shell, using the special Cosserat theory of hyperelastic shells (see Plotnikov
& Toland 2011). We assume that the surface of the fluid coincides with the elastic
shell, so that no gaps appear between them. Furthermore, the flow is assumed
to be steady and irrotational. We introduce Cartesian coordinates x∗ and y∗, and
align the x∗-axis along the bottom of the channel as x∗ → ±∞, with the y∗-axis
directed vertically upwards through an obstacle. Gravitational acceleration g acts in
the negative y∗-direction.

We take y∗ = H + η∗(x∗) to define the deformation of the ice plate, and describe
the bottom of the channel by y∗=B∗(x∗). We seek hydraulic fall solutions so that the
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FIGURE 1. The dimensionless flow configuration over a single obstruction on the bottom
of the channel.

depth of the fluid is greater upstream than downstream. The flow is thus assumed to be
uniform in the far field as x∗→±∞, with constant depth H and constant velocity U
downstream, and with constant depth h (>H) and constant velocity V (<U) upstream.
The dimensionless downstream and upstream Froude numbers are then defined as

F= U√
gH

and Fup = V√
gh
, (2.1)

respectively. We also introduce the parameter

Eb = D
ρgH4

, (2.2)

where D describes the flexural rigidity of the ice and ρ is the density of the fluid.
We neglect the inertia and any stretching of the thin elastic ice sheet (see

Squire et al. 1996 and Plotnikov & Toland 2011 for more details) and next
non-dimensionalise the problem using U as unit velocity and H as unit depth.
Non-starred variables are thus now understood to be dimensionless, and the upstream
dimensionless flow velocity is denoted by γ . The dimensionless flow configuration
can be seen in figure 1. The depth of the fluid decreases downstream, and so the ice
plate is seen to bend over the obstruction.

The velocity potential φ(x, y) is introduced, and the problem is then formulated as a
system of nonlinear equations (see e.g. Lamb 1945) consisting of the Laplace equation
in the fluid domain,

φxx + φyy = 0, (2.3)

the kinematic conditions on the fluid surface and the channel bottom,

φy = φxηx on y= 1+ η(x) and φy = φxBx on y= B(x), (2.4)

and the dynamic condition on the fluid surface (see e.g. Plotnikov & Toland 2011;
Guyenne & Părău 2012),

1
2
(φ2

x + φ2
y )+

1
F2
(y− 1)− 1

2
+ Eb

F2

(
κ ′′ + 1

2
κ3

)
= 0 on y= 1+ η(x), (2.5)
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having assumed that the ice sheet is not prestressed. Here, κ describes the curvature
of the fluid–ice interface and is given by κ = ηxx(1 + η2

x)
−3/2, and Eb/F2(κ ′′ + 1

2κ
3)

describes the pressure from the ice plate on the fluid. The parameter s is the arclength
along the fluid surface, and the prime denotes differentiation with respect to s.

When computing hydraulic falls, the flow is required to be uniform in the far field,
away from the submerged obstacles, so we impose the conditions

φx→ 1, y(x)→ 1 as x→∞ and φx→ γ , y(x)→ 1
γ

as x→−∞. (2.6)

Applying Bernoulli’s equation in the far field as x→±∞, and using conservation
of mass, one final equation is obtained (see Dias & Vanden-Broeck 2004) to complete
the system:

1
2
− 1

2
γ 2 + 1

F2
− 1

F2γ
= 0. (2.7)

A relationship between the upstream and downstream Froude numbers in terms of
the dimensionless upstream flow velocity γ is given by (see Forbes 1988a)

Fup = Fγ 3/2. (2.8)

Following Belward & Forbes (1993), Dias & Vanden-Broeck (2004) and Page et al.
(2014), the problem is now reformulated as a system of nonlinear integrodifferential
equations, which can be solved for the unknown fluid surface y = 1 + η(x) over
arbitrarily shaped obstacles on the bottom of the channel. The fluid surface is first
parametrised by writing x= X(s) and y= Y(s), so that the parametric equation

X′2 + Y ′2 = 1 (2.9)

is satisfied on the surface. The dynamic condition (2.5) is next rewritten as

1
2
φ′2 + 1

F2
(Y(s)− 1)− 1

2
+ Eb

F2

(
κ ′′ + 1

2
κ3

)
= 0, (2.10)

where κ = Y ′′X′ − X′′Y ′ is the parametrised curvature of the fluid–ice interface.
Following Belward & Forbes (1993), Cauchy’s integral formula is applied to the

function
dw
dz
− γ = φx − γ − iφy, (2.11)

where w(z) = φ(x, y) + iψ(x, y) is the complex potential, z is the complex variable
z= x+ iy and ψ(x, y) is the stream function. The contour C is taken to consist of the
fluid surface, the channel bottom and vertical lines joining them at x=±∞. The two
integral equations

π(φ′(s)X′(s)− γ )
=−

∫ ∞
−∞

(φ′(σ )− γX′(σ ))(Y(s)− Y(σ ))− γY ′(σ )(X(σ )− X(s))
(X(σ )− X(s))2 + (Y(σ )− Y(s))2

dσ

+
∫ ∞
−∞

(û(σ )(1+ Bx(σ )
2)− γ )(Y(s)− B(σ ))− γBx(σ )(σ − X(s))

(σ − X(s))2 + (B(σ )− Y(s))2
dσ (2.12)
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and

π(û(x)− γ ) = −
∫ ∞
−∞

(φ′(σ )− γX′(σ ))(B(x)− Y(σ ))− γY ′(σ )(X(σ )− x)
(X(σ )− x)2 + (Y(σ )− B(x))2

dσ

+
∫ ∞
−∞

(−B(σ )+ B(x))(û(σ )(1+ Bx(σ )
2)− γ )− γBx(σ )(σ − x)

(σ − x)2 + (B(σ )− B(x))2
dσ

(2.13)

are derived, where σ represents the value of the arclength at the varying point z(σ )=
x(σ ) + iy(σ ) on the contour C, and the evaluation points s and x are placed on the
free surface and the channel bottom, respectively. The horizontal velocity of the fluid
on the channel bottom is defined by u(σ , B(σ ))= û(σ ).

The two integral equations (2.12) and (2.13), together with the parametrised
dynamic condition (2.10) and the parametric equation (2.9), form the system of
integrodifferential equations to be solved, iteratively via Newton’s method, for the
unknown variables Y ′(s), X′(s) and φ′(s) at the fluid–ice interface and û(x) on the
channel bottom.

3. Results
Following Dias & Vanden-Broeck (2004) and Page et al. (2014), a cosine-squared

profile of the form

B(x)=


2A1 cos2

(
π(x+ x1)

2L1

)
, −L1 < x+ x1 < L1,

2A2 cos2

(
π(x)
2L2

)
, −L2 < x< L2,

0, otherwise

(3.1)

is used as the channel bottom profile. The heights and half-lengths of the submerged
obstructions are thus defined by 2Ai and Li (i = 1, 2), respectively. The separation
constant x1 describes the central position of the additional obstruction. In the case of
just a single submerged obstruction, A1 is taken to be zero.

3.1. Linear theory
In order to explain some of the results in this section, we briefly review the linearised
theory. By substituting a linear periodic wave function with wavenumber k into the
linearisation of the governing equations downstream, i.e. (2.3)–(2.5), we obtain the
downstream linear dispersion relation

F2 =
(

1
K
+ EbK3

)
tanh(K). (3.2)

Here K = kH is the dimensionless wavenumber of the waves.
Similarly, upon substituting the linear periodic wave function with wavenumber k

into the linearisation of the governing equations upstream and then non-dimensionalising
with respect to the downstream fluid depth H, the upstream linear dispersion relation
is obtained:

F2
up =

(γ
K
+ EbK3γ

)
tanh

(
K
γ

)
. (3.3)
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FIGURE 2. Hydraulic fall profiles over a single submerged obstruction of: (a) height
2A2 = 0.1 and length 2L2 = 6; (b) height 2A2 = 0.02 and length 2L2 = 6.4. An elevation
appears immediately before the fall in (a) for the sets of parameter values Eb = 0.5, F=
1.367, Fup = 0.715 (solid curve), Eb = 0.2, F = 1.356, Fup = 0.721 (dotted curve) and
Eb=0.1,F=1.345,Fup=0.728 (dashed curve). A train of decaying waves upstream before
the fall is shown in (b) for the parameters Eb = 0.1, F = 1.159 and Fup = 0.858. In each
case, the Froude number was found as part of the solution.

An important property of the flexural–gravity linear dispersion relation is that there
is always a point at which the phase velocity is equal to the group velocity (see
Squire et al. 1996; Guyenne & Părău 2012). Therefore, there exists a minimum Froude
number Fupmin

, with corresponding wavenumber k = kmin. Near this minimum, linear
theory fails and nonlinear theories are required.

3.2. Fully nonlinear results
Hydraulic fall solutions with subcritical flow upstream (Fup< 1) and supercritical flow
downstream (F> 1) are sought using the numerical scheme described in § 2 (see also
Page et al. 2014).

To ensure the accuracy of the results, the same solution was obtained on meshes
of different densities and sizes. The number of points on the fluid–ice interface was
varied in the range N = 401, . . . , 2401, and the number on the channel bottom
in the range M = 201, . . . , 801. The mesh spacing was similarly taken to be
e= 0.1, 0.05, 0.025 on the free-surface and h= 0.2, 0.1, 0.05 on the channel bottom.
By fixing the domain length, we were therefore able to determine that our solutions
are independent of the mesh, provided that the mesh spacing is small enough. Where
appropriate, solutions were also computed on meshes of different lengths but with the
same mesh density, to ensure that our solutions are not affected by truncation effects.

We take A1 = 0 and A2 > 0, and fix the value of L2 so that the function y= B(x)
describes a uniform channel bottom with just a single obstruction. Typical hydraulic
fall profiles with Eb = 0.5, Eb = 0.2 and Eb = 0.1 over an obstruction characterised
by A2 = 0.05 and L2 = 3 are shown in figure 2(a). Immediately before the hydraulic
fall, there exists a slight elevation in the ice plate deformation. A similar phenomenon
was observed for weak gravity–capillary hydraulic falls (i.e. with τ < 1

3 , where τ is the
Bond number defined by τ = σ/(ρgH2) with σ being the surface tension coefficient)
found in the neighbourhood of the minimum of the upstream gravity–capillary linear
dispersion relation (see Guayjarernpanishk & Asavanant 2012; Page et al. 2014).

Small-amplitude spurious periodic waves are sometimes found downstream of the
hydraulic fall, where the flow is supercritical. In this region, the downstream Froude
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FIGURE 3. Downstream dispersion relation of figure 2(b). The horizontal line corresponds
to the downstream value of the Froude number found in figure 2(b).

number intersects the linear dispersion curve (see figure 3 for the linear dispersion
relation corresponding to figure 2b), and so (short) flexural waves are indeed predicted
by the linear theory ahead of a forcing. There is no obstacle to generate these waves
in this downstream region, but the downstream truncation can act as a form of
artificial forcing, ahead of which waves can form. However, by manipulating the
far-field conditions downstream, it is possible to reduce the amplitude of the spurious
waves so much so that we obtain approximately zero-amplitude waves downstream,
and thus physically relevant solutions.

By decreasing the value of the parameter Eb, the upstream Froude number increases
towards the minimum of the upstream linear dispersion relation, and the small
elevation becomes part of a train of decaying waves before the fall. A similar result
has been seen in the critical solutions for the gravity–capillary case. However, the
train of waves found here in the flexural–gravity cases appear to be more pronounced
and extend further upstream. In order to minimise any truncation problems, we use
a long domain, truncating at x = ±60. Figure 2(b) shows such a train of waves
immediately before a fall for the parameters Eb = 0.1 and F = 1.159. The upstream
Froude number is found to be Fup = 0.858, which is very close to the minimum of
the upstream linear dispersion relation, Fupmin

≈ 0.86, with corresponding wavenumber
kmin ≈ 1.2.

In the experiments at Lake Saroma, Japan (see Takizawa 1985, 1988), the water
depth was 6.8 m, which would correspond to Eb= 0.01 here. In the Lake Diefenbaker
(Canada) experiments, the water depth was 35 m with the parameter Eb = 0.03. The
values Eb = 0.5, 0.2 and 0.1 for the solutions in figure 2(a) would correspond,
respectively, to physical water depths of 2.61, 3.29 and 3.91 m in Lake Saroma, and
17.51, 22.02 and 26.19 m in Lake Diefenbaker. Decreasing the value of the parameter
Eb corresponds to increasing the depth of the water downstream.

The solution branch in the F–Eb plane, for 0.08< Eb < 5 and with an underlying
submerged obstacle characterised by A2 = 0.05 and L2 = 3, is plotted in figure 4(a).
One finds that the Froude number increases with Eb up to some critical value, E∗b .
Conversely, as Eb decreases (towards Eb = 0.08), we approach the minimum of the
upstream linear dispersion relation, and small-amplitude numerical oscillations begin
to appear on the branch. A longer domain, with more mesh points on the surface,



Hydraulic falls under a floating ice plate due to submerged obstructions 215

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

1.371.361.351.341.33

Eb

F

(a)

0
1
2
3
4
5
6
7
8
9

10

1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45 1.50 1.55

F

(b)

FIGURE 4. Solution branches in the F–Eb plane downstream, for a single submerged
obstruction characterised by: (a) A2 = 0.05, L2 = 3; (b) A2 = 0.01, L2 = 3.2 (solid line),
A2 = 0.05, L2 = 3 (dashed line) and A2 = 0.1, L2 = 3.2 (dotted line).

is required to produce accurate solutions. Further turning points may exist on the
branch as one continues to reduce Eb. Due to computational limitations, we therefore
truncated the lower end of the branch at Eb = 0.08, before getting too close to the
minimum.

At E∗b , a turning point exists in the F–Eb plane, after which the Froude number
decreases monotonically as Eb is increased. The existence of this turning point means
that for a critical range of Froude numbers, there exist two solutions over the same
underlying obstruction, with the same value of the Froude number but different values
of Eb. Two such solutions are shown in figure 5(a) for F = 1.36; the two values of
Eb are 1.5 and 0.33. It should be noted that for such solutions, as the density ρ, the
gravitational acceleration g and the flexural rigidity of the ice D are fixed in both
cases, having different values of Eb corresponds to having different values of H and
thus different downstream fluid depths. Further, as the Froude number is also fixed in
both solutions, this implies that the downstream fluid speed in the two solutions differs.
The phenomenon discussed here is therefore not bistability in the traditional sense.

Figure 4(b) shows the solution branches in the F–Eb plane for three different
underlying obstacles. The downstream Froude number and the critical value E∗b at
which the turning point exists increase with obstacle size. Similar behaviour was
found for the τ–F branches in the gravity–capillary case; see figure 6 of Page et al.
(2014). However, the critical range of Froude numbers for which there exist two
solutions with the same value of the Froude number but different values of τ is
larger than the comparable critical range in the flexural–gravity case for two different
values of Eb.

Increasing the height or width of the obstacle decreases the upstream Froude
number, so that with Eb fixed, the difference between Fup and Fupmin

increases. We
were therefore able to reduce Eb further, before Fup intersected the upstream linear
dispersion relation, by increasing the size of the obstacle. A solution with Eb = 0.02
over an obstacle of height 2A2 = 0.35 and width 2L2 = 35 is plotted as the solid
curves in figure 5(b). A solution over a smaller obstacle (with a larger value of
Eb) is represented by the dashed curves. The slope of the fall clearly decreases for
solutions over a wider or larger obstacle. Similarly, the upstream depth of the fluid
increases with the height of the obstacle.

In the absence of a thin ice sheet covering the fluid, placing an additional
obstruction upstream of the hydraulic fall in the pure gravity case has the effect
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FIGURE 5. (a) Hydraulic fall solutions over a submerged obstacle of height 2A2 = 0.1
and width 2L2 = 6: the solid curve is the solution with Eb = 1.5 and the dashed curve is
the solution with Eb = 0.33; the Froude number in both cases is found to be F = 1.36.
(b) Hydraulic fall solutions over a submerged obstacle: the solid curve is the solution over
an obstacle of height 2A2 = 0.35 and width 2L2 = 35, with F = 1.74 and Eb = 0.02; the
dashed curve is the same as the dashed solution in (a); the obstacles in both cases are
also shown.

of producing a train of trapped waves between the two obstacles before the hydraulic
fall (see Dias & Vanden-Broeck (2004) for numerical solutions and Pratt (1984) for
experimental results). In the gravity–capillary problem, however, unless the surface
tension is very small so that the upstream Froude number intersects the upstream
gravity–capillary linear dispersion relation, the additional obstacle must be placed
downstream of the hydraulic fall in order to obtain a train of trapped waves between
the two obstacles (Page et al. 2014).

We place the additional obstruction downstream of the hydraulic fall to obtain
trapped wave solutions. A typical profile with the additional obstacle centred at
x = 20 is shown in figure 6(a). A train of waves exists between the two underlying
obstructions, with a higher-amplitude elevation wave occurring over the second
obstruction. In this downstream region, the flow is supercritical and pure gravity
flows without trapped waves have been considered by Belward (1999). A small
elevation appears upstream immediately before the fall, over the first obstruction.

The wavelength of these waves can be inferred from the linear theory, with the
downstream Froude number intersecting the downstream linear dispersion relation at
wavenumber K ≈ 1.573. Both the upstream and downstream dispersion relations are
shown in figure 7. A wavetrain of waves of wavelength λ= 2π/1.573≈ 4.002 (solid
line) is therefore expected. The waves found in figure 6(a) are of wavelength λ ≈
12.83 − 8.85 = 3.98, which is very close to the wavelength predicted by the linear
theory.

Reducing the amplitude of the additional obstacle or reducing the parameter Eb
reduces the amplitude of the trapped waves.

The solution branch in the Eb–F plane (with Eb 6 15) is shown in figure 6(b)
for the channel bottom configuration characterised by A2 = 0.1, A1 = 0.05 and L1 =
L2 = 3.2. Multiple turning points are found on the branch, showing that for a critical
range of Froude numbers, the trapped wave solution for a given underlying channel
bottom configuration is not unique. For example, for F = 1.51, figure 8 shows five
different solutions for different values of Eb, namely Eb = 0.28, 0.43, 0.54, 1.17 and
5.51, corresponding to water depths of 3.02, 2.71, 2.56, 2.11 and 1.43 m, respectively,
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width 2L2 = 6.4, with an additional obstacle, characterised by 2A1 = 0.16 and 2L1 = 6.4
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Froude number F= 1.54 is found as part of the solution, and Eb = 0.5 is given. (b) The
trapped wave solution branch in the Eb–F plane for flow past two fixed submerged
obstructions characterised by A2 = 0.1, A1 = 0.05 and L1 = L2 = 3.2 with x1 =−15.
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FIGURE 7. Linear dispersion relations for Eb= 0.5. The solid curve gives the downstream
linear dispersion relation, and the solid line at constant F gives the downstream value
of the Froude number for a channel bottom configuration classified by A2 = 0.1, A1 =
0.08, L1 = L2 = 3.2 and x1 =−20. The dashed curve gives the upstream linear dispersion
relation, and the dashed line the upstream Froude number for the same configuration.

for the physical parameters used in the experiments at Lake Saroma in Japan, and to
water depths of 20.25, 18.19, 17.18, 14.16 and 9.61 m for the physical parameters in
the experiments at Lake Diefenbaker in Canada. The amplitude of the trapped waves
can be seen to increase with Eb. We were able to continue following the solution
branch in figure 6(b) for much greater values of Eb, with F increasing monotonically
with Eb, corresponding to smaller and smaller channel depths.

We calculated solutions for obstacles of different heights and widths from those
shown in figure 6, and found similar behaviours to the results described here. A
solution with A1 > A2 is shown in figure 9(a). The height of the elevation over the
obstacle downstream of the hydraulic fall may increase so much that it is of the
same height as the upstream flow. When A1 < 0, similar trapped wave solutions can
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FIGURE 8. Trapped wave solutions for flow past two fixed submerged obstructions
characterised by A2=0.1,A1=0.05 and L1=L2=3.2 with x1=−15, for different values of
the parameter Eb: (a) Eb= 0.28 (solid curve) and Eb= 0.43 (dashed curve); (b) Eb= 0.54
(solid curve), Eb = 1.17 (dashed curve) and Eb = 5.51 (dotted curve). The Froude number
in each case is found to be F= 1.51.
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FIGURE 9. Hydraulic fall profiles over a submerged obstacle of width 2L2= 6.4, with an
additional obstacle of width 2L1= 6.4 at x1=−20 downstream: (a) submerged obstacle of
height 2A2= 0.2 and downstream obstacle of height 2A1= 0.6; (b) submerged obstacle of
height 2A2 = 0.1 and downstream obstacle of height 2A1 =−0.2. A train of waves exists
between the obstacles. The Froude numbers, F = 1.8 for (a) and F = 1.42 for (b), are
found as part of the solution, and Eb = 0.5 is given.

be found (see figure 9b), but here a depression wave appears over the additional
obstruction downstream.

In the absence of a sheet of ice, generalised hydraulic falls which have a train of
non-decaying waves upstream of the fall may be obtained in both the pure gravity
case (Dias & Vanden-Broeck 2002) and the gravity–capillary (Page et al. 2014) case.
These solutions lack physical relevance in a flow configuration involving just a single
obstruction, however, due to violating the radiation condition which requires that
no energy comes from infinity (and thus no gravity waves appear upstream). In the
hydroelastic problem, generalised hydraulic fall solutions are also found to exist for
small Eb, where the upstream Froude number intersects the upstream linear dispersion
relation twice. The resonance between the two modes is similar to the resonance in
the gravity–capillary case (see, for example, Wilton 1915; Vanden-Broeck 2002), and
thus waves of two different wavelengths travelling at the same speed can appear on
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FIGURE 10. Hydraulic fall profiles over a submerged obstruction of height 2A2= 0.1 and
width 2L2= 6, with an additional obstacle upstream at x=−15, characterised by: (a) A1=
−0.1 and L1 = 3; (b) A1 = 0.05 and L1 = 3. The Froude numbers F= 1.34 and F= 1.37,
respectively, are found as part of the solution, and the parameters Eb = 0.1 and Eb = 0.5
are given.

the upstream part of the solution (see Vanden-Broeck & Părău 2011). However, the
accurate computation of these waves is difficult, and we do not present results in this
region due to the computational limitations.

When the additional obstacle is placed upstream of the hydraulic fall with Fup less
than the minimum of the upstream linear dispersion relation, a forced solitary-type
wave with small decaying oscillations in its tail is obtained over the obstruction. It
is worth noting that in shallow water, for F ≈ 1, a fifth-order KdV equation was
derived by Guyenne & Părău (2014) and Xia & Shen (2002). It is well known that this
equation admits solitary waves with decaying oscillations, as solutions for Fup <Fupmin

(see Grimshaw, Malomed & Benilov 1994). Forced waves with decaying oscillations
for a forced fifth-order KdV equation have also been computed by Cho & Akylas
(2009). We obtain a depression wave if A1 > 0 and an elevation wave if A1 < 0.
Example solution profiles are shown in figure 10. Decreasing Eb so that the upstream
Froude number approaches the minimum of the upstream linear dispersion relation
increases the number of decaying oscillations in the tails of these forced solitary-type
waves.

4. Discussion
Fully nonlinear hydraulic fall solutions under an ice plate modelled by a thin elastic

shell have been presented and discussed. A train of decaying waves immediately
before the fall is observed. When an additional obstruction is placed downstream of
the hydraulic fall, a train of waves trapped between the obstacles has been found. It
is shown that such solutions are not unique. When the additional obstacle is placed
upstream, forced solitary-type waves with small decaying oscillations in their tails
exist.

The values of Eb used in our results are relatively large, and so the results presented
in this paper correspond to shallow-water applications (e.g. lakes and fjords) rather
than deeper oceanographic situations. Typical physical values for the parameters used
in the Lake Saroma experiments (see Takizawa 1985, 1988) are h = 0.17 m, ρ =
1026 kg m−3, g = 9.8 m s−2, E = 5.1 × 105 N m s−2 and H = 6.8 m, where h is
the thickness of the ice, E is the Young’s modulus and H is the water depth. The
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flexural rigidity of the ice is given by D=Eh3/12(1− ν2)≈ 2.34× 105 N m where ν
is the Poisson ratio (see Părău & Dias 2002). This corresponds to Eb = 0.01. In the
Lake Diefenbaker experiments (see Eyre 1977) the physical parameters can be taken
to be h = 0.73 m, ρ = 1026 kg m−3, E = 13 × 109 N m s−2 and H = 35 m. This
gives an approximate flexural rigidity of the ice of D ≈ 4.73 × 108 N m and thus
Eb= 0.03. Here, we have computed solutions for Eb from 0.02 to 5 (see figure 4(a)).
Such solutions would thus be physically relevant for Lake Saroma between depths
5.84 and 1.47 m, and for Lake Diefenbaker between depths 39.16 and 9.85 m. One
can see that the mean depth of Lake Diefenbaker is included within this range.

Computing solutions for small values of Eb is difficult, as they lie in the
neighbourhood of the minimum of the upstream linear dispersion relation. Reducing
Eb, whilst keeping the size of the obstacle fixed, increases the upstream Froude
number, so that it approaches Fupmin

. When the Froude number intersects the upstream
linear dispersion relation, a resonance occurs, and thus waves of two different
wavelengths are expected to travel at the same speed on the upstream part of the
solution. Therefore, solutions corresponding to greater depths in Lake Saroma and
Lake Diefenbaker over the fixed obstacle are expected to take the form of, for
example, Wilton ripples upstream of the fall (Vanden-Broeck 2002), whilst being
uniform downstream.

If, however, one increases the size of the obstacle, this decreases Fup so that Eb
may be reduced further before Fup intersects the linear dispersion relation. For a
large obstacle, the hydraulic falls found at greater depths in Lake Saroma and Lake
Diefenbaker may therefore be uniform both upstream and downstream.

It should be noted that in some cases, for very-large-amplitude solutions which
correspond to large obstacles, the model described here can become unphysical. For
realistic solutions, the strain of the ice plate needs to be less than the yield strain of
ice (see Brocklehurst, Korobkin & Părău 2010). Otherwise, at these high strains, it
becomes unrealistic to model the ice plate as a thin elastic shell, as the behaviour of
the plate becomes plastic and so one would expect the ice to fracture or break. The
strain of the ice plate may be calculated by

ε = h
2
κ∗ ≈ h

2
η∗x∗x∗, (4.1)

where h is the thickness of the ice and κ∗ is the dimensional curvature of the ice plate
(see e.g. Ugural 1981, Brocklehurst et al. 2010 and Squire 1993 for more details).
The strain is thus proportional to the curvature of the surface. For short waves, the
increase of the curvature in the deformation of the ice plate therefore causes greater
strain in the plate. The maximum strain in the solutions presented in this paper occurs
at the beginning and the end of the hydraulic falls. We calculated it to be within
the region 1× 10−3 to 1× 10−5, depending on the height and width of the obstacle.
As the amplitude of the obstacle is reduced or the width is increased, the maximum
strain in the ice plate is found to decrease. Failure of the ice occurs as a result
of cracks propagating through the ice. In the ocean, Goodman, Wadhams & Squire
(1980) calculated that a crack would propagate if the strain reached the critical value
εcr= 4.3× 10−5. In pure ice, however, the yield strain is higher as salt does not creep
into the cracks, so εcr = 2.14 × 10−4 in this case (see Goodman et al. 1980). The
solutions presented here with the steepest hydraulic falls have the largest values of
the strain, of the order of 10−3, and would thus be expected to fracture. However,
physically realistic solutions were also presented in this paper, where the strain is
below εcr.
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PAGE, C., GRANDISON, S. & PĂRĂU, E. I. 2014 The influence of surface tension upon trapped

waves and hydraulic falls. Eur. J. Mech. B/Fluids 43, 191–201.
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