
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1

A Multiple Migration and Stacking Algorithm
Designed for Land Mine Detection

John Schofield, David Daniels, and Paul Hammerton

Abstract—This paper describes a modification to a standard
migration algorithm for land mine detection with a ground-
penetrating radar (GPR) system. High directivity from the an-
tenna requires a significantly large aperture in relation to the
operating wavelength, but at the frequencies of operation of GPR,
this would result in a large and impractical antenna. For oper-
ator convenience, most GPR antennas are small and exhibit low
directivity and a wide beamwidth. This causes the GPR image
to bear little resemblance to the actual target scattering centers.
Migration algorithms attempt to reduce this effect by focusing
the scattered energy from the source reflector and consequentially
improve the target detection rate. However, problems occur due to
the varying operational conditions, which result in the migration
algorithm requiring vastly different calibration parameters. In
order to combat this effect, this migration scheme stacks multiple
versions of the same migrated data with different velocity values,
whereas some other migration schemes only use a single velocity
value.

Index Terms—Land mine detection, reverse time migration.

I. INTRODUCTION

OUT of the many issues for countries recovering from con-
flict, one of the key problems is that of land mines. Land

mines have been used in many conflicts over the years, and this
has resulted in between 45 and 100 million unexploded land
mines in the ground today spread across over 75 countries [5].
As a result of this, considerable research has gone into trying
to find a cost-effective way of detecting land mines without
excessive false alarms. Ground-penetrating radar (GPR) is an
electromagnetic technique for finding the location of objects
or interfaces buried beneath the Earth’s surface [6], [8]. GPR
works by sending electromagnetic waves into the ground, as
shown in Fig. 1, and detecting the reflected signal caused by
any impedance discontinuities in the ground, which can then be
investigated if required.

The GPR image is highly dependent on the propagation
characteristics of the ground as well as the antenna character-
istics. Consider the idealized case where we are detecting a
point source; here, we have the point spread function of the
target being convolved with the antenna beam function, and
this spreads the received signal in time and space, causing the
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Fig. 1. Standard GPR arrangement demonstrating how to detect buried
objects.

well-known diffraction hyperbola [10]. The problem with this
idealized case is that the wavelengths used by GPR devices can
be half the diameter of an antitank (AT) mine, and as such,
the AT mines do not always act like point spread functions.
However, the geometry of AT mines means they still form
hyperbolic scattering because of multiple scattering centers
which, of course, are not the same as a single point source.
Throughout this paper, we will be making the assumption that
we are dealing with perfect hyperbolas, which is a reasonable
assumption considering the scattering patterns caused by the
AT mines used in the investigation.

This paper discusses a new technique to improve the target
detection rates by using a multiple migration and stacking
scheme. Here, we will converge the diffraction hyperbola back
into something more closely resembling a point source for a
range of different ground conditions.

A standard technique for finding a certain class of shape in
an image is the Hough transform (HT). The HT [11] and gen-
eralized HT (GHT) [2] are basic feature extraction techniques
used to find imperfect instances of a certain class of shapes.
Typically, the GHT is used for detecting basic shapes such as
lines or circles [12], although more complicated shapes can
also be considered [17], such as hyperbolas. As such, the HT
has been used in various papers to help detect these hyperbolas
[1], [3], and techniques have been developed to take account of
variable soil density which then affects the propagation velocity
[15]. Another approach to improve the clarity in GPR signals
is to use migration. However, most migration literature deals
with seismic data [4], [16]. A popular migration technique for
improving the detection rates of land mine detectors has been
reverse time migration, which various investigators have used to
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reduce the scattering effects [9], [13], [14], [19]. Ideally, such
an algorithm should be used in real time with the land mine
detector and work on a variety of ground conditions without
the need for recalibration. However, the migration algorithms
tend to be relatively complicated, which leads to problems
implementing them directly into a land mine detector while
the HT encounters problems when dealing with hyperbolas of
varying shapes.

In this paper, a scheme is developed from observing reverse
time migration algorithms and simplifying the method without
losing any of its effectiveness, while also improving its ro-
bustness in dealing with varying ground conditions. This has
been accomplished by creating a process which stacks multiple
images with differing diffraction signatures. Typically, this
has only been possible in either “common shot” or “common
receiver” configurations [10], which requires either multiple
transmitting antennas or multiple receiving antennas. These
configurations are impractical for the purposes of demining;
hence, why the following scheme has been developed for zero-
offset data.

II. MULTIPLE MIGRATION AND STACKING ALGORITHM

A. Introduction and Aims

In this section, we formally develop the algorithm used here
to improve the target detection rates for land mine detection.
Following this, we will test the algorithm on numerous data sets
in different ground conditions and develop a target detection
algorithm to quantify the improvement offered by the migration
algorithm.

For each B-Scan [7], we expect to find hyperbolas with
unknown curvature in a region which also contains a significant
amount of noise and clutter. This technique will detect hyper-
bolas of any curvature within a reasonable range and highlight
them for the user.

As was mentioned earlier, this is accomplished by stacking
various images with differing diffraction signatures in order
to give us a final image which will show minimal effects of
diffraction, hence providing a clearer image for the purposes
of demining. These images are created using a basic migration
scheme which acts iteratively on each A-Scan. This approach
looks at potential targets and enhances their probability by
adding adjacent samples from regions where we would expect
scattering to occur. This is then performed multiple times for
the entire B-Scan with a range of calibration parameters to
generate a range of images with differing diffraction signatures,
which are then stacked together to give the final image.

The end result of the migration is similar to what could
be achieved using an HT designed to detect hyperbolas of a
specific curvature.

B. Mathematical Modeling

Due to the wide beamwidth, signals are received from a
variety of locations other than directly above a target. We
assume a beamwidth of θ (the GPR device which produced
the scans used in this paper had a value of θ ≈ 45◦). It can be
seen that, by looking at a single A-Scan, there are a wide range

of possible locations for a signal response to originate from.
Typically, multiple signal responses exist from the same target
in a B-Scan. We can correlate these signal responses in order to
find the target’s actual location.

First of all, we need to develop a forward scattering model.
Consider a sequence of A-Scans corresponding to the hori-
zontal positions xI , where I = 1, . . . , N . For each of these
A-Scans, a response of amplitude RI,J is recorded correspond-
ing to a propagation distance zJ , where J = 1, . . . ,M . We
consider a buried object at (xa, zb), and we expect to receive
a signal response at (xi, zj), where zj is the distance from
the detector (xi, 0) to the buried object (xa, zb), provided the
beamwidth is wide enough. From here, we wish to converge the
set of points in a B-Scan, which belong to a single object, back
into a pointlike object, which will allow us to see the target’s
location. In order to do this, we need to find the set of points
SI,J = {(xi, zj)} satisfying

(xi − xI)
2 + z2j = z2J ± δ

∣∣∣∣
(xi − xI)

zJ

∣∣∣∣ ≤ β (1)

where β = tan θ and δ is the smallest correction term to ensure
that i ∈ {1, . . . , N} and j ∈ {1, . . . ,M}. We need to find SI,J

for all I and J (i.e., the whole B-Scan). Now, given a new point
(xp, zq), we create the set Tp,q , which is defined as

Tp,q = {(I, J) such that (xp, zq) ∈ SI,J} . (2)

Finally, we define the migrated point R̂p,q as

R̂p,q =
∑

I,J∈Tp,q

RI,J (3)

which is the sum of all points where a signal response could be
generated from an object at (xp, zq). Now, the migration map
R̂I,J for I = 1, . . . , N and J = 1, . . . ,M can be generated for
the entire B-Scan, which will allow better object definition for
the purpose of finding targets.

C. Real Data Modeling

The formulation of the previous section is based upon hor-
izontal and vertical distances, whereas the data consist of a
sequence of A-Scans. We make the assumption that the prop-
agation velocity through the ground is constant; hence, we can
assume that there is a linear relation between time tJ of the
signal response and the depth of the target zJ . This is not strictly
true due to changes in soil type as a function of depth and
lateral distance, as well as the varying water content of the
ground, again as a function of depth and lateral distance, and
objects in the ground. These all affect the propagation velocity;
however, it is still an acceptable assumption for the local region
associated with a hyperbola. This gives zJ = ĉtJ/2, where ĉ is
the propagation velocity of the radar waves through the ground.
Also, GPR data are typically gathered using a handheld detec-
tor, which take a certain number of readings per second, and as
such, we do not know the distance between adjacent A-Scans.

In order to use the formulation of migration from the previ-
ous section, we need to use expressions for the horizontal and
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Fig. 2. Four images of the same migrated B-Scan showing the importance of using the correct spreading factor. Note that all images have been normalized
between −1 and 1 and standard preprocessing techniques have been performed.

vertical distances. We have that zj = jĉΔt/2 and xi = iΔx,
where Δx and Δt are the step sizes in x and t, respectively,
i is the ith A-Scan, and j is the jth signal response from an
A-Scan. Note that Δx is taken as a constant, corresponding to
a uniform velocity of the detector, but the algorithm allows for
fluctuations, as is described later. Because of this change, we
need to express (1) in terms of the new notation, and now, we
need to find the set of points Sα

I,J = {(xi, zj)} satisfying

1

α2
(i− I)2 + j2 = J2 ± δ

∣∣∣∣
(i− I)

J

∣∣∣∣ ≤ αβ (4)

where α = ĉΔt/2Δx and will now be referred to as the spread-
ing factor. Now, (2) remains the same, giving the set Tα

p,q ,
defined as

Tα
p,q =

{
(I, J) such that (xp, zq) ∈ Sα

I,J

}
. (5)

Again, we define the migrated point R̂α
p,q as

R̂α
p,q =

∑

I,J∈Tα
p,q

RI,J . (6)

This leads to the migration map R̂α
I,J for the whole B-Scan with

spreading factor α.
In order for this method to work, we need to find the value

for α = ĉΔt/2Δx. In this paper, the B-Scans have been gen-
erated using a MINEHOUND land mine detector developed by
Cobham Technical Services with a bandwidth of approximately
500 MHz to 2500 MHz. With this GPR device, Δt (the sam-
pling time) was 50 ps, and the propagation velocity ĉ is given by
ĉ = c/

√
ε, where c is the speed of light in a vacuum and ε is the

ground’s relative dielectric constant. Consider the case where
ε ≈ 6.25 as a test case to inform us of the approximate size

of this parameter; this results in ĉ ≈ 1.2× 108 ms−1. The step
sizes in x, Δx, can be calculated by considering the data ac-
quisition frequency (DAF). The MINEHOUND detector has a
DAF of 62.5 Hz. Δx can be calculated as Δx = Velocity DAF.
If we assume the average velocity of the detector to be
0.5 ms−1, this gives Δx = 0.008 m. Combining all these to-
gether gives α ≈ 0.375.

However, adopting a fixed value of α leads to problems due
to the fact that both propagation velocity ĉ and speed with
which the GPR device is moved are subject to variations, which
make any fixed estimate of α unreliable over the course of a
B-Scan. The propagation velocity varies with changes in the
ground type and the moisture content of the ground. The speed
with which the GPR device is moved depends on the operator,
and while you would expect an approximately constant velocity
from the same operator, there will be some fluctuations. This
means that any change to the curvature of the hyperbolas we are
trying to resolve can be countered by a change to α. Typically,
in a single B-Scan, multiple spreading factors will be needed
to resolve each target back into something resembling a point
source. This can be seen in Fig. 2, where we attempt to migrate
eight AT mines, presented in the layout described in Fig. 4,
back into pointlike sources using various spreading factors, and
as can be seen, no single spreading factor migrates all targets
back into pointlike sources. In Fig. 2, the four mines on the left
are metal Tenkovska Mina Metalna-1 (TMM-1) AT land mines,
whereas the four on the right are minimum metal Tenkovska
Mina Antimagnetna-2 (TMA-2) AT land mines. The multiple
reflections in the minimum metal mines can be explained due
to the GPR waves entering the mine and reflecting internally
inside the mine before returning to surface, hence causing the
resonance effect. This is not possible with the metal mines as
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Fig. 3. Example of how overlaying the images from Fig. 2 with various spreading factors works. Note how the diffraction effects visible in Fig. 2 can no longer
be seen.

Fig. 4. Layout of the mines from left to right as shown in Figs. 2, 3, and 5.

they act as a Faraday cage and, as such, allow no energy inside
the mine.

As can be seen from Fig. 2, the most effective spreading fac-
tor seems to be α = 0.6. However, for some targets, a spreading
factor of α = 0.3 seems more appropriate at resolving targets
back to pointlike sources (possibly due to local variations
in the water content of the ground). Rather than be faced with
the difficult problem of finding the optimal spreading factor,
the decision was made to superimpose all images together
from Fig. 2. This results in an image where we have a strong
response from the targets’ locations due to the fact that there is a
signal response at this location in all of the images. Conversely,
any signal responses caused by the hyperbolic scattering or an
incorrect spreading factor will only appear in one or two images
and, as such, will not show up strongly in the overlaid image, as
can be seen in Fig. 3. Mathematically, we can represent this as

R̃I,J =

r∑

γ=1

R̂α
I,J

∣∣∣∣∣
α= γ

10

(7)

where r = 8 has been used corresponding to spreading factors
of α = 0.1, 0.2, . . . , 0.8. However, this may need to be changed
according to the type of equipment, the velocity of the detector,
and the ground conditions. However, a 33% change in the
spreading factor (from changes of velocity or ground condi-
tions) makes a minimal difference to the final image. It may be
possible to implement an adaptive algorithm that alters r based
on the data; however, this has not been considered in this paper.

III. STATISTICAL TESTING

A. Introduction

In order to impartially test how well the multiple migration
and stacking algorithm performs, this section will show the
results of testing this method on numerous data sets in order to
obtain the probability of detection and the false alarm rate. The
test site where these measurements were taken was prepared by

burying replica mines in various ground types. These are gen-
uine TMM-1 and TMA-2 mines with the explosives removed
and replaced with an inert material with similar dielectric
properties as the explosive. These mines were then laid in
ballast, a mixture of sand and shingle, and crushed concrete,
with each ground type offering slightly different conditions
such as subsurface anomalies and propagation characteristics.
It is of worth noting that rocks and boulders do not pose much
of a problem causing false alarms as they have much smaller
radar scattering cross sections and vastly different internal
structures. The results have been gathered with these mines
laid in the configuration described in Fig. 4 in each of the
three ground types to test how well the algorithm copes with
varying conditions. These results will then be tested by a target
detection algorithm based upon the total energy in each A-Scan.

B. Norm of Each A-Scan

A simple method of target detection is to consider the norm
squared for each A-Scan, which is denoted by ‖Ri‖2, where
Ri = {Ri,1, . . . , Ri,M} and is given by

‖Ri‖2 =

M∑

j=1

(Ri,j)
2. (8)

This can be quickly calculated for the entire B-Scan, and
from there, we assume that, the higher the norm squared, the
more likely it is that a target is present at that location. Upon
inspecting the norm squared, it became clear that low-level
background noise was providing mild interference. In order to
reduce this background noise, thresholding was introduced to
the B-Scan based upon a test section of ground with no mines
present, which was performed on both original and migrated
data sets. However, it is worth mentioning that this step is
optional and has been mainly introduced in order to improve the
clarity of the results. The results from applying the thresholding
first and then calculating the energy in each A-Scan are shown
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Fig. 5. Energy of each A-Scan in a B-Scan showing the effect of performing migration with an energy cutoff.

in Fig. 5. As can be seen from Fig. 5, the effects of migration
are to increase the energy from a target and reduce the distance
over which the energy is spread over, both consistent with what
was expected from the algorithm. A further effect is that the
migration algorithm will only pick out and highlight objects
that are hyperbola shaped; any artifacts without this key shape
are reduced below the level of the background noise, which
leads to a reduction in the false alarm rate.

With the energy of each A-Scan extracted, we can now quan-
tify how much of an improvement performing migration offers
in terms of locating potential targets. This is accomplished
by setting a cutoff value where any peaks over this value are
classified as a target. The results of target detection are shown
in Fig. 5, where a cutoff value has been included to better show
the effects of the migration. By varying this cutoff value, we can
generate receiver operator characteristic (ROC) curves to better
see the effect of migration. Note that an arbitrary cutoff value
has been selected as all data sets have been normalized. If the
peak of energy is within a window predefined to be the location
of a target from knowledge of the mine locations, then it is re-
garded as a successful detection. However, if the peak is outside
this predefined window, then it is regarded as a false alarm.

C. Results

Having now developed a target detection algorithm, the
multiple migration and stacking algorithm can now be tested
on numerous AT mines. In order to gather the results, three test
sites were prepared in ballast, a mixture of soil and shingle,
and MOT. Each test site contained eight AT mines laid in
the configuration described in Fig. 4. The data set consisted
of 66 B-Scans following a predetermined path directly above
the mines with 22 B-Scans from each ground type, resulting
in a total of 528 AT mines. All results were obtained by the

same operator, and half of the data were collected a day after
a substantial rainfall, while the other half was collected after
a prolonged dry spell. The target detection algorithm was then
used in order to measure the effect of the multiple migration
and stacking algorithm (against not using the algorithm for the
same data sets).

As mentioned in the previous section, we vary the cutoff of
how much energy is needed in an A-Scan for it to be termed
“a target” to generate ROC curves. This allows us to see how
effective the algorithm is in improving target detection rates.
As can be seen in Fig. 6, performing migration offers a clear
improvement in target detection. In Fig. 6, the false alarm rate
is defined as the ratio of false alarms to genuine targets. Hence,
a false alarm rate of one means that there is one false alarm for
every successful detection. In practice, the false alarm rate will
be much higher than that on the test site; however, the results
in Fig. 6 show a clear improvement upon using the multiple
migration and stacking algorithm.

IV. CONCLUSION

In this paper, a multiple migration and stacking algorithm has
been developed to increase the probability of detection of AT
land mines at a false alarm rate of 0.01. The algorithm provided
a probability of detection of 0.85 compared with 0.6 before
processing, hence demonstrating a substantial improvement.
The aim of this technique was to eliminate the hyperbolic
scattering present when detecting land mines in GPR images for
a range of different ground conditions. The key feature of this
new approach is the stacking technique which reduces the effect
of fluctuations of the ground conditions and in the movement
of the detector operator. This method was tested on real data
to observe the effectiveness of this technique at improving the
target detection rate.
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Fig. 6. (Dashed red lines) ROC curves based on the norm of each A-Scan
highlighting the effects of migration with 95% error bounds generated using
the Wilson score interval [18].

Further research could include testing this method on more
soil types and types of mine across various sites to improve
the reliability of the algorithm. Also, it would be of interest to
introduce clutter in the ground to see how well the algorithm
will distinguish between clutter and the mines. This method
could also easily be extended to work in three dimensions to
accommodate use for multiple wide swathe detectors which
typically generate 3-D images.
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