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Bosons interacting repulsively on a lattice with a flat lowest band energy dispersion may, at sufficiently small
filling factors, enter into a Wigner-crystal-like phase. This phase is a consequence of the dispersionless nature of
the system, which in turn implies the occurrence of single-particle localized eigenstates. We investigate one of
these systems—the sawtooth lattice—filled with strongly repulsive bosons at filling factors infinitesimally above
the critical point where the crystal phase is no longer the ground state. We find, in the hard-core limit, that the
crystal retains its structure in all but one of its cells, where it is broken. The broken cell corresponds to an exotic
kind of repulsively bound state, which becomes delocalized. We investigate the excitation spectrum of the system
analytically and find that the bound state behaves as a single particle hopping on an effective lattice with reduced
periodicity, and is therefore gapless. Thus, the addition of a single particle to a flat-band system at critical filling
is found to be enough to make kinetic behavior manifest.

DOI: 10.1103/PhysRevB.91.054103 PACS number(s): 67.10.Ba, 05.30.Jp, 67.85.−d, 73.21.Cd

I. INTRODUCTION

Flat-band lattices, that is, lattices with a large degenerate
subspace of single-particle solutions, have been the subject
of interest for some time. For instance, they play a key role
in the theory of ferromagnetism, where rigorous results by
Lieb [1], Mielke [2], and Tasaki [3] guarantee the occurrence of
ferromagnetism in flat-band Hubbard models, without the need
for unrealistic long-range hopping terms. Also, the analogy
between flat bands and the Landau levels enables the use of
ultracold atomic systems [4,5] as a means of experimenting
with quantum Hall physics [6–8]. The interface between flat-
band ferromagnetism and topological band theory has also
been studied [9–11]. The above examples pertain to fermionic
systems, which are the main target of study in condensed
matter physics. On the other hand, it is possible to engineer
flat-band lattices for ultracold bosons by loading bosonic atoms
into optical lattices [4,12]. Such systems are interesting in their
own right, as they can be expected to support novel phases of
matter not necessarily related to the quantum Hall effect or any
other paradigmatic condensed matter phenomenon [13,14].

A flat band is simply an energy band in which the energy is
constant, i.e., independent of the particle’s quasimomentum.
In a flat band, kinetic energy is an irrelevancy and behavior
is governed entirely by interactions, so that even weakly
interacting particles in the low-density limit enter a state that
is strongly correlated and profoundly nonperturbative. Often,
a consequence of such prepotency of interactions over kinetic
terms is a Wigner-crystal-like ground state, in which the par-
ticles occupy nonoverlapping localized eigenstates [3,15–18].
In the repulsively interacting regime, and when the flat band is
the band of lowest energy, this behavior can be explained via
a simple energetic argument. It is energetically unfavorable
for particles to overlap, but occupying a superposition of
orthogonal flat band modes which is zero over all but a few
lattice sites incurs no energy penalty. The system can avoid
the energy cost of double and higher occupancies by filling
the lattice with nonoverlapping localized eigenstates, and in

this manner a crystal is formed. This picture, however, only
holds true at low density. Above a critical filling factor νc

(ν = N/L where N is the number of particles and L the
number of lattice sites) there is insufficient space for every
particle to occupy a localized state without any overlap,
and the pure crystalline structure must be (at least partially)
destroyed. The behavior of such lattice models at slightly
above νc has been studied recently by Huber and co-workers
in [13,19], and by Möller and Cooper [18]. In these works,
the authors treat the weak-coupling limit, with the band
gap much larger than the on-site interaction. They therefore
assume that the ground state can be constructed entirely from
(a projection onto) flat-band modes: an entirely justifiable
approach, which provides excellent agreement with full-blown
numerical calculations [13]. However, if the interaction energy
is much larger than the band gap, the particles cannot all be
expected to stay in superpositions of flat band modes as in the
weak-coupling regime, and it is unclear how states which have
contributions from the upper bands enter the problem, and how
kinetic behavior, if at all, manifests.

Here we investigate strongly interacting bosons on a
lattice supporting a flat lowest band. Specifically, we study
the particularly simple sawtooth lattice (see Fig. 1), whose
behavior above the critical filling fraction is understood in the
weakly interacting regime [13] and has been the subject of
study in the hard-core limit [20]. By investigating the situation
where the filling fraction is ν = νc + ε, with ε = O(1/N),
we find that kinetic behavior does indeed occur at a filling
slightly above the critical value, in the following, and rather
unexpected, way. A two-body bound state is formed in the
hard-core limit: a surprising result, given that the bosons
comprising it do not overlap with each other. This bound
state traverses the crystal as if it were a single particle
acting under a pure hopping Hamiltonian, and moves with a
quadratic dispersion relation at low energies, in stark contrast
to the situation at and below critical filling where kinetic
energy is completely quenched. Repulsively bound pairs in
the Hubbard model have been studied [21–25] and observed
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FIG. 1. (Color online) The sawtooth lattice, with a unit cell
highlighted. A flat band occurs when the hopping amplitude between
red sites is 1, and from red to grey is

√
2. The localized states

associated with this band are shown in blue.

with ultracold atoms in optical lattices [26] and nonlinear
optical systems [27], but the physical situations treated in
those studies and experiments are completely different from
the scenario analyzed here. For instance, in the above works
the repulsively bound pairs exhibit large double occupancies
for strong on-site interactions. By contrast, our result shows
that it is possible to find repulsively bound pairs, in the
medium, even when the particles are completely forbidden
from overlapping. We note also that liquids of bound pairs
have been found theoretically on the flat-band Creutz ladder
in the weak-coupling limit [19,28].

II. SAWTOOTH LATTICE BELOW CRITICAL FILLING

The sawtooth lattice is effectively one dimensional (1D),
being essentially a 1D chain with nearest- and next-nearest-
neighbor hopping. For simplicity, and because we have in
mind bosonic atoms in an optical lattice for the experimental
realization, we model the system’s dynamics by the Bose-
Hubbard Hamiltonian with on-site interaction U ,

H =
∑
i,j

ti,j b
†
i bj + U

2

∑
i

ni(ni − 1), (1)

where bi (b†i ) is the bosonic annihilation (creation) operator at
site i, ni = b

†
i bi is the number operator at site i, and where tij

are hopping constants, given by

t2m,j = t(δ|2m−j |,2 +
√

2δ|2m−j |,1), (2)

t2m+1,j = tδ|2m+1−j |,1, (3)

where m is an integer, and t > 0 is the nearest-neighbor
tunneling rate. Note that we assume periodic boundary
conditions, an even number of lattice sites, and have set the
lattice constant to unity. To confirm that our choices for the tij
do indeed give rise to a flat band, the single-particle problem
must be solved. One may pass to first quantization and write
the stationary Schrödinger equation Hψ = Eψ as

∑
μ=±1

t

[√
2ψ(j + μ) + (1 + (−1)j )

2
ψ(j + 2μ)

]
= Eψ(j ).

(4)

Using Bloch’s theorem to write the wave function as ψk(j ) =
φk(j )eikj , where the φk(x) are functions of periodicity 2, gives
two coupled equations,

Eφk(1) = 2t
√

2 cos 2k φk(0) (5)

(E − 2t cos 2k)φk(0) = 2t
√

2 cos k φk(1). (6)

This system is easily solved for the energy E, revealing the
lowest flat and the excited dispersive bands,

E0(k) = −2t, (7)

E1(k) = 2t(1 + cos 2k). (8)

The (unnormalized) localized eigenstates associated with the
flat band (see [3] for mathematical details on the relationship
between flat bands and localized states) are given by

V
†
i |0〉 = (

√
2b

†
2i − b

†
2i+1 − b

†
2i−1)|0〉. (9)

It is easy to check that HV
†
i |0〉 = E0V

†
i |0〉, from which one

immediately concludes that the V
†
i |0〉 are indeed superposi-

tions of orthogonal flat band modes. Clearly, at most L/4 of
these states can fit on the lattice without overlapping. Thus, up
to ν = νc = 1/4, the (not necessarily orthogonal) degenerate
many body ground states take the form

|ψ0〉 =
∏

V
†
i |0〉 (10)

where the product is over a set of N integers {i1,i2, . . . ,iN :
|im − in| > 1 ∀m,n}. In what follows we take the hard-core
limit U → ∞, and thus allow at most one particle per site.

III. SCALING OF THE GROUND STATE ENERGY
WITH SYSTEM SIZE

We now attempt to treat the sawtooth lattice at a single
particle above critical filling. There are two ways of doing so
without changing the periodic properties of the system: one
may either add one particle on top of the preexisting N = L/4
(equivalent to reducing the size of the lattice by four sites), or
remove one unit cell (two sites) from the lattice. We choose the
latter option which is the simpler since, in the language of [13],
it creates a single domain wall, as opposed to the former, which
creates two. We have already pointed out the inadequacy of
perturbative methods, so we adopt a variational approach.
Thus our primary task is to decide upon a sensible ansatz.
To this end, note that there are two ways in which the crystal
phase might be destroyed: (i) the extra particle may become
delocalized and upset the structure of the entire crystal, or
(ii) it may remain localized and break one or several cells of the
crystal, leaving the rest intact. We were able to decide between
these two scenarios with the help of numerical evidence
from exact diagonalization (ED) with up to five particles
and periodic boundary conditions and from density-matrix-
renormalization group (DMRG) [29,30] with up to 25 particles
and open boundary conditions. In Fig. 2, we have plotted
C(N ) = E(N ) + (N − 2)2t . The quantity C represents the
difference between the total ground state energy of the system
and the energy of N − 2 particles in nonoverlapping flat-band
states. Thus, it can be viewed as the energy of an interacting
two-body subsystem, if in the limit of N → ∞ we have
E(N + 1) − E(N ) = C(N + 1) − C(N ) → −2t . ED shows
that the change in the ground state energy tends very quickly
to E(N + 1) − E(N ) = −2t as N increases. For five bosons,
the energy difference is already well converged, and we have
[E(5) − E(4)]/t = −2 − O(10−4). DMRG reveals a similar
trend, although the convergence is slower due to the open
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FIG. 2. (Color online) Comparison of energy obtained via mini-
mization for various particle numbers (blue diamonds) with energies
from DMRG (red circles) and exact diagonalization for five particles
(black squares).

boundary conditions. This energy scaling strongly suggests
that when an additional particle and four extra sites are added
to the system at one particle above critical filling in the limit of
a large lattice, the extra particle occupies a localized state.
This leads us to postulate that when two lattice sites are
removed from the critically filled lattice, N − 2 of the localized
states remain intact. The remaining two particles must avoid
disrupting the localized states, and are thus confined to a block
seven sites long. Since, when contributions from localized
flat-band states are neglected, the ground state energy is close
to that of two particles confined to seven sites with open
boundary conditions, it seems natural to fill the seven-site
block with its two-body ground state when we construct the
ansatz.

IV. THE TRIAL WAVE FUNCTION

Denote a state in which the disrupted block begins on the
2ith site as |ψi〉 (see Fig. 3), so

|ψi〉 = B
†
i

N−2∏
l=1

V
†
i+2l+2|0〉, (11)

where B
†
i = ∑5

j=0

∑6
k=j+1 αjkb

†
2i+j b

†
2i+k . The αjk are chosen

so that B
†
i |0〉 is the ground state of a system of two particles

in seven sites with open boundary conditions. Hence, we can
write

HB
†
i |0〉 = EBB

†
i |0〉 + X

†
i |0〉, (12)

FIG. 3. (Color online) A pictorial representation of a component
of the ansatz. The localized states are shown in blue. The highlighted
block contains two particles and is diagonalized numerically. The full
ansatz is a superposition of states like this, with the highlighted block
starting on each red site.

where EB is the seven-site ground state energy and X
†
i creates

the terms that “leak” out from the disrupted block when the
Hamiltonian is applied:

X
†
i =

5∑
j=0

αj6b
†
2i+j (

√
2b

†
2i+7 + b

†
2i+8)

+
6∑

j=1

αj0b
†
2i+j (

√
2b

†
2i−1 + b

†
2i−2). (13)

Because of translational invariance, no particular block
can be expected to contain the two-body state. Accordingly,
our ansatz should be some superposition of the |ψi〉: |�〉 =∑

i βi |ψi〉. This last is our ansatz, with which we seek to
minimize the energy expectation value, using the (complex-
valued) βi as variational parameters. We must solve

δ

δβ∗
i

(〈�|H |�〉 − E〈�|�〉) = 0, (14)

where E is a Lagrange multiplier to be identified with the
variational energies. After simple manipulation, Eq. (14)
becomes

(C − EB)
∑

j

〈ψi |ψj 〉βj =
∑

j

〈ψi |X†
j |0〉βj (15)

with C = E − (N − 2)E0. Notice that, since the states |ψi〉
are not orthogonal to each other, the above equation represents
a generalized eigenvalue problem (GEP). The lowest value of
C obtained by solving this GEP numerically for 25 particles
agrees very well with the ground state value obtained via
DMRG, which confirms that our ansatz is indeed a sensible
one, and that the solutions of Eq. (15) furnish a good
approximation to the set of exact eigenstates. See Fig. 2 for a
comparison of the C obtained from functional minimization
with that from DMRG.1

V. RESULTS AND DISCUSSION

Of course, Eq. (15) has L/2 solutions. The lowest energy
solution is unique, and each subsequent solution is twofold
degenerate, suggesting the existence of a quasimomentum-like
quantum number. Each solution yields a set of βj . Acting on
our intuition about the quasimomentum, we label each set by
an integer n, and have the energy increase monotonically with
|n|. We let n run from −L/4 to L/4 − 1. The degenerate states
are labeled n = ±|n|, and the unique ground state has n = 0.
With this labeling scheme, if k is defined as k = 2πn/L, we
have verified numerically that β

(n)
j = (−1)jneijk to machine

accuracy, so

|�n〉 =
∑

j

(−1)jneijk|ψj 〉. (16)

1C, rather than E, is the pertinent quantity when it comes to
assessing the accuracy of results here, since for any large value of N ,
the breakage energy, being of O(1), will be washed out by the trivial
contribution of O(N ) from the localized states.
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FIG. 4. (Color online) Dispersion relation for the moving bound
state (solid red line), together with a quadratic function representing
the dispersion of a free particle of mass m∗/t = 1.25 (dashed black
line)

The solution is equivalent to that of a single particle hopping on
a lattice of periodicity 2, with Bloch functions φn(j ) = (−1)jn,
and the repulsively bound state playing the role of the particle.
The dispersion relation is plotted in Fig. 4. It is exactly
quadratic in the low energy sector, with an effective mass of
approximately m∗/t = 1.25. The effective mass is apparently
very large, as it is ∼10 times higher than the single-particle
effective mass in the dispersive band E1(k), Eq. (8). However,
if we compare this to the effective mass of the excitations in
the weak-coupling limit, which is of O(t2/U ) → ∞ [13], we
find that the effective mass is exceptionally low and therefore
the contribution from the excited band is highly relevant.
At low energies, then, there is a close analogy between our
system at N = Nc + 1 and a (heavy) single free particle in the
continuum.

Our predictions can be verified experimentally by measur-
ing the ground state momentum distribution, an experiment
that is routinely performed with ultracold atoms in optical
lattices [31–33]. We now calculate the expected results,
and while doing so demonstrate nonanalytic behavior—an
instability—around critical filling. At ν � νc, it is a simple
matter to show that

〈nk〉ν�νc
≡ 〈ψ0|nk|ψ0〉 = ν

4
(
√

2 − cos k)2. (17)

At ν = νc + ε the momentum density deviates from Eq. (17)
slightly. This deviation is due to the addition of a single particle
and hence rather small, so a direct measurement of 〈nk〉νc

is
unlikely to give usable data. Rather, measuring 〈nk〉νc±ε and
〈nk〉νc

, and thence calculating the right derivative,

〈nk〉νc+ε − 〈nk〉νc

ε
= ∂〈nk〉

∂ν

∣∣∣∣
ν+
c

+ O(ε), (18)

would yield data that can be meaningfully compa red with the
derivative obtained from our model, shown in Fig. 5. It is clear
from Eq. (17) and Fig. 5 that the right and left derivatives do
not agree at νc; this singularity is a signature of the destruction
of the crystalline structure.

Since a variational estimate of the ground state energy
is only approximate, we must rule out the existence of

0 0.5 1 1.5 2
-0.1

0

0.1

0.2

0.3

k/π

−
∂

ν
n

k
ν
| ν+ c

FIG. 5. (Color online) Minus the right derivative of momentum
density as a function of filling fraction at critical filling, as per Eq. (17),
as obtained from our ansatz with 20 particles (black line), five particles
(blue diamonds) and from exact diagonalization with five particles
(red circles).

states with a lower energy than, and different nature from,
our ansatz. Firstly, the nontrivial contribution, C, to the
ground state energy obtained variationally in the large N limit
differs by only 0.1% from the well-converged ED result with
five particles, which is a remarkable degree of agreement.
Moreover, the right derivative of the momentum distribution
obtained from our model is in excellent agreement with
results from ED, and reproduces its oscillatory and peak
structure very well. Moreover, since our variational treatment
is computationally inexpensive, we are able to calculate
the momentum distribution in the large N limit (see solid
line in Fig. 5). The fact that all the qualitative and quantitative
features of the derivative throughout the Brillouin zone are
captured by our ansatz shows that the ground state is very
closely related to the one we propose: a lower energy may be
reachable by allowing more free parameters, but the fact that
the overall ground state is a repulsively bound pair confined to
a small block within a medium of localized flat band states is
indisputable.

We also compare the excitation spectrum generated by the
ansatz with results from ED with five particles (Fig. 6) and find
an encouraging degree of agreement in the low-energy sector,
where the ansatz is reliable (it becomes unreliable at higher
energies due to, for instance, the possible existence of internal
excitations of the bound state).

In summary, although kinetic energy is quenched at νc or
below, we find that an extra particle above νc does away with
this quenching: the interaction is no longer the only relevent
parameter.

Kinetic behavior manifests in the form of a novel repul-
sively bound pair traveling through the lattice. The emergence
of kinetic behavior and the existence of this nonoverlapping
repulsively bound state are our main findings.

The fact that the excitation spectrum is gapless leads us to
believe that we have found the lowest lying states, and this,
together with the closeness between our groundstate energy
and the DMRG result and the agreement on the momentum
distribution between exact diagonalization and our model,
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FIG. 6. (Color online) Comparison of the excitation spectrum
with respect to the ground state energy generated by the ansatz (red
circles) with that from exact diagonalization (black squares) for five
particles.

suggests that we have captured all the essential low-energy
physics with our picture.

VI. FUTURE WORK AND OUTLOOK

The single-particle-like nature of solutions at N = Nc + 1
indicates to us the possibilty of modeling behavior at a few
particles above Nc via a theory (perhaps exactly solvable) of
interacting bound states. Further, we suspect that our findings
are not limited in their applicability to the sawtooth lattice,
and give insight into the general nature of the destruction of
lattice Wigner-like crystals by overfilling. A confirmation or
refutation of this suspicion would be interesting; were it to be
confirmed, we would have a general prescription for treating
flat-band lattice models above νc.
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P.Ö. and M.V. acknowledge support from EPSRC Grant No.
EP/J001392/1, G.D.C. acknowledges support from the UK
EPSRC (EP/L005026/1 and EP/K029371/1), the John Tem-
pleton Foundation (Grant ID 43467), and the EU Collaborative
Project TherMiQ (Grant Agreement 618074).

[1] E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).
[2] A. Mielke, Phys. Lett. A 174, 443 (1993).
[3] H. Tasaki, Prog. Theor. Phys. 99, 489 (1998).
[4] G-B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath,

and D. M. Stamper-Kurn, Phy. Rev. Lett. 108, 045305 (2012).
[5] L. Mazza, A. Bermudez, N. Goldman, M. Rizzi, M. A. Martin-

Delgado, and M. Lewenstein, New J. Phys. 14, 015007 (2012).
[6] K. Sun, Z. G. Gu, H. Katsura and S. Das Sarma, Phys. Rev. Lett.

106, 236803 (2011).
[7] Y. F. Wang, Z. C. Gu, C. D. Gong, and D. N. Sheng, Phys. Rev.

Lett. 107, 146803 (2011).
[8] D. N. Sheng, Z. G. Gu, K. Sun, and L. Sheng, Nat. Commun. 2,

389 (2011).
[9] H. Katsura, I. Maruyama, A. Tanaka, and H. Tasaki, Europhys.

Lett. 91, 57007 (2010).
[10] J. He, B. Wang, S-P. Kou, Phys. Rev. B 86, 235146 (2012).
[11] T. Paananen, H. Gerber, M. Götte, and T. Dahm, New J. Phys.

16, 033019 (2014).
[12] G. Ritt, C. Geckeler, T. Salger, G. Cennini, and M. Weitz, Phys.

Rev. A 74, 063622 (2006).
[13] S. D. Huber and E. Altman, Phys. Rev. B 82, 184502 (2010).
[14] M. Hyrkäs, V. Apaja, and M. Manninen, Phys. Rev. A 87, 023614

(2013).
[15] E. Wigner, Phys. Rev. 46, 1002 (1934).
[16] J. T. Chalker, T. S. Pickles, and P. Shukla, Phys. Rev. B 82,

104209 (2010).
[17] R. Takahashi and S. Murakami, Phys. Rev. B 88, 235303 (2013).
[18] G. Möller and N. R. Cooper, Phys. Rev. Lett. 108, 045306

(2012).

[19] M. Tovmasyan, E. P. L. van Nieuwenburg, and S. D. Huber,
Phys. Rev. B 88, 220510 (2013).

[20] W. Nie, H. Katsuta, and M. Oshikawa, arXiv:1401.2090.
[21] M. Valiente and D. Petrosyan, J. Phys. B: At. Mol. Opt. Phys.

41, 161002 (2008).
[22] M. Valiente and D. Petrosyan, J. Phys. B: At. Mol. Opt. Phys.

42, 121001 (2009).
[23] M. Valiente, Phys. Rev. A 81, 042102 (2010).
[24] R. Piil and K. Mølmer, Phys. Rev. A 76, 023607

(2007).
[25] J. C. Sanders, O. Odong, J. Javanainen, and M. Mackie, Phys.

Rev. A 83, 031607 (2011).
[26] K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. Hecker

Denschlag, A. J. Daley, A. Kantian, H. P. Büchler, and P. Zoller,
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