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Abstract Domain decomposition methods are used to find the numerical
solution of large boundary value problems in parallel. In optimized domain
decomposition methods, one solves a Robin subproblem on each subdomain,
where the Robin parameter a must be tuned (or optimized) for good per-
formance. We show that the 2-Lagrange multiplier method can be analyzed
using matrix analytical techniques and we produce sharp condition number
estimates.

1 Introduction.

Consider the model problem

∆u = f in Ω and u = 0 on ∂Ω, (1)

where Ω is the domain, f is a given forcing and u ∈ H1
0 (Ω) is the unknown

solution. In the present paper, we describe a symmetric 2-Lagrange multiplier
(S2LM) domain decomposition method to solve elliptic problems such as (1).
When we discretize (1) using e.g. piecewise linear finite elements, we obtain
a linear system of the form

Au = f , (2)

where u ∈ R
n is the finite element coefficient vector of the approximation to

the solution u of (1).
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We now consider the domain decomposition [Toselli and Widlund, 2005]
Ω = Γ∪Ω1∪. . .∪Ωp, where Ω1, . . . , Ωp are the (open, disjoint) “subdomains”
and Γ = Ω ∩

⋃p

k=1 ∂Ωk is the “artificial interface”. We introduce the “local
problems”







∆uk = f in Ωk, (PDE)

uk = 0 on ∂Ωk ∩ ∂Ω, (natural b.c.)

(a+Dν)uk = λk on ∂Ωk ∩ Γ, (artificial b.c.)

(3)

where a > 0 is the Robin tuning parameter and k = 1, . . . , p and Dν denotes
the directional derivative in the outwards pointing normal ν of ∂Ωk. The in-
terface Γ is artificial in that it is not a natural part of the “physical problem”
(1) but instead is introduced purely for the purpose of calculation.

We again discretize the systems (3) using a finite element method. The
Robin b.c. in (3) gives rise to a mass matrix on the interface Γ ∩ ∂Ωk, which
is spectrally equivalent to aI. Hence, after a suitable “mild” change of basis,
we obtain the discrete system

[
AIIk AIΓk

AΓIk AΓΓk + aI

]

uk

︷ ︸︸ ︷
[
uIk

uΓk

]

=

fk
︷ ︸︸ ︷
[
fIk
fΓk

]

+

[
0
λk

]

. (4)

The FETI-2LM algorithm was introduced in [Farhat et al., 2000] for cases
without cross-points, while the general case including cross points was intro-
duced and analyzed in [Loisel, 2011a]. The method consists of finding the
value of λ = [λT

1 , . . . ,λ
T
p ]

T which yields solutions u1, . . . ,up to (4) in such
a way that u1, . . . ,up meet continuously across Γ and glue together into the
unique solution u of (2).

The main result of the present paper is a new estimate the condition num-
ber of FETI-2LM algorithms using matrix analytical techniques. This new
idea produces sharp condition number estimates with much more straightfor-
ward proof techniques than the techniques used in [Loisel, 2011a] (where the
estimates are not sharp). As a result, the present paper is a logical follow-up
to [Loisel, 2011a].

The present paper focuses on 1-level algorithms which are known not to
scale. Scalable algorithms are considered in [Loisel, 2011b] and [Drury and
Loisel, 2011].

Our paper is organized as follows. In Section 2, we give the symmetric 2-
Lagrange multiplier method for general domains with cross points. In Section
3, we give spectral estimates including our main result on the condition num-
ber of the symmetric 2-Lagrange multiplier system. in Section 4, we verify
this Theorem with some numerical experiments.
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2 The symmetric 2-Lagrange multiplier method.

We now describe the 2-Lagrange multiplier method that we analyze in the
present paper. Consider the local problems (4) and eliminate the interior
degrees of freedom to obtain the relation

a

uG

︷ ︸︸ ︷





u1

...
up




 =

Q
︷ ︸︸ ︷





a(S1 + aI)−1

. . .

a(S1 + aI)−1











g
︷ ︸︸ ︷





g1

...
gp




+

λ

︷ ︸︸ ︷





λ1

...
λp









 , (5)

where

Sk = AΓΓk − AΓIkA
−1
IIkAIΓk and gk = fΓk −AΓIkA

−1
IIkfIk

are the “Dirichlet-to-Neumann maps” and “accumulated right-hand-sides”.
The matrices Sk are symmetric and semidefinite. Since Q = a(S + aI)−1,

we find that the spectrum σ(Q) is contained in the set [ǫ, 1 − ǫ] ∪ {1} for
some ǫ > 0. The eigenvalue 1 of Q comes from the kernel of S and hence
the kernel of Q− I is spanned by the indicating functions of the subdomains
that “float”. We define E to be the orthogonal projection onto the kernel of
Q− I.

2.1 Relations between (4) and (2) and continuity.

We define the boolean restriction matrix Rk by selecting rows of the n × n
identity matrix corresponding to those vertices of Ω that are in Ω̄k ∩Ω. As
a result, from a finite element coefficient vector v corresponding to a finite
element function v ∈ H1

0 (Ω), we can define a finite element coefficient vector
vk = Rkv, which corresponds to a finite element function v ∈ H1(Ωk) ∩
H1

0 (Ω), which is obtained by restricting v to Ωk.
The identity

∫

Ω
=

∑p

k=1

∫

Ωk

induces the following relations between (4)

and (2):

A =

p
∑

k=1

RT
k

[
AIIk AIΓk

AΓIk AΓΓk

]

Rk and f =

p
∑

k=1

fk. (6)

Each interface vertex xi ∈ Γ is adjacent to mi ≥ 2 subdomains. As a
result, the “many-sided trace” uG defined by (5) contains mi entries corre-
sponding to xi, one per subdomain adjacent to xi. We define the orthogonal
projection matrix K which averages function values for each interface vertex
xi. A many-sided trace uG corresponds to local functions u1, . . . ,up that
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meet continuously across Γ if and only if

KuG = uG. (7)

2.2 A problem in λ.

The symmetric 2-Lagrange multiplier (S2LM) system is given by

(Q−K)λ = −Qg. (8)

We further let E be the orthogonal projection onto the kernel of Q− I.

Lemma 1. Assume that ‖EK‖ < 1. The problem (2) is equivalent to (8).

Proof. In order to solve (2) using local problems (4), one should find Robin
boundary values λ1, . . . ,λp which result in local solutions u1, . . . ,up that
meet continuously across Γ . As a result, we impose the condition (7), which
we multiply by a > 0 and convert to an expression in λ using (5) to obtain
Ka(S + aI)−1(λ + g) = a(S + aI)−1(λ + g) or

(I −K)Qλ = (K − I)Qg (9)

With this continuity condition, there is clearly a unique u which restricts to
the uj :

uj = Rju, j = 1, . . . , p. (10)

Imposing continuity is not sufficient, we must also ensure that the “fluxes”
match. Indeed, if we impose on the solution u of (10) that the equation (2)
should hold, one obtains

f = Au
(6)
=

p
∑

j=1

RT
ΓjANjRΓju

(10)
=

p
∑

j=1

RT
ΓjANjuj (11)

(4),(6)
= f −

p
∑

j=1

RT
j

(
0

λj − auΓj

)

(12)

Canceling the f terms on each side and multiplying by K, we obtain Kλ −
KauG = 0. Using (5), we obtain

K(Q− I)λ = −KQg. (13)

We add (9) and (13) to obtain (8).
To see that the solution of (8) is unique, observe that the ranges of E

and K intersect trivially by the hypothesis that ‖EK‖ < 1. As a result, the
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eigenspace of Q of eigenvalue 1 intersects trivially with the range of K and
Q−K is nonsingular. ⊓⊔

We will further discuss the choice of the parameter a in Section 3.1.

3 Spectral estimates.

If we use GMRES or MINRES on the symmetric indefinite system (8), the
residual norm can be estimated as a function of the condition number of
Q −K, cf. [Driscoll et al., 1998]. In order to estimate the condition number
of Q −K, we begin by giving a canonical form for the pair of projections E
and K.

Lemma 2. Let E and K be orthogonal projections. There is a choice of or-
thonormal basis that block diagonalizes E and K simultaneously and such
that the blocks Ek and Kk of E and K satisfy

Ek ∈
{

0, 1,

[
1 0
0 0

]}

and Kk ∈
{

0, 1,

[
c2k cksk
cksk s2k

]}

, (14)

where ck = cos θk > 0, sk = sin θk > 0 and θk ∈ (0, π/2) is a “principal
angle” relating E and K.

The canonical form (14) can be obtained from the CS decomposition [Davis
and Kahan, 1969] by starting from E = diag(I, 0) and picking orthonormal
bases for the range and kernel of K. Due to space constraints, we omit this
argument.

We also give a technical lemma which describes the spectrum of a sum of
certain symmetric matrices.

Lemma 3. Let X, Y be symmetric matrices of dimensions m×m. Let 0 <
ymin < ymax and assume that |σ(Y )| ⊂ [ymin, ymax]. Denote by ρ(X) the
spectral radius of X and assume that ρ(X) < ymin. Then,

|σ(X + Y )| ⊂ [ymin − ρ(X), ymax + ρ(X)]. (15)

Proof. This follows from a Theorem of Weyl [Horn and Johnson, 1990, The-
orem 4.3.1, pp 181–182]. ⊓⊔

3.1 Condition number of Q − K.

We now come to our main result.
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Theorem 1. Let ǫ > 0. Assume that σ(Q) ⊂ [ǫ, 1 − ǫ] ∪ {1}. Let E,K be
orthogonal projections and assume that ‖EK‖ < 1. Then we have the sharp
estimates

|σ(Q −K)| ⊂
[

ǫ+
√

(1 + ǫ)2 − 4‖EK‖2ǫ− 1

2
, 1

]

, and (16)

κ(Q−K) ≤ 2

ǫ+
√

(1 + ǫ)2 − 4‖EK‖2ǫ− 1
= O((1 − ‖EK‖)−1ǫ−1).

(17)

Proof. Let X = Q− 1
2I−ǫE and Y = 1

2I+ǫE−K. Then, Q−K = X+Y and
we are in a position to use Lemma 3. We now estimate the spectral properties
of X and Y .

Spectral properties of X: Recall that E projects onto the eigenspace
of Q with eigenvalue 1. As a result, after some orthonormal change of basis,
we find that Q = diag(Q0, I) and E = diag(0, I) and hence

ρ(X) ≤ 1

2
− ǫ. (18)

Spectral properties of Y : Lemma 2 shows that E and K block diago-
nalize simultaneously and Y is also block diagonal in the same basis. Using
(14), we find that the kth block Yk of Y is given by

Yk =







1
2 if Ek = Kk = 0,

− 1
2 if Ek = 0, Kk = 1,

1
2 + ǫ if Ek = 1, Kk = 0,
[

1
2 + ǫ− c2k −cksk

−cksk
1
2 − s2k

]

;

(19)

where the case Ek = Kk = 1 is excluded by the hypothesis that ‖EK‖ < 1.
As a result, the eigenvalues of Yk are in the set {± 1

2 ,
1
2 + ǫ, λ±(c

2
k)}, where

λ±(c
2
k) =

ǫ±
√

(1 + ǫ)2 − 4c2kǫ

2
. (20)

Note that ‖EK‖ =
√

ρ(EKE) = ck and that the functions λ±(c
2
k) are

monotonic in c2k. Hence, we find the following bounds for the modulus of an
eigenvalue of Y :

|σ(Y )| ⊂
[

ymin

︷ ︸︸ ︷
√

(1 + ǫ)2 − 4‖EK‖2ǫ− ǫ

2
,

ymax

︷ ︸︸ ︷

1

2
+ ǫ

]

. (21)
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Fig. 1 Comparing random Q−K (points) versus the estimate (17) (solid). Top: ǫ = 0.1,
varying ‖EK‖, 3000 repetitions. Bottom: ‖EK‖ = 0.99, varying ǫ, 3000 repetitions.

Combining (15), (18) and (21) gives (16).
The sharpness of the estimate is shown by considering the example Q =

diag(1, 1− ǫ) and K =

[
c2 c

√
1− c2

c
√
1− c2 1− c2

]

for c = 0 and c = ‖EK‖. ⊓⊔
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In view of Theorem 1, the Robin parameter a should be chosen so as to
make ǫ as large as possible. This occurs precisely when a is the geometric
mean of the extremal positive eigenvalues of S. More details can be found in
[Loisel, 2011a].

4 Numerical verification.

We verify numerically the validity of Theorem 1 by generating random 5× 5
matrices Q and E as follows. We set Q = diag(ǫ, q, 1 − ǫ, 1, 1) where q is
chosen randomly between ǫ and 1− ǫ. We generate randomly a 2-dimensional
space and set K to be the orthogonal projection onto that space. We compare
the resulting condition number κ = κ(Q−K) against (17), cf. Fig. 1.

References

Chandler Davis and W. M. Kahan. Some new bounds on perturbation of
subspaces. Bulletin of the American Mathematical Society, pages 863–868,
1969.

Tobin A. Driscoll, Kim-Chuan Toh, and Lloyd N. Trefethen. From potential
theory to matrix iterations in six steps. SIAM Review, pages 547–578,
1998.
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