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Exploiting Information Geometry to Improve the
Convergence of Nonparametric Active Contours

Marcelo Pereyra, Member, IEEE, Hadj Batatia, and Steve McLaughlin, Fellow, IEEE

Abstract— This paper presents a fast converging Riemannian
steepest descent method for nonparametric statistical active
contour models, with application to image segmentation. Unlike
other fast algorithms, the proposed method is general and
can be applied to any statistical active contour model from
the exponential family, which comprises most of the models
considered in the literature. This is achieved by first identifying
the intrinsic statistical manifold associated with this class of
active contours, and then constructing a steepest descent on
that manifold. A key contribution of this paper is to derive a
general and tractable closed-form analytic expression for the
manifold’s Riemannian metric tensor, which allows computing
discrete gradient flows efficiently. The proposed methodology
is demonstrated empirically and compared with other state of
the art approaches on several standard test images, a phantom
positron-emission-tomography scan and a B-mode echography of
in-vivo human dermis.

Index Terms— Active contours, level sets, variational methods
on Riemannian manifolds, information geometry.

I. INTRODUCTION

THIS paper addresses the problem of solving active
contour (AC) models with application to image seg-

mentation. More precisely, we seek to develop Riemannian
optimisation algorithms that exploit the underlying geomet-
rical structure of the contour’s intrinsic manifold to achieve
fast convergence. The motivation for this work arises from
observations by Bar et al. [1] who highlighted two important
open problems regarding the solution of active contours:
“the selection of the most appropriate inner product” and
how “to incorporate non flat manifolds instead of Euclidean
spaces” as a means of overcoming the slow convergence of the
Euclidean methods commonly used in the literature. In a recent
paper [2], we addressed these problems for the specific case
of the Chan-Vese active contour [3] and showed that the
algorithm resulting from performing a steepest descent on the
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model’s intrinsic manifold converges extremely fast. However,
the method studied in [2] is not immediately amenable to other
active contour models and can only be applied to images with
Gaussian statistics. In this paper, we seek to provide a more
general solution to these problems by identifying the intrinsic
manifold and collection of inner products for the class of
active contour models from the exponential family, which we
subsequently use to derive a fast converging methodology that
can be applied to most of the ACs studied in the literature [4].

Active contour models are a powerful framework for esti-
mating the boundaries of an object within a given image.
In this framework, contours are represented as curves that
evolve subject to certain constraints to minimize an energy
functional. This paper considers nonparametric ACs, a partic-
ularly useful class of segmentation methods where curves are
represented implicitly as the zero level set of a surface that
evolves with a fictitious time t [5]. In particular, we focus
on region-based ACs that evolve according to the statistical
characteristics of the object of interest and the background, as
opposed to evolving according to image gradients or edges.
We emphasise at this point that there are many state-of-the-art
approaches to image segmentation that do not use AC models
(see [6]–[10] for examples based on Potts-Markov random
fields, fuzzy region competition and convex models).

Region-based nonparametric ACs were first postulated in
the seminal work of Chan and Vese [3], which defined an
active contour for images composed by a foreground and back-
ground with Gaussian statistics. That work was subsequently
generalised to images with other specific statistics, such as
Rayleigh [11], gamma [12], Weibull [13] and Laplace [10].
A unified framework for AC models for distribution from the
exponential family was finally proposed in [4].

Inherent in the active contour segmentation problem is
the solution of the Euler-Lagrange differential equations
that guide the contour’s evolution (for a detailed analysis of
contour evolution equations see [14]). In most applications
these are solved using standard first-order Euler methods
which are relatively simple to derive and implement.
However, it is well known that Euler’s method can take a
large number of iterations to converge. This drawback has
recently motivated numerous papers in the literature that
study more advanced algorithms to solve active contour
(a detailed survey of the state-of-the-art up to 2012 was
presented in [2]). Most state-of-the-art algorithms are steepest
descent methods on alternative spaces or manifolds whose
inner-products induce favourable properties on gradient flows,
such as fast convergence and regularity. However, these
algorithms have been designed for Gaussian region-based
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(i.e. Chan-Vese type) active contours and cannot be directly
applied to other contours from the exponential family.

This paper presents a general Riemannian optimisation
method for nonparametric ACs from the exponential fam-
ily and is structured as follows. In the next section we
introduce the mathematical concepts underlying region-based
active contour segmentation and briefly highlight some
of the difficulties that our approach seeks to address.
In Section III we develop an information geometry framework
for active contours from the exponential family and propose a
Riemannian steepest descent method to compute the contour’s
evolution. More precisely, we derive a smooth natural gradient
descent algorithm [15] for nonparametric active contour, with
application to image segmentation. Following on from this
in Section IV we present some results illustrating the power of
the approach and contrast the performance on alternative exist-
ing approaches. Finally we draw some conclusions and discuss
potential extensions of the approach. A MATLAB implemen-
tation of the proposed method is available at http://www.stats.
bris.ac.uk/~mp12320/code/SmoothNaturalGradient.zip.

II. REGION-BASED LEVEL SET SEGMENTATION

Let � be a bounded subset of R
D and y : � → R

p a
D-dimensional image composed by p channels (i.e., pixels
take their values in R

p). Assume that y is constituted by a
foreground �1 and a background �2 = �/�1, each char-
acterised by its own statistical distribution. Precisely, assume
that at a point x ∈ R

D image values are distributed according
to the statistical model

y(x) ∼ f (·|θ1) if x ∈ �F

y(x) ∼ f (·|θ2) if x ∈ �B
(1)

where θ1 and θ2 are the statistical parameters associated with
the foreground and background respectively (we assume that
θ1 �= θ2), and where f : R

p → R
+ denotes the probability

density function of a generic distribution from the exponential
family, i.e.,

f (s|θ) = h(s) exp
[
η(θ)T S(s) − A(θ)

]
, (2)

for some sufficient statistic S(·), canonical parameter vector
η(θ) and log-normalizer A(θ). Note that (2) defines a very
general class of statistical models that comprises most dis-
tributions used in signal and image processing, such as the
Gaussian, exponential, gamma, Poisson, Rayleigh, binomial,
categorical, log-normal and Dirichlet.

Following an active contour approach, the segmentation of
y is addressed by finding a curve Ĉ ⊂ � that minimises the
following energy functional [4]:

Ĉ = argmin
C

−
∫

inside(C)
log f (y(x)|θ1) dx

−
∫

outside(C)
log f (y(x)|θ2) dx (3)

derived from the anti-loglikelihood of (1). In a manner
akin to [1], we present our analysis in the case where
θ1 and θ2 are known a-priori. However, the proposed approach
is general and can be applied in the more general setup where
θ1 and θ2 are unknown by alternatively minimising (3) with

respect to C , θ1 and θ2. The joint minimisation of (3) with
respect to θ1 and θ2 for fixed C is generally straightforward
via the use of maximum likelihood estimators.

This paper considers nonparametric contours where the
curve C ∈ � is defined implicitly as the zero level set of
a Lipschitz function φ : � → R, such that

C = {x : φ(x) = 0} (4)

inside(C) = {x : φ(x) > 0} (5)

outside(C) = {x : φ(x) < 0} (6)

and the energy minimization problem (3) is restated as follows

φ̂ = argmin
φ

E(y; φ) (7)

where

E(y; φ) � −
∫

�
log f [y(x)|θ1] H [φ(x)]d x

−
∫

�
log f [y(x)|θ2] H [−φ(x)]d x (8)

and where H (·) denotes the Heaviside function. The functional
optimisation problem (7) can be solved by introducing a
fictitious time t and solving the associated Euler-Lagrange
differential equations ∂tφ = −∂φ E , which lead to the
following flow for φ

∂tφ(x) = δ [φ(x)] {log f [y(x)|θ1] − log f [y(x)|θ2]} (9)

where δ(·) is the Dirac delta function and ∂φ E the 1st variation
of E with respect to φ.

In practice, equations (8) and (9) must be computed
over a discrete space-time grid and using sampled functions
y = (

y1, . . . , yN

)
and φ = (φ1, . . . , φN ). Equation (8)

becomes

E(y;φ)=
N∑

i=1

−Hε(φi ) log f (yi |θ1)−Hε(−φi ) log f(yi |θ2).

(10)

Similarly, equation (9) is now a discrete flow

φt+1 = φt − γt∇φ E(y;φt ) (11)

with
(∇φ E(y;φt )

)
i = −δε(φ

t
i ) (log f (yi |θ1) − log f (yi |θ2)) (12)

and where γt controls the length of the step. For numeri-
cal stability, AC methods use smooth approximation of the
Heaviside function H (·) and of Dirac’s delta function δ(·) [3]

Hε(u) = 1

2

(
1 + 2

π
arctan

u

ε

)
,

δε(u) = 1

π

(
1 + ε

ε2 + u2

)
. (13)

Finally, note that there are several approaches to selecting the
step size γt in (11). In most algorithms γt is set to some
fixed value γt = γ or γt = γ /||∇φ E(y;φt )||. Alternatively,
in many state-of-the-art algorithms γt is set by means of a line
search [1], [2].
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As explained previously, the iterative algorithm (11) can
suffer from very long transient regimes and take a large
number of iterations to converge. The reason for this is
that the gradient ∇φ E(y;φ) used in (11) is often strongly
anisotropic; that is, there is a significant difference in the order
of magnitude of the partial derivatives ∂

∂φi
E(y;φ). In such

cases, using a preconditioned gradient A−1(φ)∇φ E(y;φ),
for some appropriately specified positive definite matrix A(φ),
can improve the convergence dramatically [1], [15].

Gradient preconditioning arises naturally by considering
that φ belongs to a non-Euclidean space (note that φ may
take values in R

n yet belong to spaces with non-Euclidean
geometry). From this perspective, the poor convergence prop-
erties of (11) and the anisotropy of ∇φ E(y;φ) are a result
of a mismatch between the underlying geometry of the space
of φ and the canonical Euclidean geometry that is implicitly
assumed by using the gradient ∇φ E(y;φ). This should be
overcome by formulating (11) directly on the space of φ, with
inner products given by 〈φ′, A (φ)φ〉, thus we obtain

φt+1 = φt − γt A−1(φt )∇φ E(y;φt ). (14)

Therefore the problem of specifying the preconditioning
matrix A (φ) to cure slow convergence of (11) is equivalent
to identifying the geometry of the space of φ, which allows
(14) to be solved with the collection of inner products of that
space. This has motivated numerous papers in the literature
that investigate specific instances of (14) for alternative spaces
and manifolds with geometries and inner products that are
more appropriate for φ than R

n . For instance, some papers
use shape sensitivity calculus to solve (14) in a space of
geometrical variables or shapes [16]–[18]. Many papers have
proposed solving (14) in a Sobolev space because its inner
product acts as a smoothing operator inducing favourable
regularity properties on the contour [19]–[22]. Alternatively,
other papers consider Newton-type methods that solve (14) on
manifolds whose inner products are related the Hessian matrix
of E(y;φ) [1], [16]–[18], [23], [24]. The empirical results
reported as described above confirm that solving (14) in an
appropriate space, with inner products that induce favourable
properties to the gradient flow, can improve the convergence
speed dramatically.

As explained previously, Bar et al. recently highlighted the
important open problems of “the selection of the most appro-
priate inner product associated with a particular functional”
and “to incorporate non flat manifolds instead of Euclidean
spaces”. In our recent paper [2] we addressed these two
important questions for the specific case of the Chan-Vese
AC [3]. Our main contributions in [2] were the observations
that y and φ are related by a parametric statistical model
which induces a specific geometry to φ’s space, and to use
information geometry to determine the collection of inner-
products of that space, which we found to be a Riemannian
statistical manifold. We then proposed a Riemannian steepest
descent algorithm for the Chan-Vese model that solves (14)
on φ’s manifold and conducted a series of experiments that
confirm that this algorithm converges extremely fast.

However, the fast methods presented in the papers described
above were designed for specific AC models and are not

directly amenable to other active contours. As a result they
can only be applied to images with certain specific statistics
(e.g. Gaussian) and are unsuitable for many important types
of data that are better analysed with other statistical models
and active contours (e.g., ultrasound and SAR images [11],
[12]). In this paper, we provide a more general solution to the
problems of finding the most appropriate inner products and
non flat manifolds by considering the information geometry of
the entire class of active contour models from the exponential
family [4], which includes the popular Chan-Vese contour as
well as many other important AC models [10]–[13]. Based on
this, we subsequently derive a general Riemannian steepest
descent method for this class of active contours.

III. PROPOSED OPTIMISATION METHOD

This section presents a general Riemannian steepest descent
method that can be applied to any AC model of the expo-
nential family. In a manner akin to [2], the method is
derived by first using information geometry to obtain the
statistical manifold associated with the active contour and
then proposing a Riemannian steepest descent method to
solve (14) on that manifold. Note that the method presented
here includes the algorithm proposed in [2] for the Gaussian
AC (i.e., Chan-Vese AC) as a particular case.

A. Proposed Riemannian Steepest Descent

We begin by considering the geometry of the space M
whose points are the probability distributions F(y|φ) with
density

f (y|φ) =
∏

{i:φi >0}
f (yi |θ1)

∏

{i:φi <0}
f (yi |θ2) (15)

where the marginal densities f (yi |θ) belong to the expo-
nential family defined in (2). We observe that the energy
E(y;φ) = − log f (y|φ) and that algorithms to minimise it
are effectively computing maximum likelihood estimators of
φ given y. In other words, (14) is selecting the statistical model
f (y|φ) that fits the data best.

Space M is a statistical manifold parametrised by φ [25].
More precisely, a point φ on M represents the probabil-
ity distribution of a random variable Y with distribution
F(y|φ) = P[Y ≤ y]. Similarly, the distance between φ

and a second point φ′ is understood as the distance between
the probability distributions F(y|φ) and F(y|φ′), measured
by an appropriate metric on M. According to information
geometry M is endowed with a natural or intrinsic metric
that allows measuring distances in a way that is independent
of the parametrisation (i.e., to changes of variables ψ = h(φ)).
M is endowed with a natural Riemannian metric tensor, or col-
lection of inner products, specified by the Fisher information
matrix (FIM) [25]

(G (φ))(i, j ) � −EY |φ
{

∂2

∂φi∂φ j
log [ f (Y|φ)]

}
(16)

where EY |φ denotes the expectation operator with respect to
f (y|φ) and should not be confused with the energy term (10).
Moreover, at each point φ, M is locally equivalent to an
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Euclidean tangent space Tφ with inner product 〈φ′, G (φ)φ〉
varying smoothly with φ. Finally, a steepest descent on M to
optimise E is given by

φt+1 = φt − γt G−1 (
φ t)∇φ E(y;φt ) (17)

where G−1 (
φt )∇φ E(y;φt ) is the gradient of E on Tφt .

This gradient represents the change of E with respect to the
probability distribution F(y|φ) indexed by φ, rather than with
respect to the vector φ itself.

Iteration (17) results in a so-called “natural gradient descent
algorithm” in which preconditioning the Euclidean gradient
with G−1 (

φt) “provides isotropic convergence properties
about any local minima independent of the model para-
metrisation and of any dependencies within the signal being
processed by the algorithm” [15]. These algorithms generally
exhibit very good convergence properties and have been
been extensively applied to maximum likelihood estimation
problems [15] and to the Chan-Vese AC in [2]. Finally, note
that (17) is closely related to a Newton iteration where the
preconditioning matrix is the Hessian matrix of E(y;φ);
indeed G (φ) is the expectation of this Hessian matrix with
respect to the random variable Y , whose realisation is y.
We will see that this expectation introduces a key difference
between (17) and a Newton iteration because it guarantees the
positive definiteness of G (φ) (the Hessian matrices of E(y;φ)
do not have this fundamental property).

B. Computation of G (φ)

We consider that a main contribution of this paper is to
propose an efficient strategy to evaluate G (φ)−1, which will
allow using the natural gradient descent (17) to develop fast
image segmentation algorithms. We demonstrate that G (φ)
is diagonal, thus trivial to invert, and that its elements admit
closed-form expressions that are easy to evaluate.

Theorem 3.1: Suppose that (2) holds. Then the Fisher infor-
mation matrix G (φ) defined in (16) is diagonal with elements

(G (φ))(i, j ) =
{∣∣δ′(φi )

∣∣ B f (θ2||θ1) if φi ≥ 0∣
∣δ′(φi )

∣
∣ B f (θ1||θ2) if φi < 0

(18)

if i = j and (G (φ))(i, j ) = 0 otherwise, where B f (θ
∗||θ) is

the f -Bregman divergence

B f (θ
∗||θ) � A(θ∗) − A(θ) − 〈η(θ∗) − η(θ),∇η A(θ)〉 (19)

where A(·) is the logarithm of the normalising constant
of f and ∇η A(·) its gradient with respect to the canonical
parameter vector η = η(θ). Moreover, if δ′(u) is evaluated
using a regularised approximation δ′

ε(u) bounded away from
zero, then G (φ) is positive definite.

Proof: To prove these results we develop the derivatives
in (16) and obtain that G (φ) is diagonal with elements

(G (φ))(i, j ) = −δ′(φi )E
[
log f (yi ; θ1)

∣
∣
∣φi

]

−δ′(−φi )E
[
log f (yi ; θ2)

∣
∣
∣φi

]
(20)

if i = j and (G (φ))(i, j ) = 0 otherwise, and where E(. . . |φi )
denotes the expectation with respect to the marginal likelihood

f (yi ; φ) =
{

f (yi ; θ1) if φi ≥ 0
f (yi ; θ2) if φi < 0.

TABLE I

BREGMAN DIVERGENCES I

TABLE II

BREGMAN DIVERGENCES II

Using the fact that δ′(−x) = −δ′(x) and rearranging
equation (20) we obtain that for i = j

(G (φ))(i, j ) = −δ′(φi )E

[
log

(
f (yi , θ 1)

f (yi , θ2)

) ∣
∣
∣φi

]
, (21)

which we express in terms of Kullback-Leibler
divergences [26], i.e.,

(G (φ))(i, j ) =
{∣∣δ′(φi )

∣∣ KL f (θ1||θ2) if φi ≥ 0∣
∣δ′(φi )

∣
∣ KL f (θ2||θ1) if φi < 0

(22)

where

KL f (θ1||θ2) �
∫

Rp
log

(
f (s; θ1)

f (s; θ2)

)
f (s; θ1)ds.

Finally, given that f belongs to the exponential family, we can
also express (22) in terms of Bregman divergences that admit
closed-form expressions [26]

(G (φ))(i, j ) =
{∣∣δ′(φi )

∣
∣ B f (θ2||θ1) if φi ≥ 0∣∣δ′(φi )
∣∣ B f (θ1||θ2)) if φi < 0.

The proof is concluded by noting that because θ1 �= θ2
the terms B f (θ1||θ2) and B f (θ2||θ1) are strictly positive and
therefore G(φ) is a positive definite matrix for all φ ∈ R

n . �
Theorem 3.1 states that for energy functionals of the form

of (10), associated with distributions from the exponential
family (2), the FIM G (φ) is diagonal and has a closed-form
expression that is trivial to compute and invert. This is very
important from a computational point of view because it allows
evaluating the gradient of E on the tangent space Tφ , i.e.,
G (φ)−1 ∇φ E(y;φ), making it possible to develop fast image
segmentation algorithms based on the natural gradient (17).
To evaluate (18) numerically we use the regularised
approximation δ′

ε(u) = −2ε
π sign(u) max(u, ε)/(ε2 + u2)2.

Tables I and II provide the Bregman divergences of the statis-
tical distributions commonly used in active contour literature.

C. Regularisation of φ

Finally, we now need to regularise φ so as to promote
smooth solutions that are robust to noise. This regularisation
improves significantly the segmentation results by introducing
prior knowledge about image structure, i.e., pixels belonging
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to the foreground and background are organised in spatial
groups (as opposed to being randomly distributed across
the image). The active contour literature discusses several
approaches to regularise φ to promote solutions with
specific properties (e.g., smoothness, shapes, topologies, etc.).
Conventional active contour algorithms typically enforce
spatial regularity by introducing the penalty term
λ

∫
� |δ [φ(x)] |d x, which selects contours with minimal

length, or alternatively by using a convex approximation
of this penalty that is easier to minimise [10], [27].
The parameter λ controls the amount of regularity that is
enforced and is commonly set by cross-validation.

An increasingly popular alternative, that we will explore
below, is to promote regularity by using an inner product that
applies spatial smoothing to the gradient flow. As noted in [1],
this approach is adopted implicitly by all methods that use
Sobolev gradient flows [22], since Sobolev inner products act
as smoothing operators, and explicitly by most other state-of-
the-art AC methods that use Gaussian smoothing operators
such as [1] and [2]. In this case the amount of regularity
enforced depends on the bandwidth of the smoothing kernel.
Here we follow this approach and regularise φ by combin-
ing the inner product associated with G (φ), which reflects
the information geometry of the statistical model f (y;φ)
relating φ to the observed image y, with a Sobolev-type
inner product that incorporates prior knowledge by promoting
smooth solutions. Precisely, we propose to use a “smooth
natural gradient flow” defined as follows:

φt+1 = φt + γt Hσ G−1 (
φt)∇φ Eε(y;φt ) (23)

where Hσ is a smoothing operator given by

Hσ = Toeplitz(hσ ),

and where

hσ (s, u) = 1

2πσ 2 exp

(
− s2 + u2

2σ 2

)

is a 2D Gaussian kernel of scale σ . The parameter σ deter-
mines the width of the Gaussian kernel and therefore the
amount of smoothness enforced by Hσ . The choice of this
specific smoothing operator follows from the computational
consideration that Hσ should be Toeplitz and separable, as
this allows for particularly efficient algorithms to compute
the product Hσ G−1 (

φt) [28]. In particular, the Gaussian
smoothing operator is the only separable operator that is
isotropic, i.e., that enforce the same regularization in all
directions [29], which is important in many image segmen-
tation applications. Note however that hσ (s, u) can be easily
replaced by an anisotropic Gaussian kernels hσs ,σu (s, u) =

1
2πσsσu

exp
(
− s2

2σ 2
s

− u2

2σ 2
u

)
if there is reliable prior knowledge

about the shape and orientation of the image patterns. Note that
the appropriate amount of regularisation required for a specific
image will typically involve a trade-off between robustness to
noise and preservation of sharp details in the contour. Images
with low noise levels allow for low values of σ that preserve
these details, whereas noisy images typically require more
aggressive regularisations. More details regarding the choice

of the smoothing operator and about the selection of σ can be
found in [2].

In addition, we note that in some applications the per-
formance of the proposed methods can be improved by
introducing some form of localisation that takes into account
the lack of stationarity in the image [30]. In our method this
could be achieved by defining position dependent statistical
parameters θ1 = θ1(x) and θ2 = θ2(x), which could then
be estimated from the neighbourhood of y(x) as in [30].
The resulting FIM would be equal (18) with pixel dependent
Bregman divergences evaluated using the values of θ1 and θ2
for that pixel; this matrix would still be diagonal and positive
definite. Finally, it is also worth mentioning that although in
this paper we apply (23) to all the elements of vector φ,
one could also consider using a narrow band approach where
only the elements of φ that are close to zero are updated
(i.e., the pixels within a neighbourhood of C), similarly
to [16].

IV. EXPERIMENTAL RESULTS AND OBSERVATIONS

This section presents three experiments conducted to
assess and compare the performance of the proposed
smooth natural gradient method. In the first experiment we
compare our method with four fast methods from the state
of the art: two steepest descent algorithms (the generalised
Newton method [1], and the Sobolev gradient [21]), and two
optimisation algorithms based on convex approximation of
E(y;φ) (the fast global minimisation algorithm (FGMA) [10],
and the recent two-stage algorithm [27]). These methods are
specifically designed for the Chan-Vese AC and we conducted
the comparisons with standard test images that are well
segmented by this model. The second and third experiments
present applications of our method to two medical problems
that motivated this work: in-vivo human dermis segmentation
in high-frequency ultrasound images, and high-radioactivity
region segmentation in Positron-Emitted-Tomography (PET)
images. For those experiments we implemented our method
using Rayleigh AC and Poisson AC models, and compared its
performance with the Eulerian algorithm presented in [11] for
Rayleigh ACs and with the supervised thresholding method
proposed by Schaefer et al. in [31] for PET images. An
observation that we would make prior to presenting results is
that most of the real images used in the experiments do not
have a ground truth and therefore it is not always completely
clear what is the best segmentation result nor how a precise
segmentation result could be objectively specified (though
for the PET phantom experiment the sizes of the radioactive
regions is known and is used as the ground truth). We present
what we consider are fair and reasonable comparisons, where
in most cases the segmentation achieved with our method is
very similar to that obtained with state-of-the-art approaches
but at a significantly faster computational speed. Finally, all
experiments have been computed on an Intel i7 quad-core
workstation running MATLAB 2013a and by using the values
of the algorithm parameters that yield the best segmentation
results.
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Fig. 1. Comparison with the Sobolev gradient [21] and Generalized
Newton [1] methods using the synthetic shape image from [1]
(216×187 pixels, additive Gaussian noise, SNR 5.36 dB). (a) Proposed (23).
(b) Sobolev [21]. (c) Newton [1].

TABLE III

CONVERGENCE AND COMPUTING TIMES FOR EXPERIMENT 1

A. Comparison With State-of-the-Art Algorithms for the
Chan-Vese AC

1) Comparison With Other Steepest Descent Algorithms:
In the first part of this experiment we compare our method
with two other fast steepest descent algorithms: the gener-
alised Newton method [1], and the Sobolev gradient [21].
These methods have been specifically designed for the
Chan-Vese AC, which represents the image foreground and
background using Gaussian distribution. For this experiment
we also implemented our method using the Chan-Vese AC and
the corresponding Bregman divergence, which is provided in
the second row of Table I. To guarantee that the comparisons
are fair we have used a synthetic shape image from [1]
and the accompanying MATLAB codes. This image contains
216 × 187 pixels and is contaminated with white additive
Gaussian noise of 5.36dB SNR. Similarly, all methods were
initialised by setting φ0 to a right circular cone as in [1].
We implemented our method with γt = 5 and σ = 0.75 as
these values produced the best results. For the other methods
we used the values recommended in [1] for this image, which
also produce best results.

Fig. 1 depicts the contours estimated with each method
(for each experiment the initialisation and the final contour
are depicted in blue and red respectively). Fig. 1(a) shows
the segmentation obtained with the proposed natural gradient
descent method. The results obtained with the Sobolev gradi-
ent [21] and the generalised Newton method [1] are presented
in Figures 1(b) and 1(c). The segmentation results obtained
with the three methods are very similar but Table III shows
that the proposed method converged in only 2 iterations and
was between 5 and 40 times faster than the state-of-the-art
methods, which required 10 and 30 iterations to converge. The
convergence speed of the proposed method results from the
fact that active contours form a statistical manifold that is not
Euclidean and our algorithm is taking steps along the steepest

Fig. 2. Comparison with the state of the methods [10] and [27]
using the breast lesion (400 × 400 pixels), lung (336 × 336 pixels) and
bacteria (380 × 380 pixels) images from the supplementary material of [10].
(a) Proposed (23). (b) FGMA [10]. (c) Two-stage [27]. (d) Proposed (23).
(e) FGMA [10]. (f) Two-stage [27]. (g) Proposed (23). (h) FGMA [10].
(i) Two-stage [27].

direction on that manifold. The Sobolev gradient does not take
into account this geometrical information and a result requires
more iterations to converge. The generalised Newton method
is taking steps along the steepest direction on the manifolds
associated with the Hessian matrices of E(y; φ). However,
because E(y; φ) is not convex the method has to use a trust-
region constraint to limit the length of the steps, and as a result
it requires a large number of iterations to converge. Finally,
it is worth mentioning that segmentation results obtained by
using our algorithm with line search for γt can be found in [2].
In that case our algorithm also converges in 2 iterations, which
require 0.24 seconds instead of 0.13 because of the additional
computational cost of the line search. The contours obtained
with an Euclidean steepest descent and with an Euclidean
Newton method are provided in [1]. Additional experiments
with other standard test images are also provided in [2].

2) Comparison With Convex Optimisation Algorithms: In
the second part of this experiment we compare our method
with two state-of-the-art segmentation algorithms based on
convex approximations of the Chan-Vese AC model: the fast
global minimisation algorithm (FGMA) [10], and the recent
two-stage algorithm [27]. To provide a fair comparison we
have used three standard test images from the supplementary
material of [10] that have very different compositions and
structures. The segmentation results and computing times
for this experiment are reported in Figure 2 and Table IV.
These results show that our methods performs similarly to the
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TABLE IV

CONVERGENCE AND COMPUTING TIMES FOR THE “LESION”, “LUNG”

AND “BACTERIA” IMAGES DEPICTED IN FIG. 2

algorithms of the state-of-the-art in terms of segmentation, but
is significantly faster as illustrated in Table IV. Because it
is not entirely clear what is the best segmentation for each
image we do not claim that one specific method outperforms
the others in terms of segmentation performance. For example,
the second image is a CT scan of the interior of a lung and
a segmentation result could either ignore the alveoli branches
within the lung and only segment the boundary around the
interior, or equally it could segment the boundary and also
the alveoli branches, (note that this will also depend on the
amount of regularisation specified by the user). Similarly, for
the bacteria image a segmentation could only identify the
external boundaries of the individual bacteria, or it could also
seek to highlight the structures in the interior of the bacteria.
In all cases we have chosen, for comparison purposes, to
produce similar segmentation results.

B. In-Vivo Ultrasound Image

Here we consider the Rayleigh AC model proposed in [11]
for ultrasound image segmentation, which was applied in that
work to echocardiography. This model represents the image
foreground and background using Rayleigh likelihood func-
tions and to the best of our knowledge the Euler method pre-
sented in [11] is the only algorithm that has been proposed for
this AC. Here we compare that method with our Riemannian
descent algorithm (23), which we have implemented using the
Bregman divergence for the Rayleigh distribution provided in
the last row of Table I. To guarantee that the comparisons are
fair both algorithms use the same initialization and step size
(we used γt = 0.1 as recommended in [11] and initialised φ0

to a right circular cone as in [1]).
Fig. 3(a) shows a B-mode ultrasound image of in-vivo

human dermis, which is a particularly challenging type of
image for image segmentation problems [6]. The region of
interest used in the experiment is depicted in yellow (the size
of this region is 350 × 175 pixels). This ultrasound image
was acquired at the dermatology service of the Hospital of
Toulouse with a dermocup system (Atys Medical, France),
equipped with a single-element focalized 25MHz wide-
band (40-percent) probe sampled at 100MHz with a 53μm
mechanic lateral step. In this experiment we use the Rayleigh

Fig. 3. Comparison of our method (red) with Euler’s method (yellow) on
a Rayleigh AC with application to ultrasound image segmentation. (a) Ultra-
sound image. (b) Segmentation results.

AC model to identify automatically the dermis-hypodermis
junction, which has been annotated approximately by an
expert (coarse white line). Identifying this skin structure is
important in dermatology, cosmetology and pharmaceutical
science. It allows evaluating the thickness of the dermis,
which is important for “general aesthetics, the use of
cosmetics and drugs, optimally positioning skin grafts,
and effective massage. Since you can also detect early signs
of pathological skin thickening, it is possible to use this
knowledge to offer preventative treatment.” [32].

Fig. 3(b) shows in coarse red the segmentation results
obtained with our method and in yellow those obtained
with [11], using the values for the algorithm parameters
that produced the best results. We observe that the proposed
method converged to a solution that is in better agreement
with the expert’s annotation of the dermis-hypodermis junction
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TABLE V

SPHERE DIAMETER ESTIMATION (IN MILLIMETERS)

than the solution obtained with [11], which is more corrupted
by speckle noise (note that further increasing the amount
of regularisation for this algorithm produced a degenerate
segmentation in which all pixels belonged to a single class).
More importantly, the proposed method converged in only
18 iterations, which took 0.34 seconds, whereas Euler’s
method required 9860 iterations and 269 seconds to produce
a stable solution. Again, this dramatic difference in speed
results from the fact that proposed method takes steps along
the steepest direction on the parameter’s intrinsic manifold, as
opposed to using the default Euclidean gradient.

C. PET Phantom Image

In this experiment we consider the problem of segmenting
high radioactivity regions in Positron-Emitted-Tomographic
(PET) images. Accurate segmentation of high activity regions
in PET images is very important in oncology, where clini-
cians use these images to measure tumour metabolic activity
and devise appropriate treatment plans. Here we study an
active contour method for PET image segmentation based
on a Poisson likelihood, which is a widely used statistical
model for these images. We compute this Poisson AC with
a Riemannian descent algorithm (23) implemented using the
Bregman divergence of the Poisson distribution provided in the
fourth row of Table I. In order to assess the performance of
this method under controlled conditions we have used the PET
phantom image depicted in Fig. 4(a), which has been acquired
at the Claudius Regaud Cancer Institute of Toulouse using
a GE-DST clinical PET scanner. This image has been pro-
duced by imaging a phantom containing 6 radioactive spheres
whose size is known and is regularly used to benchmark
and calibrate PET segmentation techniques. Table V shows
the true diameter of each sphere and the estimates obtained
with the proposed method (23). For comparison, Table V also
shows the estimates obtained with a state-of-the-art thresh-
olding method that is currently extensively used in clinical
applications. More precisely, we compare our estimates with
the results obtained with the thresholding method proposed by
Schaefer et al. in [31], which was recently reported to
be among the best PET image segmentation methods in
an independent comparative study [33]. We also report the
results obtained with the widely used thresholding method
proposed by Otsu in [34]. To ease visual interpretation, the
best estimate for each sphere has been highlighted in red. The
results obtained with the proposed methods are comparable
to those obtained with the state-of-the-art method as indicated

Fig. 4. Segmentation of a PET radioactive phantom image using a Poisson
AC model. (a) PET image (96 × 126). (b) Proposed method (23).

in (Table V). However, note that the method proposed in [31]
requires the user provide a coarse pre-segmentation of the
interior of each sphere (which is used to compute the thresh-
old), whereas our method detects lesions automatically without
any user intervention. For completeness, Fig. 4(b) shows
in red the segmentation produced by the proposed method.
This segmentation was computed in 4 iterations using σ = 0.2,
γt = 0.1, and required 0.013 seconds.

V. CONCLUSION

This paper has addressed the problem of solving active
contour models from the exponential family, (which com-
prises most of the active contours used in the literature),
with application to image segmentation. Through appropriate
mathematical developments we have shown that the Fisher
Information matrix, which determines the natural metric of
the statistical manifold is diagonal and has a closed-form
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analytical expression. This insight enabled a fast converg-
ing segmentation methodology which we have demonstrated
and compared on three images: a synthetic image, a PET
image and an ultrasound image segmentation problem where
a 2-orders of magnitude increase in segmentation speed is
achieved.

Future work will focus on the application of the proposed
methodology to the development of segmentation algorithms
for applications with real-time constraints. In particular, we
plan to develop 2D and 3D ultrasound image segmentation
techniques for in-vivo fetal and cardiac echography, as well
as 4D MRI segmentation methods based on a Rician AC.
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