
DONG AND CHANTLER: TEXTURE SIMILARITY ESTIMATION USING CONTOURS 1 
 

 

 

© 2014. The copyright of this document resides with its authors. 

It may be distributed unchanged freely in print or electronic forms. 

 

 

Abstract 

In a study of 51 computational features sets Dong et al. [1] showed that none of 

these managed to estimate texture similarity well and, coincidently, none of these 

computed higher order statistics (HOS) over large regions (that is larger than 19×19 

pixels). Yet it is well-known that the human visual system is extremely adept at 

extracting long-range aperiodic (and periodic) “contour” characteristics from images 

[5, 6]. It is our hypothesis that HOS computed over larger spatial extent in the form 

of contour data are important for estimating perceptual texture similarity. However, 

to the authors’ knowledge the use of contour data (rather than edge data) has not been 

proposed before as the basis for a set of feature vectors. 

We provide results of an experiment with 334 textures that shows that contour 

data is more important than local image patches, or 2nd-order global data, to human 

observers.  

We also propose a contour-based feature set that exploits the long-range HOS 

encoded in the spatial distribution and orientation of contour segments. We compare 

it against the 51 feature sets tested by Dong et al. [1, 2] and another contour model 

derived from shape recognition. The results show that the proposed method 

outperforms all the other feature sets in a pairs-of-pairs task and all but two feature 

sets in a ranking task. We attribute this promising performance to the fact that this 

new feature set encodes long-range HOS. 

1 Introduction 

Although performances in the high nineties are typically obtained for tasks such as texture 

segmentation and classification the same cannot be said of judging texture similarity where 

a classifier has to estimate the degree to which pairs of textures appear similar to human 

observers1. In an investigation of 51 feature sets Dong et al. [1] showed that none of these 

managed to estimate similarity data derived from a population of human observers better 

than an average agreement rate of 57.76%. Coincidently, none of these computed higher 

order statistics (HOS) over large regions (≥ 19×19 pixels).  

                                                           
1 Such perceptual similarity data are useful for a variety of tasks, from measuring the perceived difference 

between the appearance of textures (e.g. the visual difference between a worn carpet and a new sample) to simply 

ranking the results of search results. 
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While it is generally accepted that visual texture can be represented by spatial statistics 

and despite over thirty years’ of texture research there is still little agreement as to the type, 

order or spatial extent over which these should be calculated.  

First order statistics are by nature computed without reference to the spatial 

arrangement of pixels and are little used in texture analysis. Second order statistics such as 

those computed by the autocorrelation function encode information concerning 

periodicities and are often derived by applying nonlinear functions (variance estimators) to  

bandpass (linear) filters [3]. They are computed at a wide variety of spatial extents 

depending upon the task and the size of the region concerned. In contrast higher order 

statistics are often computationally intensive to derive, and therefore computed over 

limited spatial extent2; “texton” and other vector quantization methods typically being 

limited to 19×19 pixel neighbourhoods [1, 2].  

Thus, the information that texture features are derived from tends to fall into two 

categories: (1) second order periodic data computed over a variety of scales and (2) short-

range aperiodic information. We have discovered few methods that encode long-range, 

aperiodic characteristics of texture; however, it is well-known that such data are critical to 

human perception of imagery [5-8]. For instance, scrambling phase spectra (while leaving 

the power spectra intact) will often render imagery unintelligible to the human observer [8]. 

It is also well-known that humans are extremely adept at exploiting the long-range visual 

interactions evident in contour information [5, 6]. However, to the authors’ knowledge no 

research has been reported that exploits contour information for texture analysis. 

Our key hypothesis is therefore that “contour” information is important to perceptual 

texture analysis and in this paper we test this hypothesis in two ways. First, in Section 2, 

we report the results of an experiment with human observers in order to determine which 

of three different types of information (2nd-order statistics, local higher order statistics and 

contour information) are more important for the perception of texture. We go on in Section 

3 to develop a new feature set derived from contour segment data and in the penultimate 

section we test this against the same 51 feature sets that Dong et al. [1, 2] used in their 

study and a shape recognition based feature set. To our knowledge such contour-based 

texture features that exploit long-range HOS have not been investigated before. 

2 The Importance of Three Types of Data to Texture 

Perception 

The key hypothesis of this paper is that contours are important to the human perception of 

texture and that, in particular, they are more important than the two types of data 

commonly exploited by today’s computational texture features. These two types of data 

are: (1) 2nd-order statistics encoded in the power spectrum which are typically used by 

filtering-based features to encode periodicities at both long-range and short-range, and (2) 

the HOS available from local image patches used in texton-based or other neighbourhood-

based features to represent short-range aperiodic spatial relationships. We therefore used 

three types of stimuli in our experiment: (1) contour maps, (2) power spectrum only 

images [8] and (3) randomized, blocked images [1]. Samples of each are shown in the 

lower row of Figure 1.  

                                                           
2 However, pyramid decompositions [4] can be utilized to enhance the spatial extent that computational features 

exploit at the cost of blurring the data used at the higher levels in the pyramid. 



DONG AND CHANTLER: TEXTURE SIMILARITY ESTIMATION USING CONTOURS 3 
 

 
 

Figure 1: Each of the three columns shows two images derived from the same texture 

sample (although not the same physical texture area). The upper row shows unprocessed 

images. The lower row shows, from left to right, the corresponding contour map, power 

spectrum image and randomized, blocked image. 

The contour maps were produced using the Canny edge detector [9]. The power 

spectrum images were generated by scrambling their phase spectra in the frequency 

domain [8]. The blocked images used random placement of 19×19 image patches with 

green borders [1]. (The latter was designed to reduce the effect of newly formed short-

range interactions caused by discontinuities between newly neighbouring blocks). 

Ten human observers were used in a 2AFC (two-alternative forced choice) scheme 

with 334 texture images drawn from the Pertex database [10]. In each trial the observer 

was required to compare an original texture image quarter and one variant image quarter 

(“variant” being one of either contour, power spectrum or randomized block) and decide 

whether the variant represented the original texture or not (50% of the time they did not). 

Different quarters of the same texture sample were used in order to prevent observers from 

performing pixel-wise comparisons. Each of the 10 observers performed 334 trials for each 

type of variant image. The results are shown in Table 1 below. 

 

Subset Contour Power Spectrum Randomized Blocked Intersection 

Size 247/334 207/334 157/334 92/334 
 

Table 1: The numbers of samples from the 334 texture database that can be recognized 

using the three different types of variant images. 

We were surprised at how useful power spectra were to observers, especially compared 

to the randomized block images. Inspection of the database revealed many “periodic 

regular” textures that are well represented by power spectra. The most important point 

however, is that contour images provided the most relevant information to observers 

allowing them to correctly recognize 247 out of the 334 texture samples. 
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3 Computing Spatial Distributions of Contour 

Segments 

This section introduces a new contour-based texture feature set. Essentially, each contour 

is extracted and encoded as a set of segments. We use these data in two ways as outlined in 

Figure 2. In the first we encode the average shape of the contours in a segment joint 

orientation/distance histogram. This provides data on the long-range higher-order visual 

interactions that these contours provide. In the second we encode the spatial distributions 

and orientations of the all of the segments within a local window without regard to which 

contour they belong. These data naturally provide relatively short-range (23×23 or less) 

HOS.  

(a) (b) (c) (d) (e)  
 

Figure 2: A representation of the basic information flow: (a) original texture image; (b) 

edge map; (c) skeleton map; (d) segment map. For display purposes, only a part of pixels 

are shown for each approximate segment; and (e) the joint histogram (upper) and basic 

aura matrix [11] (lower, only one is shown here).  

In the next section we briefly describe how segment maps together with their underling 

contour information are extracted. In following section (3.2) we describe how the spatial 

distribution and orientation information are used to compute the two types of data used 

within the new feature vectors. 

3.1 Producing the Segment Maps (Figure 2 (d)) 

Although primitives or salient points of contours are commonly utilized for their 

representation [12], the associated computation is complicated, especially, when large 

numbers of contours have to be processed. As there has been much research reported on 

representing objects using fragmented contour segments [7, 12] we were inspired to do 

likewise. We first fragment a contour into a set of equidistant segments and then encode 

the spatial distribution and orientation of these segments. Note that images are first 

processed with the Canny edge detector [9] followed by a morphological erosion operator 

[13] in order to produce skeleton maps (see Figure 2 (c)).  

Given that each contour is regarded as a component, connected component labelling 

[14] is performed on a skeleton map. Subsequently, the Moore-neighbour tracing algorithm 

with Jacob’s stopping criteria [13] is applied to each contour and a sequence of points is 

obtained from each contour. However, the exterior boundary of one contour is derived 

rather than the contour itself because the tracing algorithm considers each contour as a 

region. The traversing sequence of a contour is further obtained from its exterior boundary 
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sequence. Given that a contour contains a sequence of points:       with coordinates of 

               , its length (  ) is computed as below:  

   ∑ √         
           

    
   . (1) 

When the length of the segment is set as   , the contour is divided into   ⌊     ⌋ 
segments. In addition, any contour whose length (  ) is smaller than    will be removed. 

Due to the importance of local orientations to the perception of texture structure [15], 

we represent segments by their mid-point position (on themselves) and chord orientation   

(    (0º, 180º]). Figure 3 presents three sets of typical segment shapes and their 

approximate chords. The result is the segment map which encodes each contour as a set of 

labelled segments, i.e. their mid-points and chord orientations. 

 

 

 
 

(a) (b) (c) 

 

Figure 3: The solid lines above represent example contour segments, the solid dots 

represent segment endpoints, the dotted lines show the chords of the segments, while the 

crosses show the segment mid-points. The orientations of the chords and the mid-points 

are used to represent contours. 

3.2 Encoding Contours’ Segment Maps 

We use two different approaches to represent the spatial distribution and orientation of 

contours’ segments. In the first we compute an average segment distribution across 

contours (that is we compute pair-wise segment relationships within contours and then 

average across all contours in an image). In the second we use the basic aura matrix [11] to 

compute segment co-occurrence data with no regard to which contour they belong. In the 

latter case we restrict the pairs to those occurring within a local     neighbourhood. 

3.2.1 Encoding the Average Shape of Contours within an Image 

Since the orientation difference is regarded as the approximation of the local curvature and 

can provide better discriminatory power, we use this to encode the change of contour 

direction. In addition, the distance between the mid-points of   segments within a contour 

is also employed to capture their spatial layout. Pair-wise orientation differences and pair-

wise distances (between segments) are computed for all            ⁄  segment pair 

combinations.  

The contour segment joint histogram (which we refer to as “CSJH”) of the orientation 

differences and distances is accumulated. Note that the angle   was quantized into 

          bins, providing two possible histogram resolutions for the evaluation (Section 

4.1). It is these histograms that are used to represent individual contours. Also the 

histograms are averaged across contours to produce a single average contour histogram per 

image. Of course the final histogram could have been computed without the intermediate 

step of computing individual contour histograms; however, what is important is that the 

segment pairs are restricted to those available within single contours.  
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3.2.2 Representing the Spatial and Angular Distribution of the Segments across 

Contours 

In this feature we compute segment relationships within an image but the mapping of 

segments to contours is ignored. In this case it is computationally too expensive to 

compute all pair-wise segment data within an image. Instead we adapt basic aura matrices 

[11] to compute segment-to-segment angle and position relationships restricted to a local 

    neighbourhood. Basic aura matrices normally comprise sets of 2D (co-occurrence) 

histograms where the axes represent the two grey-levels of the pairs of pixels. In our case 

the axes represent the two angles of the pairs of segments. These angle co-occurrence 

histograms are generated for different pair sets, where the segment pairs in a pair set are 

defined by a displacement vector in a similar way to that used for grey level co-occurrence 

matrices. Thus they represent, for instance, how many pairs of segments exist within an 

image that are separated by the displacement vector           (|  | |  |  ⌊   ⌋, 

where   is the width of the neighbourhood) and that have angles    and   . We use the 

term “basic segment orientation aura matrices” (BSOAMs) to refer to these matrices and 

their values are used directly in the feature vector. (Note that neighbourhood size was set 

as        , where    is the segment length and                 and therefore the 

maximum sized neighbourhood considered was 23×23 pixels). 

3.2.3 Generating the Contour-based Feature Vector 

The mean of all CSJHs and each BSOAM are concatenated into one feature vector which 

we refer to as “SDoCS” (spatial distribution of contour segments). We test it with two 

different segment angle quantization schemes (using   bins,          ) and five 

different segment lengths (               ) and one multi-scale case (    “  ”) which 

concatenates all five feature vectors derived from the five different segment lengths. 

4 Experimental Design 

Three hundred and thirty-four textures and two different similarity tasks were used to 

assess the performance of the new contour-based feature set against 52 existing feature sets 

(51 as investigated by Dong et al. [1, 2] and one contour type feature derived from shape 

recognition: chain code histogram (CCH) [16]).  

The first task was a pair-of-pairs application and the second was a conventional ranking 

problem. In the former the classifier is presented with two pairs of textures and must 

decide on which pair differs most. Human-derived ground-truth for this task (1000 trials) 

was available from Clarke et al. [17]. For the ranking ground-truth we used a perceptual 

similarity matrix generated from a free-grouping experiment performed by human 

observers and processed using Isomap analysis [18] to provide finer-grained distinctions [2, 

17]. We call this dataset 8D-ISO because it was found that 8 dimensions were sufficient to 

encode the majority of the variance in the similarity matrix. Note that it was the 

availability of these real-valued similarity data that dictated our choice of using the Pertex 

texture database. 

The performance of the feature sets was assessed by first using these to compute 

334×334 texture similarity matrices and then using these matrices in the pairs-of-pairs and 

ranking tasks. 
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4.1 Using the Texture Features to Compute Similarity Matrices 

Each 1024×1024 texture image is decomposed into 5 Gaussian pyramid levels [4]. Each 

level is separately normalized to an average intensity of 0 and standard deviation of 1. 

Feature vectors were computed at all levels and combined into a single multi-resolution 

feature vector. In addition, the original resolution (1024×1024) feature vectors were also 

examined in this study.  

The Chi-square statistic [19] is used to calculate pair-wise distances for histogram-

based and aura matrix-based feature sets, while the Euclidean distance is utilized for all 

other feature sets. These distances are normalized to [0, 1] and subtracted from 1 to 

provide data for the similarity matrices. These simple distance (similarity) metrics were 

used as we did not want to encounter problems with overtraining machine learning 

methods that would inevitably occur with what is a relatively small texture set (but which 

does have the advantage, unlike other datasets, that it is available with a rich, non-binary 

similarity matrix which allows complete ranking of retrieval [2]).  

4.2 Evaluation Methods  

Having obtained the similarity matrices from the computational features it is then a simple 

task to use these to generate either pairs-of-pairs judgements or retrieval rankings (the 

latter being generated using a query image taken from the original database). In the case of 

the former the agreement rate (%) between the computational and the 1000 human pairs-

of-pairs’ judgements is used as the performance metric [1]. For the ranking-based 

assessment we compared the rankings of the computational and human derived retrievals 

(which excluded the query image) using a measure   (       ) proposed by Fagin et al. 

[20]. We did this for the top N  {10, 20, 40} retrieved textures. This measure has the 

advantage that it takes into account the relative rankings of the computational and human 

derived retrievals. 

5 Experimental Results 

5.1 Pair-of-Pairs Task 

Results are shown for two resolutions in Figure 4. For the pair-of-pairs task the best feature 

set of the 51 feature sets tested in [1] is the Multi-resolution Simultaneous Autoregressive 

Model (MRSAR) [21]. This is therefore shown separately in Figure 4 together with the 

average performance of all of these features (as “MeanOf51”). In addition, the results of 

one shape recognition-based feature set, namely, chain code histogram (CCH), are also 

reported. The remainder of the graph shows the results for our contour-based feature set at 

two different segment angle quantization schemes and six different segment lengths 

(                  ). 

It can be observed that (1) the performance of all feature sets are enhanced when the  

multi-resolution scheme is used; (2) our feature set performs better when segment angle   

is quantized into 36 angle bins than 18 and with longer segment lengths where it 

outperforms the best conventional feature set MRSAR. 
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Figure 4: Agreement rates of computational features obtained against human pair-of-pairs 

data computed at a resolution of 1024×1024 (red trace) and all 5 resolutions combined 

(blue trace). The first two columns (“MeanOf51” and “MRSAR”) show the mean and best 

results obtained using the 51 feature sets tested in [1]. The next column shows results 

obtained using the Chain Code Histogram (CCH). The remaining results labelled in black 

“SDoCS- -  ” are results for our new feature set where the segment angle   is quantized 

into   bins and the segment lengths    are taken from                . 

 
 

Figure 5: Average G measures of computational features obtained against human ranking 

data. Each bar shows three different color-coded results for three values of N  {10, 20, 

40}. In addition, each bar-group shows two resolutions: 1024×1024 (left), and multi-

resolution (right). The first five columns (labelled in blue) show the mean and best results 

obtained using the 51 feature sets tested in [2] at different conditions. The next column 

shows results obtained using the Chain Code Histogram (CCH). The remaining results 

labelled in black “SDoCS- -  ” are results for our new feature set where segment angle   

is quantized into   bins and the segment length                   . 
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5.2 Retrieval-Based Experiment 

In this experiment, the 4 best conventional feature sets investigated in [2], namely, VZ-

NEIGHBORHOOD [19], MRSAR [21], LBPBASIC [22], LBPHF [23], are utilized as 

baselines. The average G measures obtained using the feature sets are shown in Figure 5 

for retrieval sizes of N  {10, 20, 40}. It can be seen that: (1) the multi-resolution scheme 

improves the performance of all these feature sets; and (2) our feature set outperforms all 

other feature sets except the VZ-NEIGHBORHOOD at the 1024×1024 resolution and 

outperforms the multi-resolution implementations with the exception of the multi-

resolution MRSAR. 

6 Conclusions and Future Work 

This paper has investigated the importance of three different types of information for the 

human perception of texture. Two categories were inspired by the types of data commonly 

used by existing feature measures, namely, power spectra and the short-range HOS (higher 

order statistics) available from image patches. The third, contour data, was inspired by the 

fact that the human visual system is extremely adept at extracting these visual cues and that 

they encode long-range HOS. We conducted an experiment with human observers that 

showed that for the Pertex database contours are the most useful type of data for human 

texture discrimination.  

This result, together with the fact that none of the 51 feature sets examined by Dong et 

al. [1, 2] use HOS beyond 19×19 pixel neighbourhoods, inspired us to develop a new type 

of texture feature based on representing contours as sets of segments. We refer to this 

feature set using the snappy title: Spatial Distribution of Contour Segments or SDoCS for 

short. It is notable as it exploits both the long-range and short-range HOS available from 

the segment distributions. 

We assessed the SDoCS feature set using two tasks. In the pairs-of-pairs task the 

classifier simply has to judge which of the two pairs differ most. The second task was a 

retrieval task. However, because a human-derived perceptual similarity matrix [17] was 

available we were able to fully rank the results. This allowed us to better assess the ability 

of features to estimate texture similarity but required us to use the “G” performance metric 

[20] that takes into account these rankings.  

The results showed that SDoCS outperformed the other feature sets in the pair-of-pairs 

task and outperformed all but the VZ-NEIGHBORHOOD feature set at the 1024×1024 

resolution and the multi-pyramid MRSAR feature set in the ranking task. 

We feel that the key point, however, is that we have showed the usefulness of long-

range HOS in computing texture similarity and hope that this will inspire other 

developments of texture features based on such information. 
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