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1 Introduction

Consider the model problem{
−∇ · (a(xxx)∇u) = f in Ω

u = 0 on ∂Ω .
(1.1)

The open set Ω ⊂ Rn is partitioned into two nonoverlapping subdomains Ω1, Ω2 ⊂
Ω , such that

a(xxx) =

 α1α0(xxx) for xxx ∈Ω1

α2α0(xxx) for xxx ∈Ω2,

where α1, α2 ∈ R+ and α0(xxx) is a continuous function with 0 < αmin < α0(xxx) <
αmax <∞. If f ∈ L2(Ω), then the weak formulation of (1.1) has a solution u∈H1

0 (Ω).
Problems like (1.1) arise in physics and engineering and are usually solved nu-

merically. After discretisation (e.g. using the piecewise linear finite element method)
we obtain the linear system

Auuu = fff , (1.2)

where A is a large, sparse, symmetric positive definite matrix. Solving system (1.2)
directly is impractical due to fill in so we use an iterative solver based on the domain
decomposition methods (DDMs). These methods partition the physical domain into
subdomains and solve smaller subdomain problems in parallel to construct a global
solution.

We define the interface between the subdomains by

Γ = Ω ∩ (∂Ω1∪∂Ω2) ,

then Ω = Ω1 ∪Ω2 ∪Γ . When α1 6= α2 there is a discontinuity across Γ and (1.1)
corresponds to a problem in heterogeneous media. Then the heterogeneity of the
problem naturally defines a nonoverlapping decomposition of the physical domain
Ω . Figure 1.1 shows an example of a nonoverlapping decomposition of a general
domain.

Fig. 1.1 nonoverlapping decomposition of a general domain into two general subdomains
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The main idea behind DDMs and how the different methods arise is how to trans-
fer information between the subdomains, by imposing suitable transmission condi-
tions on Γ , such that the iterates applied to the subproblems piece together to give
the global solution. We refer the reader to [21,23,27] for treatises on the subject of
DDMs.

The earliest DDM, the classical Schwarz method, was introduced in [26] as a
proof technique for the Riemann principle. The method imposes Dirichlet conditions
on the interface between the subdomains but requires overlap to converge. In [17]
Lions proposed a nonoverlapping variant of Schwarz’s method that imposes Robin
transmission conditions on Γ . Convergence was proved using energy estimates for
any choice of Robin parameter p > 0. Optimised Schwarz methods (OSM), [11,13],
aim to find optimal Robin parameters to speed up convergence. See [14] for a full
history of the various Schwarz methods. Convergence of the OSM is usually proved
using Fourier analysis, [10], and so the subdomains considered are restricted to being
regular and rectangular. In [19] the author analyses the convergence for more gen-
eral subdomains by considering the spectral radius of the interface operator that is
expressed in terms of the Dirichlet to Neumann map (also known as the Poincaré-
Steklov operator).

A DDM closely related to the OSM is the two-Lagrange multiplier (2LM) method
introduced in [9]. The main idea behind the 2LM method is not to introduce an itera-
tion explicitly but to replace the large linear system (1.2) with the smaller equivalent
system

A2LMλλλ = ccc, (1.3)
where λλλ is a vector of Lagrange multipliers that are used to solve local Robin prob-
lems on the subdomains in parallel. Though we don’t consider them in this paper the
2LM method is more suited than the OSM in dealing with cross points, which occur
where three or more subdomains coincide. In [5,18] it was shown, for general subdo-
mains with cross points, that if the Robin parameter on the interface is chosen to be
of O(h−1/2) the condition number of the 2LM method system matrix is of O(h−1/2),
where h is the finite element parameter. Efforts have been made, [12], to estimate the
convergence of OSM in the presence of cross points. In the absence of cross points,
when the subdomains are arranged in strips, it is known, [24], that the OSM and 2LM
method are equivalent when a Richardson iteration is applied to system (1.3).

The results described thus far have been for problems in homogeneous media,
i.e. there is no jump in coefficients between the subdomains. The OSM in heteroge-
neous media has been studied using Fourier analysis on rectangular subdomains in
[6,20] and by estimating the spectral radius of the interface operator acting on gen-
eral subdomains in [7]. Both approaches show that with a suitable choice of Robin
parameters the speed of convergence of OSM is faster when the jump in coefficients
becomes larger. In this article we propose to study the 2LM method for heterogeneous
problems in a general domain with two general subdomains.

Even though system (1.2) may be symmetric the related 2LM method system
(1.3) will be nonsymmetric. While smaller than the original system, it is still too
costly to solve the 2LM system directly so we use an iterative Krylov subspace
method for nonsymmetric systems such as GMRES (Generalized Minimal RESid-
ual), [25]. The speed of convergence of GMRES can be estimated using a conformal
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map from the exterior of the field of values of the system matrix to the interior of the
unit disc, [3], where the field of values is a compact convex subset of C that contains
the spectrum of a given matrix. A careful choice of Robin parameters will lead to a
more favourable field of values of the 2LM system matrix and faster convergence of
GMRES.

Our paper is organised as follows. In Section 2 we briefly outline the OSM and
2LM method for problems in heterogeneous media and show the equivalence be-
tween the two. In Section 3 we approximate the field of values of the 2LM method
system matrix with a rectangle in C. Our main results (Theorems 4.1, 4.2 and 4.3)
are presented in Section 4, where we provide optimised Robin parameters and esti-
mate the convergence rate of GMRES applied to the 2LM system (1.3). We study
the asymptotic behaviour as the finite element parameter h becomes small and the
jump between coefficients α1 and α2 becomes large, observing faster convergence
as the jump is increased. In Section 5 we verify our results with some numerical
experiments.

2 The optimised Schwarz method and the two-Lagrange multiplier method

2.1 The continuous optimised Schwarz method

Consider the model problem (1.1). For i = 1, 2, let ai denote the restriction of coeffi-
cient a(xxx) to subdomain Ωi and ui the restriction of the solution u to subdomain Ωi.
Then given initial guess u0

i the continuous form of the OSM iteration for k = 1, 2, . . .
is: solve for i = 1, 2

−ai∆uk
i = f in Ωi

uk
i = 0 on ∂Ωi∩∂Ω

(pi +ai∂ni)u
k
i = (pi +a3−i∂n3−i)u

k−1
3−i on Γ ,

(2.1)

where ∂ni denotes the directional derivative with respect to the outward pointing nor-
mal ni of ∂Ωi. Though in practice the Robin parameters pi ∈ (0,∞) could vary along
the interface here and throughout the paper we only consider the case where they are
constant on Γ . A careful choice of these Robin parameters will speed up convergence
considerably.

The version of the OSM we have presented above can be implemented in parallel,
as system (2.1) can be solved simultaneously for each subdomain with the only ex-
change of information needed after each iteration to update the Robin relation in the
third line. The difficulty arises in calculating the normal derivatives, however in [2]
the author presents a formula for updating the Robin relation that avoids computing
these derivatives. We next derive the discrete form of (2.1).

2.2 The discrete optimised Schwarz method

We assume the partition of the domain Ω into nonoverlapping subdomains, Ω1 and
Ω2, is such that for both subdomains ∂Ωi∩∂Ω 6= /0, i.e. we have no subdomains that
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“float”. Suppose we perform a quasi-uniform triangulation of Ω , with mesh parame-
ter h, into n degrees of freedom. The triangulation, Th, is such that each element lies
in only one of the subdomains, so that the interface Γ does not “cut through” any ele-
ments. Once a suitable basis has been chosen for the finite element space Vh⊂H1

0 (Ω),
we can construct the discretised form of (1.1) to obtain the linear system (1.2), with
A an n×n sparse, symmetric positive definite matrix.

For each subdomain Ωi we can define a restriction matrix Ri. If the triangulation
Th contains ni degrees of freedom in subdomain Ωi and nΓ degrees of freedom on the
interface Γ we let mi = ni +nΓ . Then Ri is an mi×n Boolean matrix that restricts an
arbitrary n dimensional vector uuu to an mi dimensional vector Riuuu which contains only
the entries of uuu corresponding to degrees of freedom in Ωi ∪Γ . The corresponding
extension matrix RT

i prolongs an arbitrary mi dimensional vector to an n dimensional
vector.

Using these restriction and extension matrices we can recover the global stiffness
matrix and load vector from (1.2) through the relation

A =
2

∑
i=1

αiRT
i ANiRi and fff =

2

∑
i=1

RT
i fff i. (2.2)

Here ANi are local stiffness matrices for the subdomains with entries given by

(ANi) jk =
∫

Ωi

α0(xxx)(∇φ j ·∇φk) ,

where φ1, . . . ,φk are the basis functions of the finite element space Vh. These matrices
correspond to the discretisation of the Laplacian on subdomain Ωi with Dirichlet
boundary conditions on ∂Ωi\Γ and Neumann boundary conditions on Γ . The entries
of fff i are given by

∫
Ωi

f φi.
To take into account the Robin transmission conditions in (2.1) we next define the

mass matrix M on the interface Γ with entries given by

(M) jk =
∫

Γ

φ jφk.

To simplify the implementation of the OSM it is judicious to lump this mass matrix.
Then we replace M with the spectrally equivalent matrix hI, where h is the finite
element mesh parameter and I the nΓ × nΓ identity matrix corresponding to the nΓ

degrees of freedom on Γ .
Now let uuui denote the restriction of the solution vector uuu to subdomain Ωi. Then

given initial guess uuu0
i the discrete version of the optimised Schwarz method is for

k = 1, 2, . . . : solve for i = 1, 2(
αiANi + piBi

)
uuuk

i = Ri

(
fff −α3−iÃRT

3−iuuu
k−1
3−i

)
+
(

α3−iANi + piBi

)
RiRT

3−iuuu
k−1
3−i , (2.3)

where Bi is a matrix with entries equal to zero corresponding to vertices interior
to Ωi and entries equal to the lumped mass matrix corresponding to vertices on Γ .
The matrix Ã is the global stiffness matrix without the contribution of the diffusion
coefficients, i.e. Ã = ∑

2
i=1 RT

i ANiRi.
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2.3 The two-Lagrange multiplier method

The 2LM method is closely related to the OSM but does does not directly introduce
an iteration for system (1.2), rather a smaller equivalent system is solved. We consider
the local Robin problems, for i = 1, 2

−ai∆ui = f in Ωi

ui = 0 on ∂Ωi∩∂Ω

(pi +ai∂ni)ui = λi on Γ ,

(2.4)

where the transmission conditions from subdomain Ω3−i have been absorbed into the
“Robin data” λi.

Following the formulation as presented in [27], we can write the local stiffness
matrix ANi and load vector fff i in block form as

ANi =

[
AIIi AIΓi

AΓ Ii AΓ Γi

]
and fff i =

[
fff Ii
fff Γi

]
.

Here the degrees of freedom have been partitioned into those internal to Ωi and those
on Γ . We can similarly partition the local solution vector into interior and interface
blocks as uuui = [uuuIi ,uuuΓi ]

T . Then given a suitable “Robin data” vector λλλ i, the discrete
form of (2.4) is given by[

αiAIIi αiAIΓi

αiAΓ Ii αiAΓ Γi + pihI

][
uuuIi
uuuΓi

]
=

[
fff Ii
fff Γi

]
+

[
0
λλλ i

]
, (2.5)

where again the mass matrix has been lumped. We eliminate the interior nodes of
(2.5) to obtain

(αiSi + pihI)uuuΓi = gggi +λλλ i, (2.6)

where
Si = AΓ Γi −AΓ IiA

−1
IIi AIΓi and gggi = fff Γi

−AΓ IiA
−1
IIi fff Ii ,

are the Schur complement of the Neumann matrix ANi and the condensed right hand
side of the load vector fff i respectively. The Schur complement is the discrete form
of the Dirichlet to Neumann map and since ANi is symmetric positive definite the
corresponding Si matrix is symmetric positive definite. The assumption that neither
subdomain “floats” ensures that the Schur complement matrices are nonsingular.

Letting ps =
(p1+p2)h

2 , (2.6) gives the relation

ps

uuuG︷ ︸︸ ︷[
uuuΓ1
uuuΓ2

]
=

Q︷ ︸︸ ︷[
ps (α1S1 + p1hI)−1 0

0 ps (α2S2 + p2hI)−1

]( ggg︷︸︸︷[
ggg1
ggg2

]
+

λλλ︷ ︸︸ ︷[
λλλ 1
λλλ 2

])
. (2.7)

Since we have two subdomains, the many sided trace uuuG has pairs of entries for each
degree of freedom on Γ and in general will correspond to a discontinuous function
across Γ . For uuuG to correspond to a continuous function the pairs of entries for each
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node on Γ must all agree. To make this more precise consider the orthogonal projec-
tion matrix

K =
1
2

[
I I
I I

]
,

where I is the nΓ ×nΓ identity matrix, if nΓ is the number of vertices on Γ . Matrix K
acts to average function values for each degree of freedom on Γ and hence uuuG corre-
sponds to a continuous function across Γ when it satisfies the continuity condition:

KuuuG = uuuG (2.8)

and the corresponding local solutions, uuui, of (2.5) will meet continuously across Γ .
The 2LM method for (1.2) is to solve system (1.3) for λλλ where

A2LM = (I−2K)(Q−K) and ccc =−(I−2K)Qggg, (2.9)

Vector λλλ is a many sided trace of Lagrange multipliers from which the method derives
its name, as there are pairs of entries for each vertex on Γ . On solving (1.3) we have
“Robin data” vectors λλλ i that are plugged into the local problems (2.5), which can
then be solved in parallel. The resulting local solutions uuui meet continuously across
Γ and will “glue together” in a suitable way to give the global solution uuu of (1.2) such
that uuui = Riuuu.

Lemma 2.1 Problem (1.3) is equivalent to (1.2).

Proof To recover the solution, uuu, of (1.2) from that of (1.3), the “Robin data” vectors
λλλ 1 and λλλ 2 must solve the local Robin problems (2.5), such that the local solutions
uuu1 and uuu2 meet continuously across the interface Γ . So first we check that continuity
condition (2.8) holds. From (1.3) and (2.9) we have that

λλλ =−(Q−K)−1(I−2K)−1(I−2K)Qggg

=−(Q−K)−1Qggg. (2.10)

The above together with (2.7) gives us

uuuG =
1
ps

Q(ggg+λλλ )

=
1
ps

Q(ggg− (Q−K)−1Qggg)

=
1
ps
((Q−K)−Q)(Q−K)−1Qggg

=− 1
ps

K(Q−K)−1Qggg.

Then since K is an orthogonal projection matrix:

KuuuG =− 1
ps

K2(Q−K)−1Qggg

=− 1
ps

K(Q−K)−1Qggg.
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Hence KuuuG = uuuG as required.
Imposing continuity across the interface is not sufficient, we must also ensure that

the “fluxes” match as well. By the continuity condition there exists a unique uuu that
restricts to uuui:

uuui = Riuuu for i = 1, 2. (2.11)

If we impose on the solution uuu that equation (1.2) holds we obtain

fff = Auuu =
2

∑
i=1

αiRT
i ANiRiuuu (using (2.2))

=
2

∑
i=1

αiRT
i ANiuuui (using (2.11))

= fff +
2

∑
i=1

RT
i

[
0

λλλ i− pihuuuΓi

]
. (using (2.2) and (2.5))

Cancelling the fff terms on each side, for the “fluxes” to match across the interface we
need

2

∑
i=1

λλλ i− pihuuuΓi = 0. (2.12)

As continuity condition (2.8) holds we have that uuuΓ1 = uuuΓ2 and so uuuG = [uuuΓ1 ,uuuΓ1 ]
T .

Then the left hand side of (2.12) becomes

[I I](λλλ − psuuuG) = [I I](λλλ −Q(ggg+λλλ )) (using (2.7))
= [I I]((K +(I−K)−Q)λλλ −Qggg)

= [I I](−(Q−K)λλλ −Qggg+(I−K)λλλ )

= [I I](Qggg−Qggg+(I−K)λλλ ) (using (2.10))
= 0,

as required.
ut

We next show the equivalence between the OSM and the 2LM method in the
absence of cross points when system (1.3) is solved using a Richardson iteration.

Lemma 2.2 Let λλλ
k
i be generated by a Richardson iteration applied to (1.3):

λλλ
k = λλλ

k−1 +2(ccc−A2LMλλλ
k−1). (2.13)

Let uuuk
i be generated by the OSM iteration (2.3). Assume that uuuk

i solves[
αiAIIi αiAIΓi

αiAΓ Ii αiAΓ Γi + pihI

][
uuuk

Ii
uuuk

Γi

]
=

[
fff Ii

fff Γi
+λλλ

k
i

]
, (2.14)

when k = 0. Then uuuk
i solves (2.14) for all k.
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Proof First consider the iterates produced by (2.13):

λλλ
k
i = 2ps(α3−iS3−i + p3−ihI)−1ggg3−i +(2ps(α3−iS3−i + p3−ihI)−1− I)λλλ k−1

3−i , (2.15)

for i = 1,2. Now consider the local Robin problem

[
α3−iAII3−i α3−iAIΓ3−i

α3−iAΓ I3−i α3−iAΓ Γ3−i + p3−ihI

][
ũuuk

I3−i

ũuuk
Γ3−i

]
=

[
fff I3−i

fff Γ3−i
+λλλ

k
3−i

]
.

Eliminating the interior nodes and rearranging we have

λλλ
k
3−i = (α3−iS3−i + p3−ihI)ũuuk

Γ3−i
−ggg3−i. (2.16)

Recall that ps =
pi+p3−i

2 h. Then plugging (2.16) into (2.15) gives

λλλ
k
i = (pi + p3−i)hũuuk−1

3−i − (α3−iS3−i + p3−ihI)ũuuk−1
Γ3−i

+ggg3−i

=−(α3−iS3−i− pihI)ũuuk−1
Γ3−i

+ggg3−i. (2.17)

Combining (2.16) and (2.17) we obtain the iteration:

(αiSi + pihI)ũuuk
Γi
−gggi =−(α3−iS3−i− pihI)ũuuk−1

Γ3−i
+ggg3−i. (2.18)

Now consider the OSM iteration, (2.3), which on eliminating the interior nodes
gives

(αiSi + pihI)uuuk
Γi
= gggi + fff I3−i

− (α3−iAΓ Γ3−i − pihI)uuuk−1
Γ3−i
−α3−iAΓ I3−iuuu

k−1
I3−i

. (2.19)

We have from (2.14) that

uuuk
I3−i

=
1

α3−i
A−1

II3−i
( fff I3−i

−α3−iAIΓ3−iuuu
k
Γ3−i

),

which substituting into (2.19) and rearranging gives the iteration:

(αiSi + pihI)uuuk
Γi
−gggi =−(α3−iS3−i− pihI)uuuk−1

Γ3−i
+ggg3−i. (2.20)

Then provided iterations (2.18) and (2.20) have the same initial guess, that is
ũuu0

Γi
= uuu0

Γi
, they will produce the same iterates.

ut
Although iteration (2.13) will converge, it is faster to solve system (1.3) with a

Krylov subspace method. Since the matrix A2LM is nonsymmetric we need to use a
method such as GMRES whose speed of convergence we are interested in.
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3 The field of values of the 2LM method system matrix

3.1 The field of values and the convergence of GMRES

For an arbitrary matrix A ∈ Cn×n the field of values (also known as the numerical
range) of A is the compact convex subset of C defined by

W (A) = {www∗Awww : www ∈ Cn, www∗www = 1}.

In particular W (A) is the set of all Rayleigh quotients and hence contains the spectrum
of A. If A is normal W (A) is the convex hull of the set of eigenvalues of A, while if A
is Hermitian W (A) is an interval on the real line with endpoints given by the smallest
and largest eigenvalues of A.

The numerical radius of A is a norm given by r(A) = max{|z| : z∈W (A)}, equiv-
alent to the 2-matrix norm |||·|||2 through the relation |||A|||2 ≤ 2r(A) ≤ 2|||A|||2. For
full details of the field of values and the numerical radius see [15]. We next show the
relationship between W (A) and the convergence speed of GMRES.

For a given linear system Axxx = bbb, A not necessarily symmetric, and initial guess
xxx0 the GMRES algorithm at iteration k generates an approximate solution xxxk by au-
tomatically finding a polynomial pk(z) that satisfies the minimal residual property

‖rrrk‖2 = min
pk∈Pk
pk(0)=1

‖pk(A)rrr0‖2. (3.1)

Here rrrk = bbb−Axxxk is the residual at step k and Pk the set of all polynomials of degree
≤ k. A typical convergence criterion of GMRES is to stop the iteration if ‖rrrk‖2/‖rrr0‖2
reaches a given tolerance. Using the field of values W (A) we can approximate how
fast this quotient decreases towards zero.

If W (A) does not contain the origin it is known, [8], that

r(pk(A))≤ max
z∈W (A)

|pk(z)|,

then, using the fact that |||pk(A)|||2 ≤ 2r(pk(A)), (3.1) gives us

‖rrrk‖2

‖rrr0‖2
≤ 2

Ek︷ ︸︸ ︷
min

pk∈Pk
pk(0)=1

max
z∈W (A)

|pk(z)| .

The estimated asymptotic convergence factor is defined by

ρ = lim
k→∞

(Ek)
1/k,

where ρ ≤ 1, and an estimate for the convergence speed of GMRES is given by

‖rrrk‖2

‖rrr0‖2
≈ 2ρ

k.

Since W (A) is a connected set in C a formula for ρ can be derived through the use
of conformal mappings, [3]. Let Φ(z) denote the conformal map from the exterior
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of W (A) to the interior of the unit disc with Φ(∞) = 0. Such a map exists by the
Riemann mapping theorem, since the exterior of W (A) is simply connected in the
extended complex plane C∪{∞}. Then provided 0 /∈W (A) the estimated asymptotic
convergence factor is given by

ρ = |Φ(0)|. (3.2)

For the full derivation of (3.2) see [22].
In particular, the above formula for ρ will hold for any Φ(z) that is the confor-

mal map from the exterior of a connected set, which contains the spectrum of the
system matrix but does not contain the origin. Then by approximating W (A2LM) by a
connected set in C we can estimate the convergence speed of GMRES when solving
(1.3).

3.2 Approximation of the field of values of the 2LM method system matrix by a
rectangle

A simple numerical algorithm due to Johnson, [16], can be used to approximate the
field of values of a matrix A ∈ Cn×n. It uses the property that any matrix can be
split into Hermitian and skew-Hermitian parts. Let H(A) = 1

2 (A + A∗) denote the
Hermitian part of matrix A while σmin(B) and σmax(B) denote the smallest and largest
eigenvalues of a Hermitian matrix B respectively. Now, using the fact that the field of
values of a Hermitian matrix is an interval on the real line, we have that

min
z∈W (A)

ℜe(z) = min
γ∈W (H(A))

γ = σmin(H(A))

and
max

z∈W (A)
ℜe(z) = max

γ∈W (H(A))
γ = σmax(H(A)).

Then W (A) lies in between the lines that run parallel to the imaginary axis, cross
the real axis at points σmin(H(A)) and σmax(H(A)) and which intersect W (A) on
its boundary. Now, using the property that W (eiϕ A) = eiϕW (A), we can calculate
σmin(H(eiϕ A)) and σmax(H(eiϕ A)) for different angles ϕ to find boundary points of
W (A). If A is real W (A) is symmetric with respect to the real axis and we need only
take ϕ ∈ [0,π/2]. Using this approach we can approximate the field of values of the
2LM method system matrix by a rectangle in C. We first give a result for general
matrices that have a special block structure.

Lemma 3.1 Let X and Y be real, symmetric matrices of the same size and let τ ∈ R.
Consider matrix A of the form:

A =

[
τI X
Y τI

]
.

Then W (A) is contained in a rectangle in C centred at the point (τ,0) with sides
parallel to the imaginary axis defined by the lines {τ± 1

2 ρ(X +Y )+ξ i : ξ ∈R} and
top and base parallel to the real axis defined by the lines {± 1

2 ρ(X−Y )i+ξ : ξ ∈R}.
Where ρ(·) denotes the spectral radius of a symmetric matrix.
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Proof For ϕ ∈ [0,π/2] we have that

H(eiϕ A) =
eiϕ

2

[
τI X
Y τI

]
+

e−iϕ

2

[
τI Y
X τI

]

=

[
τ cosϕI 1

2 (e
iϕ X + e−iϕY )

1
2 (e

iϕY + e−iϕ X) τ cosϕI

]
.

Say that A is n×n, let www ∈Cn be such that www∗www = 1 and partition www into block form:

www =

[
uuu
vvv

]
,

and so uuu∗uuu+ vvv∗vvv = 1. Let zϕ = www∗H(eiϕ A)www, then {e−iϕ(zϕ +ξ i) : ξ ∈ R} defines a
supporting hyperplane for W (A), where

zϕ =
[
uuu∗ vvv∗

][ τ cosϕI 1
2 (e

iϕ X + e−iϕY )
1
2 (e

iϕY + e−iϕ X) τ cosϕI

][
uuu

vvv

]

= τ cosϕ +
1
2

uuu∗
(
eiϕ X + e−iϕY

)
vvv+

1
2

vvv∗
(
eiϕY + e−iϕ X

)
uuu.

Taking the absolute value and using Young’s inequality, ab≤ a2

2 + b2

2 , gives∣∣zϕ − τ cosϕ
∣∣≤ 1

2

∣∣uuu∗(eiϕ X + e−iϕY )vvv
∣∣+ 1

2

∣∣vvv∗(eiϕY + e−iϕ X)uuu
∣∣

≤ 1
2
||uuu||2||vvv||2

(∣∣∣∣∣∣eiϕ X + e−iϕY
∣∣∣∣∣∣

2 +
∣∣∣∣∣∣eiϕY + e−iϕ X

∣∣∣∣∣∣
2

)

≤ 1
2

(
||uuu||22

2
+
||vvv||22

2

)(∣∣∣∣∣∣eiϕ X + e−iϕY
∣∣∣∣∣∣

2 +
∣∣∣∣∣∣eiϕY + e−iϕ X

∣∣∣∣∣∣
2

)

=
1
4

(∣∣∣∣∣∣eiϕ X + e−iϕY
∣∣∣∣∣∣

2 +
∣∣∣∣∣∣eiϕY + e−iϕ X

∣∣∣∣∣∣
2

)
. (3.3)

These matrix norms are in general difficult to estimate, but we have two special values
of ϕ that simplify bound (3.3). When ϕ = 0:

|z0− τ| ≤ 1
4
|||X +Y |||2 +

1
4
|||Y +X |||2

=
1
2

ρ(X +Y ), (3.4)

where we have used the fact that |||A|||2 = ρ(A), if A is symmetric. While for ϕ = π/2:∣∣∣z π
2

∣∣∣≤ 1
4
|||iX− iY |||2 +

1
4
|||iY − iX |||2

=
1
2

ρ(X−Y ). (3.5)
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Then the lines that run through the points defined by (3.4) and (3.5) form a rectangle
in C centred at the point (τ,0), with top and bottom parallel to the real axis and sides
parallel to the imaginary axis, that contains W (A).

ut

Corollary 3.1 Let X = 1− ps (α2S2 + p2hI)−1, Y = 1− ps (α1S1 + p1hI)−1 and τ =
1/2. The 2LM method system matrix is of the form:

A2LM =

[ 1
2 I X
Y 1

2 I

]
.

Then W (A2LM) is contained in the rectangle, �, centred at the point (1/2,0) with
sides defined by the lines { 1

2 ±
1
2R(p1, p2)+ξ i : ξ ∈R} and top and base defined by

the lines {± 1
2I (p1, p2)i+ξ : ξ ∈ R}, with

R(p1, p2) = max{|µ1(p1, p2)| , |µ2(p1, p2)|} ,

where

µ1(p1, p2) = 1− ps

(
1

α1smin + p1h
+

1
C1α2smin + p2h

)
and

µ2(p1, p2) = 1− ps

(
1

α1smax + p1h
+

1
C2α2smax + p2h

)
,

while
I (p1, p2) = max{|ν1(p1, p2)| , |ν2(p1, p2)|} ,

with

ν1(p1, p2) = ps

(
1

C2α2smax + p2h
− 1

α1smin + p1h

)
and

ν2(p1, p2) = ps

(
1

C1α2smin + p2h
− 1

α1smax + p1h

)
.

Here C1 and C2 are positive constants while smin and smax denote the smallest and
largest eigenvalues of matrix S1 respectively.

Proof Following Lemma 3.1 we find upper bounds for ρ(X +Y ) and ρ(X −Y ). The
spectrum of X +Y can be written in terms of the spectra of S1 and S2:

σ(X +Y ) =
{

1− ps

(
1

α1s+ p1h
+

1
α2t + p2h

)
: s ∈ σ(S1), t ∈ σ(S2)

}
.

Let tmin and tmax denote the smallest and largest eigenvalues of S2 respectively. It is
known (see [23] Proposition 4.1.2) that S1 and S2 are spectrally equivalent, so there
exists positive constants C1 and C2 independent of h such that

C1smin ≤ tmin and tmax ≤C2smax. (3.6)
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Now (3.6) gives

σmin(X +Y )≥ 1− ps max
s∈σ(S1)
t∈σ(S2)

{
1

α1s+ p1h
+

1
α2t + p2h

}

= 1− ps

(
1

α1smin + p1h
+

1
α2tmin + p2h

)

≥ 1− ps

(
1

α1smin + p1h
+

1
C1α2smin + p2h

)
︸ ︷︷ ︸

µ1(p1,p2)

and

σmax(X +Y )≤ 1− ps min
s∈σ(S1)
t∈σ(S2)

{
1

α1s+ p1h
+

1
α2t + p2h

}

= 1− ps

(
1

α1smax + p1h
+

1
α2tmax + p2h

)

≤ 1− ps

(
1

α1smax + p1h
+

1
C2α2smax + p2h

)
︸ ︷︷ ︸

µ2(p1,p2)

,

then we have that ρ(X +Y )≤R(p1, p2) = max{|µ1(p1, p2)| , |µ2(p1, p2)|}.
The spectrum of X −Y can also be written in terms of the spectra of S1 and S2,

then similar calculations as above yield that ρ(X−Y )≤I (p1, p2).
ut

As R(p1, p2) and I (p1, p2) are functions of p1 and p2, by choosing suitable
Robin parameters we hope to make � “well conditioned” in the sense that GMRES
converges quickly. From (3.2) we see that convergence will be quicker if � is small
and far away from the origin. In principle to achieve this we need to minimise both
R(p1, p2) and I (p1, p2) however, since � only approaches the origin along the real
axis we choose to focus on minimising R(p1, p2). We are still interested in I (p1, p2)
especially to ensure our choice of parameters doesn’t cause � to be too large in the
imaginary direction.

4 Optimised Robin parameters

4.1 One sided Robin parameters

Our first choice of Robin parameters is the simplest case when we have the same
parameters on both sides of the interface, p1 = p2 = q. Then we have to minimise
R [1](q) = max{|µ [1]

1 (q)|, |µ [1]
2 (q)|}, where

µ
[1]
1 (q) = 1−qh

(
1

α1smin +qh
+

1
C1α2smin +qh

)
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and

µ
[1]
2 (q) = 1−qh

(
1

α1smax +qh
+

1
C2α2smax +qh

)
.

We also have that I [1](q) = max{|ν [1]
1 (q)|, |ν [1]

2 (q)|}, with

ν
[1]
1 (q) = qh

(
1

C2α2smax +qh
− 1

α1smin +qh

)
and

ν
[1]
2 (q) = qh

(
1

C1α2smin +qh
− 1

α1smax +qh

)
This choice of one sided parameter not only simplifies the analysis but guarantees
that both R [1](q)< 1 and I [1](q)< 1 for all q > 0. Then W (A2LM) does not contain
the origin and (3.2) will hold.

Theorem 4.1 The unique minimiser, q∗ > 0, of R [1](q) is given by the solution of

µ
[1]
1 (q) =−µ

[1]
2 (q). (4.1)

Proof Taking partial derivatives of µ
[1]
1 (q) and µ

[1]
2 (q) with respect to q we have that

∂ µ
[1]
1

∂q
< 0 and

∂ µ
[1]
2

∂q
< 0,

for all q > 0. Moreover µ
[1]
j (0) = 1 and limq→∞ µ

[1]
j (q) =−1 for j = 1,2. Then since

µ
[1]
j (q) is a monotonically decreasing, continuous function |µ [1]

j (q)| reaches its min-

imum when µ
[1]
j (q) = 0. Solving µ

[1]
j (q) = 0 for q we find that |µ [1]

1 (q)| reaches its
minimum at

q1 =

√
C1α1α2smin

h
,

while |µ [1]
2 (q)| reaches its minimum at

q2 =

√
C2α1α2smax

h
.

It follows that the minimiser q∗ of R [1](q) must lie in the interval [q1,q2]. To see this,
note that when q < q1 increasing q uniformly decreases both |µ [1]

1 (q)| and |µ [1]
2 (q)|.

On the other hand if q > q2 decreasing q uniformly decreases both |µ [1]
1 (q)| and

|µ [1]
2 (q)|, see Figure 4.1.

Now in the interval [q1, q2], |µ [1]
1 (q)| is monotonically increasing and

µ
[1]
2 (q) is monotonically decreasing, so R [1](q) must reach its minimum when

|µ [1]
1 (q)|= |µ [1]

2 (q)|.

That is when
µ
[1]
1 (q) =−µ

[1]
2 (q).
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Fig. 4.1 upper bound R[1](q) for different values of the one sided Robin parameter q

ut
Calculating the minimising Robin parameter in (4.1) involves solving a quartic

equation. To simplify the convergence analysis we propose to choose an approxima-
tion to q∗ by taking the geometric mean of the endpoints of the interval [q1, q2]. Then
we obtain the one sided Robin parameter:

q̂ =

√√
C1C2α1α2sminsmax

h
. (4.2)

Let �q̂ denote the rectangle defined by R [1](q̂) and I [1](q̂). To approximate the
convergence speed of GMRES with this choice of Robin parameter we must construct
the conformal map, from the exterior of �q̂ to the interior of the unit disc. We cannot
state such a map explicitly but can define its inverse.

Lemma 4.1 Let Ψ : w 7→ z denote the conformal map from the interior of the unit
disc to the exterior of �q̂, with Ψ(0) = ∞. Furthermore let δ ∈ (0,1/2) denote the
distance, measured along the real axis, from the origin to left hand boundary of �q̂.
Then Ψ is of the form:

Ψ(w,δ ) = δ +C(ψ(w,θ)−ψ(1,θ)), (4.3)

where

ψ(w,θ) =
∫ w

ζ
−2
(
(1− eiθ

ζ )(1− e−iθ
ζ )(1+ eiθ

ζ )(1+ e−iθ
ζ )
)1/2

dζ . (4.4)

Here θ ∈ (0,π/2) determines the aspect ratio and C ∈ R+ the scaling of �q̂.

Proof Let Ξ(w) denote the conformal map from the interior of the unit disc to the
exterior of an arbitrary rectangle. A Schwarz-Christoffel mapping can be used to con-
struct such a map of the form:

Ξ(w) = A+C
∫ w

ζ
−2

4

∏
k=1

(
1− ζ

wk

)1/2

dζ ,
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Fig. 4.2 conformal mapping from the interior of the unit disc to the exterior of �q̂

where complex constants A and C correspond to translation and scaling/rotation of the
rectangle respectively. The wk’s in the integrand are pre-vertices, where Ξ(wk) = zk,
chosen on the boundary of the unit disc to determine the side lengths of the rectangle.
For full details of Schwarz-Christoffel mappings see [4].

Rectangle �q̂ is situated in the right-half plane, centred at the point (1/2,0) and
with sides parallel to the imaginary axis. For a given angle θ ∈ (0,π/2) consider
the choice of pre-vertices w1 = e−iθ , w2 = eiθ , w3 = −e−iθ and w4 = −eiθ . Then
(4.4) gives the map from the interior of the unit disc to the exterior of the rectangle
centred at the origin with sides parallel to the imaginary axis. The choice of θ will
determine the aspect ratio of the rectangle, with θ = 0 giving an interval of the real
axis, θ = π/4 a square and θ = π/2 an interval of the imaginary axis.

Now consider the mapping

Ψ(w) = A+Cψ(w,θ). (4.5)

Then, for suitably chosen A, C and θ , (4.5) gives the map to the exterior of �q̂, where
we need only take A and C to be real and positive.

To this end we can eliminate one of the three unknowns by observing that map-
ping (4.4) takes the point w = 1 on the boundary of the unit disc to the left hand
boundary point, on the real axis, of the rectangle. We know, for �q̂, that the distance
of this point from the origin is given by δ = 1

2 −
1
2R [1](q̂) and so

δ = A+Cψ(1,θ).

Solving the above for A and substituting into (4.5) we recover the conformal map
(4.3) to the exterior of �q̂, as shown in Figure 4.2.

ut
We are interested in the convergence speed of GMRES when h becomes small,

i.e. the finite element mesh size becomes finer, and when the jump in diffusion coef-
ficients α1 and α2 becomes large.

Theorem 4.2 Let the 2LM method system (1.3), with choice of Robin parameter
(4.2), be solved using GMRES. Assume that α1 and α2 are held constant. Let smax =
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C3/h and h→ 0. The estimated asymptotic convergence factor of GMRES for small
h is

ρ = 1−O(
√

h). (4.6)

Assume that α1 and h are held constant and let α2→ 0. The estimated asymptotic
convergence factor of GMRES for small α2 is

ρ = β +O(
√

α2), (4.7)

where β is a constant, with β < 1.

Proof Let Φ(z,δ ) denote the conformal map from the exterior of �q̂ to the interior of
the unit disc. Then (4.3) gives the inverse of Φ(z,δ ). Taking the linear approximation
of Ψ(w,δ ) near w = 1, denoted Ψ(w,δ ), we obtain

Ψ(w,δ ) = δ +
c1

c2
C(w−1),

where

c1 = 8cos2
θ cos2θ +8sinθ cos t sin2θ − sin4θ

√
2−2cos4θ −7cos2θ − cos6θ

and
c2 =

√
2−2cos2θ(1+ cos4θ + sin2θ

√
2−2cos4θ).

Solving Ψ(w,δ ) = 0 for w gives the linear approximation of the mapping from
the origin, exterior to �q̂, to the interior of the unit disc:

Φ(0,δ ) = 1− c2

c1

δ

C
. (4.8)

Then from (3.2) we have that the estimated asymptotic convergence factor of GMRES
is ρ = Φ(0,δ ), where we have dropped the absolute value since, for suitable C and
θ , Φ(0,δ ) is real and positive.

When either h or α2 is small |µ [1]
1 (q̂)| > |µ [1]

2 (q̂)| and µ
[1]
1 (q̂) < 0, then we have

that
δ =

1
2
+

1
2

µ
[1]
1 (q̂). (4.9)

Substituting (4.9) into (4.8) and taking the series expansion as α2 goes to zero gives
the second result:

ρ = β

+
1
2
(
√

C1C2smax−C1smin)
√

2−2cos4θ(1+ cos4θ + sin2θ
√

2−2cos4θ)√√
C1C2α1sminsmaxC(4−3cos2θ − sin4θ

√
2−2cos4θ − cos6θ))

√
α2

+O(α2),

where

β =
1
2

√
2−2cos4θ(2C sin4θ + sin2θ

√
2−2cos2θ)

C(cos6θ + sin4θ
√

2−2cos4θ +3cos2θ −4)

+
1
2

√
2−2cos2θ(1+ cos4θ)+C(6cos2θ +2cos6θ −8)

C(cos6θ + sin4θ
√

2−2cos4θ +3cos2θ −4)
,
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with β < 1.
It is known, [1], for small h that there exists constant C3, independent of h, such

that smax =C3/h. Substituting this and (4.9) into (4.8) and taking the series expansion
as h goes to zero gives the first result:

ρ =1

− 1
2
(α1 +C1α2)

√
smin
√

2−2cos2θ(1+ cos4θ + sin2θ
√

2−2cos4θ)√√
C1C2C3α1α2C(4−3cos2θ − sin4θ

√
2−2cos4θ − cos6θ)

√
h

+O(h)
ut

Remark 4.1 The convergence shown in (4.6) for small h is an improvement on the
other popular estimate for GMRES (see [27] Lemma C.11) that gives an asymptotic
convergence factor of 1−O(h) when solving the 2LM method system.

Estimate (4.7) shows that the larger the jump in the diffusion coefficients the faster
GMRES will converge. This is an improvement from other popular DDMs such as
FETI-DP and Neumann-Neumann that are independent of jumps in the coefficients,
[21].

4.2 Scaled one sided Robin parameters

A second choice of parameters is again to minimise only one parameter but to now
take into account the jump in coefficients across the interface. It was shown in [6,7,
20] for the OSM that the choice p1 = α2r and p2 = α1r leads to faster convergence as
the jump in coefficients becomes larger. In the literature these are referred to as scaled
one sided or one and a half Robin parameters. The downside to choosing p1 6= p2 is
that for some values of r the field of values of A2LM may contain the origin and so
(3.2) will not hold.

We need to minimise R [1.5](r) = max{|µ [1.5]
1 (r)|, |µ [1.5]

2 (r)|}, where

µ
[1.5]
1 (r) = 1− (α1 +α2)rh

2

(
1

α1smin +α2rh
+

1
C1α2smin +α1rh

)
and

µ
[1.5]
2 (r) = 1− (α1 +α2)rh

2

(
1

α1smax +α2rh
+

1
C2α2smax +α1rh

)
.

Theorem 4.3 The unique minimiser, r∗ > 0, of R [1.5](r) is given by the solution of

µ
[1.5]
1 (r) =−µ

[1.5]
2 (r). (4.10)

Proof We proceed in a similar fashion as we did for Theorem 4.1. Taking the partial
derivatives of µ

[1.5]
1 (r) and µ

[1.5]
2 (r) with respect to r we see that

∂ µ
[1.5]
1

∂ r
< 0 and

∂ µ
[1.5]
2

∂ r
< 0,
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for all r > 0. Moreover µ
[1.5]
j (0) = 1 and limr→∞ µ

[1.5]
j (r) = − 1

2
α2

1+α2
2

α1α2
, for j = 1, 2.

Let

D j = α
4
1 +(6C j−2)α3

1 α2 +(C2
j +4C j +1)α2

1 α
2
2 +(6C j−2C2

j )α1α
2
2 +C jα

4
2 ,

then |µ [1.5]
1 (r)| reaches its minimum at

r1 =

(
α4

1 − (C1 +1)α1α2 +C1α2
2 +
√

D1
)

smin

2(α2
1 +α2

2 )h

and |µ [1.5]
2 (r)| reaches its minimum at

r2 =

(
α4

1 − (C2 +1)α1α2 +C2α2
2 +
√

D2
)

smax

2(α2
1 +α2

2 )h
.

It follows that since µ
[1.5]
1 (r) and µ

[1.5]
2 (r) are monotonically decreasing functions the

minimiser r∗ must lie in the interval [r1, r2].
Then we have that in the interval [r1,r2], |µ [1.5]

1 (r)| is monotonically increasing
and |µ [1.5]

2 (r)| is monotonically decreasing. So the unique minimiser r∗ is obtained
when

|µ [1.5]
1 (r)|= |µ [1.5]

2 (r)|.
That is when

µ
[1.5]
1 (r) =−µ

[1.5]
2 (r).

ut

Remark 4.2 The minimising scaled one sided Robin parameter r∗ results in W (A2LM)
containing the origin, so we cannot derive a convergence estimate of the form (3.2).
However we will see in the numerical experiments in the next section that this choice
of parameters leads to faster convergence as compared to the non-scaled one sided
case.

Remark 4.3 It is also possible to take p1 and p2 to be two independent parameters
on each side of the interface. It was shown for the OSM in symmetric rectangular
subdomains, [6], that this choice leads to even faster convergence than either one
sided or scaled one sided Robin parameters. However for general subdomains these
so called two sided parameters are difficult to derive.

5 Numerical experiments

We consider model problem (1.1) on the L-shaped domain Ω ⊂ R2, which is parti-
tioned into nonoverlapping subdomains as shown in Figure 5.1. The diffusion coeffi-
cient is given by

a(x,y) =

 α1(1+ 1
2 sin(3πx)cos(3πy)) in Ω1

α2(1+ 1
2 sin(3πx)cos(3πy)) in Ω2
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Fig. 5.1 nonoverlapping decomposition of an L-shaped domain into two general subdomains

and the forcing term by

f (x,y) = 1+α1α2 sin(3πx)sin(3πy).

We perform a uniform triangulation of Ω , with mesh parameter h, and discretise
the PDE using piecewise linear, triangular finite elements. Let ω = α1/α2, such that
α1 > α2. We set α1 = 1 and let α2 vary. We solve system (1.3) using the built in
GMRES solver in MATLAB for different choices of h and ω . We use GMRES with-
out restarts, a zero vector initial guess and are interested in the number of iterations
required to reach a tolerance of 10−12 in the relative residual. We also calculate the
2-norm condition number of A2LM using the MATLAB command cond.

Note that our choice of one sided parameters given in (4.2) involves constants C1
and C2 that, in general, we do not know. Then we choose to set C1 = C2 = 1, which
corresponds to the case of symmetric subdomains about the interface. We do not have
symmetric subdomains for our example, but as we will see even with this simplifica-
tion we can still achieve fast convergence. Then the one sided Robin parameter we
use is

q̃ =

√
a1a2sminsmax

h
. (5.1)

Eigenvalues smin and smax are calculated in MATLAB using the eig command.
For larger problems where this approach would be impractical, due to S1 and S2 being
dense, the estimates smin = b1 and smax = b2/h, for constants b1 and b2, (see [1]) can
be used. The results for the one sided Robin parameter are shown in Table 5.1 for
different values of h and ω .

The numerical results confirm our theoretical results from Theorem 4.2. Decreas-
ing the mesh size h requires more iterations of GMRES will increasing the jump in
coefficients requires less. Though in general the condition number of a nonsymmetric
matrix is not useful in determining the speed of convergence of GMRES here we see
favourable behaviour of the condition number of A2LM with one sided parameters.
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h = 1/16 h = 1/32 h = 1/64 h = 1/128

ω = 101 26 (2.7768) 31 (3.8800) 37 (5.4121) 43 (7.5992)

ω = 102 22 (1.6023) 24 (1.9519) 27 (2.4270) 32 (3.0963)

ω = 103 16 (1.1882) 18 (1.2909) 20 (1.4280) 22 (1.6196)

ω = 104 13 (1.0590) 14 (1.0903) 14 (1.1314) 16 (1.1880)

ω = 105 10 (1.0186) 12 (1.0283) 12 (1.0411) 12 (1.0585)

Table 5.1 number of iterations of GMRES (in bold) and the condition number of A2LM matrix (in brackets)
using one sided Robin parameter (5.1)
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Fig. 5.2 W (A2LM) (dashed line) and σ(A2LM) (dots) with choice of one sided Robin parameter (5.1),
h = 1/32, ω = 101 on left, ω = 103in middle and ω = 105 on right

In Figure 5.2 we plot the spectrum and field of values of A2LM for different values
of ω with one sided parameters. We see that as the jump in coefficients becomes larger
the field of values moves further away from the origin while the eigenvalues become
more clustered together and are pure imaginary, resulting in the faster convergence
of GMRES.

For the case of scaled one sided parameters as in the case of one sided parameters
the minimising parameter from (4.10) involves the solution of a quartic equation.
So we choose to approximate the parameter by taking the geometric mean of the
endpoints of the interval [r1,r2], as defined in Theorem 4.3, in which r∗ lies. Again
we set C1 =C2 = 1, then the scaled one sided Robin parameter we use is given by

r̃ =
√

sminsmax

h
. (5.2)

The results for this choice for different values of h and ω are shown in Table 5.2
while the spectrum and field of values of A2LM for different values of ω are shown in
Figure 5.3.

For scaled one sided parameters we observe similar behaviour as we do for the
non-scaled parameters. The number of iterations increases as we decrease h and de-
creases as we increase ω . However, the number of iterations needed to reach the
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same tolerance is significantly less. For small h and large ω we require about half the
number of iterations as are required for the non-scaled case. Figure 5.3 goes some
way to explain this as we see that as ω increases the eigenvalues of A2LM become
clustered about the point (1/2,0), whereas in the non-scaled case the clustering hap-
pens around two points. GMRES can more easily deal with systems whose matrix’s
eigenvalues are clustered together away from the origin and are on the real line.

We also observe from Figure 5.3 that as ω increases the size of W (A2LM) in-
creases and that the boundary of W (A2LM) moves further away from the set of eigen-
values. This is due to the high non-normality of matrix A2LM when we have scaled
one sided parameters. The field of values is a good approximation of the spectrum
of a matrix when said matrix is not too highly non-normal, [8], as is the case when
we have non-scaled one sided parameters. Despite this, as we see from Table 5.2 the
approach of minimising W (A2LM) for scaled one sided parameters results in much
faster convergence of GMRES.

h = 1/16 h = 1/32 h = 1/64 h = 1/128

ω = 101 19 (7.5443) 22 (14.0651) 26 (25.2644) 29 (43.6511)

ω = 102 12 (13.2178) 13 (28.5038) 14 (60.1054) 15 (123.3700)

ω = 103 8 (14.3136) 9 (31.4972) 10 (68.1422) 10 (144.5996)

ω = 104 6 (14.4360) 6 (31.8268) 8 (69.0434) 8 (147.0497)

ω = 105 6 (14.4480) 6 (31.8601) 6 (69.1346) 6 (147.2984)

Table 5.2 number of iterations of GMRES (in bold) and the condition number of A2LM matrix (in brackets)
using scaled one sided Robin parameter (5.2)
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Fig. 5.3 W (A2LM) (dashed line) and σ(A2LM) (dots) with choice of scaled one sided Robin parameter
(5.2), h = 1/32, ω = 101 on left, ω = 103 in middle and ω = 105 on right
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