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We theoretically propose and investigate an optical analogue of neutrino oscillations in a pair of
vertically displaced binary waveguide arrays with longitudinally modulated effective refractive index.
Optical propagation is modeled through coupled-mode equations, which in the continuous limit converge
to two coupled Dirac equations for fermionic particles with different mass states, analogously to neutrinos.
In addition to simulating neutrino oscillation in the noninteracting regime, our optical setting enables us to
explore neutrino interactions in extreme regimes that are expected to play an important role in massive
supernova stars. In particular, we predict the quenching of neutrino oscillations and the existence of
topological defects, i.e., neutrino solitons, which in our photonic simulator should be observable as
excitation of optical gap solitons propagating along the binary arrays at high excitation intensities.

DOI: 10.1103/PhysRevLett.113.150401 PACS numbers: 03.65.-w, 14.60.Pq, 42.65.Wi, 95.85.Ry

Introduction.—Optical waveguide arrays (WAs) allow
for the optical simulation of nonrelativistic dynamics of
quantum particles [1–3]. They constitute a useful classical
laboratory for mimicking quantum effects and can be
exploited to analyze fundamental quantum mechanisms
with classical tools, such as Bloch oscillations [4], Zener
tunnelling [5,6], dynamical localization [7], and Anderson
localization in disordered lattices [8]. In addition, relativ-
istic phenomena of quantum field theory can be optically
simulated in binary waveguide arrays (BWAs), as optical
propagation in the continuous limit is governed by a
ð1þ 1ÞD Dirac equation [9–12]. Thus, BWAs can be
engineered in order to observe diverse relativistic effects,
e.g., Zitterbewegung [10], Klein tunnelling [9,13], fermion
pair production [14], and solitons [15]. Spontaneous
symmetry breaking induced by tachyon condensation
can be simulated in amplifying plasmonic arrays [16],
where optical propagation in the continuous limit satisfies
a ð1þ 1ÞD Dirac-like equation for particles with imaginary
mass, i.e., tachyons. WAs aimed to simulate other quantum
field theoretical models and nonphysical particles, such
as Majorana physics, have been suggested as well [17,18].
Besides optical WAs, quantum simulations in trapped
ion systems have provided spectacular results in this
context [19–22].
An important mechanism arising in particle physics

is represented by neutrino oscillation [23], a quantum
mechanical effect whereby a neutrino created with a
specific lepton flavor can later be measured with a different
flavor. Neutrino oscillations occur both in vacuum and in
matter, as the probability of measuring a neutrino with a
specific flavor periodically oscillates during the propaga-
tion [24–26]. In recent years, theoretical and experimental
investigations of neutrino oscillations have received

considerable interest, as the observation of this phenome-
non implies that neutrinos have small but finite masses.
While in the standard model of particle physics the mass of
charged fermions results from the interactions with the
Higgs field, the origin of the neutrino masses has not
hitherto been answered conclusively. Neutrino oscillations
ensue from a mixture between the flavor and mass
eigenstates, since the three neutrino states weakly interact-
ing with charged leptons are superpositions of three states
with definite mass.
The enormous neutrino fluxes emitted by supernovae are

key to the explosion dynamics and nucleosynthesis [27]
and detecting a high statistics of neutrinos from the next
nearby supernova explosion is a major aim of neutrino
astronomy. In the early Universe and in collapsing super-
nova stars, the density of neutrinos is so large that they
strongly interact with each other, many body interactions
become important and neutrino oscillations feedback on
themselves [28–31]. In turn, peculiar effects like coherence
in collective neutrino oscillations and suppression of self-
induced flavor conversion occur in supernova explosions
[32,33]. Owing to the experimental difficulty of investigat-
ing neutrino oscillations in these extreme conditions,
quantum simulation with trapped ions has been recently
proposed [34].
In this Letter we theoretically investigate optical propa-

gation in a pair of vertically displaced binary waveguide
arrays with longitudinally modulated effective index. In
the fast modulation and continuous limit, light dynamics is
described by two coupled nonlinear Dirac equations for
fermionic particles with different mass states, analogously
to the equations governing the evolution of neutrinos in
matter [26]. In the linear limit where nonlinear effects are
negligible, our optical setup allows for the simulation
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of neutrino oscillations, thoroughly reproducing the
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix for-
mulation and the matter mixing matrix [35,36]. In the
nonlinear regime, physically accessible at high matter
densities, e.g., in the early Universe and in supernova
stars, we predict the quenching of neutrino oscillations
and the existence of topological defects, i.e., neutrino
solitons. The proposed tabletop optical system simulating
neutrino physics constitutes a useful classical laboratory
for predicting exotic effects and extreme regimes in
neutrino astrophysics that are still out of any experimental
demonstration.
Model.—In the following we consider a pair of vertically

displaced BWAs with longitudinally modulated effective
refractive index, sketched in Fig. 1. The index modulation
is assumed small and sinusoidal, and can be achieved by
longitudinally modulating the core index or the transverse
waveguide section (see, for instance, Ref. [37]). We
indicate by An, Bn the field amplitudes of the linear
fundamental modes of the upper and lower waveguides
[see Fig. 1(a)], which are weakly affected by the longi-
tudinal modulation of the effective index. Typically, we
assume that BWAs are manufactured in silica glass. Taking
into account Kerr nonlinearity, nearest-neighbour evanes-
cent coupling and longitudinal modulation of the effective
index, optical propagation is described by the set of
coupled-mode equations (CMEs)

i
dAn

dz
¼ VnðzÞAn − κHðAnþ1 þ An−1Þ − κVBn

− γjAnj2An; ð1Þ

i
dBn

dz
¼ WnðzÞBn − κHðBnþ1 þ Bn−1Þ − κVAn

− γjBnj2Bn; ð2Þ

where n is an integer labeling the waveguide site [see
Fig. 1(b)], κH; κV are the horizontal and vertical coupling
coefficients between neighbouring waveguides [see
Fig. 1(b)], γ is the Kerr nonlinear coefficient, VnðzÞ ¼
ð−1Þnma þ ΔVnðzÞ, WnðzÞ ¼ −ð−1Þnmb þ ΔWnðzÞ, ma
(mb) account for the alternating initial offsets of the upper
(lower) BWAs, and ΔVnðzÞ;ΔWnðzÞ describe the longi-
tudinal modulation of propagation constants of the upper
and lower waveguides. For a sinusoidal index modulation,
we may write ΔVnðzÞ ¼ A1 cosðωzÞ, ΔWnðzÞ ¼
A3 cosðωzÞ (n even), ΔVnðzÞ ¼ A2 cosðωzÞ, ΔWnðzÞ ¼
A4 cosðωzÞ (n odd). After setting AnðzÞ¼anðzÞexp ×
f−iR z

0 ΔVnðz0Þdz0g, BnðzÞ¼bnðzÞexpf−i
R
z
0ΔWnðz0Þdz0g,

in the fast modulation limit ω ≫ κH; κV; jma;bj, at leading
order we can average Eqs. (1) and (2) and disregard the
rapidly oscillating terms [38]. This yields

i
dan
dz

¼ −κðanþ1 þ an−1Þ þ ð−1Þnmaan

þ ð−1Þnϵbn − γjanj2an; ð3Þ

i
dbn
dz

¼ −κðbnþ1 þ bn−1Þ − ð−1Þnmbbn

þ ð−1Þnϵan − γjbnj2bn; ð4Þ

where κ ¼ κHJ0½ðA2 − A1Þ=ω� ¼ κHJ0½ðA4 − A3Þ=ω�,
ϵ ¼ κVJ0½ðA3 − A1Þ=ω� ¼ −κVJ0½ðA4 − A2Þ=ω� are the
effective averaged coupling constants between adjacent
waveguides in the horizontal and vertical directions,
respectively, and J0ðxÞ is the zeroth-order Bessel function
of the first kind. To obtain Eqs. (3) and (4), we have
assumed that the modulation amplitudes A1; A2; A3; A4

satisfy the constraints J0½ðA2−A1Þ=ω�¼J0½ðA4−A3Þ=ω�,
J0½ðA3 − A1Þ=ω� ¼ −J0½ðA4 − A2Þ=ω�, which are readily
fulfilled by taking A1¼0, A2 ¼ ðω=2Þðξ1 − ξ2Þ, A3 ¼ ωξ1,
A4 ¼ ðω=2Þðξ1 þ ξ2Þ, where ξ1, ξ2 are two arbitrary
dummy variables with J0ðξ1Þ¼−J0ðξ2Þ. For instance, one
can take ξ1¼1.6965, ξ2¼3.7152 at which J0ðξ1Þ ¼
−J0ðξ2Þ ¼ 0.4, so that one obtains κ¼ κHJ0ðξ1=2−
ξ2=2Þ≃0.761κH, ϵ ¼ κVJ0ðξ1Þ ≃ 0.4κV . Linear modes
of Eqs. (3) and (4) can be calculated by setting γ ¼ 0 and
by taking the ansatz a2n ¼ a1eiβzþiqn, a2nþ1 ¼ a2eiβzþiqn,
b2n ¼ b1eiβzþiqn, b2nþ1 ¼ b2eiβzþiqn, where q is the trans-
verse quasi-momentum in the x direction. After substitution
of the ansatz above in Eqs. (3) and (4), one obtains the
modes and the linear dispersion relation of the structure,
which is depicted in Fig. 2(a). Note that our structure,
consisting of a pair of vertically displaced BWAs, supports
four linear modes M1;M2;M3;M4, characterized by four
dispersion bands [see Fig. 2(a)].
Dirac limit: neutrinos.—Defining the two-component

spinors A ¼ ðA1A2ÞT ¼ ð−1Þnða2n; ia2n−1ÞT and B ¼
ðB1; B2ÞT ¼ ð−1Þnðib2n−1; b2nÞT , if the amplitudes A1,
A2, B1, B2 vary slowly with the site index n, one can take

FIG. 1 (color online). Schematics of two vertically displaced
BWAs for the simulation of neutrino oscillation. (a) Three-
dimensional sketch of the structure. Neighbouring silica wave-
guides are offset, while every waveguide shows a longitudinally
modulated effective index. Light is trapped by every waveguide
in the transverse x-y directions and propagates in the longitudinal
z direction. (b) Transverse section of the structure. Optical
amplitudes of the upper (An) and lower (Bn) array are coupled
to nearest neighbours. Horizontal and vertical coupling constants
between nearest neighbour waveguides are denoted by κH; κV,
respectively.
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the continuous limit by introducing the continuous spatial
coordinate n → x [9]. In this limit, the spinors satisfy two
coupled ð1þ 1ÞD nonlinear Dirac equations for half-spin
particles with two different mass eigenstates, i.e., neutrinos:

i∂zA ¼ −iκσ̂x∂xAþmaσ̂zAþ iϵσ̂yB − γGðAÞ; ð5Þ

i∂zB ¼ −iκσ̂x∂xBþmbσ̂zB − iϵσ̂yA − γGðBÞ; ð6Þ

where GðψÞ≡ ðjψ1j2ψ1; jψ2j2ψ2ÞT is the nonlinear spino-
rial term and σ̂x, σ̂y, σ̂z are the x, y, z Pauli matrices. In the
Dirac limit, the array alternating offsets ma;mb play the
role of the neutrino masses, while the coupling coefficients
κ; ϵ play the role of the speed of light in vacuum and of the
charged-current electroweak interactions. Remarkably, the
linear parts of Eqs. (5) and (6) are identical to models
routinely used in particle physics for describing neutrino
oscillations in matter [26]. Nonlinear terms are usually
disregarded as neutrinos interact weakly in standard con-
ditions of matter densities. However, recent studies dem-
onstrate that nonlinearity plays an important role in
supernova stars and in the early Universe, where matter
density is enormous [28,31–33]. The linear supermodes
jψþi, jψ−i of Eqs. (5) and (6) (calculated by setting γ ¼ 0)
represent the instantaneous mass neutrino eigenstates in
matter [26], which can be expressed as linear superposi-
tions of the mass eigenstates jMai, jMbi, i.e., the linear
modes of Eqs. (5) and (6) in the uncoupled limit ϵ → 0
(limit of noninteracting neutrinos, e.g., in vacuum):

jψþi ¼ sinΘjMai − cosΘjMbi; ð7Þ

jψ−i ¼ cosΘjMai þ sinΘjMbi; ð8Þ

where Θ ¼ tan−1½2ϵ=ðma þmbÞ�=2 is the mixing angle.
Note that Eqs. (7) and (8) coincide with the neutrino mixing
matrix in matter [26]. The supermodes jψþi, jψ−i can be
calculated with the ansatz A ¼ AeiEzþipx, B ¼ BeiEzþipx,

which yields the dispersion relation E2
�¼ κ2p2þϵ2þ

ðm2
aþm2

bÞ=2�ðmb−maÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ2þðmaþmbÞ2=4

p
, plotted in

Fig. 2(b). Curves with positive (negative) energies re-
present the instantaneous mass dispersion of neutrinos
(antineutrinos). Note that the four dispersion curves of
Fig. 2(b) basically reproduce the BWA dispersion relations
of Fig. 2(a) near q ¼ π.
Neutrino oscillations.—Equations (5) and (6), analo-

gously to models routinely used in particle physics [26],
describe neutrino oscillations in matter. Neutrinos are
created in weak processes in their flavor eigenstates. As
they propagate, the quantummechanical phases of the mass
states flow at different rates owing to the diverse neutrino
masses. Analogously to Eqs. (5) and (6), also neutrino
flavors can be expressed in terms of mass states through
the PMNS matrix formulation of flavor mixing [35,36]. In
turn, neutrino oscillations in vacuum are trivial, in the sense
that they are simply given by the beating between mass
states with different energies (propagation constants in our
optical analogy). In matter, neutrino oscillations are due to
electroweak interactions, which in our optical setup are
accounted for by the coupling coefficient ϵ. For instance,
considering a neutrino that at z ¼ 0 is in the electron flavor
state, and initially neglecting nonlinear effects, the prob-
ability of measuring the neutrino with electron and muon
flavors oscillates in z: PðAÞ¼ sin2ð2ΘÞsin2½ðEþ−E−Þz=2�,
PðBÞ ¼ 1 − sin2ð2ΘÞsin2½ðEþ − E−Þz=2�. In principle, the
oscillation mixing angle results from the composition of the
PMNS matrix angle and electroweak interactions, giving
rise to peculiar phenomena such as the Mikheyev-Smirnov-
Wolfenstein resonance [24]. However, in our calculations
we have considered only the effect of electroweak inter-
actions, accounted for by the mixing angle Θ, focusing
directly on the oscillations of the mass states. In massive
supernova stars, matter density is so high that electroweak
interactions become nonlinear, affecting neutrino oscilla-
tions. We have numerically solved Eqs. (5) and (6) for
homogeneous waves with null transverse momentum using
a fourth order Runge Kutta algorithm. Results of numerical
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FIG. 2 (color online). (a) Linear dispersion of the structure
sketched in Fig. 1, supporting the linear modes M1;M2;M3;M4.
(b) Linear dispersion of instantaneous mass eigenstates of
neutrinos: energy E as a function of momentum p. Full (dashed)
lines represent the dispersion of neutrino (antineutrino) eigen-
states, while blue (red) lines represent the dispersion of eigen-
states with energies Eþ (E−). Parameter values are κ ¼ 0.5,
ϵ ¼ 0.3, ma ¼ 0.5, mb ¼ 0.25.
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FIG. 3 (color online). Probabilities PðAÞ [panel(a)] and PðBÞ
[panel (b)] of measuring the neutrino with flavors A and B,
respectively, as functions of the propagation length for several
nonlinear coefficients γ ¼ 0; 0.01; 0.1, corresponding to the blue,
green, and red curves. The other parameter values are κ ¼ 1,
ϵ ¼ 0.001, ma ¼ 0.01, mb ¼ 0.012.
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simulations for several values of the nonlinear coefficient
γ are shown in Figs. 3(a) and 3(b). The probabilities
PðAÞ; PðBÞ of measuring neutrinos with flavors A;B
oscillate in z both in the linear and nonlinear regimes.
Note that the effect of nonlinearity on the amplitude and
the period of the oscillations is nontrivial. Indeed, as the
nonlinear coefficient γ increases, the oscillation amplitude
and period initially increase for γ ¼ 0.01 [see the green and
blue curves of Figs. 3(a) and 3(b)]. Conversely, oscillations
are quenched for the higher nonlinear coefficient γ ¼ 0.1
[see the red and green curves of Figs. 3(a) and 3(b)]. In
order to grasp a better understanding of the nonlinear
quenching of neutrino oscillation, we have calculated the
homogeneous nonlinear mode families of Eqs. (5) and (6)
(nonlinear neutrino states not undergoing oscillation) by
using the Newton-Raphson method. We focused our
attention on nonlinear modes with null transverse momen-
tum, and numerically found several neutrino families,
which are depicted in Fig. 4. The families NL1; NL2
bifurcate from the linear antineutrino bands with negative
energy, while other families represent neutrinos with
positive energies. The nonlinear families NL3; NL4 exist
for any neutrino amplitude as they bifurcate from the linear
neutrino bands, while the switching families SWA; SWB
ensue after a certain power threshold. In turn, the nonlinear
quenching of neutrino oscillations comes from the excita-
tion of the switching families SWA; SWB, which arise
when nonlinearity is sufficiently large.
Neutrino solitons.—Owing to nonlinear electroweak

interactions, another class of neutrino fields homotopically
distinct from homogeneous ones exists, i.e., solitons arising
from the condensation of neutrinos and antineutrinos. We
have numerically solved Eqs. (3) and (4) by taking the
ansatz anðzÞ ¼ AðnÞeiEz, bnðzÞ ¼ BðnÞeiEz and using the
Newton-Raphson algorithm to find the soliton spinor
profiles AðnÞ;BðnÞ. We have found several families of
neutrino solitons within the energy band gap [see Fig. 2(b)].

High-order solitons are cut off when the energy band gap is
sufficiently small. In Fig. 5 we plot the fundamental soliton
profiles with null energy E ¼ 0 of the (a) upper (janj) and
(b) lower (jbnj) BWAs. Blue (red) markers depict the
amplitude of odd (even) waveguide sites, related to the
spinor component A2 (A1) in the continuous limit. In our
calculations we have used the parameters κ ¼ 1, ϵ ¼ 0.01,
ma ¼ 0.1, mb ¼ 0.12, γ ¼ 1. We studied the stability of
this solitonlike solution in propagation under small per-
turbations, and found that it is stable. A more detailed
analysis of the modulation instability of homogeneous
modes and of the existence and stability conditions of
solitons goes beyond the scope of this Letter and it will be
presented elsewhere.
Conclusions.—In conclusion, we have shown that the

rich physics of neutrino oscillations, including extreme
regimes predicted in massive supernova stars, can be
simulated in a tabletop optical system based on pairs
of vertically displaced binary waveguide arrays. In this
system light transport is described by nonlinear ð1þ 1ÞD
Dirac equations for half-spin particles with two mass
states, analogously to neutrinos. In the linear regime, our
optical system exactly reproduces all the features of
neutrino oscillations, including the Pontecorvo-Maki-
Nakagawa-Sakata matrix formulation and the matter
mixing matrix. We predict the quenching of neutrino
oscillations when electroweak interactions are suffi-
ciently strong to become nonlinear, e.g., in the early
Universe and in massive supernova stars. Besides, we
predict the condensation of neutrinos and antineutrinos in
soliton pairs with energy within the linear band gap. Our
results show that optical waveguide arrays can provide an
experimentally accessible laboratory tool for the obser-
vation of unconventional effects and extreme regimes in
particle physics and astrophysics that are still outside of
any experimental demonstration.
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