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We consider a superconducting coplanar waveguide resonator where the central conductor is interrupted
by a series of uniformly spaced Josephson junctions. The device forms an extended medium that is
optically nonlinear on the single photon level with normal modes that inherit the full nonlinearity of the
junctions but are nonetheless accessible via the resonator ports. For specific plasma frequencies of the
junctions, a set of normal modes clusters in a narrow band and eventually becomes entirely degenerate.
Upon increasing the intensity of a red detuned drive on these modes, we observe a sharp and synchronized
switching from low-occupation quantum states to high-occupation classical fields, accompanied by a
pronounced jump from low to high output intensity.
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Achieving strong optical nonlinearities or appreciable
effective interactions between individual photons is a
long-standing goal of quantum optics. As their generation
requires strong coupling of photons to a nonlinear medium,
spatially very localized nonlinearities for light fields that
are confined to the very small volumes of microcavities
have successfully been realized [1,2]. In recent years, the
objective has thus moved on toward realizing strongly
nonlinear optical response in multiple coupled cavities
[3–7] or extended volumes doped with nonlinear media.
The description of light fields propagating in such devices
can no longer invoke the classical or semiclassical approx-
imations used in linear or nonlinear optics and thus forms
a novel paradigm. Experimentally, achieving appreciable
photon-photon interactions despite the lower field ampli-
tudes in larger volumes is a main challenge, where Rydberg
atoms with their strong dipole-dipole interaction [8–10] are
one possible candidate.
Here, we consider a long waveguide with closed ends

that forms a strongly elongated, one-dimensional cavity
that couples to many nonlinear scatterers. Yet, despite the
large longitudinal extension, the light-matter coupling is
ultrastrong; i.e., the vacuum Rabi frequency is comparable
to the photon frequency, and the light fields inherit the full
nonlinearity of the scatterers. Such ultrastrong coupling
can be nicely reached in a novel discipline that bridges the
gap between quantum optics and solid-state physics, circuit
quantum electrodynamics (cQED).
cQED setups have been used to simulate quantum

optical phenomena [11–13]. Lately they strive to conquer
regimes that are elusive to photonic experiments at optical
frequencies [14], either with ultrastrong coupling [15] or
unprecedented precision in deterministic steering of quan-
tum mechanical states [16,17]. Here, we consider a long
superconducting coplanar waveguide resonator (CPWR) in
which ultrastrong coupling to Josephson junctions (JJs) is

reached by integrating the JJs directly into the CPWR’s
central conductor. In contrast to previous studies [18,19],
the distances between the uniformly spaced JJs are,
however, chosen to be comparable to the wavelengths of
the microwave photons that we consider. Therefore, the
individual pieces of coplanar waveguide (CPW) between
adjacent JJs behave like individual CPWRs themselves,
thus forming a situation similar to electrons moving in the
periodic potential of a crystal [20]. This spacing between
the individual JJs promises to take the high precision and
tunability of cQED setups into the realm of JJ arrays [21].
The extraordinary high coupling strength between the JJs

and the CPWR demands for new ways of modeling the
setup. Instead of devising an effective model of CPWR
and JJs individually and then taking their coupling into
account to obtain a Dicke model [22], we consider the
CPWR with JJs to be an indivisible entity and solve exactly
for the eigenmodes of the harmonic part of the system in
the manner of black box circuit quantization [23]. We
then introduce the nonlinearity of the JJs as a perturbation
to the linear dynamics of the eigenmodes. In this way we
avoid the conceptual difficulties of virtual excitations in the
ground state and the related complications in deriving the
correct dissipative behavior [24].
For exploring the propagation of photons through our

device, we consider the CPWR to be continuously driven
by a coherent input from one side and investigate its output
at the opposite end. In doing so, we focus our attention on
specific values of the plasma frequency of the JJs, where a
set of modes clusters in a very narrow frequency band and
eventually becomes degenerate. It is thus also a candidate
for a diabolical point [25]. We find that as the strength of a
red detuned pump is increased the modes synchronously
switch from a quantum regime where they respond with a
phase delay of π to the drive (as two-level systems do) to a
classical regime where they are in phase with the drive and
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accumulate substantial amplitude. The transition becomes
increasingly sharper and more synchronized between
the modes the closer the plasma frequency comes to the
degeneracy point. As an observable signature of this
phenomenon, the output intensity jumps from a very low
to a high value as the quantum to classical threshold is
crossed by the drive amplitude. The switching phenomenon
we observe here thus features aspects of a quantum to
classical transition for the cavity fields and a tendency of
coupled JJs to synchronize their phases, which has been
studied in their classical nonlinear dynamics [26,27]. The
device we envision could thus form a photon valve that only
opens for intensities above the switching threshold and may
find applications as an amplifier [18]. On the other hand, it
differs from externally controlled switches [28].
Model.—We consider a CPWR of length L that supports

one-dimensional current-charge waves with phase-velocity
v ¼ 1=

ffiffiffiffi
lc

p
and wave-impedance Z0 ¼

ffiffiffiffiffiffiffi
l=c

p
, where l

and c are its inductance and capacitance per unit length.
The central conductor of the CPWR is interrupted by N
identical and uniformly distributed JJs with Josephson
inductance LJ and capacitance CJ, see Fig. 1. The plasma
frequency ωp ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffi
LJCJ

p
of the JJs may be tuned either in

advance via the design or in situ by using split-ring
dc-superconducting quantum interference devices and
threading a static bias flux through their rings. The resonator
is terminated on both sides open circuited, enforcing current
nodes at both ends. The state of the CPWR and the JJs can
be described by the flux function ϕðx; tÞ ¼ R

t
−∞ Vðx; t0Þdt0,

with Vðx; tÞ the electrical potential of the CPWR at point
x with respect to the surrounding ground plane. Physical
observables like the excess charge per unit length, Q ¼ c _ϕ,
or the current, I ¼ ð∂xϕÞ=l, may be derived from ϕ. The
Lagrangian of the whole setup reads

L ¼
XNþ1

j¼1

LCPW
j þ

XN
j¼1

LJJ
j ; ð1Þ

where LCPW
j ¼ R jΔ

ðj−1ÞΔ fðc=2Þ½∂tϕðx; tÞ�2 − ð1=2lÞ½∂xϕ

ðx; tÞ�2gdx and LJJ
j ¼ ðCJ=2Þδ _ϕ2

j þ ðφ2
0=LJÞ cos ðδϕj=φ0Þ

are the Lagrangians of the CPW pieces between JJs and of
the JJs themselves. Δ ¼ L=ðN þ 1Þ is the spacing between
JJs and φ0 ¼ ℏ=ð2eÞ the rescaled quantum of flux. The JJs

introduce a drop δϕj ¼ ϕjx↗jΔ − ϕjx↘jΔ between the limits
of the flux function approaching the JJ from the left, ϕjx↗jΔ,
and from the right, ϕjx↘jΔ.
Eigenmodes.—To elucidate the underlying physics of the

described CPWR, we may strive after decomposing the
linear part of the Lagrangian (1) into eigenmodes, which
then couple via the nonlinearity of the JJs. From the Euler-
Lagrange equations we get wave equations ∂2

tϕ − v2∂2
xϕ ¼

0 for the pieces of CPW between adjacent JJs. Together
with the boundary conditions of vanishing current at
the ends of the CPWR, ∂xϕjx¼0 ¼ ∂xϕjx¼L ¼ 0, current
conservation at the JJs, ∂xϕjx↗jΔ ¼ ∂xϕjx↘jΔ, and the
linearized current-flux relations of the JJs, −∂xϕjx¼jΔ=l ¼
CJδϕ̈j þ δϕj=LJ, these lead to a well-defined eigenvalue
problem. We thus decompose ϕðx; tÞ ¼ P

igiðtÞfiðxÞ,
where we can sort the eigenmodes into N different
manifolds owing to the symmetry of the device. Each of
their eigenfrequencies ωi is a solution to one of the N
transcendental equations,

cos ðωv ΔÞ − cos ðn π
Nþ1

Þ
sin ðωv ΔÞ

¼ cv
2CJ

ω

ω2
p − ω2

; ð2Þ

where n ∈ ½1; N�. The eigenmode functions read fiðxÞ ¼
ci;m cosððωi=vÞðxmodΔÞÞ þ si;m sinððωi=vÞðxmodΔÞÞ for
x ∈ ðmΔ; ðmþ 1ÞΔÞ, where i ¼ ðn; kÞ indexes all eigenm-
odes. The derivation of the Eqs. (2) and the eigenmodes fi
together with explicit expressions for the coefficients ci;m
and si;m can be found in the Supplemental Material [29].
Note that there are also eigenmodes of the bare CPWR with
ωm ¼ ðπv=LÞðN þ 1Þm (m ∈ N0) that have current nodes
at the JJs and hence do not couple to them.
Spectrum.—Figure 2 displays the frequencies ωi of a

CPWR with N ¼ 3 JJs as a function of the plasma

FIG. 1. Central conductor of a CPWR of length L interrupted
by N identical and uniformly distributed JJ with Josephson
inductance LJ and capacitance CJ .

FIG. 2 (color online). Spectrum of CPWR with v ¼ 0.98 ×
108 m=s and Z0 ¼ 50Ω, interrupted by three identical and
uniformly distributed JJs with CJ ¼ 1 pF and L ¼ 28 mm,
plotted over their plasma-frequency ωp in units of the funda-
mental mode frequency ðπvÞ=L . Eigenmodes of the bare CPWR
that do not couple to the JJs are omitted. The dashed box
marks the degeneracy point ωp ¼ ω̄, on which we focus our
investigation.
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frequency ωp in units of the fundamental mode frequency
πv=L of the bare CPWR. For each manifold, it resembles
the spectrum of a JJ mode that is ultrastrongly coupled
to specific free modes of the bare CPWR [30]. For a large
detuning between free mode frequency and plasma fre-
quency, the JJs and the CPWR oscillate independently.
In turn for degenerate plasma and free-mode frequencies,
the eigenfrequencies of the combined device show an
avoided crossing of the order of the eigenmode frequencies
themselves, evidencing ultrastrong coupling. The size of
the avoided crossing scales as ∼

ffiffiffiffi
N

p
[29], similar to the

Dicke model [22]. In this regime, excitations of the device
are strongly hybridized between the CPWR and the JJs,
where the involved JJ mode can, however, not be traced
back to a specific JJ but rather is a combined excitation of
all JJs with a specific symmetry.
Note that our approach also shows that no superradiance

quantum phase transition [31,32] can be observed in the
cQED setups we consider since none of the eigenmode
frequencies vanishes for ωp > 0.
Quantization.—With the help of the above derived

eigenmode functions, we can decompose the linear part
of the JJ-doped CPWR into independent harmonic oscil-
lators. Including the nonlinear terms and performing a
Legendre transform, we get the full Hamiltonian H¼P

ið1=2ηiÞπ2iþð1=2Þηiω2
i g

2
iþHNL, where ηi¼c

R
L
0 f2i dxþ

CJ
P

N
j¼1 ðfijx↗jΔ−fijx↘jΔÞ2 is the effective mass of

eigenmode i [33], πi ¼ ηi _gi the canonical conjugate
momentum of gi, andHNL¼−ðφ2

0=LJÞ
P

N
j¼1½cosðδϕj=φ0Þþ

ðδϕ2
j=2φ

2
0Þ�, the nonlinear part of the Hamiltonian. We

quantize the theory in the standard way by introducing
lowering (raising) operators ai ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ηiωi=ð2ℏÞ

p ðĝi þ
iπ̂i=ðηiωiÞÞ for the eigenmodes to get Ĥ ¼ P

iℏωia
†
i ai þ

ĤNL and write the flux drops as δϕj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðN þ 1Þp

sinðpjÞ
P

iλðωiÞðai þ a†i Þ, where pj ¼ πj=ðN þ 1Þ and

the zero-point fluctuation amplitudes read λðωÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðℏ=2CJωÞ
p ½4ζξ2− þ cotððω=vÞΔÞ ωv Δξ− þ ξþ�−1=2 with
ζ ¼ ðlΔ=LJÞðω2=ω2

pÞ and ξ� ¼ ðω2
p � ω2Þ=ð2ω2Þ.

Single-band approximation.—We have decomposed the
linear part of the Hamiltonian into independent normal
modes so that all coupling between the latter occurs via
ĤNL. This coupling is only relevant if the frequency
difference between a pair of modes is comparable to their
mutual coupling. We thus focus on a plasma frequency
ωp ¼ ω̄ with ω̄ ¼ πvðN þ 1Þ=L, where a set of N eigenm-
odes with indices i ¼ ðn; k ¼ 2Þ become degenerate
(see Fig. 2) and concentrate our further discussions on
the vicinity of this particularly interesting case. Here, k can
be interpreted as a band index since a mode function with
index k has k − 1 nodes between any pair of adjacent JJs
and n counts the modes within the band. Any coupling
to the remaining eigenmodes, i.e., other bands, is consid-
erably smaller than their separation in frequency and can

thus safely be neglected in a single-band approximation
(see [29]). One could also choose k > 2, but this would
require a longer resonator and hence a larger chip. We thus
focus our analysis on modes with k ¼ 2 and the point
where their frequencies ωn;2 ≈ ω̄ so that they are described
by the reduced Hamiltonian ½Ĥ�k¼2 ¼

P
nℏωna

†
nan þ

½ĤNL�k¼2 (we skip the index k from now on: an ≡ an;2 and
ωn ≡ ωn;2).
Localized modes.—It is here most convenient to choose a

basis of modes for which the mutual mode coupling via the
nonlinearity is minimized. At ωp ¼ ω̄, where all modes
with k ¼ 2 are perfectly degenerate, this occurs for the
modes bj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðN þ 1Þp P

N
n¼1 sin ðjpnÞan, whose eigen-

functions have a large flux drop at a specific JJ and
considerably smaller flux drops at all other JJs. An
illustration is presented in [29]. We thus express the
½Ĥ�k¼2 in terms of these modes and expand their interaction
up to quartic order (see [29]) to find

H ¼
XN
j¼1

�
ℏω̄b†jbj −

EC

2
b†jb

†
jbjbj

�
þ ℏω̄

XN
j;l

uj;lb
†
jbl

− EC

XN
j;l

gj;lððb†jb†jbj þ b†jÞbl þ H:c:Þ; ð3Þ

with the single JJ charging energy EC ¼ e2=ð2CJÞ,
uj;l ¼ ð2=Nþ 1ÞPN

n¼1 sinðjpnÞ sinðlpnÞ½ðωn=ω̄Þ− 1�, and
gj;l ¼ ð2=N þ 1ÞPN

n¼1 sinðjpnÞ sinðlpnÞ½ðλðωnÞ=λ0Þ − 1�,
where λ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=2CJωp

p
is the zero-point fluctuation

amplitude of a single JJ [see [29] for limωp→ω̄λðωnÞ].
The resulting Hamilton operator describes a set of mutually
coupled oscillators with Kerr-type nonlinearities of strength
EC that can be substantial even on the single photon level.
Interestingly, the coupling is not only formed by linear
particle exchange, but also contains a nonlinear, density-
assisted excitation exchange. Yet, due to the advantageous
choice of modes, bj, both the linear and nonlinear cou-
plings are indeed weak, juj;lj ≪ 1 and jgj;lj ≪ 1. We thus
have a rather unique situation, where a set of highly
nonlinear modes forms a narrow frequency band and can
be efficiently driven by a single input tone.
Synchronized switching.—To explore the propagation

of microwave photons through our device, we assume that
our CPWR is capacitively coupled to input and output
lines formed by half-infinite CPWs. With these outlets, we
continuously drive the CPWR from one side with sinus-
oidal microwave signals of frequency ωL ¼ ωp − 4EC=ℏ
and magnitude Ω [29] in such a way that only the modes
bj are excited. To describe this process, it suffices to add
the driving term HΩ ¼ iℏ sinðωLtÞ

P
jΩjðbj − b†jÞ to the

Hamilton operator (3), where the driving amplitudes Ωj ¼
Ω
P

N
n¼1 sinðnpjÞ=ðℏ ffiffiffiffiffi

ηn
p Þ are a consequence of the charge

quadratures of the bj modes at the driven end of the

PRL 112, 223603 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending
6 JUNE 2014

223603-3



CPWR (see [29]). Our device thus has the appealing
property that the eigenmodes inherit the full nonlinearity
of the JJs but are nonetheless well excitable by driving the
resonator. We model the photon dissipation with a decay
rate κ for each mode so that the dynamics of our system
is described by the master equation _ρ ¼ i

ℏ ½ρ; HΩ þH�þ
ðκ=2ÞPN

j¼1ð2bjρb†j − ρb†jbj − b†jbjρÞ, where ρ is the
density matrix of all modes bj. Because of the high
coordination number of the Hamiltonian H [c.f. Eq. (3)],
where all modes mutually couple, a mean-field approach
is expected to provide an accurate approximation. We
thus decouple the individual modes bj according to
b†jbk→hb†jibkþb†jhbki and ðb†jb†jbjþb†jÞbk→ðhb†jb†jbjiþ
hb†jiÞbkþðb†jb†jbjþb†jÞhbki and solve the coupled equa-
tions of motion for all modes bj iteratively [29].
For ωp ¼ ω̄, we find that, upon increasing the amplitude

of a red detuned drive beyond a threshold value Ω�,
all modes switch synchronously and instantly from low
occupancies, jΩj < Ω�, to high photon numbers, jΩj > Ω�
(see Fig. 3). This phenomenon can be understood as follows.
Eachmodebj features a negativeKerr nonlinearity. Ignoring
the intermode couplings, one would thus expect that the
combination of slightly red detuned driving and negative
nonlinearity leads to a switching behavior as a function
of the drive strength since the Kerr nonlinearity can be
interpreted as an intensity dependent frequency shift
δωj ∼ ðEC=2ℏÞhb†jbji [34]. Hence, upon driving the oscil-
lator increasingly strong the frequency will drop and, for a
critical driving strength, eventually come into resonance
with the drive, causing a growth of oscillator excitations.

Because of the different driving amplitudes Ωj, one
would expect a different critical drive strength for each
mode j. Yet the coupling gj;l between the modes is such
that only modes bj that are in phase amplify each other.
This causes the switching of all modes to be synchronized
and very sharp for the following reason. While switching in
the higher excited state, the modes also undergo a quantum
to classical transition. For a red detuned drive of small
amplitude, they behave like qubits with a π-phase delay
with respect to the drive phase. After the switching into the
higher excited state, however, the modes are in phase with
the drivelike harmonic oscillators with red detuned driving.
As the mode with the lowest critical drive strength tries to
switch, it is getting weighed down because of the phase
synchronizing features of the coupling gj;l. Yet if eventually
a majority of modes switches into the higher excited state,
they drag the remaining modes with them, causing a very
sharp and synchronized transition. If we detune the plasma
frequency of the JJs from the point of degeneracy, we
introduce additional mixing between the modes bj and,
for detunings Δω > EC, finally destroy the symmetry of
the coupling that promotes synchronization of phases. As a
consequence, the synchronization of the switching behav-
ior deteriorates and is eventually lost. We note that the
observed switching phenomenon is distinct from lasing
[12,13] as our device is driven by a coherent input.
To determine the measurable signal in an experiment,

we derive input-output relations for our CPWR, cOUT ¼ffiffiffiffiffi
κx

p P
jτjbj − cIN where κx is the decay rate into the output

line and τj¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=½ðNþ1ÞPnη

−1
n �

p P
nð−1ÞnsinðjpnÞ= ffiffiffiffiffi

ηn
p

and, assuming vacuum noise outside the CPWR, compute
the output intensity hc†OUTcOUTi. The result is shown as
gray dashed lines in Fig. 3 and shows a sharp jump of
hc†OUTcOUTi at the critical driving strength.
Experimental requirements.—There are no challenging

requirements for experimentally observing the phenomena
we explore here. Photon frequencies of 6–9 GHz, as
typically used in cQED setups, correspond to the wave-
length around 14 mm. At the degeneracy point, half a
wavelength needs to fit in between every pair of JJs,
which implies an overall CPWR length of ðN þ 1Þ0.007 m.
We have chosen a phenomenological decay rate of
κ=ð2πÞ ¼ 20 MHz for the modes bj. The synchronization
is, however, very robust with respect to dissipation as well
as disorder since it also occurs in the vicinity of the
degeneracy point ω̄ [see Figs. 3(b) and 3(c)]. For more
details, see [29].
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FIG. 3 (color online). Occupancies for the local modes bj
(colored solid lines) plotted as a function of the drive strength Ω
(scale at left vertical axes) at the degeneracy point ωp ¼ ω̄ (a) and
for plasma frequencies ωp slightly detuned from the degeneracy
point (b) and (c). The gray dashed line shows the output
intensities (scale at right vertical axes). Parameters: v ¼ 0.98×
108 m=s, Z0 ¼ 50Ω, CJ ¼ 1 pF, and N ¼ 8.
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