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In railway noise and vibration assessment, the vehicledspea significant concern, since
vehicle/track and track/soil interaction strongly aftettte vibration magnitude. The objective
of this paper is to analyse the dominant frequency methodidered efficient in speed eval-
uation. Some enhancements are brought in order to extemdetieod applicability to a large
speed range (tram, intercity train, high-speed train). thi@rpurpose, a cepstral analysis was
implemented to perform first speed estimation and a runmimgwas used to detect precisely
the carbody passage excitation. A fitting is also achieveatder to efficiently improve the
performance. Results coming from a railway—induced grotihchtion prediction model al-
low validating the potential of the dominant frequency noetland its stability. An application
is proposed, based on recent measured high-speed traimyvidarations, in order to estimate
with accuracy the associated vehicle speed.

1. Introduction

Various railway applications need the knowledge or, att|easestimation of the vehicle speed.
In railway-induced ground vibrations, it is well known thhe train speed has a significant effect
and its calculation is essential to correlate railway \iora levels [1-5]. Other applications are
also concerned of knowing the vehicle speed. The use of ketdachometers is subject to some
drawbacks: matching an exact speed to each track sectifficully of communication with the
rolling stock manager. Alternative methodologies for ntoning the train speed exist and have been
applied with more or less success in the past. Let cite thefuseamera recorder (speed calculation
based on the frames count) [3], the opposed photoelectnisirsg method [6], or the time delay
estimation with vibration sensors placed along the trackesg applications need an access to the
track with tedious installations or a track view access.

Regarding the use of vibrations sensors, Ni et al. [6] predan interesting method, called
dominant frequency method, based on the isolation of dombifnaquencies in the ground vibration
spectrum. Indeed, the passing of axle load with periodggtyerates significant peaks in the measured
spectrum [7, 8]: at a specific location in the track, a traingists of a number of similar events with
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certain delay times. Each peak is regularly spaced by

Vo

Afc - Lc

(1)
wherev is the vehicle speed (assumed to be constant during thediegpandL.. the carriage length
of the studied vehicle (if the vehicle is composed of seveifétrent carriage lengthl.. is equal to
the most representative length, that’s to say the lengtheftost usual carriage). Theoretically, a
spectrum based on a sequence of the axles presents signifeed(s in a large frequency band. In
practice, ground vibrations generated by railway are cemptince the vehicle interacts with the
track, and track and soil resonances can appears in theefieguange of interest. All these phe-
nomena are illustrated in Tab. 1 which defines the typicaltattan frequencies, according to [9-12].
Moreover, due to the limited vehicle speed (effect of thekrmdeflection) and the foundation stiffness
and damping, vibration magnitudes decrease with the fregyydimiting the dominant frequencies
analysis.

Table 1. Main contribution of vehicle/track/soil properties on tp@und vibration frequency content

M echanisms Equations Typical frequencies
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upper layer soil fsoit = 75 ATATATAITATE

vehicle dynamics

The dominant frequency method proposed by Ni et al. [6] tadasially into account these
interferences. It utilises an automatic procedure whicduates each carriage excitation frequency
from the spectra amplitude; (/) of measured ground vibrations(¢) at a specified distance from
the track and along any one of the three directians (, y or = for horizontal parallel to the track,
horizontal perpendicular to the track or vertical, resppety). The calculation starts from a frequency
range specified by the user, within which the fundamentglfeacy is found at maximum amplitude.
Then a recursive calculation of the harmonic dominant feegies are performed by finding the
maximum in the frequency range calculated from an averagia¢ion frequency, obtained from the
previously calculated excitation frequencies. A speetiestestimated for each harmonic excitation
frequency with the help of Eg. (1) and a minimum differendéecion is applied for determining the
train speed. The authors validated their method by calagi@igh-speed train (HST) passage speeds,
verified using experimental results from optical sensansspeeds in the ran@®0-300 km /h.

This paper investigates the dominant frequency method eobpes improvements in order to
extend its domain of validity. Indeed, several shortcomiaige pointed out in the present work: a poor
estimation of fundamental dominant excitation frequenay prevent divergence in the calculation
of vehicle speed and the calculation of each harmonic canibjed to errors if the signal contains
strong excitations from sources other than from the velpietéodicity (e.g. vehicle natural frequency
or soil resonance). Two new methods have been developedén tr prevent these negative points,
and are combined into a single approach with the originalidant frequency method. In order to
demonstrate the effectiveness of the new method and to dea@biiity to predict a wide spectrum
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of train speeds, practical results are presented, comamg frumerical results for which the vehicle
speed is known and from experimental measurements es$tadblis the past.

2. Train speed calculation technique

The newly proposed procedure is summarized in Figure 1 whéveus on the enhancements
is made over the original dominant frequency method. Theutation technique is defined in three
steps where an initial speed is required, and is summarizéallaw.

¢ In order to better estimate the fundamental dominant ed@itérequency, a cepstral analysis is
applied to the vibration signal spectrum:

Cy(1) = iDFT (log [Vi(f)]) - (@)

This operation is able to reveal and quantify(the carriage excitation frequency) but algo
(the wheelset excitation frequency) afidthe bogie excitation frequency). All these values are
dependant of the vehicle speed and the main vehicle geometry

e The use of the dominant frequency method is based on themynnis instead of the original

signal
1 [to —tg
Urms,r(tO) = ;/ U?(t)e —dt. (3)
to—T7

This allows a clearer visualization of passing of each wdedel

e To avoid limitations due to the signal frequency resolutaml the other sources excitations,
a regression analysis is performed which combines the greibration measurements with
analytical solution to update the vehicle speed paramatsimple formulation is used for the
fitting, based on rules for time-delayed Dirac functions:

Vanalytical (f) — Ae—af

(1 + =92 e} (1 4 e=92nS /1) (1 +3 e—j2m'f/fc> ‘ (4)
i=1

wheren,, is the number of carriages antland « the fitted amplitude and decay rate, respec-
tively.

If multiple ground vibration signals are used, an averagdyais is performed to estimate the speed
meany, from all sensors after each step. Additional details relateits development are available
in[13,14].

GROUND VIBRATIONS| ‘
MEASUREMENT CEPSTRAL ANALYSIS ‘ ‘ vo (STEP )
L ) DOMINANT FREQUENCY )
‘ RUNNING /2015 METHOD (NI ET AL. [6]) v (STEP 2

REGRESSION WITH v (STEP 3
ANALYTICAL SPECTRA

Figure 1. Chart of the automatic procedure for estimating the velsipkeed
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3. Results

3.1 Numerical ground vibrations: validation

The validation is performed using a numerical predictiordeidor speed calculation validation.
It allows for a high accuracy comparison because the vebmed is known and a wide variety of
train types, speeds and soil conditions can be tested. &bi®a presents the analysis of the Thalys
HST. Figure 2 presents the main train dimensions, showiaitkie central carriages are equipped to
non-conventional bogies (Jacob’s bogie). It is importaat the new method is able to predict speeds
for both high and low velocity trains. Therefore differepegds are analysed in order to determine
its influence on the speed estimates.

2 Y e e —— | SY = i S a— B | = I m—n ———__i——— T e ——__ I ]

L—‘—L&OO 3.00 J.—‘J L—\.LS.U() L—~—L300 L_~.l>3.00 L_‘.LS.OU |
5.02 14.00 3.13 3.14 18.70 18.70 18.70 18.70 !

Figure 2. Thalys HST dimensions

To illustrate the frequency range of excitation, Figure 8sents the frequency spectra of the
ballast vertical reaction. With the speed, each peak igdalcalong a line with slope proportional to
speed. Furthermore, it displays the fundamentak(1) and the harmonics(> 1) of the carbody
passage frequency directly in the excitation spectrum aral fanction of the vehicle speed. Some
peaks exhibit high amplitudes (e.g.= 1 or 5) while others are almost completely suppressee-(

3), due to the sidebands generated by the axle passage fogqu@werall, a decrease in amplitude
with increasing frequency is also observable. These ohtens can be used to estimate vehicle
speed and to valid the method robustness.
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Figure 3. Spectral content of the soil loading as a function of the Hdes

Figure 4 displays the relative error at each step of the atialn. Clearly, the final speed cal-
culated using the analytical model and regression yieldsntlhst accurate estimate. The cepstral
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analysis is also accurate, but for several speeds, theisiage. No notable influence of the magni-
tude of speed is observed in the results.
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Figure 4. Evaluation differences of the dominant frequency methaodHe Thalys HST as a function of the
speed

3.2 Field trials performed on operational railway lines

For this purpose, the train speed calculator was used tagpteain speeds collected by [3]. In
this work, experimental results were used to validate theeafientioned ground vibration prediction
model near the high-speed line LGV1 between Brussels and/Bamdon. Sensors were placed
from 3 to 43 m from the external side of closest track. Train passagesim toack directions were
measured.

Five-teen train passages were recorded (12 Thalys, 2 EuldST and 1 French TGV). The
Eurostar TransManche super train (Fig. 5) had the same coafign as the Thalys HST, except in
the centre where two side carriages are added for safetgneaslated to tunnel passage. Its length
was nearly twice than the Thalys with a total dimensioB®fm. The French TGV is currently the
forerunner HST and mainly circulates in France. It has tlmeesdimensions as the Thalys (Fig. 2).
It should be mentioned that “Thalys double” passages wese r@icorded. These consisted of two
single Thalys trains hooked up in series.

nnnnnnnn

‘ — 3.00 s.ooLT’ ‘ LT\z,oo L—I3.00 L—I3.00 3.00 —

5.02 14.00 3.13 3.14 18.70 18.70 18.70 3.14

Figure 5. Eurostar HST dimensions

During these tests, train speed was originally estimatéagusvo methods: using a camera
and using an additional vibration sensors placed alongrétoi (time delay estimator). Table 2 lists
each passage and notes the original estimated speed (pexteltolumn). The final column gives
the vehicle speed calculated by the present method. Owegibd agreement is observed, except
for a few trains which exhibit a slightly greater error (leban 10 %). These inconsistent initial
estimations do not affect the conclusions drawn in [3], lbeeaa low dependency of the train speed
on the vibration level was observed.

More recently, Connolly performed a similar experimentallgsis for the purpose of analysing
the effect of embankment conditions on high speed rail giotibrations in UK. A set of sensors
have been placed along a profile perpendicular to the trackder to estimate the generated ground
vibrations, similarly to the preceding study. High SpeedHE1), linking London, UK and Paris,
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Table 2. Speed evaluation during the passing of HST's [3]

Name Train Time Train Track  # Nominal speed Calculated speed
code type carriages kin/h] [km/h]
ThalysB1 9327 12:33 Thalys B 8 305 291.9
ThalysAl 9326 12:35 Thalys A 8 295 301.8
ThalysB2 9429 12:57 Thalys B 8 300 298.9
ThalysA2 9428 12:58 Thalys A 8 275 300.2
ThalysA3 9960 13:14 Thalys A 2x8 270 293.2
EurostarAl 9133 13:18 Eurostar A 18 280 298.9
ThalysA4 9330 13:29 Thalys A 8 265 288.4
ThalysB3 9331 13:30 Thalys B 8 285 285.3
ThalysB4 9927 13:38 Thalys B 8 250 258.5
EurostarB1 9124 13:46 Eurostar B 18 290 296.9
ThalysB5 9333 13:58 Thalys B 2x8 295 297.4
ThalysA5 9436 15:00 Thalys A 8 260 283.8
ThalysA6 9338 15:28 Thalys A 8 265 282.7
ThalysB6 9339 15:30 Thalys B 8 305 302.0
TGVfnA1l 9832 15:35 TGV A 8 270 292.4

France via the Channel Tunnel beneath the English Chanaslb&en investigated. Passages of
Eurostar and Javelin HST’s were recorded26tt September 2012 27" September 2012 at three
test sites close to Hollingbourne, UK. Site 1 was an at-gssd¢ion, site 2 on top of a tunnel, and
site 3 on an embankment. Site 1 had a cutting on one side agi@é-on other side. Tests were
performed on the at-grade side. Site 2 was situated abovet afid cover” tunnel. Site 3 was on an
embankment.

The Javelin Class 395 is an electric multiple unit built ipaa by Hitachi for high speed com-
muter services on HS1. It is capable of running at a maximueedmpf225 km/h under overhead
electrification on HS1, and61km/h on 750V DC third rail supply on conventional lines. Simi-
larly to Thalys trains, two Javelings can be linked togetfigrerefore the basic 6-carriage train can
be adapted to create a 12-carriage system. Javelin classa@38% are composed of intercity train
carriages that have been upgraded to facilitate elevatsetisp Therefore more conventional bogies
are used (for all carriages) in comparison to dedicated sgged bogies found in Thalys, TGV and
Eurostar trains (Fig. 6). Unlike the aforementioned highegptrains, the Javelin carriage spacing
(L. = 20m) is greater than the bogie spacing, (= 14.17 m). Therefore the excitation frequencies
associated with, and L. are different. Tables 3 to 5 list the different passagesrosmband the
calculated vehicle speed.

3.79 14.17 291 291 14.17 291 291 14.17 2.91

Figure 6. Javelin 395 HST dimensions

4. Conclusions

Similarly to the use of vibrations with the aim to generatectical power (on high-speed road
or in dance club), the vibrations generated by the passinganf can be seen as an opportunity to
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Table 3. Speed evaluation during the passing of HST’s on the highdsliee HS1 in UK (at-grade track
configuration)

Recorded train  Track Time Speéehj/h]

Eurostar A 12:09 261.3
Javelin 395 B 12:10 220.4
Javelin 395 B 12:42 216.2
Javelin 395 A 12:51 223.3
Eurostar A 12:52 285.2
Eurostar A 13:11 289.0
Javelin 395 A 13:21 223.2
Eurostar A 13:25 287.7
Eurostar A 13:41 298.2

Table 4. Speed evaluation during the passing of HST’s on the highdsliee HS1 in UK (above the tunnel)

Recorded train  Track Time Speéehj/h]

Eurostar A ? 265.5
Javelin 395 A 12:11 206.7

Table5. Speed evaluation during the passing of HST’s on the highdsliee HS1 in UK (embankment track
configuration)

Recorded train  Track Time Speéehj/h]

Javelin 395 A 12:10 204.2
Javelin 395 B 12:30 197.5
Eurostar B 12:36 289.6
Eurostar A 12:52 283.3
Javelin 395 B 12:52 198.1
Javelin 395 A 13:10 206.5
Eurostar B 13:11 291.1
Eurostar A 13:23 288.0
Javelin 395 B 13:30 198.3
Eurostar B 13:40 268.5

capture the train speed. Based on the dominant frequendyoohed newly tool is presented in this
paper, enhancing the original method and filling its drawdsa¥arious signal processing procedures
are implemented in order to offer a semi-remote, non-imeaand economical method for vehicle
speed monitoring. In the case of ground vibration measungme additional device is needed.

To show the robustness and ability of the proposed methodltulate a wide range of train
speeds, itis used to predict speeds from numerically gi@tetain passages. The method is then ap-
plied to measured results in order to complete an experahedatabase useful for further numerical
prediction model validation. Moreover, its applicabilfigr various track configurations (embank-
ment, cutting, tunnel) is shown.
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frequency method applicability.
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