brought to you by $\widetilde{\mathbb{I}}$ CORE provided by H

Heriot-Watt University

Heriot-Watt University **Research Gateway**

Optical Characterisation of RF Sputter Coated Palladium Thin Films for Hydrogen Sensing

Carter, Richard; Morrall, Peter; Maier, Robert Raimund; Jones, Ben; McCulloch, Scott; Barton, James

Publication date: 2011

Link to publication in Heriot-Watt Research Gateway

Citation for published version (APA): Carter, R., Morrall, P., Maier, R. R. J., Jones, B., McCulloch, S., & Barton, J. (2011). Optical Characterisation of RF Sputter Coated Palladium Thin Films for Hydrogen Sensing. Poster session presented at 21st International Conference on Optical Fiber Sensors, Ottawa, ON, Canada.

Optical Characterisation of RF Sputter Coated Palladium Thin Films for Hydrogen Sensing

Richard M. Carter^a, Peter Morrall^b, Robert R.J. Maier^a, Ben J. S. Jones^b, Scott McCulloch^b, James S. Barton^a

HERIOT

a Heriot-Watt University, School of EPS, Department of Physics, Edinburgh, UK; b AWE plc., Aldermaston, UK

1. Motivation

Reliable hydrogen detection technologies required for safety applications

> Hydrogen suggested as future fuel source > Hydrogen explosive at 4 - 97% concentration in air > Most systems based on the absorption of hydrogen in palladium (Pd)

> Optical system preferable for safety reasons

- No heating
- Zero electrical charge
- > Optically well characterised homogeneous thin Pd films required
- \succ Little agreement in literature on the optical properties of thin film Pd

4. Ellipsometry results

Ellipsometry can estimate film thickness based on constant permittivity

>No divergence between estimated film thickness and WLI measurements below 40nm

6. Hydrogen Results

Clear change between loaded and unloaded states

 \succ Resonance of Pd is extremely broad, almost all angles above the critical angle

2. Pd H₂ System

Palladium widely used in hydrogen technology

➤ Catalytic dissociation of molecular hydrogen to atomic hydrogen on Pd surface

>Atomic hydrogen absorbed into Pd lattice structure

strained palladium lattice with interspersed hydrogen

- No real change in refractive index above ~ 20nm
- Above 40nm film is opaque ellipsometry measurement independent of film thickness

Complex index directly calculated based on WLI film thickness measurement

- Errors in WLI produce error in refractive index
- Thicker films, ~100nm, are independent of film thickness giving accurate measurement

(k)

- > Changing permittivity shows general trend
- Possibility of interesting low concentration effect on lattice structure
- Complex index demands that film thickness is measured independently

 \succ Both real and imaginary components decrease in magnitude

- \succ Both real and imaginary components decrease in magnitude
- Non linear effect

Presence of hydrogen strains lattice altering the conductivity and refractive index

>Hydrogen uptake continues until equilibrium pressure is achieved > System strongly dependant on temperature

3. Technique and sample preparation

RF sputter coating provides repeatedly homogeneous surface

> Permittivity measured using ellipsometry

Si

- System returns two degrees of freedom from three unknowns: complex refractive index (n+ ik) and thickness
- Complex index demands that film thickness is measured independently

> Sample thickness measured using white light interfermometry (WLI)

A

5. Surface Plasmon Resonance (SPR)

SPR technique used to measure change in complex permittivity due to hydrogen absorption

Thin film ~ 30nm in Krechman arrangement >1525nm HeNe couples to SPR at specific angles resulting in a loss band in angular reflection

>System calibrated using ellipsometry data > Reflected intensity fitted to theory as a function of angle

 \gg Non equal changes in real and imaginary components 1% H₂ ~ 10% decrease in real 1% H₂ ~ 5% decrease in imaginary

7. Conclusions

> RF sputter coated Pd thin film index independent of film thickness above ~20nm

- > Refractive index highly dependent on exact deposition technique
 - Requires samples to be characterised, published data cannot be relied upon

 \succ Change in permittivity due to hydrogen is non linear

> Two systems require different sample structures Homogeneous flat Pd surface for ellipsometry Step function in Al for WLI

 \succ Imaginary and real components of permittivity are not equal

Possibility of interesting low concentration effects

\succ Further work is required

- Greater body of data for low concentrations
- Effect of temperature on index (with and without) hydrogen)
- Effect of surface contamination, particularly polymers and sulphur
- Higher concentrations include Pd phase changes

Richard would like to acknowledge financial support from the UK Engineering and Physical Sciences **Research Council**

Contact: Richard Carter, Heriot-Watt University, School of Engineering and Physical Sciences, Department of Physics, Fibre Optics Group in Applied Optics and Photonics, Edinburgh EH14 4AS, UK; e-mail: rmc5@hw.ac.uk; http://www.aop.hw.ac.uk/