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Abstract

Current electricity tariffs do not reflect the real cost that
customers incur to suppliers, as units are charged at
the same rate, regardless of how predictable each cus-
tomer’s consumption is. A recent proposal to address
this problem are prediction-of-use tariffs. In such tar-
iffs, a customer is asked in advance to predict her fu-
ture consumption, and is charged based both on her
actual consumption and the deviation from her predic-
tion. Prior work (Vinyals et al. 2014) studied the cost
game induced by a single such tariff, and showed cus-
tomers would have an incentive to minimize their risk,
by joining together when buying electricity as a grand
coalition. In this work we study the efficient (i.e. cost-
minimizing) structure of buying groups for the more re-
alistic setting when multiple, competing prediction-of-
use tariffs are available. We propose a polynomial time
algorithm to compute efficient buyer groups, and val-
idate our approach experimentally, using a large-scale
data set of domestic electricity consumers in the UK.

Introduction
Recent years have seen increasing interest in applying ar-
tificial intelligence techniques to solve open challenges in
smart electricity grids (Ramchurn et al. 2012). One such
challenge is demand-side management, and in particular
designing tariffs which encourage electricity consumers to
have more predictable consumption patterns.

Unfortunately, existing electricity tariffs do not have this
property, as they are flat, i.e. each customer pays a fixed
amount per kWh consumed, and no information about ex-
pected consumption is elicited. A recent proposal to ad-
dress this problem, which follows related developments in
electricity retail industry (Braithwait, Hansen, and O’Sheasy
2007), are prediction-of-use (POU) tariffs (Vinyals et al.
2014). In POU tariffs, a costumer is asked to predict a base-
line for her consumption, and is charged based both on her
actual consumption, and her deviation from her baseline pre-
diction (in the sense that units consumed in excess/short of
the baseline may be charged different marginal rates).

While the work of Vinyals et al. provides an important
first step, it still comes short of a complete solution. In par-
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ticular, it does not consider the case of multiple, compet-
ing prediction-of-use tariffs, which can be offered by differ-
ent electricity suppliers. To explain, different suppliers may
have different acquisition strategies in purchasing electricity.
Some suppliers hedge their purchases through forward con-
tracts, and hence are able to offer a flatter tariff, although at a
higher cost, to cover the cost of hedging (Team 2011). Other
electricity suppliers, in contrast, may choose to buy on the
forward market only the amount of electricity that their cus-
tomers actually predict would be needed, and have to make
up any shortfall on the balancing market, where electricity
is more expensive. These different buying strategies may re-
sult in a range of prediction-of-use tariffs being offered in
the market, ranging from flat to more predictive ones.

The availability of multiple tariffs also plays an important
role in the success of group buying and collective switch-
ing initiatives1. In such initiatives, a large number of con-
sumers join together to buy electricity as a group, which im-
proves their joint predictability and market power. Our prior
work (Vinyals et al. 2014) studied the group buying game
induced by a single prediction-of-use tariff, and showed it
is concave and sub-additive, meaning all consumers buying
electricity under such a tariff have an incentive to group and
buy together, as a single “grand coalition”.

When multiple prediction-of-use tariffs are available,
however, the grand coalition does not always form. More
specifically, some consumers, who have less uncertainty
about their future consumption may group together to join
a more predictive tariff, while others, who have more uncer-
tainty, may prefer to form a different group, under a flatter
tariff. The problem of determining the most efficient (i.e.
cost-minimizing) group buying structure in this setting is
complex, and the aim of this paper is to model, character-
ize and provide the first practical solution to this challenge.

Our work can be seen as having a connection to several
strands of related literature. First, the topic of group buying
has attracted considerable recent attention from the artifi-
cial intelligence and electronic commerce communities (Lu
and Boutilier 2012; Meir et al. 2013). While some of this

1BigSwitch (https://www.whichbigswitch.co.
uk/) and PeoplePower (http://www.thepeoplespower.
co.uk/) are examples of successful real-life collective switching
initiatives.



work does look at multiple, competing providers, it only
considers volume based discounts, which are rather differ-
ent than the setting with uncertain demand distributions that
we consider here. In the energy domain, there has been work
studying coalitions or cooperatives between multiple renew-
able energy resources with uncertain and intermittent supply
(Baeyens et al. 2011; Robu et al. 2012). On the demand side,
the work of (Kota et al. 2012) proposes the concept of coop-
eratives for demand-side management, but they do not study
the coalition stability properties of such cooperatives using
tools from coalitional game theory.

From a conceptual perspective, our work is also related
to the newsvendor game problem studied operations re-
search (Muller, Scarsini, and Shaked 2002; Ozen, Norde,
and Slikker 2011), but to our knowledge, this literature does
not deal with multiple tariffs. Finally, there is a clear con-
nection between our work and the work on optimal coalition
structure generation (Elkind, Rahwan, and Jennings 2013),
however, to our knowledge, existing work does not deal with
coalitions that minimize group buying risk, such as in our
work. To summarize, this work can be seen as having sev-
eral contributions to the state of the art:
• First, we study the selection problem among multiple

prediction-of-use tariffs, in the case when each consumer
joins a tariff on her own. Assuming that the prediction er-
ror of a customer with respect to her baseline is given by
a normal probability distribution, we provide a character-
ization of the tariff choice in terms of the coefficient of
variation of each customer. We identify a natural order re-
lationship among the set of non-dominated tariffs, and we
show each tariff is cost-minimizing in an interval of the
coefficient of variation dimension.

• Next, we study the efficient group formation in case that
consumers elect to buy electricity as a group, under one
or several tariffs. We identify a restricted case in which
a strict order relationship between coefficient of variation
and tariff flatness exists, although we show by counterex-
ample such an order may not always hold in the general
case. Finally, we formulate a polynomial-time dynamic
programming algorithm that computes the optimal struc-
ture in such restricted case, and provides high efficiency
in practice, in the experiments we performed.

• Finally, we test our example with a large-scale dataset of
electricity consumers in the UK. We show, with a set of
tariffs ranging from flat to highly predictive, that the tariff
choice can differ significantly between the case of indi-
vidual vs. group buying. More interestingly, we show that
in both cases different tariffs may have non-empty market
shares, thus, unlike the single tariff case, the grand coali-
tion is not guaranteed to be the most efficient (i.e. cost
minimizing) setting.

The remainder of this paper is structured as follows. First,
we review prediction-of-use tariffs and introduce our multi-
tariff model. Next, we provide a characterization of tariff se-
lection, both individually and using group buying. We then
provide a dynamic programming algorithm for determining
efficient buyer groups, and validate it using real consump-
tion data. The paper concludes with a discussion.

Prediction-of-Use Tariffs
In this section, we first define the basic properties of
prediction-of-use tariffs following the formalization in
(Vinyals et al. 2014)2. The basic idea of such a tariff is that
each customer is asked to provide, in advance, a prediction
for her consumption (called baseline) during a specific time
period. A prediction-of-use tariff is then defined as a tuple
〈p,p,p〉, where p is the baseline rate (with p > 0) and p,
p are the rates for underconsumed and overconsumed units
respectively (with p > p ≥ 0 and p ≥ 0).

Then the payment of a consumer with an ex-ante baseline
b and an actual (ex-post) consumption x is determined as:

ψ(x,b) =

{
p · x+ p · (x− b) if b ≤ x
p · x+ p · (b− x) otherwise (1)

This tariff allows us to distinguish between a potentially
lower price for the baseline consumption, and a higher
penalty for the deviation. Thus, the expected payment of a
customer under a prediction-of-use tariff does not depend
only on her realised consumption but also on her prediction
error. Following Vinyals et al., we assume that the prediction
error of a customer with respect to her baseline is given by a
normal probability distribution N(µ, σ).

Now, the optimal baseline that a customer should report
to minimize her expected payment (b∗) is characterized as a
quantile of her prediction distribution. Formally,

b∗ = µ+ σ · Φ−1(r∗)

where Φ−1 is the quantile function of the standard normal
distribution N(0, 1) (thus, it is independent of the specific µ
and σ of the consumer) and r∗ = p

p+p is the tariff optimal
ratio.
Given this optimal baseline, the expected payment of a cus-
tomer whose prediction error follows a normal distribution
N(µ, σ) under a prediction-of-use tariff is:

E∗[ψ(x)] = µ p︸︷︷︸
Consumption term

−σ(p + p)

∫ r∗

0

Φ−1(y) dy︸ ︷︷ ︸
Penalty term

(2)

We refer to the factor multiplying σ as the penalty rate.
Now, consider that consumers can form buying groups to

reduce their expected joint payments. Let N be a set of cus-
tomers that joined the same group-tariff scheme. Given a
subset of customers S ⊆ N , let xS =

∑
i∈S xi be its ag-

gregate prediction error w.r.t. a joint baseline.
A cost game in characteristic form is obtained by assign-

ing, for each possible buying group, its optimal expected
payment under the prediction-of-use tariff. Formally,

c(S) = E∗[ψ(xS)] = E[ψ(xS , b
∗)] for all S ⊆ N (3)

Vinyals et al. showed that, assuming normally distributed
prediction errors, this game is concave. Concavity implies
that the expected joint payment of a set of customers that
join the same tariff is always less when grouping together
(i.e. the grand coalition is always cost minimizing).

2Interested readers may consult this reference for the full proofs
of equations in this section.



The Multi-Tariff Model
Let Γ = {τ1, . . . , τM} be a set of prediction-of-use tariffs
offered in the market by competing suppliers. We consider
a setting in which there is a set of rational consumers N =
{1, . . . , n}, each of them needs to select an electricity tariff.
For each tariff τk ∈ Γ we denote by pk,pk,pk the baseline,
overconsumption and underconsumption rates, respectively,
and by r∗k the optimal ratio.

The main factor driving the decision of a customer to join
a tariff (on her own or through a group-buying scheme) is her
expected payment. As observed in Eq. 2, the expected pay-
ment of a customer in a prediction-of-use tariff depends on
her particular prediction error. Thus, for some customers it
is expected to be more beneficial to take on higher deviation
rates in order to obtain lower baseline prices. Conversely,
others will be willing to pay higher baseline prices to avoid
deviation penalties as much as possible. Formally, finding
the tariff τ∗ that minimizes the expected payment of a cus-
tomer with a prediction error that follows a normal distribu-
tion N(µ, σ), involves solving the minimization problem:

τ∗ = arg min
τk∈Γ

E∗[ψk(x)] (4)

where E∗[ψk(x)] is the expected payment of the customer
under tariff τk defined as in Eq. 2.

To tackle this minimization problem, we will first define
the conditions under which a customer will pay less in a
tariff than in another. Formally, a customer with a predic-
tion error that follows N(µ, σ) expects to pay strictly less
in some tariff τk than in tariff τl if and only if the following
inequality holds:

pk µ−σ(p
k
+pk)

∫ r∗k

0

Φ−1(y)dy <pl µ−σ(p
l
+pl)

∫ r∗l

0

Φ−1(y)dy

Recall that r∗l , r
∗
k and Φ−1 are parameters independent of µ

and σ. By rearranging terms we obtain:

∆P
k,l σ < ∆B

l,k µ, (5)

where ∆B
l,k = pl − pk is the difference in baseline price

between tariff τl and τk (where ∆B
k,l = −∆B

l,k) and

∆P
k,l =−(p

k
+ pk)

∫ r∗k

0

Φ−1(y)dy + (p
l
+ pl)

∫ r∗l

0

Φ−1(y)dy

is the difference in penalty rate between τk and τl.
Definition 1. A tariff τl is said to be dominated in expec-
tation iff there exists another tariff τk ∈ Γ such that the
expected payment under τk is lower than those in τl irre-
spective of the µ and σ of the expected prediction error.

In terms of the above notation, a tariff τl is dominated in
expectation by τk if ∆B

k,l < 0 and ∆P
k,l < 0.

Note that a stronger notion of ex-post dominance can also
be defined, i.e. if pk < pl, p

k
< p

l
, pk < pl, then a con-

sumer will pay less under tariff τk, regardless of the realised
consumption. However, here we are interested in “in expec-
tation” dominance, because the choice of tariff occurs in ex-
pectation.

When faced with the ex-ante choice, no risk-neutral con-
sumer will choose a dominated tariff, hence such a tariff
gets no market share and w.l.o.g. we can omit it from further
analysis. Also w.l.o.g., we can omit duplicate tariffs, i.e. tar-
iffs which have the same baseline and penalty rates. Hence-
forth, when referring to Γ, we consider eliminated from it
all tariffs that are dominated in expectation or duplicates.
After these eliminations, for any pair of remaining tariffs
τk, τl ∈ Γ it must hold that: if pk < pl then ∆P

k,l ≥ 0. Now,
we can define the relation of flatness among tariffs.

Definition 2. Given two tariffs τk, τl ∈ Γ we say that τk
is less flat than τl, denoted as τk ≺f τl, if τk has a lower
baseline price and a higher penalty rate than τk (formally,
if ∆B

k,l < 0 and ∆P
k,l > 0).

Observe that when applied to a set of tariffs Γ, after we elim-
inate the dominated and duplicate tariffs, the flatness rela-
tionship defines a total ordering among remaining tariffs in
Γ (i.e. it is transitive and symmetric).

Now, given two tariffs τk, τl ∈ Γ such that τk ≺f τl we
can rearrange terms in Eq. 5 to obtain:

σ

µ
<

[
λk,l =

∆B
l,k

∆P
k,l

]
(6)

Note that the left side of Eq. 6 is known as coefficient of
variation (i.e. the ratio between the standard deviation and
the mean). The parameter on the right side (which ultimately
depends only on the parameters p,p,p of tariffs τk and τl)
we call the inter-tariff threshold between τk and τl. The
following corollary follows directly from previous deriva-
tions:

Corollary 1. Given two tariffs τk ≺f τl, there exists a
unique threshold λk,l ∈ R such that the expected payment of
any customer is less in tariff τk than in tariff τl iff σµ < λkl.
Otherwise her expected payment is lower in tariff τl.

Market Segmentation with Individual Choice
We characterize the partition of the pool of customers in the
case each customer chooses to join a prediction-of-use tariff
based only on its own expected consumption.

Given Corollary 1, for some non-dominated, duplicate-
free set of tariffs Γ we can define a set of |Γ|(|Γ|−1)

2 inter-
tariff thresholds, one for each pair of tariffs τk, τl ∈ Γ such
that τk ≺f τl. Arranging these thresholds over the coeffi-
cient of variation axis, they define a total of |Γ|(|Γ|−1)

2 + 1

intervals ( |Γ|(|Γ|−1)
2 − 1 between thresholds plus two at the

axis ends). We label these thresholds in ascending order λs
where s is the position of the threshold in the ordering.

Lemma 1. Given a set of tariffs Γ, for all s =

1 . . . |Γ|(|Γ|−1)
2 + 1, the expected payment of any customers

with a coefficient of variation within the range (λs−1, λs) is
minimized under the same tariff.

Proof. Towards a contradiction, consider two consumers
i, j ∈ N with σi

µi
,
σj

µj
∈ (λs−1, λs), where i joins tariff τk,

while j joins τl (k 6= l). But this implies the existence of



another threshold λk,l ∈ (λs−1, λs), which is not possible
as the set of all inter-tariffs thresholds is determined.

Thus, for each interval, there is one tariff that dominates
all the others, for all customers with a σ

µ ∈ (λs−1, λs). How-
ever, it may not be necessary to keep all these thresholds to
characterize the partition because some of the neighbouring
intervals will merge, as one tariff dominates in two or more
adjoining intervals. Formally, we denote by the set ΓND the
subset of tariffs in Γ that dominate in at least one interval.

It remains to be shown that, if a tariff τk in ΓND dom-
inates in a set of intervals, all these intervals must be ad-
joining (i.e. consecutive). Again, we prove this by contra-
diction. Consider a tariff τk in ΓND such that it dominates
in two non-consecutive intervals. Then it means that there is
at least one interval in the middle in which another tariff τl,
τl 6= τk, dominates. But this would lead to a contradiction
with Corollary 1, which states the switch from τk to τl is
defined by a unique point λk,l.

Market Segmentation with Group Buying
In this section, we extend our analysis to the case when
customers group together to purchase electricity as a coali-
tion (aka group), under any tariff in set Γ. We define the
corresponding multiple prediction-of-use tariff cost game
G = 〈N, c〉, where c : 2N → < :

c(S,Γ) = min
τk∈Γ

E[ψk(xS)] for all S ⊆ N. (7)

In this paper, we take a cooperative game theory approach
to this problem, and our goal is to determine which is the op-
timal buying group structure that minimizes the total cost to
all customers (where “cost” is defined as total expected pay-
ments under the selected set of tariffs). In general, coalition
structure generation involves finding the exhaustive disjoint
partition of customers into groups ~S = {S1, . . . , Sm} such
that the total cost,

∑m
k=1 c(Sk,Γ), is minimized. However,

as stated by the next lemma, in our case at most one group
per tariff will form.

Lemma 2. The optimal structure of a pool of customers un-
der a set of tariffs Γ can be expressed in terms of |Γ| groups,
{S1, . . . , S|Γ|}, being for all k = 1 . . . |Γ| Sk a set of cus-
tomers (possible empty) that will group under tariff τk ∈ Γ.

Proof. Consider that the optimal structure contains two
groups S, S′ that join the same tariff τk. This leads to a
contradiction because, given the concavity (and subaddi-
tive) results proved in (Vinyals et al. 2014) for the sin-
gle tariff game, customers choosing the same tariff reduce
their joint expected payment by grouping (c(S ∪ S′, τk) <
c(S, τk) + c(S′, τk)).

Henceforth, we can use the notation Sk = ~S(k) ⊆ N to
refer to consumers assigned to τk in the structure ~S .

Unfortunately, despite this bound on the maximum num-
ber of groups, the group buying structure generation prob-
lem is still a complex one because the optimal tariff group of
each customer depends on the set of customers that already

joined the group. Hence, in order to tackle this problem, we
first single out a tractable grouping case for which the order
property based on the coefficient of variation holds.

Optimal Group Structure with Equal σs
As stated by the next lemma, for the restricted case with
(equal σ-s), the grouping follows the same order than in the
individual choice case.

Lemma 3. Consider the case when all customers have the
same standard deviation error prediction, σ (σ1 = . . . =
σn = σ). Then, for any two customers ∀i, j ∈ N with
σi

µi
<

σj

µj
, if the optimal group structure assigns j to Sk,

corresponding to tariff τk ∈ Γ, and i to Sl, corresponding
to τl ∈ Γ (where k 6= l), then it must hold that τk ≺f τl.

Proof. Consider that the best group buying structure, ~S∗,
does not satisfy Lemma 3. This means that there are at least
two customers i and j such that σi

µi
<

σj

µj
and i ∈ S∗l , j ∈ S∗k

where τk ≺f τl. Towards a contradiction, consider another
structure ~S′ that contains the same groups as ~S∗, except that
in coalitions S′k and S′l customers i and j are interchanged.
Formally: S′m = S∗m for all m 6= l, k, S′k = S∗k \ {j} ∪ {i}
and S′l = S∗l \ {i} ∪ {j}. To compare the cost of ~S∗ and
~S′, we only need to compare the cost of groups S∗l , S

∗
k with

S′l , S
′
k since the rest of groups are the same. We compare

these groups based on their two cost components: the con-
sumption term and the penalty term. Since all customers
have the same σ and the number of customers in S′l is the
same than in S∗l then the penalty term is the same among
these groups. The same applies between groups S′k and S∗k .
Regarding consumption terms, the difference between the
cost of S∗k and S′k is (µj · pk − µi · pk) and the difference
between the cost of S∗l and S′l is (µi · pl − µj · pl). Adding
both differences we obtain (pl − pk) · (µi − µj).

However pl > pk (because of the flatness relation) and
µi > µj (because of the ratio inequality and σi = σj), so
the cost of ~S′ is less than ~S∗, leading to a contradiction.

Intuitively, Lemma 3 states that it is optimal to group cus-
tomers which are poorer predictors (i.e. higher σ

µ ) in either
the same or flatter tariffs than customers that are better pre-
dictors (i.e. lower σµ ). However, the partition when grouping
can not be directly characterized by the inter-tariff thresh-
olds (which only depend on the tariff themselves) as in the
individual case because the coefficient of variation of a cus-
tomer group depends on other customers that joined that
group. Nevertheless, given that such ordering relationship
exists, the problem of deciding the optimal coalition struc-
ture is not a combinatorial one (as in the unrestricted case).
Indeed, in a further section we propose an algorithm that is
guaranteed to find such optimal coalition structure in poly-
nomial time.

Group Structure in Unrestricted Cases
Given the tractability results stated for the equal σ’s case,
one may wonder if the same coefficient of variation order-
ing holds for the unrestricted case. Unfortunately, as we next



p p p

τA 0.17 0.05 0.13
τB 0.19 0.01 0.02
τC 0.20 0 0

λAB λBC

σ{1:9}
µ{1:9}

σ10
µ10

{σ1
µ1
, . . . , σ9

µ9
}

Figure 1: Tariffs used in Example 1 (in £/kWh) and the coef-
ficient of variation intervals with σ

µ for customers A1 −A10

(taken individually) and the group formed by A1 −A9.

show by means of a counterexample, such ordering restric-
tion does not guarantee optimality in the general case.

Example 1. Consider tariffs τA, τB , τC , their inter-
thresholds intervals (λAB = 0.4 and λBC = 0.92) and
10 customers as detailed in Fig. 1. Customers A1 − A9

are small consumers, whose individual prediction error fol-
lows N(µ = 1, σ = 1), with σ

µ = 1. Customer A10 is
a much larger consumer with a prediction error following
N(µ = 20, σ = 15) and hence with a lower coefficient
of variation (σ10

µ10
= 0.75). When customers join tariffs on

their own, A1 − A9 will join the flattest tariff τC (since
σi

µi
> λBC ∀i = 1 . . . 9), while A10 will join τB (since

λAB < σ10

µ10
< λBC). Conversely, in the optimal group buy-

ing structure, A1 − A9 will group together under the most
predictive tariff τA (since σ{1:9}

µ{1:9}
=
√

9
9 < λAB), while A10

remains alone under τB . This is the optimal (cost minimiz-
ing) structure for this example: the grand coalition can not
benefit from tariff τA (as σ{1:10}

µ{1:10}
= 0.53 > λAB , and it re-

sults in a higher total payment.

Example 1 is of interest because it shows that the mono-
tonic order of assigning customers to tariffs does not always
hold: A10 has a lower coefficient of variation than those of
A1-A9 individually, yet the optimal group buying structure
still places her in a flatter (i.e. less predictive) tariff.

While we have shown that such examples can be con-
structed, we also found they rely on one or a few customers
having a very high share of the total consumption, which is
rarely the case in practice (at least in the real dataset we have
examined). Thus, albeit in the general case there is no the-
oretical guarantee that the dynamic programming approach
that we propose in the next section returns the optimal par-
tition, the quality of the solution is nearly-optimal for real-
world distributions of consumption. An empirical examina-
tion of such a case is provided in the experimental section.

Dynamic Programming Search for Optimal
Group Structure

We present an algorithm that given a set of tariffs Γ com-
putes the best group structure {S∗1 , . . . , S∗|Γ|} such that
∀i, j ∈ N with σi

µi
<

σj

µj
i ∈ Sk, j ∈ Sl, k 6= l then

Algorithm 1 Finding P ∗ in the σ
µ interval with monotonic

group tariff selection
Require: {1, . . . , n} (customers ordered by ascending coefficient

of variation) and Γ (tariffs ordered by increasing flatness)
1: for i = 1 to n do
2: C[i]← c({1 : i},Γ);
3: T [i]← k| Γ(k) is the optimal tariff for group {1 : i}
4: P [i]← 0;
5: if i == n then
6: τ = |Γ| − 1; /*At least one tariff must remain*/
7: else
8: τ = |Γ| − 2; /*At least two tariffs must remain*/
9: end if

10: for j = 1 to i− 1 | T [j] ≤ τ do
11: c′ ← c({j + 1 : i},Γ) + C[j];
12: τ ′ ← k| Γ(k) is the optimal tariff for group {j+1 : i}
13: if c′ < C[i] and τ > T [j] /*Update*/ then
14: (C[i], P [i], T [i]) = (c′, j, τ ′);
15: end if
16: end for
17: end for
18: P ∗, T ∗ ← {};i← n;
19: while i > 0 do
20: P ∗ ← P ∗ ∪ {{P [i] + 1 : i}}
21: T ∗ ← T ∗ ∪ T [i]
22: i← P [i];
23: end while
24: return (C[n], P ∗, T ∗)

τk ≺f τl. The core of our approach takes its starting point
in a Dynamic Programming (DP) algorithm formulated in
(Rothkopf, Pekec, and Harstad 1995) to solve combinato-
rial auctions with neighbouring assets. When applied to our
problem, this algorithm computes the best group buying
structure when groups of consecutive consumers in the co-
efficient of variation interval are considered. Although this
DP algorithm has a deterministic polynomial complexity3,
it does not exploit the strictly monotonic tariff selection that
characterizes our problem. To this end, we extend the algo-
rithm to restrict search to structures in which groups are as-
signed to strictly increasing flatter tariffs. Thus, we develop
an enhanced version of the DP algorithm that takes into ac-
count the specific structure of the problem. Specifically, our
algorithm constrains search such that multiple groups can-
not form around the same tariff (c.f. Lemma 2) and agents
are assigned to groups in monotonic order of their flatness.

The pseudocode of the method is given in Algorithm 1.
This algorithm requires, as an input, the set of customers
ordered by ascending coefficient of variation and the set
of available tariffs ordered by increasing flatness. Then, for
each customer i = 1 . . . n, the algorithm computes the sub-
problem corresponding to the best group-buying structure
among i and other more predictable consumers (lines 1-17).
The cost of such a subproblem is stored in C[i], the first cus-
tomer not included in the group of i is stored in P [i], while
the best tariff for such group is stored in T [i]. At the be-

3Quadratic computational requirements and linear computa-
tional requirements to the number of consumers (Rothkopf, Pekec,
and Harstad 1995).
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Figure 2: Market segmentation when customers join tariffs on their own (left); and through group-buying schemes (right).

ginning of each iteration, the corresponding group-buying
structure is initialized to one in which all customers join a
single group (lines 2-4). Then, the algorithm computes the
minimum number of tariffs that must not be selected to al-
low the formation of a new group (i.e. one in the case of the
last customer and two for the rest). Then, for each j < i such
that the subproblem j left insufficient tariffs (T [j] < τ ), the
cost of such structure is compared (and updated if it is the
case) with the cost of the group {(j + 1) : i} plus the cost
of the best group structure among the first j customers, C[j]
(lines 10-16). Moreover, the structure is only updated if the
tariff assigned to the last formed group, T [j], is less flatter
than those assigned to the new group, τ (line 13). By so do-
ing, partitions that do not satisfy the flatness order among
tariffs are discarded.

At the end of this process, the cost of the best group-
buying structure explored during the execution of the algo-
rithm is found in C[n]. Finally, the algorithm executes an
iterative procedure (lines 18-23) to recover the groups that
form such a structure (P ∗) and the set of tariffs to which
they are assigned (T ∗). Although Algorithm 1 has the same
worst-case quadratic computational complexity as the ba-
sic DP algorithm, in the practical instances (such as those
considered in the experiments), the number of operations is
significantly reduced. In particular, for the two tariffs case
(|Γ| = 2), Algorithm 1 reduces to linear complexity (i.e. τ
is 0 for all iterations with exception of the last).

Experimental Evaluation
Our experimental analysis makes use of a large dataset of
around 3000 households (i.e. customers) in the UK. For each
customer, the dataset included her electricity consumption
for every half hour during a three-month period. We take the
sample mean over the consumption realizations of each cus-
tomer as a point estimate for her µ and the standard deviation
as an unbiased estimator for her σ.

The evaluation considers three tariffs (F, P and P+) de-

tailed as follows. Tariff F (Flat), corresponds to a flat tar-
iff in which customers pay a fixed price (£0.205) per kW
consumed. Tariff P (Predictive) reduces the baseline price
of tariff F at the cost of charging a penalty of £0.01/£0.03
for each kW underconsumed/overconsumed respectively.
Finally, tariff P+ (Highly Predictive) offers the lowest base-
line price but severely penalizes any imbalance (with penal-
ties of £0.17/£0.26 per Kw underconsumed/overconsumed).
These figures ensure the baseline prices of these tariffs are
roughly similar to the prevalent prices in the UK tariffs (see
(Team 2011)). However, the penalty rate of tariff P+ is set
particularly high to favour the formation of multiple buying
groups, since they are of more interest given the focus on
group structure generation of this paper. Next, we analyze
the resulting market segmentation when consumers choose
tariffs on their own and through group buying schemes.

Market segmentation with individual customer choice.
Fig. 2 (left) shows the coefficient of variation of each cus-
tomer (ordered from the most to the least predictable), in the
colour of its preferred tariff when joining individually. The
figure also shows the share of customers that each tariff ob-
tains as a pie chart. Observe that the first 2366 customers
with the lowest coefficient of variation prefer to join tariff
P, whereas the remaining 622 customers prefer tariff F (i.e.
tariff P+ gets no market share). Therefore, although a high
percentage (i.e. 79.18%) of customers could benefit from a
lower baseline price through tariff P, there remains a signif-
icant percentage (i.e. 20.82%) that are too unpredictable to
benefit from this tariff, and choose the flat tariff F. Most im-
portantly, the risk of penalty imbalance of tariff P+ remains
too high for any customer, when taking an individual deci-
sion. The total expected payment of the customers per day
under this market segmentation is £8097.

Market segmentation with group buying. We use the DP
algorithm presented in the previous section to compute the
most efficient group buying structure, under the constraint
that customers with increasing coefficient of variation are



assigned to flatter tariffs. While, as discussed before, this
does not provide a theoretical guarantee of optimality in the
general case, we found this constraint reasonable for the
real dataset employed here. Moreover, while the DP algo-
rithm has a worst-case quadratic performance in the num-
ber of customers, because of the additional structure of the
problem it exploits, we found that in practice the number
of operations is much less (around 105 or 2%) of the num-
ber of operations prescribed by the quadratic bound (which
is |N |2/2 = 4.5 · 106). Fig. 2 (right) shows the coefficient
of variation of the group joined by each customer (ordered
from the most to the least predictable), again in the colour of
the selected tariff. As before, the figure includes a pie chart
of the share of the market obtained by each tariff. Observe
that, by allowing grouping, the first 2758 customers, with
the lowest coefficient of variation, prefer to group together
under tariff P+ whereas the remaining 230 customers prefer
to group under tariff P. The total expected payment of the
customers per day under this market segmentation is £7952.
Hence, there is a payment reduction for grouping this set of
customers under such computed group-buying structure of
£145 per day. It is worth noticing that the structure formed in
the grouping case is completely different to the one from the
individual choice case. Now, tariff F gets no market share,
and the reduction of risk imbalance from grouping lets a
high percentage of the customers (i.e. 92.30%) benefit from
the most predictive P+ tariff.

Conclusions and Future Work
This work provides a thorough analysis of market segmenta-
tion with multiple prediction-of-use tariffs. Besides giving a
formal characterization of the problem, both for a single in-
dividual and group perspective, we provide an enhanced DP
algorithm for determining efficient group buying structures,
and validate our approach on a large dataset of electricity
consumers from the UK.

There are several directions we plan to explore in future
work. From a practical perspective, it would be interesting
to explore the connection between prediction-of-use and the
more widely known time-of-use (TOU) tariffs (Braithwait,
Hansen, and O’Sheasy 2007).4 POU tariffs are a new, differ-
ent concept than TOU tariffs, but the two could be naturally
combined. For example, some retailers may offer, based on
their hedging strategy in the forward/balancing market, tar-
iffs in which customers are only asked to predict their future
consumption only for peak-time periods. Such tariffs could
use a prediction-of-use structure for the peak times, but a flat
tariff structure during the rest of the day.

From a broader AI perspective, while coalitional forma-
tion and structured coalitional games are a growing area of
research in the AI community (e.g. (Chalkiadakis, Elkind,
and Wooldridge 2011; Chalkiadakis, Markakis, and Jen-
nings 2012)), there are few works that discuss what types
of algorithms and techniques are relevant and applicable in
concrete domains. This work can be seen as opening the way

4In TOU tariffs, customers are charged different marginal rates
per kWh, depending on the time of day in which the consumption
occurs.

for a wider range of techniques from coalition formation and
coalitional game theory to be applied in the tariff design do-
main, and we intend to pursue some of these in future work.
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