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ABSTRACT

In recent works, compressed sensing (CS) and convex opti-

mization techniques have been applied to radio-interferometric

imaging showing the potential to outperform state-of-the-art

imaging algorithms in the field. We review our latest con-

tributions [1, 2, 3], which leverage the versatility of convex

optimization to both handle realistic continuous visibilities

and offer a highly parallelizable structure paving the way to

significant acceleration of the reconstruction and high-dimen-

sional data scalability. The new algorithmic structure pro-

moted in a new software PURIFY (beta version) relies on the

simultaneous-direction method of multipliers (SDMM). The

performance of various sparsity priors is evaluated through

simulations in the continuous visibility setting, confirming the

superiority of our recent average sparsity approach SARA.

Index Terms— Compressed sensing, radio interferome-

try, interferometric imaging, convex optimization

1. INTRODUCTION

Radio interferometry is a powerful technique that allows ob-

servation of the radio emission from the sky with high angu-

lar resolution and sensitivity [4, 5]. The measurement equa-

tion for radio interferometry defines an ill-posed linear inverse

problem in the perspective of signal reconstruction. Next-

generation radio telescopes, such as the new LOw Frequency

ARray (LOFAR), or the future Extended Very Large Array

(EVLA) and Square Kilometer Array (SKA), will achieve

much higher dynamic range than current instruments, also at

higher angular resolution [5]. Also, these telescopes will ac-

quire a massive amount of data, thus posing large-scale prob-

lems. Classical imaging techniques developed in the field,

such as the CLEAN algorithm and its multi-scale variants

[6, 7, 8], are known to be slow and to provide suboptimal

imaging quality [9, 1]. This state of things has triggered an

intense research to reformulate imaging techniques for radio

interferometry in the perspective of next-generation instru-

ments.

The theory of compressed sensing (CS) introduces a sig-

nal acquisition and reconstruction framework that goes be-

yond the traditional Nyquist sampling paradigm [10, 11, 12].

Recently, CS and convex optimization techniques have been

applied to image deconvolution in radio interferometry [13,

14, 15, 16, 9, 1, 17, 18] showing promising results. These

techniques promise improved image fidelity, flexibility and

computation speed over traditional approaches. This speed

enhancement is crucial for the scalability of imaging tech-

niques to very high dimensions in the perspective of next-

generation telescopes. However, the aforementioned CS-based

imaging techniques have only been studied for low dimen-

sional discrete visibility coverages. Therefore, the extension

of CS techniques to more realistic continuous interferometric

measurements is of great importance.

In this article, we review recent work [3] extending the

previously proposed imaging approaches in [13, 14, 1] to han-

dle continuous visibilities and open the door to large-scale

optimization problems. We summarise a general algorith-

mic framework based on the simultaneous-direction method

of multipliers (SDMM) [19] to solve sparse imaging prob-

lems. The proposed framework offers a parallel implementa-

tion structure that decomposes the original problem into sev-

eral small simple problems, hence allowing implementation

in multicore architectures or in computer clusters, or on graph-

ics processing units. These implementations provide both

flexibility in memory requirements and a significant gain in

terms of speed, thus enabling scalability to large-scale prob-

lems. A beta version of an SDMM-based imaging software

written in C and dubbed PURIFY was released that handles

various sparsity priors, including our recent average sparsity

approach SARA [1], thus providing a new powerful frame-

work for radio-interferometric (RI) imaging1. We summarise

the performance of different priors through simulations within

PURIFY in the continuous visibility setting. Simulation re-

sults confirm the superiority of SARA for continuous Fourier

measurements. Even though this beta version of PURIFY is

not parallelized, we discuss in detail the extraordinary par-

allel and distributed optimization potential of SDMM, to be

exploited in future versions.

1Available at http://basp-group.github.io/purify/.



2. BACKGROUND AND MOTIVATION

2.1. State-of-the-art of CS-based RI imaging algorithms

CS introduces a signal acquisition framework that goes be-

yond the traditional Nyquist sampling paradigm [10, 11, 12],

demonstrating that sparse signals may be recovered accurately

from incomplete data. Consider a complex-valued signal x ∈
CN , assumed to be sparse in some orthonormal basis Ψ ∈
C

N×N with K ≪ N nonzero coefficients, and also consider

the measurement model y = Φx+n, where y ∈ CM denotes

the measurement vector, Φ ∈ CM×N is the sensing matrix

and n ∈ CM represents the observation noise. CS provides

results for the recovery of x from y if Φ obeys certain prop-

erties [12].

A radio interferometer takes measurements of the radio

emissions of the sky, the so-called visibilities. Under restric-

tive assumptions of narrow-band (i.e. monochromatic) non-

polarized imaging on small fields of view, the visibilities mea-

sured identify with Fourier measurements [4]. Thus the mea-

surement operator Φ essentially reduces to a Fourier matrix

sampled on M spatial frequencies. In a realistic continu-

ous visibility setting, one usually has M > N and some-

times M ≫ N , which will be increasingly the case for next-

generation telescopes [5].

Reconstruction techniques based on CS and convex opti-

mization have been recently proposed for RI imaging. The

first application of CS and convex optimization to radio in-

terferometry was reported in [13], showing the versatility of

the approach and its superiority relative to standard interfer-

ometric imaging techniques. After this seminal work others

have followed. The works in [15, 9, 17] use the following

unconstrained synthesis problem to recover x from y:

min
ᾱ∈CN

1

2
‖y − ΦΨᾱ‖22 + λ‖ᾱ‖1, (1)

where λ is a regularization parameter that balances the weight

between the fidelity term and the ℓ1 regularization term. The

signal is recovered as x̂ = Ψα̂, where α̂ denotes the solution

to the above problem. The work in [9] studied a CS imaging

approach based on (1) and the isotropic undecimated wavelet

transform, reporting reconstruction results superior to those

of CLEAN and its multi-scale variants.

As opposed to unconstrained problems such as (1), the

works in [13, 14, 16, 1, 18] proposed to use constrained ℓ1
minimization problems of the form

min
x̄∈RN

+

‖Ψ†
x̄‖1 subject to ‖y − Φx̄‖2 ≤ ǫ, (2)

where Ψ
† denotes the adjoint operator of Ψ, ǫ is an upper

bound on the ℓ2 norm of the noise and R
N
+ denotes the posi-

tive orthant in RN , which represents the positivity prior on x.

Unconstrained problems are easier to handle since one of the

functions involved in the minimization is differentiable. In

fact, there exist fast algorithms to solve such problems, e.g.

the FISTA algorithm [20]. However, there is no optimal strat-

egy to fix the regularization parameter even if the noise level

is known, therefore constrained problems, such as (3), offer

a stronger fidelity term when the noise power is known, or

can be estimated a priori. Hence, we focus our attention on

solving problem (3) efficiently, especially for very high di-

mensional problems (M ≫ N ).

2.2. The SARA algorithm

Carrillo et al. proposed in [1] an imaging algorithm dubbed

sparsity averaging reweighted analysis (SARA) based on av-

erage sparsity over multiple bases, showing superior recon-

struction qualities relative to state-of-the-art imaging methods

in the field. A sparsity dictionary composed of a concatena-

tion of q bases, Ψ = [Ψ1,Ψ2, . . . ,Ψq], with Ψ ∈ CN×D,

N < D, is used and average sparsity is promoted through

the minimization of an analysis ℓ0 prior, ‖Ψ†
x̄‖0. The con-

catenation of the Dirac basis and the first eight orthonormal

Daubechies wavelet bases (Db1-Db8) was proposed as an ef-

fective and simple candidate for a dictionary in the RI imaging

context. See [2] for further discussions on the average spar-

sity model, the dictionary selection and other applications to

compressive imaging.

SARA adopts a reweighted ℓ1 minimization scheme to

promote average sparsity through the prior ‖Ψ†
x̄‖0. The al-

gorithm replaces the ℓ0 norm by a weighted ℓ1 norm and

solves a sequence of weighted ℓ1 problems where the weights

are essentially the inverse of the values of the solution of the

previous problem [1]. The weighted ℓ1 problem is defined as:

min
x̄∈RN

+

‖WΨ
†
x̄‖1 subject to ‖y − Φx̄‖2 ≤ ǫ, (3)

where W ∈ RD×D denotes the diagonal matrix with positive

weights.

3. A LARGE-SCALE OPTIMIZATION ALGORITHM

In the case of large-scale data problems, i.e. large number of

visibilities M ≫ N , the visibilities may no longer be pro-

cessed on a single computer but rather in a computer cluster

thus requiring a distributed processing of the data for the im-

age reconstruction task. In this distributed scenario we pro-

pose to partition the data vector y and the measurement oper-

ator into R blocks in the following manner:

y =







y1

...

yR






and Φ =







Φ1

...

ΦR






, (4)

where yi ∈ CMi , Φi ∈ CMi×N and M =
∑R

i=1 Mi. Each

yi is modelled as yi = Φix + ni, where ni ∈ CMi denotes

the noise vector.



With this partition the optimization problem in (3) can be

reformulated as

min
x̄∈RN

+

‖WΨ
†
x̄‖1 subject to ‖yi − Φix̄‖2 ≤ ǫi, i = 1, . . . , R,

(5)

where each ǫi is an appropriate bound for the ℓ2 norm of the

noise term ni. In order to solve this nonsmooth problem we

need to reformulate it. Note that any convex constrained prob-

lem can be formulated as an unconstrained problem by using

the indicator function of the convex constraint set as one of

the functions in the objective, i.e. f(x) = iC(x) where C
represents the convex constraint set. The indicator function

is defined as iC(x) = 0 if x ∈ C or iC(x) = +∞ other-

wise and belongs to the class of convex lower semicontinuous

functions. Therefore (5) can be rewritten as an unconstrained

problem of the form

min
x∈CN

f1(L1x) + . . .+ fS(LSx), (6)

with S = R + 2. In this formulation f1 and f2 denote the ℓ1
sparsity term and the positivity constraint respectively, and f3
to fS denote the R data fidelity constraints. Thus L1 = Ψ

†,

L2 = I and Li+2 = Φi for i = 1, . . . , S.

To solve (6) we use the simultaneous-direction method of

multipliers (SDMM), which belongs to the family of proximal

splitting methods [19]. Proximal splitting methods proceed

by splitting the contribution of each of the functions in (6)

individually so as to yield an easily implementable algorithm.

They are called proximal because each non-smooth function

is incorporated in the minimization via its proximity operator,

which is defined as:

proxf (x) , arg min
z∈RN

f(z) +
1

2
‖x− z‖22, (7)

where f is convex lower-semicontinous function. Typically,

the solution to (6) is reached iteratively by successive applica-

tion of the proximity operator associated with each function.

SDMM is a generalization of the alternating-direction method

of multipliers [21] to a sum of more than two functions. Con-

vergence results of SDMM are based on convergence of the

alternating-direction method of multipliers and can be found

in [21].

The SDMM algorithm is summarized in Algorithm 1. The

algorithm is run for a fixed number of iterations, Tmax, or

until a stopping criteria is met. The algorithm is stopped if the

relative variation between the objective function evaluated at

successive solutions is smaller than some bound ξ ∈ (0, 1)
and if ‖yi −Φix̂

(t)‖2 ≤ ǫi. The global update (step 5) uses a

conjugate gradient algorithm to solve the linear system. Note

that steps 7 to 9 in Algorithm 1 can be computed in parallel

for each i. See [3] for further details in the derivation of the

algorithm and the computation of the proximity operators.

The advantages of this distributed optimization approach

are: (i) the visibilities yi and the measurement operators Φi

Algorithm 1 SDMM

1: Initialize γ > 0, x̂(0) and z
(0)
i = 0, i = 1, . . . , S.

2: r
(0)
i = Lix̂

(0), i = 1, . . . , S.

3: x
(0)
i = L

†
ir

(0)
i , i = 1, . . . , S.

4: for t = 1, . . . , Tmax do

5: x̂
(t) = (

∑S

i=1 L
†
iLi)

−1
∑S

i=1 x
(t−1)
i .

6: for all i = 1, . . . , S do

7: r
(t)
i = proxγfi(Lix̂

(t) + z
(t−1)
i ).

8: z
(t)
i = z

(t−1)
i + Lix̂

(t) − r
(t)
i .

9: x
(t)
i = L

†
i (r

(t)
i − z

(t)
i ).

10: end for

11: if x̂(t) meets halting criteria then

12: Break.

13: end if

14: end for

15: return x̂
(t)

are local to each node in the cluster, therefore the memory

requirements are distributed among R nodes, with a data di-

mensionality Mi ≪ M ; (ii) the measurement operators Φi,

and their adjoint, are applied locally at each node thus dis-

tributing the processing load, for acceleration of the recon-

struction process; (iii) the central processing node, where the

global update x̂
(t) = (

∑S
i=1 L

†
iLi)

−1
∑S

i=1 x
(t−1)
i is com-

puted, and the parallel nodes, where the local updates x
(t−1)
i

are computed, only need to exchange information of the size

of the image vector at each iteration rather than of the size of

the visibilities, thus alleviating the communication require-

ments to transfer information between nodes. Note that the

composite operator
∑S

i=1 L
†
iLi =

∑R

i=1 Φ
†
iΦi + ΨΨ

† + I =
Φ

†
Φ + 2I, needed in the conjugate gradient solver for the

global update, can be applied in parallel by each node since

Φ
†
Φ =

∑R
i=1 Φ

†
iΦi. Although this approach would distribute

the processing load of the conjugate gradient step into the par-

allel nodes, it would incur a communication overhead since

each parallel node needs to communicate its result at each it-

eration of the conjugate gradient algorithm. One approach

that can be used to avoid this situation is to precompute and

store the composite operator Φ†
Φ in the central processing

node. The aforementioned distributed optimization approach

could be very appealing for next-generation telescopes where

massive amounts of data are acquired. These distributed op-

timization ideas are not implemented in the beta version of

PURIFY and are the subject of ongoing work. The reader is

referred to [3] for further discussions.

4. EXPERIMENTAL RESULTS

In this section we illustrate the performance of the imaging

algorithms implemented in PURIFY by recovering the well

known 30Dor test image from simulated continuous frequency

visibilities. Figure 2 top-left shows the 256×256 30Dor im-
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Fig. 1. Average reconstruction SNR against normalized num-

ber of visibilities M/N . ISNR is set to 30 dB.

age used as ground truth image. We use as reconstruction

quality metric the signal to noise ratio (SNR). The visibili-

ties are corrupted by complex Gaussian noise with a fixed in-

put SNR (ISNR) set to 30 dB. For the measurement operator,

PURIFY implements a non-uniform FFT that maps a discrete

image into continuous visibilities [22]. See [3] for further de-

tails on the measurement operator.

For our evaluation we compare constrained ℓ1 and TV

minimization problems, as well as their reweighted versions,

in terms of reconstruction quality and computation time. For

the ℓ1 problems we study three different dictionaries Ψ: the

Dirac basis, the Daubechies 8 (Db8) wavelet basis and the

Dirac-Db1-Db8 concatenation for the SARA algorithm [1].

The associated algorithms are respectively denoted BP, BPDb8

and BPSA for the non-reweighted case. The reweighted ver-

sions are respectively denoted RWBP, RWBPDb8 and SARA.

We also study the TV minimization problem with the addi-

tional constraint that x̄ ∈ RN
+ , denoted as TV, and its reweigh-

ted version, denoted as RWTV.

In this experiment we use incomplete visibility coverages

generated by random variable density sampling profiles. Such

profiles are characterized by denser sampling at low spatial

frequencies than at high frequencies. This choice mimics

common generic sampling patterns in radio interferometry.

In order to make the simulated coverages more realistic we

suppress the (0, 0) component of the Fourier plane from the

measured visibilities. This generic profile approach allows

us to make a thorough study of the reconstruction quality of

the imaging algorithms with a large numbers of simulations

for arbitrary number of visibilities and without concern for

various telescope configurations. We vary the number of visi-

bilities from M = 0.2N to M = 2N . Reconstruction results

for 30Dor are reported in Figure 1. Average values over 30

simulations and associated one standard deviation error bars

are reported for all plots. The results show that SARA outper-

forms all other methods in reconstruction quality for the test

image. This confirms previous results reported by [1] in the

discrete case now for the more realistic continuous Fourier

setting, including the case when M > N .
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Fig. 2. Reconstruction example of 30Dor for a coverage with

M = 0.4N sampling frequencies. Top row left to right: orig-

inal image and SARA reconstruction (SNR=25.3 dB). Bot-

tom row left to right: reconstructed images by RWBPDb8

(SNR=22.6 dB) and RWTV (SNR=24.1 dB).

Next we present a visual assessment of the reconstruction

quality of the different algorithms. Figure 2 shows the results

for a coverage of M = 26374 ≈ 0.4N visibilities. The re-

constructed images are shown in a log10 scale. These images

confirm the previous results found by examining recovered

SNR levels; SARA yields reconstructed images with fewer

artifacts than the other methods.

5. CONCLUSIONS

In this paper we have reviewed a new algorithmic framework

based on the simultaneous-direction method of multipliers to

solve sparse imaging problems in RI imaging. The new algo-

rithm provides a parallel implementation structure, therefore

offering an attractive framework to handle continuous visi-

bilities and associated high dimensional problems. A variety

of state-of-the-art sparsity regularization priors, including our

recent average sparsity approach SARA, as well as discrete

and continuous measurement operators are available in the

new PURIFY software. Source code for PURIFY is publicly

available. Experimental results confirm both the superiority

of SARA for continuous Fourier measurements and the fact

that the new algorithmic structure offers a promising path to

handle large-scale problems. In future work we will extend

the current PURIFY implementation to take full advantage of

the parallel and distributed structure of SDMM. Also, direc-

tion dependent effects will be included in PURIFY as addi-

tional convolution kernels in the operator Φ as proposed in

[23]. See [18] for first steps in this direction.
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