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Abstract 

We present a new statistical wind forecasting tool based on Principal Component Analysis 

(PCA), which is trained on past data to predict the wind speed using an ensemble of 

dynamically similar past events.  At the same time the method provides a prediction of the 

likely forecasting error. The method is applied to Meteorological Office wind speed and 

direction data from a site in Edinburgh.  For the training period, the years 2008–2009 were used, 

and the wind forecasting was tested for the data from 2010 for that site. Different parameter 

values were also used in the PCA analysis to explore the sensitivity analysis of the results.  

The forecasting results demonstrated that the technique can be used to forecast the wind up 

to 24 hours ahead with a consistent improvement over persistence for forecasting more than 10 

hours ahead.  The comparison of the forecasting error with the uncertainty estimated from the 

error growth in the ensemble forecast showed that the forecasting error could be well predicted.  

Key words 

Wind energy resource, Principal Component Analysis (PCA), forecasting 

 

1. Introduction 

Wind energy is one of the most established renewable energy forms. It has been the world’s 

fastest renewable energy resource in growth for the past 7 years [1].  Wind energy has also the 

characteristic of a strongly variable form of energy. To achieve a high level of performance, a 

good quality of wind speed or generation forecasting is vital. Wind speed and direction are the 

most important factors that determine the power output and they can vary at all time scales. 

Different cycles with time scales ranging from daily to seasonal and interannual can be observed 

in addition to turbulence and gusts.  For example, for mean daily or hourly wind speed 

forecasts, the underlying atmospheric dynamics become of great importance [2].  In addition, 

the turbines have to adjust to the wind fluctuations at all time but often have a delay in their 

response. Hence, the methods of analysis and prediction of wind behaviour are indeed of 

extreme importance for a good operation of wind turbines and wind farms. 

 

1.1 Forecasting methods 

Because the wind variability can be characterised by slow cycles (daily and longer), fast 

(unpredictable) turbulence, and synoptic weather changes which tend to change only slowly, the 

forecasting horizon can be divided into the three following categories: 1: immediate-short-term 

(up to 8 hours ahead), 2: short-term (8 to 24 hours ahead), and 3: long-term (multiple-days-

ahead) forecasting [3,4,5]. It is more common to use hourly forecasts in order to determine daily 

forecasts of hourly winds [6]. 



   2 

Several forecast models have been created which can be categorised into physical, such as 

the Numerical Weather Prediction systems (NWPs) [3], statistical, including linear methods 

such as Auto Regressive Moving Average models (ARMA) or methods coming from artificial 

intelligence and machine learning fields such as Artificial Neural Networks (ANNs), or even by 

hybrid approach methods which are a combination of statistical and physical methods with a use 

of weather forecasts and analysis of time series [4]. Erdem and Shi [7] used four ARMA 

approaches in order to obtain wind speed and direction forecasts and found that the ARMA 

model based on the decomposition of wind speed into lateral and longitudinal components was 

better in predicting direction in comparison to the traditional ARMA model. However, that was 

the opposite case for wind speed. De Giorgi et al. [8] used ARMA models in combination with 

different types of ANNs and Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for several 

testing period models but also time horizons. For all the attempts it was found that the forecast 

was progressively worse as the prediction length was increasing. 

An integration of ANNs with NWPs for forecasting purposes was undertaken again by De 

Giorgi et al. [9]. The neural network was initially based on the statistic model of wind power 

time series and was later integrated with NWPs which indicated a significant improvement on 

the performance. Specifically, pressure and temperature as NWP parameters seemed to improve 

the forecasting model. Früh [10] explored a simple a linear predictor and based on the observed 

mean daily cycle model with wind speed or power output data as inputs and noted that increased 

sophistication in the forecasting methods surprisingly seemed to deteriorate the predictive 

ability.  

Hybrid approaches typically employ an ARIMA model for the linear characteristics and an 

ANN or SVM (Support Vector Machine) model for the nonlinear characteristics. Wang et al. [5] 

found that depending on forecasting horizon, hybrid methods or ARIMA method perform better 

in forecasting than the ANN and SVM methods. They also concluded that hybrid methods add 

significantly in the short-term forecasting modelling for wind speed and power generation, but 

in general, they do not outperform the other methods [11]. 

 

1.2 Principal Component Analysis of Time Series 

Underlying all statistical and empirical approaches is the need to separate the predictable 

component from the turbulent component in an effective and efficient manner. For example, for 

mean daily or hourly wind speed forecasts, i.e., short-term horizons, the underlying atmospheric 

dynamics become of great importance [12]. The wind related data could be treated as dynamical 

systems so that cycles and random unusual behaviours that often characterise them can be 

identified, explained and understood.  Based on this understanding, we propose to use a time 

series analysis technique based on the dynamical systems theory which was devised to separate 

coherent dynamical information from noisy experimental data, known as Singular Systems 

Analysis [13,14], which is effectively the standard Principal Component Analysis (PCA) [15] 

from Statistics applied to a suitably formatted time series. It is also known as Empirical 

Orthogonal Function (EOF) Analysis in the Meteorological and Oceanographic community to 

identify the main circulation patterns in the Atmosphere and oceans, e.g., [16,17]. This 

technique is now widely used for time series analysis of nonlinear dynamical systems in 

general, e.g. [18,19] as the analysis is very powerful to separate coherent dynamics from noise. 

The principle in terms of a dynamical system is that the dynamic evolution of the system 

takes place on a time-invariant object, called ‘attractor’, after initial transients have decayed.  

This attractor is a geometric object in the phase space defined by the dynamic variables of the 

dynamical system.  In the example of a harmonic oscillator, the phase space is defined by the 

position and momentum of the oscillating object, and the motion of it takes place on a limit 

cycle.  This cycle is the attractor, and the trace drawn by the oscillation, or its ‘orbit’, would 

draw repeating copies of that cycle over and over. 
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In complex systems, where the phase space is not fully accessible from measurements, one 

can use Takens’ method of delays [20] to create a space equivalent to the phase space but this 

phase space reconstruction cannot separate the important dynamics from measurement noise or 

turbulence.  Applying PCA to the set of delay time series is a method to redefine the phase 

space to concentrate the coherent information in a few directions (or dimensions) of the phase 

space, which then allows to ‘delete’ the weaker and uncorrelated dynamics from the description 

of the system.  The creation of this system based on a training set of wind data defines the 

model for the forecasting.  New measurements can then be mapped onto the cleaned-up attractor 

to find previous measurements which are, in dynamical terms, similar to the current 

measurements.    Finding one or more ‘similar’ previous measurements, then allows us to the 

evolution of those measurements as equivalent to predicting the current measurements.   In 

addition to a prediction, however, this method predicts a number of similar events and following 

how their distances change over the lead time of the prediction also provides a measure of how 

sensitive the system is to uncertainties in measurements or out-of-system perturbations.  Hence, 

it provides a measure of the uncertainty of the prediction at the same time.   

 

1.3 Aims and Outline 

The aim of this paper is to develop a wind speed forecasting tool which, by being based on 

PCA, provides a forecast based on the slow dynamics of the atmosphere alone and also provides 

an intrinsic measure of the quality of each forecast.   

To develop the tool, we will in Section 2 first introduce the formalism of PCA applied to a 

time series of wind speed and direction, and then the forecasting method.   Section 3, introduces 

the main data set, the parameter settings, and the error measures used to develop and evaluate 

the approach. The results of this analysis are presented in Section 4.  

 

2. Principal Component Analysis for forecasting 

This section contains background information regarding phase space reconstruction as well 

as PCA and explains in detail how they will be used for the forecasting purposes.  The stages for 

the training of the predictor are preparation of the phase space using the training set of data 

(e.g., wind speed and direction), Principal Component Analysis of the phase space to optimise 

the phase space and truncation of the phase space to the relevant components only to define the 

predictor.   

The application of the predictor goes through the preparation of the test data to the same 

specifications as the training set, mapping the test data onto the truncated phase space, finding 

an ensemble of nearest neighbours on the attractor as defined by the test data, tracing the 

evolution of that ensemble for the lead period of the prediction, and finally re-transforming the 

ensemble of predictions into the original variables (e.g., wind speed and direction).  A summary 

of the forecasting algorithm is presented in Table 1, and the remainder of this section will 

describe each of these steps in turn. 
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Table 1. The forecasting algorithm 

Training: 

1) Normalise measurements  

2) Create time-delay matrix; eq.(1) 
 

3) Perform PCA to optimise; eq. (2) SPY   

4) Truncate to the relevant components to define 

predictor; eq.(3) 
rrrr SPY  

Forecasting:  

5) Normalise new measurements using Training 

normalisation 

 

6) Create time-delay matrix using same parameters as for 

Training 

 

7) Map time-delay matrix onto attractor coordinates; 

eq.(5)  

8) Find number of similar events in training period and 

follow evolution of past events i.e. nearest neighbours; 

eq.(6) 

 

9) Find distance vector due to n. neighbours; eq.(7)  

10) Use ensemble prediction based on n.neighbours; eq.(8)  

11) Map back to delay matrix and return predicted wind 

speed; eq.(9) 
 

12) Re-scale back to proper units  

2.1 Phase space preparation  

Furthermore, a method is needed so as to define equivalent variables to the phase space 

ones which is the time-delay method [19]. It is a practical implementation of the dynamical 

systems since it aids in reconstructing the phase space of a dynamical system from an observed 

deterministic time series.  The reconstruction of a phase space is indeed significant since it can 

extract useful information about the time series that characterise the system. Using previous 

measurements is equivalent but not practical with data containing noise or turbulence [20]. The 

challenge that arises then is that if we have measurements from only one site, can we use similar 

analysis concepts to identify the state of a combined system on the phase space? If so, can we 

then predict for the second site, for which we have no data obtained? More precisely the 

question that arises is by taking the defined points of the combined two sites system and adding 

the new measurements can we project them to the existing attractor and predict from the nearby 

points?  

If the training data set consists of NO variables, yjo(t), for example wind speed and wind 

direction with NO= 2, covering Nt time steps, the first step is to rescale them in such a manner 

that they both contribute equally to the analysis.  This is achieved by rescaling them both to 
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time series of zero mean and unit variance, i.e., subtracting the mean from each variable in turn 

and then dividing by the variance.   

The phase-space equivalent variables can then be constructed using Takens’ Method of 

Delays [19], which postulates that the dynamic variables not directly measured have influenced 

the evolution of the measured variables and are therefore somehow represented by the previous 

measurements.  Thereby, a sufficient representation of the state complete phase space at time t 

is given by the delay vector (y1(t), y1 (t–τ), y(t–2τ), …, y1 (t-Mwτ), where Mw is the number of 

time lags, τ, used, and the same can be done for further variables measured, e.g., y2(t).   

With a time series of No variables of length Nt, the delay matrix will have N= Nt – Mwτ rows and 

M= No Mw columns with  

    (1) 

with the row index i= 1…N, the column index j= 1…M, and the observable index, jo= 1…No  
[20].  In this matrix, a row m is equivalent to a complete phase-space description of the system 

at time tm as long as M is sufficiently large. 

 

2.2 Principal Component Analysis 

Since the time-delay method is sensitive in the choice of the parameters, Principal 

Component Analysis (PCA) is used to optimise the phase space reconstruction. It is a non-

parametric statistical method and by that is not limited to be of a certain distribution or linear 

relationship. PCA can separate noise from useful information applied to time-delay series [19]. 

It can identify the number of needed time-delays and give a picture of their shape. Its goal is to 

explain important variability of the time series data and to extract useful information (i.e. hidden 

structures of the data) from its more relevant components in a reduced number of dimensions.  

The mathematical procedure to carry out a PCA is through the Singular Value 

Decomposition (SVD) of the delay matrix. In terms of the linear algebra of the SVD, it is a 

transformation of the basis vectors of the phase space which finds orthonormal basis vectors to 

maximise the variance described by as few basis vectors as possible.  The three SVD/PCA 

outputs are the singular vectors which are the basis vector for each dimension (they are also the 

eigenvectors of the covariance matrix of Y), the singular values which measure the time-

averaged contribution of each dimension to the total variance, and the principal components 

(pc’s) which form an attractor and describe the system’s time series.  In matrix notation, the 

Singular Value Decomposition is written as 

                                      SPY                                                                     (2) 

where Y(n,m) is the time-delay matrix with n= 1…N the time point within time series and 

m= 1…M the index of the dimension.  P(n,m) is the principal component matrix, Λ(m,m) is the 

diagonal matrix of singular values, and S(m,m) contains the singular vectors.   

 The singular values represent a measure of the variance, more specifically the square root 

of the variance of the time series in the corresponding dimensions and they can pick out the 

important variability of the data. The singular vectors have the property of being orthonormal, 

i.e. orthogonal and of unit length and they span the dimensions of the phase space. They 

represent a measure of those dimensions that define a dynamical system, for instance they can 

replace position and momentum, two variables which can form a dynamical system.   The 

principal components are the time series of the system in the coordinate system defined by the 

singular vectors.  This means that plotting the principal components against each other draws 

the orbit of the measurements and thereby provides an estimate of the underlying attractor. 
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2.3 The Forecasting Model 

The singular values are a key measure on which the determination of the best predictor is 

based, since our initial assumption was that the wind conditions several hours ahead is better 

predicted by the slower atmospheric dynamics than the short-time fluctuations.  The PCA has 

separated the coherent (slower) dynamics from the temporally uncorrelated short-term 

fluctuations, such that uncorrelated fluctuations are visible as a noise floor in the singular value 

spectrum. Persistent variance from the atmospheric dynamics is concentrated in the leading 

singular values of much higher magnitude.  For that reason, the phase space can now be 

truncated to a much smaller dimension than the original delay matrix 

 

By creating a reduced set of Mr principal components, Pr
N,Mr

, singular values, Λr
Mr,Mr

, and 

singular vectors, Sr
Mr,M

, one can produce a filtered time series of the original data by  

                                               rrrr SPY                                                                     (3)    

There, the filtered time series of the first observable, y1, is contained in the first column of 

Yr, the filtered time series of the second observable in column Mw+1, and so on.  However, due 

to the method of delays, those columns only cover the time steps Mw to M and one has to 

append the bottom row to the end of that variable: 

 

          (4) 

 

The forecasting model therefore consists of the truncated dynamical system Pr, Λr, , Sr and the 

principle is to interpolate the current measurements to ‘close’ examples of the filtered training 

data, where ‘close’ is in terms of dynamic behaviour rather than time. 
 

2.4 Preparing new data for the forecasting model 

 

It is possible to project a new time series onto this reduced set of singular vectors by 

creating a delay matrix following the same procedure as for the training set, including using the 

mean and standard deviation from the training data set to rescale the new data. This projection 

will then give principal components, Pn, to place the new data in this phase space as 

                                                                                                                          (5) 

To generate a single point in this phase space, the new time series must contain Mwτ 

measurements. Conversely, if the new time series contains Mwτ + nx – 1 points, its time delay 

matrix contains nx 
columns for that observable and its projection onto the singular vectors 

results in a section of orbit containing nx points. 

 

2.5 Finding nearest neighbours 

 

Ensemble forecasting in dynamical forecasting making several forecasts, each 

initialised with a slightly different initial condition but within the measurement accuracy of the 

initial point to predict a large sample of possible future outcomes. The results are then evaluated 

by examining the distribution across all ensemble members of the forecast variables. A useful 

feature of ensemble forecasting is that it also provides an estimation of the reliability of the 

forecast. The idea is that when the different ensemble members differ widely, the actual event 

we try to forecast could shadow any of the modelled ensemble members.  This then means that 

the forecast is affected by a large uncertainty; when there is a closer agreement between the 

ensemble member forecasts, the uncertainty in the prediction is lower [12].  This principle can 

also be applied to PCA forecasting where the attractor represents the model. Now, current 

measurements can be mapped onto the attractor and previously observed wind states close to the 

current measurements can be found.  They can then be taken as an ensemble of initial conditions 

close to the current state and thus be used for prediction.  

1

r
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The two key stages in the forecasting part of the method are, firstly, to find a number of 

‘similar’ events in the training period, which is done by finding a chosen number of nearest 

neighbours in the attractor and, secondly, to follow the evolution of those past similar events.  

From that evolution one can calculate an expected mean evolution which is the prediction, and 

one can also calculate by how much the evolution of the ensemble of similar past events either 

stayed close (giving confidence in the mean forecast) or diverged over the forecasting horizon 

(indicating that the currently measured wind comes from a part of the attractor which is unstable 

and not well predictable).   

 

The nearest neighbours are found by calculating the Euclidean distance between the 

new point, or the mean distance of each point of the section of orbit, to all other points or 

sections of the training attractor; for a single point:  or for a section of orbit with 

 points 

                                        (6) 

 From this complete set of distances to all points of the training attractor, a specified 

number of nearest neighbours is selected, subject to a constraint that they do not come from 

adjacent points on the training orbit but from different passes of the orbit through the 

neighbourhood. This can either be done by sorting all distances and rejecting those which come 

from adjacent points of the training time series, or by stepping through all distances, and 

skipping a set number of time points after having identified a local minimum of the distances. If 

entry k’ of the training Principal Components has been identified as one of the nearest 

neighbours, then the entry k= k’ + nx – 1
 
is the neighbour to the latest measurement.  

 

The number of nearest neighbours, nn, to use for the forecasting depends on the 

dimension of the reduced system and how densely the phase space is covered by the training 

attractor. If too few neighbours are chosen, the ensemble prediction might not capture the 

divergence or convergence of the attractor and hence may not give a good estimate of the 

forecasting error. If too many neighbours are chosen, the nearest neighbours may not be that 

near and no longer be a good representation of the local dynamics, hence introducing errors into 

the forecasting. 

 

2.6 Predicting using nearest neighbours 

 

Once the nearest neighbours have been identified, each can be moved forward in time 

by the lead time or forecasting horizon while sampling all intervening time steps. A key 

assumption in the implicit forecasting here is that the current point will evolve alongside the 

identified nearest neighbours from the training data.  This means that the relative position of the 

point from the Training attractor at time k= k’ + nx – 1 + T will have a similar position relative 

to that of the current measurement predicted a lead time T ahead. If the current distance vector 

to nearest neighbour j is
 

                                                                                                              (7) 

then the prediction based on this nearest neighbour is 

                                                                                                                  (8) 

The ensemble of   is then the ensemble prediction, each member of the 

ensemble is mapped back onto the delay matrix space by using 

                                                                                                                             (9) 
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Each of the 
 
 returns the predicted wind speeds for the next  time steps as the entries 

. This ensemble of predicted wind speeds can then be 

used to calculate the expected velocity as their average, and an estimate of the uncertainty based 

on the standard deviation: . 

Likewise, if wind direction is used as a second observable, this can be reconstructed 

by . 

 

3. Data and Methodology 

3.1 Dataset  

The data used for this analysis originated from the Gogarbank surface station in 

Edinburgh provided through the UK Met. Office – MIDAS Land Surface Station record [21]. 

The site used an anemometer 10m high above ground and the data records used spanned from 

1998-2010 with hourly mean wind readings with the wind speed stored to the nearest knot 

(1 kn=0.5144 m/s) and the wind direction in degree to the nearest 10°. For this analysis, wind 

speed and wind direction data were used with the wind speed converted to m/s.   An illustration 

of the data, the wind speed is shown in Fig. 1 for the 2-year period covering 2008 and 2009.  

The data not used as the training data set were then used for testing the method.  A section from 

the test period was used to apply the prediction model, and the predictions for the 24 hours 

following that section were then compared against the actual data for the 24h period following 

that section.  
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Fig. 1. Wind speed time series for Gogarbank 2008 and 2009. 
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Table 2.  Summary of data used for training and forecasting, with parameter settings used.    

 Mw Mr nx nn Forecast Forecasting 

horizon 

Reference 

values 

1 day 

 

16 

 

1 

 

5 

 

2010 24h 

Range 1 day - 2 

weeks 

5-35 1-3 2-10 1999-2007 1-24h 

3.2 Analysis setup 

From the available record, two 2-year records were chosen as the training period, either 

the years 2008 – 2009 or 2000 – 2001.  For all examples discussed in section 4, the time lag 

chosen to create the delay matrix was equal to the sampling period of the data, τ= 1 h, but a 

range of delay window lengths, Mw, ranging from 1 day (i.e., 24 readings) to 2 weeks (336 

readings were used.  The reference case for the discussion in the results section is the window 

length of 1 day for the training period 2008–2009 but two days for the training period 2000–

2001, as indicated in Table 1 which also summarises the other parameter chosen for testing the 

method.  For the case of a 2-year training period (17520 hours), a 2-week window (336 hours) 

of wind speed and direction, the delay matrix will have 672 columns and 16848 rows, leading to 

a principal component matrix of the same dimension, 672 singular values, and 672 singular 

vectors of length 672 each. 

Because wind direction is a circular variable, one either has to be aware that there is an 

apparent discontinuity between 360° and 0° or transform the wind speed and wind direction 

variables into a pair of horizontal velocity components, ux = u sin θ and vy = u cos θ.  In the 

present case, we used the direction as a direct input.  As there were virtually no cases of the 

direction jumping across the 0°/360° boundary, we felt that we did not introduce any error.  

However, for locations with a wider spread of wind directions, it is recommended that the data 

should be transformed to the velocity components. 

Of the singular values (lambda), of which the first 90 are shown in Figure 2, only a few of 

them have high values which drop off rapidly and then settle to a plateau from the 20
th
 on. From 

this figure it is clear that at least the leading four dimensions must be retained in the model but 

that including more than 20 would add increasingly noise to the predictions.  For that reason, a 

truncation of Mr= 5 to 35 was explored. 
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Fig.2. The first 90 Singular values for the PCA of the 2-year training set with window length of 2 

weeks. 

 

The first three singular vectors (svec[,1],svec[,2] and svec[,3] respectively) for the PCA 

applied to the 2008–2009 data using a 48h window are shown in Fig. 3.  Since the input data are 

the wind speed and the wind direction, each singular vector contains two distinct sections, 

where the first 48 entries correspond to the temporal evolution of the wind speed attributed to 

that singular vector and the entries 49 to 96 correspond to the wind direction. Fig. 3.a and 3.b 

show that the first two singular vectors are associated with a slow modulation of the weather, 

while the third singular vector in Fig. 3.c and the fourth singular vector (not shown) correspond 

to a daily cycle.  The phase space diagram drawn by the first two Principal Components (pc[,1] 

and pc[,2]), shown in Fig. 4 shows an attractor with a clear structure associated with the 

prevailing weather conditions in Scotland, and the transition between them. 
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Fig.3. First three singular vectors Fig. 3(a),3(b),3(c). The line between index 48 and 49 separates wind 

speed on left from direction on the right. 
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Fig.4. Phase portrait constructed from the first two principal components. 

 

 

Finally, the parameters for the forecasting component were the length of the orbit section to 

be projected onto the attractor and the number of nearest neighbours which had to be chosen. 

For the orbit length a range of 1 to 3 was chosen.  That means that, for a window length of, for 

example 48 hours, a section of 48h, 49h, or 50h, respectively was chosen from the test data to 

create a delay matrix consisting of 1, 2 or 3 rows, correspondingly.  The number of nearest 

neighbours explored in the analysis ranged from 2 to 10, as summarised in Table 2. 

With the model defined by the Mr singular vectors and the past data describing the 

observed dynamics through the Mr principal components, the new measurements for the 

forecasting were transformed using the same parameters and then projected onto the observed 

dynamics. This is illustrated by Figure 5 where the attractor from the training data is the grey 

object. The blue circle is a single point in the phase space created by a time series section of the 

window length Mw.  In this example, nn= 5 and the five nearest neighbours on the orbit of the 

training data are, in order of proximity, identified by the red numbers in Figure 5. These five 

nearest neighbours can then be traced forward in time over the forecasting horizon, which is 

shown by the red curves evolving from the numbered positions.  Each of these can then be re-

transformed to wind speed and direction to produce the ensemble forecast.  The final result is 

then a forecast of the predicted mean wind speed and the uncertainty in that prediction for all 

lead times from one hour ahead to the specified forecasting horizon, 24 hours in our analysis. 
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Fig. 5.  New data mapped onto training set. The blue circle is the new ‘current’ observation, and the 

five red numbers are the nearest neighbours which were then found to evolve for the specified forecasting 

horizon as shown by the red lines. 

 

3.3 Performance evaluation 

To evaluate the performance of the predictions, the predictions are compared against the 

actual values from the test data, using the three main measures recommended by Madsen et al. 

[22] albeit for wind speed rather than power output.  They are all based on the prediction 

calculated as the difference between actual observation, u, at time t+T from the test set and the 

wind speed predicted for that time based on the observation at time t, û,as 

                                                                           (10) 

These three measures are the bias 

                                                         (11) 

the mean absolute error (MAE), frequently used in the literature, e.g. [9]  

                                                                            (12) 

 

and the root mean squared error (RMSE) 

                                                                           (13) 
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These errors for the predictions using the PCA forecasting were then benchmarked against 

the frequently used persistence, ûref (t+T | t) = u(t).  This benchmarking is quantified by an 

improvement measure as defined [21], e.g., for the BIAS (and likewise for MAE and RMSE) as 

                                                                           (14) 

Since the PCA forecasting intrinsically returns all predicted time steps at the sampling 

interval until the prediction horizon or lead time T, we also use average of Imp(T) over 

T = 1…Tmax. The sensitivity of the PCA forecasting method to different choices of the 

parameters is here described in terms of the overall improvement of the MAE over persistence: 

                                                                                  (15) 

where the maximum lead time in our case is 24 hours. 

 

4. Results 

4.1 Forecasts of wind speed and uncertainty 

 

 
 

Fig. 6. Comparison of actual wind speed (solid red line), forecasted wind speed (open black circles) and 

uncertainty of wind speed (dashed blue lines). Fig. 6(a) is a “bad” prediction example whereas Fig.6(b) is 

a “good” example. 

 

Figure 6 illustrates a comparison of the ensemble forecast representing all 24 hours of lead 

time for two of the 100 predictions made for this analysis, where the black circles show the 

forecast and the red line the actual wind speed. As outlined in section 3.2, the predictions made 

in the phase space were re-transformed to real wind speed and direction.  From the ensemble of 

nn= 5 forecasts, the prediction was calculated from the mean of the ensemble (open black 

circles) and the prediction uncertainty was also found with the use of the standard deviation 

(dashed blue lines).  

As both examples in Fig.6 show, the predicted wind speeds form a strongly smoothed curve 

compared to the actual winds, as the PCA has successfully separated the slow atmospheric 

dynamics from the unpredictable local turbulence.  For a very good prediction at all lead times 
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from one hour ahead to the forecasting horizon, the black dots would follow the red line very 

closely, while for an acceptable prediction, the actual wind speed should lie within the band 

specified by the uncertainty of the prediction.  Conversely, wind speeds outside the band would 

have been poorly predicted.   

Fig. 6(a) is an example where the forecast is relatively poor at times due to very large 

hourly variations in the wind speed. Nevertheless, the prediction is consistent with the 

observations for most times and, more importantly, the excursions of the wind speed outside the 

predicted range at the higher lead times are only slightly outside the predicted margin.  Fig. 6(b) 

is a case where the prediction is good.  Furthermore, the model predicts a higher uncertainty for 

lead times between 10 and 20 hours after which the predicted uncertainty suggests a return of 

predictability for the day-ahead forecast.  This is exactly borne out by the actual observations 

which follow the predicted mean very well but show a persistent error within the 10h to 18 hour 

lead time. 

4.2 Forecasting quality 

  To quantify the performance of this model we used as the first measure the mean absolute 

error, MAE, as defined in equation (12).  The reason for concentrating on this measure is that it 

gives a direct comparison of the error with the predicted uncertainty.  If the MAE is less than the 

uncertainty, the prediction is as good as it can be (and is known to be) but if the MAE is much 

larger than the predicted uncertainty, the model does not work for that data set. 

Fig.7 shows the MAE(T) as the solid red line against the lead time for the case of a 2-week 

training window (Mw= 336 h), a model predictor dimension of D= 15, matching a point on the 

attractor (nx= 1) , and using nn= 5 nearest neighbours.  The open black circles are the average of 

the uncertainties predicted for that lead time and the dotted line is the standard deviation of 

these predicted uncertainties.  Superimposed on this is also the mean absolute error for 

persistence, MAEp(T) as the green dash-dotted line.  As the figure shows, the actual MAE is very 

close to the predicted uncertainty at short lead times but much higher than the error from 

persistence.  The model performs slightly worse than predicted from its own internal dynamics 

at lead times between 8 and 20 hours but still within the range of calculated predictions. The 

key features of the error of persistence compared to that of the PCA model is that persistence is 

much better than PCA at short lead times up to 6 hours but that PCA outperforms persistence at 

longer lead times.  The fact that persistence is often the best predictor for short lead times was 

also supported by Madsen et al [22] and can be explained in that the short-term fluctuations 

affect the local wind at these times more than any slow synoptic weather changes. Based on 

this, we propose a refinement of the PCA-predictor by merging it with a persistence-based 

correction at short lead times.  

4.2.1 Combining persistence and PCA 

After performing this comparison and applying several inputs for the different parameters 

used by PCA, it was concluded that the respective strengths of persistence and PCA could be 

exploited in a combined forecast by applying a filter to the PCA prediction [4]. This filter 

constructs a weighted average of the persistence prediction and the PCA prediction for a filter 

length long enough to cover the range where persistence outperforms PCA prediction.  Over 

that filter length, the weights of the averaged change linearly from 1 for persistence and 0 for 

PCA at the ‘current’ time (lead time = 0h) to the other extreme of 0 for persistence and 1 for 

PCA at the end of the filter length. The filter is of the form: 

                                                    (16) 
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where i is the lead time , Nf  the filter length, uPCA,i the ensemble forecast and u0 the current 

wind speed.   By trial and error a good filter length was found to be between 10 h and 15 h, with 

little change of the results in that range. 

The effect of applying such a correction on the performance of the predictor is shown in 

Fig. 8, where it is clear that the very short term prediction, up to a lead time of 6 h is now as 

good as for persistence and that the prediction for longer lead times is dominated by the ability 

of PCA to extract the slower atmospheric dynamics. 

 

 

  

Fig. 7. Comparison of annual mean forecasting error and 

uncertainty (unfiltered data). 

Fig. 8. Comparison of annual mean forecasting error and 

uncertainty (filtered data). 

 

 

4.2.2 Other error measures 

 Following the recommendations of Madsen et. al. [22] the alternative error measures of 

bias (11) and RMSE (13) were calculated and are shown in Figures 9 and 10. They both indicate 

that PCA outperformed the persistence method and specifically for the bias error measure, PCA 

performed substantially better than persistence. 
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Fig. 9. Comparison of bias between PCA and 

persistence method. 
Fig. 10. Comparison of RMSE between PCA and 

persistence method. 

 

4.3 Sensitivity analysis of parameters 

 

Figures 11 to 13 show the performance index of the results for the different choices of 

first the length of orbit to use for finding the nearest neighbours on the attractor, nx, 

secondly the number of nearest neighbours, nn, and finally the embedding dimension, Mr, 

respectively. 

 

Fig.11. Improvement of PCA results in % for different overlap values. 

 

Figure 11 indicates that using a single point (nx = 1) rather than fitting a short time series of 

point (nx > 1) overlap seems to yield the best improvement (around 11.2%) of the results. This 

means that the PCA results are 11.2% closer to the actual results in comparison with the 

persistence method. Using nx > 3 did not work reliably for our data set as there were not enough 
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nearest neighbours. After determining that  nx = 1 seems to be the best, this was used for 

analysing the sensitivity to the number of nearest neighbours, nn, Figure 12 shows that the 

overall improvement initially rises substantially from below 8% for only two neighbours to 

above 11% for five nearest neighbours but then drops again to around 9%. Using too few or too 

many neighbours might not be appropriate since with too few (i.e. less than 5) the information 

we use for the analysis might be too little.  Conversely, using too many (i.e., more than 5 in our 

case) requires using information from progressively distant parts of the attractor which are 

resembling the current observation less and less. There is clearly a distinct optimum which 

needs to be determined but it is not clear whether it is at or around five nearest neighbours for 

any data set or whether this must be determined from optimising the parameters through 

experience at each site individually. 

 

Fig.12. Improvement of PCA results in % for different nearest neighbours values. 
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Fig. 13.  Improvement of PCA results in % for different reduced dimensions values. 

 

Finally, Figure 13 shows the sensitivity of the model to the choice of the model dimension.  

Here, it can be seen that different choice of reduced dimensions results in a big variation of the 

percentage of improvement. The amount of dimensions which the improvement seems to be 

more consistently high for (5.6%) is around 16. It should be noted that adding more dimensions 

results in adding more information but whether this information is useful or not is another issue 

which should be of further investigation and of course depends on the site and wind dynamics 

used for the analysis. 

5. Conclusions  

The main conclusions of this research that can be made are firstly that PCA is capable of 

identifying weather regimes by being able to represent the wind measurements in the form of an 

attractor with a clear structure. Furthermore, it was demonstrated that this can be done both, by 

just using wind speed measurements and by using multivariate measurements, such as wind 

speed and wind direction combined.  

Applying the PCA to wind forecasting demonstrated that the method is a reliable forecasting 

method for forecasting wind speeds hours ahead to day ahead. By combining the PCA 

prediction with persistence prediction at very short time scales, it was possible to eliminate the 

weakness of applying PCA to a coarsely sampled wind record. 

One of the most useful aspects of PCA over some other forecasting techniques is that it is 

based on an ensemble forecast using ensembles of similar past events. This allows an estimation 

of the forecast accuracy at the time when the forecast is made.  The analysis showed that this 

estimated forecast uncertainty is a reliable predictor of the actual forecasting error. This 

knowledge will be useful for the wind farm operators to evaluate their forecasts and will help 

with their decision making. 
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