
 
 
 
 

Heriot-Watt University 
Research Gateway 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 

Heriot-Watt University

Faà di Bruno’s formula and spatial cluster modelling

Clark, Daniel E; Houssineau, Jeremie

Published in:
Spatial Statistics

DOI:
10.1016/j.spasta.2013.09.002

Publication date:
2013

Link to publication in Heriot-Watt Research Gateway

Citation for published version (APA):
Clark, D. E., & Houssineau, J. (2013). Faà di Bruno’s formula and spatial cluster modelling. Spatial Statistics, 6,
109-117. 10.1016/j.spasta.2013.09.002

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Heriot Watt Pure

https://core.ac.uk/display/29091007?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.spasta.2013.09.002
https://pureapps2.hw.ac.uk/portal/en/publications/faa-di-brunos-formula-and-spatial-cluster-modelling(f9ebef8a-2295-456b-8d4d-358e3b4f241f).html


Spatial Statistics 6 (2013) 109–117

Contents lists available at ScienceDirect

Spatial Statistics

journal homepage: www.elsevier.com/locate/spasta

Faà di Bruno’s formula and spatial
cluster modelling✩

Daniel E. Clark ∗,1, Jeremie Houssineau 2

School of Engineering and Physical Sciences, Heriot–Watt University, United Kingdom

a r t i c l e i n f o

Article history:
Received 14 May 2013
Accepted 30 September 2013
Available online 16 October 2013

Keywords:
Faà di Bruno’s formula
Spatial cluster modelling
Point processes
Variational calculus
Chain differentials

a b s t r a c t

The probability generating functional (p.g.fl.) provides a useful
means of compactly representing point process models. Cluster
processes can be described through the composition of p.g.fl.s,
and factorial moment measures and Janossy measures can be
recovered from the p.g.fl. using variational derivatives. This article
describes the application of a recent result in variational calculus, a
generalisation of Faà di Bruno’s formula, to determine such results
for cluster processes.
© 2013 The Authors. Published by Elsevier B.V. All rights reserved.

1. Introduction

Neyman and Scott proposed the stochastic process of clustering as a mathematical model of
galaxies (Neyman and Scott, 1958). Since then spatial clustering models have been investigated in
various applications. A collection of articles on spatial cluster modelling reviewed current approaches
for statistical inference of spatial and spatial cluster processes and their applications (Lawson and
Denison, 2002).

The probability generating functional (Moyal, 1962; Bogolyubov, 1946), p.g.fl., provides a means
of uniquely characterising a point process. In a similar way to the probability generating function,
the probability measures and factorial moment measures of point processes can be found from
the p.g.fl. by differentiation, with Gâteaux differentials (Gâteaux, 1919). The probability generating
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functional is well known within the point process literature (Daley and Vere-Jones, 2003, p. 15;
Cressie, 1991, p. 627; Moller and Waagepetersen, 2003, p. 9; Cox and Isham, 1980, p. 38), yet the
approach of functional differentiation is rarely used since it results in a combinatorial number of
terms. To highlight this point, we note that cluster processes, such as the model by Neyman and Scott
(1958), can be specified simply through the composition of p.g.fl.s, e.g. Cox and Isham (1980, p. 76),
Daley and Vere-Jones (2003, p. 178) and Moyal (1962), yet the Janossy measure for arbitrary point
processes does not appear to have been determined using this method. Specific parameterisations
with Neyman–Scott processes have been studied, though researchers often prefer to work directly
with the measures, e.g. Ripley (1988, p. 5), van Lieshout and Baddeley (2002), van Lieshout (2000,
p. 140) and Illian et al. (2008, p. 368), rather than with the p.g.fl. representation.

In the aerospace and signal processing literature, the approach has become popular for deriving
algorithms for tracking multiple targets from radar, following Mahler’s method for Bayesian
estimation with point processes (Mahler, 2003, 2007). Practical applications of these techniques were
made possible through the development of sequential Monte Carlo (Vo et al., 2005) and Gaussian
mixture implementations (Vo and Ma, 2006; Vo et al., 2007). To determine Bayes’ theorem for point
processes, Mahler (2003) proposed the use of functional derivatives of the probability generating
functional. This approach often involves finding the parameterised form of the updated process, and
proving its correctness by induction. The process can be quite involved and needs to be applied for
each model (Mahler, 2003, 2007, 2009a,b; Swain and Clark, 2010). The construction of the models
often involves composition of basic models, whose derivatives are easy to find, yet when composed,
their form for higher derivatives becomes more unclear. In this paper we circumvent this problem by
using a recently derived tool from variational calculus, Faà di Bruno’s formula for variational calculus
(Clark and Houssineau, 2013). We use this approach to determine the Janossy measures and factorial
moment measures of cluster processes and illustrate the approach through an example with Matérn
cluster processes.

2. Variational calculus and the higher-order chain rule

This section describes differentials and the general form of Faà di Bruno’s formula required to
determine the results in the following section. We adopt a restricted form of Gâteaux differential,
known as the chain differential (Bernhard, 2005), in order that a general chain rule can be determined
(Clark and Houssineau, 2013). Following this, we describe the general higher-order chain rule.

Definition 2.1 (Chain Differential, from Bernhard, 2005). The function f : X → Y , where X and Y are
normed spaces, has a chain differential δf (x; η) at x ∈ X in the direction η ∈ X if, for any sequence
ηn → η in X , and any sequence of real numbers θn → 0, it holds that

δf (x; η) = lim
n→∞

1
θn

(f (x + θnηn) − f (x)) . (1)

The nth-order chain differential can be defined recursively as

δnf (x; η1, . . . , ηn) = δ

δn−1f (x; η1, . . . , ηn−1) ; ηn


. (2)

Applying nth-order chain differentials on composite functions can be an extremely laborious
process since it involves determining the result for each choice of function and proving the result
by induction. For ordinary derivatives, the general higher-order chain rule is normally attributed to
Faà di Bruno (1855). The following result generalises Faà di Bruno’s formula to chain differentials.

Theorem 2.1 (General Higher-Order Chain Rule, from Clark and Houssineau, 2013). Let T ,U and V be
normed spaces. Assume that g : T → U has higher order chain differentials in any number of directions
in the set {η1, . . . , ηn}, with η1, . . . , ηn ∈ T and that f : U → V has higher order chain differentials in
any number of directions in the set {δmg(x; Sm)}m=1:n, Sm ⊆ {η1, . . . , ηn}. Assuming additionally that for
all 1 ≤ m ≤ n, δmf (y; ξ1, . . . , ξm) is continuous on an open set Ω ⊆ Ym+1 and linear with respect to the
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directions ξ1, . . . , ξm, the nth-order variation of composition f ◦ g in directions η1, . . . , ηn at point x ∈ T
is given by

δn(f ◦ g)(x; η1, . . . , ηn) =


π∈Π(η1,...,ηn)

δ|π |f

g(x); δ|ω|g (x; ξ : ξ ∈ ω) : ω ∈ π


,

where Π(A) represents the set of partitions of the discrete set A, |π | denotes the cardinality of the set π
and where h(y : y ∈ π) = h(y1, . . . , ym) when π = {y1, . . . , ym}.

3. Point processes

In this section we describe point processes via probability generating functionals, and apply the
general form of Faà di Bruno’s formula for cluster process probability generating functionals to
determine Janossy measures and factorial moment measures.

3.1. Univariate point processes

Let X be the complete separable metric space in which points of the process are located, e.g. Rd.
Let Φ be a point process defined as the measurable mapping

Φ : (Ω, F , P) → (X∪, B(X∪)), (3)

from the probability space (Ω, F , P) to the measurable space (X∪, B(X∪)) where

X∪
= X0

∪ X1
∪ X2 . . . , (4)

with X0 corresponding to the empty configuration, and where B(X∪) is the Borel σ -algebra over X∪.
For any n ≥ 1, the symmetric probabilitymeasure P (n)

Φ , defined onB(Xn), describes the probability
for the point process Φ to be composed of n points, and the distribution of these points. By extension,
P (0)

Φ is the probability for the point process Φ to be empty. For any n ≥ 0, J (n)Φ denotes the nth-order
Janossy measure (Daley and Vere-Jones, 2003, p. 124), and is defined as

J (n)Φ (B1 × · · · × Bn) =


σ∈Sn

P (n)
Φ (Bσ1 × · · · × Bσn) (5)

= n!P (n)
Φ (B1 × · · · × Bn), (6)

where Sn is the permutation group on n letters. Let U(X) be the space of real-valued bounded
measurable functions on the complete separable metric space X, equipped with the supremum norm

∥u∥ = sup
x∈X

|u(x)|.

The normed space U(X) is a Banach space.
The probability generating functional (p.g.fl.) is a useful tool in point process theory (Moyal, 1962)

and is defined as follows.

Definition 3.1 (Probability Generating Functional). Let V(X) be the space of functions v ∈ U(X) such
that 1 − v is vanishing outside some bounded set and is satisfying 0 ≤ v(x) ≤ 1, for any x ∈ X. The
probability generating functional GΦ of a point process Φ can be written for v ∈ V(X) as

GΦ(v) = J (0)Φ +


n≥1

1
n!


v(x1) . . . v(xn)J

(n)
Φ


d(x1, . . . , xn)


,

where J (0)Φ is the probability that there is no point within the support of 1 − v.

The space V(X) is a Banach space since it is closed and it is a subset of the Banach space U(X).
Banach spaces are particular normed spaces so that the chain differential can be applied. Taking the
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kth-order variation of GΦ in the directions ξ1, . . . , ξk ∈ V(X) and at point v ∈ V(X), we have (see, for
example Srinivasan, 1973, p. 21),

δkGΦ(v; ξ1, . . . , ξk) =


n≥k

1
(n − k)!


ξ1(x1) . . . ξk(xk)v(xk+1) . . . v(xn)J

(n)
Φ


d(x1, . . . , xn)


. (7)

It is useful to consider the cases when we set v = 1 or v = 0, where ‘‘v = 0’’ means ‘‘v(x) = 0 for
any point xwithin the support of 1−v’’. The differential (7) at points v = 1 or v = 0 can be expressed
as

δkGΦ(0; ξ1, . . . , ξk) =


ξ1(x1) . . . ξk(xk)J

(k)
Φ


d(x1, . . . , xk)


, (8)

δkGΦ(1; ξ1, . . . , ξk) =


ξ1(x1) . . . ξk(xk)M

(k)
Φ


d(x1, . . . , xk)


, (9)

where M(k)
Φ is the kth-order factorial moment measure, defined as (Stoyan et al., 1995, p. 111)
f (x1, . . . , xk)M

(k)
Φ


d(x1, . . . , xk)


=


n≥k

1
n!

 
≠

{y1,...,yk}⊆{x1,...,xn}

f (y1, . . . , yk)J
(n)
Φ


d(x1, . . . , xn)


, (10)

where f is a non-negative measurable function on Xk and where


≠ is the sum over k-tuples of
distinct points. For example, the Janossy and factorial moment measures are recovered by setting the
directions to be indicator functions, so that ξi = 1Bi , Bi ∈ B(X), 1 ≤ i ≤ k, and hence

δkGΦ(0; 1B1 , . . . , 1Bk) = J (k)Φ (B1 × · · · × Bk) (11)

δkGΦ(1; 1B1 , . . . , 1Bk) = M(k)
Φ (B1 × · · · × Bk). (12)

3.2. Bivariate point processes

Bivariate point processes are useful for modelling the dependencies between processes, and
processes that can be modelled through conditioning. In cluster modelling, we have a parent process
describing the distribution of cluster centres, and a daughter process that describes the distribution
of points conditioned on a parent point. Let X and Y be two complete separable metric spaces and let
Φ1 and Φ2 be two point processes such that

Φ1 : (Ω, F , P) → (X∪, B(X∪)) (13)

Φ2 : (Ω, F , P) → (Y∪, B(Y∪)). (14)
A bivariate point process Φc = (Φ1, Φ2) can be defined as

Φc : (Ω, F , P) → (X∪
× Y∪, B(X∪) ⊗ B(Y∪)), (15)

where ‘‘×’’ and ‘‘⊗’’ are respectively the Cartesian product and the σ -algebra product.

Definition 3.2 (Joint Probability Generating Functional). The joint probability generating functional
GΦc of the bivariate process Φc with Janossy measures J (n,m)

Φc
on B(Xn) ⊗ B(Ym) with n,m ∈ N, can

be written for v ∈ V(X) and w ∈ V(Y) as

GΦc (v, w) =


n,m≥0

1
n!m!

  
1≤i≤n
1≤j≤m

v(xi)w(yj)

 J (n,m)
Φc


d(x1, . . . , xn) × d(y1, . . . , ym)


, (16)

where J (0,0)Φc
is the probability that there is no pointwithin the support of the functions 1−v and 1−w.
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We can consider similar results to the univariate point processes, e.g.
δk+lGΦc


0, 0; (ξ1, . . . , ξk), (η1, . . . , ηl)


=


ξ1(x1) . . . ξk(xk)η1(y1) . . . ηl(yl)J

(k,l)
Φc


d(x1, . . . , xk), d(y1, . . . , yl)


. (17)

In particular, we can use the bivariate p.g.fl. to determine a conditional p.g.fl. from which we can
recover Janossy measures and factorial moment measures which is useful in Bayesian estimation
(Mahler, 2003). Assuming that the conditional Janossy measure JΦ2(·|X), for any X ∈ X, is absolutely
continuouswith respect to the referencemeasure in (Y∪, B(Y∪)), and denoting ĴΦ2(·|X) the associated
conditional probability density, we can write

GΦ1|Φ2(v|z1, . . . , zm) =
δmGΦc (v, 0; ∅, (δz1 , . . . , δzm))

δmGΦc (1, 0; ∅, (δz1 , . . . , δzm))
,

where δz is the Dirac delta function at point z such that δz(x) ≠ 0 iif z = x and


δz(x)dx = 1, and
where the differentiation in the direction (∅, (1B1 , . . . , 1Bm)) means that GΦc is differentiated 0 times
with respect to its first variable and m times with respect to its second. Similarly, the conditional
Janossy and factorial moment measures are then computed with

J (n)Φ1|Φ2
(B1 × · · · × Bn|z1, . . . , zm)

=
δn+mGΦc


0, 0; (1Bf1 , . . . , 1Bn), (δz1 , . . . , δzm)


δmGΦc


1, 0; ∅, (δz1 , . . . , δzm)


=


B1×···×Bn

Ĵ (m)
Φ2

(z1, . . . , zm|x1, . . . , xn)J
(n)
Φ1

(d(x1, . . . , xn))
k≥0

1
k!


Ĵ (m)
Φ2

(z1, . . . , zm|x′

1, . . . , x
′

k)J
(k)
Φ1

(d(x′

1, . . . , x
′

k))
,

and
M(n)

Φ1|Φ2
(B1 × · · · × Bn|z1, . . . , zm)

=
δn+mGΦc


1, 0; (1B1 , . . . , 1Bn), (δz1 , . . . , δzm)


δmGΦc


1, 0; ∅, (δz1 , . . . , δzm)


=


B1×···×Bn

Ĵ (m)
Φ2

(z1, . . . , zm|x1, . . . , xn)M
(n)
Φ1

(d(x1, . . . , xn))
k≥0

1
k!


Ĵ (m)
Φ2

(z1, . . . , zm|x′

1, . . . , x
′

k)J
(k)
Φ1

(d(x′

1, . . . , x
′

k))
.

We shall use these results in the next section to determine results for Bayesian estimation for
spatial cluster models using Faà di Bruno’s formula on composite functionals.

4. Cluster processes

In the following, we adopt an approach similar to the approach of van Lieshout and Baddeley
(2002), which considered the use of ‘‘germ-grain’’ models (Stoyan et al., 1995, Chapter 6, p. 186) for
the modelling of spatial cluster processes.

Definition 4.1 (Cluster Processes). Let X and Y be two complete separable metric spaces, and let Φc
be a joint point process in (X∪

× Y∪, B(X∪) ⊗ B(Y∪)). If Φc can be decomposed into a parent point
process Φp in (X∪, B(X∪)) and a conditional point process Φd(X), X ∈ X∪, in (Y∪, B(Y∪)), and if Φd
is such that

Φd(X) =


x∈X

Φ ′

d(x), (18)

with Φ ′

d(x), x ∈ X, a conditional point process on (Y∪, B(Y∪)) such that Φ ′

d(x) is independent of
Φ ′

d(x
′) whenever x ≠ x′, then Φc is called a cluster process.
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The p.g.fl. of a cluster process can be found easily, as demonstrated in the following theorem. The
proof of similar results can be found in Moyal (1962) and Daley and Vere-Jones (2003).

Theorem 4.1 (P.g.fl. of a Cluster Process). The joint p.g.fl. GΦc of the cluster process Φc representing
independent clusters is given by

GΦc (v, w) = GΦp


vGΦ′

d
(w|·)


. (19)

For the sake of compactness, the following shorthand notation is used: letµ and ν be twomeasures
on the same measurable space (E, E), the equation ‘‘µ(dx) = ν(dx)’’ is equivalent to ‘‘for any
measurable function f on (E, E),


f (x)µ(dx) =


f (x)ν(dx)’’.

The following theorem gives the higher-order Janossy and factorial moment measures for cluster
processes.3

Theorem 4.2. The higher-order Janossy measure J(n,m)
Φc

and the higher-order factorial moment measure
M(n,m)

Φc
of the cluster process Φc are given by

J (n,m)
Φc


d(x1, . . . , xn) × d(y1, . . . , ym)


=


π∈Πn(y1,...,ym)


n

i=1

J (|πi|)

Φ′
d

(dπi|xi)


J (n)Φp

(d(x1, . . . , xn)), (20)

and

M(n,m)
Φc


d(x1, . . . , xn) × d(y1, . . . , ym)


=


π∈Πn(y1,...,ym)


n

i=1

M(|πi|)

Φ′
d

(dπi|xi)


M(n)

Φp
(d(x1, . . . , xn)), (21)

where Πn(z1, . . . , zm) is the set of partitions of size n of the set {z1, . . . , zm}.
Additionally, the following result is of interest:

J (m)
Φd

(d(y1, . . . , ym)|x1, . . . , xn)M
(n)
Φp

(d(x1, . . . , xn))

=


π∈Πn(y1,...,ym)


n

i=1

J (|πi|)

Φ′
d

(dπi|xi)


M(n)

Φp
(d(x1, . . . , xn)). (22)

Proof. As in (11), the higher-order Janossymeasure J (n,m)
Φc

can be recovered from thep.g.fl.GΦc through
the following functional differentiation

J (n,m)
Φc


(B1 × · · · × Bn) × (A1 × · · · × Am)


= δn+mGΦc


0, 0; (1B1 , . . . , 1Bn), (1A1 , . . . , 1Am)


, (23)

where Ai ∈ B(Y), 1 ≤ i ≤ m, and Bi ∈ B(X), 1 ≤ i ≤ n.
Let Ĝ be the bivariate conditional functional defined as

Ĝ(v, w|x) = v(x)GΦ′
d
(w|x). (24)

3 A different approach for determining posterior measures of a Poisson cluster process was taken in van Lieshout and
Baddeley (2002, p. 71). However, obtaining compact expressions for the factorial moments may be complicated without the
general chain rule to determine the general structure.
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Using the general higher-order chain rule, as described in Theorem 2.1, the r.h.s. of (23) is found to be

δn+mGΦc


0, 0; (1B1 , . . . , 1Bn), (1A1 , . . . , 1Am)


=


π∈Π((B1,...,Bn)∪(A1,...,Am))

δ|π |GΦp


Ĝ(0, 0|·); δ|ω|Ĝ


0, 0|·; 1ξ : ξ ∈ ω


: ω ∈ π


. (25)

Because of the linearity of Ĝwith respect to its first argument, and considering that Ĝ(0, w|x) = 0
for any function w ∈ U(Y) and point x ∈ X, the differentiation carried in the r.h.s. of (25) gives 0
except if |π | = n, therefore, using (8),

δn+mGΦc


0, 0; (1B1 , . . . , 1Bn), (1A1 , . . . , 1Am)


=


π∈Πn(A1,...,Am)


B1×···×Bn

n
i=1

δ|πi|GΦ′
d


0|xi; 1ξ : ξ ∈ πi


J (n)Φp

(d(x1, . . . , xn)). (26)

The form (20) of the higher-order Janossymeasure is then proved by using (11), and (22) is directly
proved by considering v = 1 and using (9). The same principle can be applied to prove the result for
the higher-order factorial momentmeasureM(n,m)

Φc
by considering that GΦd(1|·) = 1 and using (9) and

(12). �

Example 4.1 (Poisson Cluster Processes). Consider GΦp to be the p.g.fl. of a Poisson point process with
rate λ, so that

GΦp(v) = exp


λ(v(x) − 1)PΦp(dx)


. (27)

Then GΦc describes a Poisson cluster process, i.e.

GΦc (v, w) = exp


λ(v(x)GΦ′

d
(w|x) − 1)PΦp(dx)


.

Suppose additionally that GΦ′
d
(w|x) is a Poisson process conditioned on parent point x ∈ X, so that

GΦ′
d
(w|x) = exp


µ(x)(w(y) − 1)PΦ′

d
(dy|x)


. (28)

Then Φc is doubly Poisson. The Janossy and factorial moment measure of the cluster process are
found by substituting the following into Theorem 4.2 (some of these results are known and can be
found in Daley and Vere-Jones (2003, Section 6.3)),

JΦp(d(x1, . . . , xn)) = exp(−λ)λnPΦp(dx1) . . . PΦp(dxn) (29a)

MΦp(d(x1, . . . , xn)) = λnPΦp(dx1) . . . PΦp(dxn) (29b)

for the parent process, and

JΦ′
d
(d(z1, . . . , zm)|x) = exp(−µ(x))µ(x)mPΦ′

d
(dz1|x) . . . PΦ′

d
(dzm|x) (30a)

MΦ′
d
(d(z1, . . . , zm)|x) = µ(x)mPΦ′

d
(dz1|x) . . . PΦ′

d
(dzm|x), (30b)

for the daughter process.
If we receive an observation Z = (z1, . . . , zm) ∈ Y∪ of the global daughter process Φd, we

need to assume that the conditional measures PΦ′
d
(·|x) and JΦ′

d
(·|x), for any x ∈ X, are absolutely

continuous with respect to a reference measure in (Y∪, B(Y∪)) and we denote respectively P̂Φ′
d
(·|x)

and ĴΦ′
d
(·|x) the associated probability densities. Then substituting (29) and (30) into Theorem 4.1 and
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the Bayesian estimation formulae in Section 3, we can determine the posterior Janossy and factorial
moment measures of the parent of a Poisson cluster process given the states of the daughter process
with

J (n)Φp|Φd
(d(x1, . . . , xn)|Z) =

λn

C(Z)


π∈Πn(Z)

n
i=1

e−µ(xi)µ(xi)


z∈πi

P̂Φ′
d
(z|xi)


PΦp(dxi),

and

M(n)
Φp|Φd

(d(x1, . . . , xn)|Z) = eλJ (n)Φp|Φd
(d(x1, . . . , xn)|Z),

with

C(Z) =


k≥0

λk

k!


π∈Πk(Z)

k
i=1


e−µ(xi)µ(xi)


z∈πi

P̂Φ′
d
(z|xi)


PΦp(dxi).

5. Conclusion

A certain class of spatial cluster models can be compactly represented through the composition of
probability generating functionals. In order to make this representation useful in practice, it is useful
to be able to compute variational derivatives to determine Janossy measures and factorial moment
measures. In this article, we introduce a recently derived tool in variational calculus, a general form
of Faà di Bruno’s formula, in order that these measures can be determined. We demonstrate the
application of this result on the composition of point processes and illustrate through a Poisson cluster
process parameterisation. The approach can be applied to other point process parameterisations if the
Janossy measures of the parent and daughter processes defining the cluster process are known.
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