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Abstract  

We report on a method to predict wind speeds up to 24 
hours ahead using a technique originating in Dynamical Systems 
and Chaos theory using a signal processing technique known as 
Singular Systems Analysis. 
 
The method predicts wind speeds based on a set of previous 
measurements which were used to construct an attractor in an 
optimally defined phase space as a ‘training set’. Current wind 
measurements can then be projected to onto that phase space to 
find most similar previous measurements.  By tracing the 
evolution of these similar previous data, it is possible not only to 
forecast the wind speed but also to obtain a measure of the 
expected forecasting uncertainty. 
 
The method was applied to a set of hourly wind speed data from 
a UK Meteorological Office weather station near Edinburgh.  A 
comparison with a simple persistence prediction showed that the 
Singular Systems Analysis was both, consistently better at 
predicting wind speeds between 12 and 24 hours ahead than 
persistence, and also able to provide a meaningful forecasting 
uncertainty. 
 
Key words 
 
Wind resource, Wind speed forecasting, Statistical 
forecasting. 
 
1. Introduction 
 

Wind energy is one of the most established renewable 
energy forms. It has also the characteristic of a strongly 
intermittent form of energy with a large variability hence 
good wind resource assessement is of vital importance. 
The methods of analysis and prediction of wind behaviour 

are indeed of extreme importance for a good resource 
assessment.  

Forecasting is an aspect of wind energy which has 
been under great investigation. It is associated with short-
term prediction of wind speed. The forecasting horizons 
can be divided into the three following categories: 1) 
immediate-short-term (8 hours-ahead),2) Short-term 
(day-ahead) and 3) long-term (multiple-days-ahead) 
forecasting [1]. Several forecast models have been 
developed which can be categorized into physical, such 
as the Numerical Weather Prediction systems (NWPs), 
statistical, including linear methods such Auto 
Regressive Moving Average models (ARMA) or 
methods coming from artificial intelligence and machine 
learning fields such as Artificial Neural Networks 
(ANNs) [2] or even by hybrid approach methods which 
are a combination of statistical and physical methods 
with a use of weather forecasts and analysis of time 
series[1]. 

Factors such as the seasonality, time-of-day changes 
and weather systems are essential to be identified in 
terms of wind energy forecasting. The wind related data 
could be treated as dynamical systems so that cycles and 
random unusual behaviours that often characterise them 
can be identified, explained and understood. For 
example, for mean daily or hourly wind speed forecasts, 
i.e short-term horizon, the underlying atmospheric 
dynamics become of great importance. [3]. Thus the need 
of the creation of a tool that is capable of identifying 
trends, climate cycles and true outliers becomes vital.  

Principal Component Analysis (PCA) is a statistical 
technique to identify dominant patterns of behaviour or 
response [4].  It is also known as Empirical Orthogonal 
Function (EOF) Analysis in the Meteorological and 



Oceanographic community to identify the main circulation 
patterns in the Atmosphere and oceans, e.g. [5,6].  The 
application of the technique to time series is also known as 
Singular Systems Analysis (SSA) [7] which applies the 
PCA to a time series matrix generated from the 
measurements using Takens’ method of delays [8].   

This technique is now widely used for time series analysis 
of nonlinear dynamical systems in general and 
meteorology in particular, e.g. [6,9,10] as the analysis is 
very powerful to separate coherent dynamics from noise 
and it decomposes the measurements into an underlying 
invariant ‘attractor’ on which the dominant parts of the 
dynamics evolves, as well as a spectrum of the time-
averaged contribution to the dynamics from the different 
attractor components 
 
2. Forecasting algorithm 
 

A dynamical system is used to model physical 
phenomena whose state (or instantaneous description) 
changes over time [11]. It is an approach to describe the 
behaviour over time of a system based on position and 
momentum in each direction, called a phase space. With 
complex systems one has to re-construct an equivalent to 
the phase space [7]. Other important definitions which 
involve dynamical systems are: the phase space which 
describes the system’s variables, the attractor which 
defines the actual solution of the system and finally the 
orbit which is the path that the system follows during its 
evolution.  

Furthermore, a method is needed to define equivalent 
variables to the ones of the phase space which is the time-
delay method. It is a practical implementation of the 
dynamical systems since it aids in reconstructing the phase 
space of a dynamical system from an observed 
deterministic time series.  The reconstruction of a phase 
space is indeed significant since it can extract useful 
information about the time series that characterises the 
system. Since the time-delay method is sensitive in the 
choice of the parameters that it uses for the analysis, 
Principal Component Analysis (PCA comes of use which 
can optimize phase space reconstruction. It is a non-
parametric statistical method and by that is not limited to 
be of a certain distribution or linear relationship. PCA can 
separate noise from useful information applied to time-
delay series [10]. It can also identify the number of needed 
time-delays and give a picture of their shape. Its goal is to 
explain important variability of the time series data and to 
extract useful information (i.e. hidden structures of the 
data) from its more relevant components in a reduced 
number of dimensions.  

The mathematical procedure to carry out a PCA is 
through the Singular Value Decomposition (SVD) of the 
delay matrix.  The three SVD/PCA outputs are the 
singular values, which measure total contribution of each 
dimension to total variance, the singular vectors which 
represent the dimensions and optimum phase space 
reconstruction and the principal components (PCs) which 
form an attractor and describe the system’s time series and 
separate important variables from noise.  In matrix 
notation, the singular value decomposition is written as 

SPY Λ=      (1) 

where Y n,m( ) is the time-delay matrix with n  the 
number of time points within time series and m the 
number of columns. If a delay matrix is constructed from 
the time series of a single variable, m  is the number of 
delays.  If a delay matrix is constructed from k  different 
variables using wm  delays, then m = kmw . P n,m( )  is 

the principal component matrix, Λ m,m( ) is the diagonal 
matrix of singular values and S m,m( )  contains the 
eigenvectors.   

 The singular values represent a measure of the 
variance, more specifically the square root of the 
variance of the time series in corresponding dimensions 
and they can pick out the important variability of the 
data. The eigenvectors have the property of being 
orthonormal, i.e. orthogonal and of unit length and they 
span the dimensions of the phase space. They represent a 
measure of those dimensions that define a dynamical 
system, for instance they can replace position and 
momentum, two variables which can form a dynamical 
system.  

When PCA is applied to the time-delay matrix, PC’s are 
the time series of the coordinates of that trajectory in 
respect of these dimensions. PC’s can replace the values 
of the position and momentum at any time.  In more 
detail, this dynamical system’s position of the 
reconstructed phase space can be given at any time 
precisely by position and momentum however when PCA 
is applied the PC’s take over this role. Since there exists 
an eigenvalue matrix in PCA analysis it should be noted 
that both eigenvectors and PC’s are normalised i.e. scaled 
to the amplitude of the dimensions used by PCA.  

The training period has resulted in zero-shifting 
of the observable by, using the velocity as the example, 
its arithmetic mean, Um = u , and a scaling by its 
standard deviation,σ u . The delay matrix is built up by 
choosing a sampling interval, τ , and a window length of 
Mw  for the multi-variate time series from No  
observables or channels, each shifted to be centred 
around zero and scaled by their respective standard 
deviation. With a time series of length Nt , the delay 
matrix will have N = Nt −τMw rows and M = NoMw

columns with  
Y i, j+( jo−1)Mw = yjo j + i−1( )τ( ),  

with the row index i =1...N , the column index j =1...M , 

and the observable index jo =1...No . 
 

 The key step in the analysis is to reconstruct an 
optimal attractor which separates signal from noise as 
much as possible. This is carried out by a singular value 
decomposition of the delay matrix, 

Y N ,M = PN ,MΛM ,MSM ,M ,                                   (2) 
                             
where Y  is the delay matrix from the measurements, P  
the Principal Components, Λ  the diagonal matrix of 



Singular Values, and S  the Singular Vectors. This 
procedure is equivalent to an eigenvalue decomposition of 
the covariance matrix. Hence, the ’optimum’ refers here to 
maximising the variance from the signals into a minimum 
number of orthonormal basis functions (EOFs). The 
average magnitude of contribution from each singular 
vector to the overall signal is measured by the singular 
value, and the principal components contain the time series 
(amplitudes) of the singular vectors.  

 
By creating a reduced set of Dr principal 

components, singular values, and singular 
vectors, Pr

N ,Mr ,Λr
Mr ,Mr and Sr

Mr ,M , respectively, one can 
produce a filtered time series of the original data by
Yr

N ,M = PrΛrSr . Conversely, it is also possible to project a 
new time series onto that set of singular vectors by 
creating a delay matrix following the same procedure as 
for the training set, including using the mean and standard 
deviation from the data set to rescale the new data. This 
projection will then give principal components, Pn , to 
place the new data in this phase space  
     Pn =YnSr

TΛr
−1 .                                                              (3) 

                  
To generate a single point in this phase space, the new 
time series must contain τMw  measurements. Conversely, 
if the new time series contains τMw + nx −1 points, the 
projection results in a section of orbit containing nx  
points.  

The principle of the forecasting is to find similar 
records from the training periods, identified as the nearest 
neighbours to the current point or orbit section in phase 
space, and then follow how these neighbours evolved. The 
nearest neighbours are found by calculating the Euclidean 
distance between the new point, or the mean distance of 
each point of the section of orbit, to all other points or 
sections of the training attractor; for a single point: 
di = Pn −Pr

i  or for a section of orbit with nx  points: 

di =
1
nx

Pn
j −Pr

i+ j−1

j∑ . From this complete set of distances 

to all points of the training attractor, a limited number of 
nearest neighbours is selected, subject to a constraint that 
they do not come from adjacent points on the training orbit 
bur from different passes of the orbit through the 
neighbourhood. This can either be done by sorting all 
distances and rejecting those which come from adjacent 
points of the training time series, or by stepping through 
all distances, and skipping a set number of time points 
after having identified a local minimum of the distances. 
The number of nearest neighbours, nn  to use for the 
forecasting depends on the dimension of the reduced 
system and how densely the phase space is covered by the 
training attractor. If too few neighbours are chosen, the 
ensemble prediction might not capture the divergence or 
convergence of the attractor and hence not give a good 
estimate of the forecasting error. If too many neighbours 
are chosen, the nearest neighbours may not be that near 
and no longer be a good representation of the local 
dynamics, hence introducing errors into the forecasting. 

 
Once the nearest neighbours have been 

identified, each can be moved forward in time by the 
forecasting horizon while sampling all intervening time 
steps. If entry !k  of the training Principal components 
have been identified, then the entry k = !k + nx −1  is the 
neighbour to the latest measurement. A key assumption 
in the forecasting implicit here is that the current point 
will evolve alongside the past nearest neighbours, that is 
that the relative position of the state a time T  in the 
future relative to the past nearest neighbour the same 
time interval T later will be identical to the relative 
position of the current measurement to the nearest 
neighbour. If the current distance vector to nearest 
neighbour j  isDj = Pr

kj −Pn
nx , then the prediction based 

on this nearest neighbour is Pf
j T( ) = Pr

kj+T +Dj .  The 

ensemble of Pf
j T( ), j =1...nn  is then the ensemble 

prediction. One could then either calculate a mean 
prediction, and the change in distances to estimate the 
error growth, in the phase space, and then convert back to 
actual wind speeds, or one can convert the ensemble 
predictions into velocities, and then calculate the mean 
and error growth. Since it is more intuitive to collapse the 
ensemble in physical wind speed predictions than in 
phase space, this is the approach taken here. Each 
member of the ensemble is mapped back onto the delay 
matrix space by usingYf

j = PfΛrSr . Each of the Yf
j

 
then 

returns the predicted wind speeds for the next T  time 
steps as the entries up

j +1...T( ) =Yf
j N −T +1...N,Mw( ) .   

 
This ensemble of predicted wind speeds can 

then be used to calculate the expected velocity as their 
average, and an estimate of the uncertainty based on the 
standard deviation:σ p t( ) = up

j t( )
j
.  

 
 

3. Wind speed data 
 

The data used for this analysis originated from 
the UK Met. Office – MIDAS Land Surface Stations [12] 
and more specifically, the station used was the 
Gogarbank surface station in Edinburgh, Scotland. The 
site used 10m high above ground anemometers and the 
data records used spanned from 1998-2010 with hourly 
mean wind readings stored to the nearest knot 
(1kn=0.5144m/s). For this analysis purposes wind speed 
and wind direction data were used with wind speed 
converted to m/s. Furthermore, the mean was removed 
from data and they were normalised by dividing with the 
standard deviation. 

Regarding the forecasting analysis, the 
forecasting horizon used was from 1h to 24h ahead for 
hourly wind data measurements ( τ =1) and the training 
periods used were 2008-2009 and 2000-2001 for 
different forecasting periods such as 2006, 2009 and 
2010 depending on the training period used. Other 
variables such as the nearest neighbours nn , reduced 



dimensions Dr , the overlap nx , window length Mw and 
different forecasting years were also examined through 
PCA for the aforementioned models. Finally, in order to 
validate the results the error was calculated as the 
magnitude of the observed minus the forecasted data 
readings and the uncertainty was calculated from the 
standard deviation of the forecasted data. 

 
Table 1. Forecasting models used in the PCA analysis 

 
 
4. Results 
 
A. Training  
 

In terms of real wind data forecasting the 
following steps were undertaken. Initially, a phase space 
and attractor from the training period of Gogarbank wind 
speed data for 2008 and 2009 was constructed and 
truncated to ‘important dimension’ based on the singular 
values originating from the PCA results. As it can be seen 
from Figure 1, 20 singular values (Dr  =20) seemed to be 
the leading ones and Figure 2 depicts a short section the 
original training period (green) alongside with the 
reconstruction of the truncated set (red). 

After this, new data from Gogarbank for 2010 
were acquired and as it can be seen in Figure 3 they were 
mapped onto the phase space from the training data (blue). 
Then the nearest neighbours ( nn ), that is past events which 
were similar to the current wind were found (red). These 
neighbours were thus used to make an ensemble forecast 
(red lines), i.e. to follow how they evolved over time. In 
more detail, the blue point in Figure 3 comes from a week 
worth of  hourly wind speed data (Mw =1 week) for 
Gogarbank 2010 and there can be seen that nn =5 with nx
=1 where chosen for the prediction. In total, 60 different 
predictions were made from the training set of 2008 and 
2009 for hourly data with weekly window with the 
forecasting horizons varying from 1 to 24 hours.    

 

 

 
 
Figure 1. Singular values of PCA for training set 

 

 
 

Figure 2. Original wind speed measurements 
and reconstruction from truncated 
attractor 

 
 
 

 
Figure 3. Attractor of training set with data mapped onto 

it. 
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B. Prediction  
 

Figure 4 illustrates a validation of the ensemble 
forecast representing all 24 hours for one of the 60 
prediction points. For this analysis purposes, the 
predictions made in the phase space were re-
transformation to real wind speed and direction, and the 
mean prediction was calculated from the mean of the 
ensemble forecast (black circles). The forecasting 
uncertainty was also found with the use of the standard 
deviation (blue) and hence the comparison to the actual 
wind events was made (red lines). It can be therefore seen 
that there is growth or reduction of uncertainty over time 
which is consistent with the actual error. The estimate of 
error used in the analysis was the mean absolute error 
(MAE) which is a common measure for error used for 

forecasting purposes. It is of the form:                            

MAE T( ) = 1
Np

up tp +T( )−uobs tp +T( )
i=1

Np

∑                         (4) 

Where Np is the number of forecasts made at times tp  for 

the wind speeds T  hours ahead with up the prediction and uobs  

the actual observed wind speed[13]. Moreover, the uncertainty 
was calculated as the standard deviation of the ensemble forecast 
(see function above).  

 
Figure 4. Comparison of actual, forecasted and                     

uncertainty of wind speed 

 

 
C. Comparison with other methods 

 
The persistence method was then used in order to 

compare the PCA forecasting results. This method is 
simple and it just assumes that the wind speed from the 
starting point where it is calculated, it will remain 
unchanged for the rest of the forecasting horizon. 

PCA filters out noise in the data however persistence 
only accounts for what has just happened following a 
random event. Hence by combining the two, we achieve 
slower dynamics of the PCA. After performing this 
comparison and applying several inputs for the different 
parameters used by PCA, it was concluded that adding a 
filter to the dataset would improve the results. This filter is 
the prediction minus the initial error counted and applied 
from the 5th hour of the forecasting horizon up to the 12th. 
From the 5th hour when the filter was applied and up to the 
12th horizon hour, the error subtracted was reduced in 
quantity. The filter is of the form: 

uf ,i = uPCA,0 − uPCA,0 −u0( )
N f − i
N f

;i = 0,..,N f               (5) 

or  

uf ,i = uPCA,i;i > N f              (6) 

where i = the ith step ahead in the forecast horizon ,
 
N f is the 

filter length, uPCA,N f
is the ensemble forecast and u0 is the 

initial error. 

 Figures 5 illustrates the averaged error and 
uncertainty growth of the actual readings, PCA and 
persistence results. The red line corresponds to the 
distance of the red line (actual readings) minus the circles 
(PCA results) of Figure 4. The red line thus should 
ideally be below the green line (persistence method) 
since this indicates that the error is smaller when using 
PCA in comparison with the persistence method. From 
Figure 5 it can be clearly seen that adding the filter aids 
in achieving this.  

 
Figure 5. Error growth with filtered data 

 
D. Sensitivity to parameters 
 

In order to validate the aforementioned analysis 
different models have been attempted with different 
entries of variables used for the PCA analysis as shown 
in Table 1. Some representative results of the undertaken 
analysis are shown in this chapter. Since in the previous 
section it was concluded that the use of filter in the data 
was improving the PCA results, all the analyzed models 
included the filtered data instead. A performance index 
percentage was thus introduced to examine the 
improvement of PCA in comparison with the persistence 
method. This index is calculated as the average over the 
range of prediction times of the difference between the 
mean persistence and PCA forecasting errors, divided by 
the respective average of the mean persistence error 
multiplied by 100.The error measure as it was explained 
in the previous section, was MAE. 

 More specifically, Figures 6 and 7 show the 
performance index of the results for the different entries 
of Dr , and nn . Figure 6 indicates the reduced dimensions 
improvement. It can be seen that different choice of 



reduced dimensions results in a big variation of the 
percentage of improvement. The amount of dimensions 
which the improvement seems to be more consistently big 
for (5.6%) is around 16. It should be noted that adding 
more dimensions results in adding more information but 
whether this information is useful or not is another issue 
which should be of further investigation and of course 
depends on the site and wind dynamics used for the 
analysis. 

Finally, Figure 7 indicates that choosing 5 nearest 
neighbours seems to result in the best improvement, again 
around 11.2%. Using too few or too many neighbours 
might not be appropriate since with too few (i.e. less than 
5) the information we use for the analysis might me too 
little whereas on the contrary, using too many (i.e. more 
than 5) might initially show that we can obtain more 
information however these neighbours might actually lie 
very far apart from each other in the phase space.  

 
Figure 6. Performance index for different embedding 

dimension 

 
Figure 7. Performance index for different nearest 

neighbours 

 
5. Discussion and Conclusions 

  
The main conclusions of this research that can be made are 
firstly that PCA is capable of identifying weather cycles 
and a dynamical link between two sites, reference and 
target, that form an attractor. Furthermore, it was found 
that it can be used for wind forecasting several hours ahead 
and also it can obtain a measure of this forecasting 
uncertainty. Hence, it has clear potential to be used for 
MCP-type resource assessment as well as for operational 
wind power forecasting. It was also found that with the use 
of filtering, PCA outperformed the persistence method. 

Finally, testing the PCA performance with sensitivity 
analysis, it was found that the dimensions and nearest 
neighbours used play an important role in the PCA 
results. 
  Thus the future work that will be carried out should 
be focused on first, to validate fully the forecasting 
attempt with the use of other training and prediction 
periods but also by using other PCA parameter choices 
such as wind direction or temperature etc. Other types of 
data such as wind farm and Met office data should be 
also used. Extending the forecasting methodology for 
MCP methods would be the following step but of course 
challenges such as mapping data from one site onto the 
appropriate place of the phase space based on both sites 
will arise. 
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