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We analyze the dynamics of dissipative solitons in silicon on insulator waveguides embedded in a gain medium.
The optical propagation is modeled through a cubic Ginzburg-Landau equation for the field envelope coupled with
an ordinary differential equation accounting for the generation of free carriers owing to two-photon absorption.
Our numerical simulations clearly indicate that dissipative solitons accelerate due to the carrier-induced index
change and experience a considerable blueshift, which is mainly hampered by the gain dispersion of the active
material. Numerical results are fully explained by analytical predictions based on soliton perturbation theory.
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Silicon photonics has attracted considerable attention
among researchers owing to its potential applications ranging
from optical interconnection to biosensing. In the last few
years, silicon-on-insulator (SOI) technology has rapidly de-
veloped into a well-established photonic platform [1]. The
tight confinement of the optical mode and the inherently large
bulk nonlinearity of Si tremendously enhance the nonlinear dy-
namics [2]. For near-infrared wavelengths in the range 1 μm <

λ0 < 2.2 μm, two-photon absorption (2PA) is the leading loss
mechanism and limits the spectral broadening due to self-phase
modulation (SPM) [3]. As a consequence of 2PA, electrons
are excited to the conduction band, absorb light, and affect the
pulse dynamics by modifying the refractive index of silicon [4].
Loss mechanisms are restricted in silicon-organic hybrid slot
waveguides, which can be exploited for all-optical high-speed
signal processing [5]. Alternatively, loss can be overcome
by embedding active materials in the design of SOI devices.
Recently, some amplification schemes based on III-V semicon-
ductors, rare-earth-ion-doped dielectric thin films, and erbium-
doped waveguides have been proposed and realized [6,7].

In this paper, we describe the nonlinear dynamics of
dissipative solitons (DSs) in amplifying SOI devices. DSs are
stationary localized structures of open nonlinear systems far
from equilibrium that can be observed in several contexts [8].
Analogously to SOI waveguides, also in plasmonics loss
mechanisms are relevant and spatial DSs have been proposed
to achieve self-induced lateral confinement [9]. Although
the model considered in our analysis is general and can be
applied to any silicon-based amplifying setup, we specialize
our calculations to a SOI waveguide embedded in Er-doped
amorphous aluminium oxide (Al2O3:Er+). Other gain schemes
involving the use of semiconductor active materials can also
be considered and gain dispersion can be reduced accordingly.
For the representative structure displayed in Fig. 1, the gain
bandwidth is of the order of 100 nm around the carrier
wavelength λ � 1540 nm. For this waveguide, the second-
order group velocity dispersion (GVD) coefficient and the
effective area at λ0 = 1550 nm are calculated to be β2 �
−2 ps2/m and Aeff � 0.145 μm2, respectively. The proposed
SOI waveguide is fabricated along the [1̄10] direction and
on the [110] × [001] surface, so that quasi-TM modes do
not experience stimulated Raman scattering (SRS) [4]. The
propagation of an optical pulse with envelope u(z,t) and carrier
frequency ω0 in the proposed photonic structure is governed

by a complex Ginzburg-Landau (GL) equation,

i∂ξu − 1
2 sgn(β2)∂2

τ u + iαu + (1 + iK)|u|2u
+ (i/2 − μ)φcu − i

(
g + g2∂

2
τ

)
u = 0, (1)

coupled with an ordinary differential equation accounting
for the 2PA-induced free-carrier dynamics dφc/dτ = θ |u|4 −
τcφc [4]. Equation (1) is written in dimensionless units, where
the time (t) and the longitudinal spatial variable (z) are
normalized to the initial pulse width (t = t0τ ) and to the
dispersion length (z = ξLD with LD = t2

0 /|β2(ω0)|), respec-
tively. The envelope amplitude (A) is rescaled to A = u

√
P0,

where P0 = |β2(ω0)|/(t2
0 γR), γR = k0n2/Aeff , and n2 � (4 ±

1.5) × 10−18 m2/W is the Kerr nonlinear coefficient of bulk
silicon. The bulk 2PA coefficient is β2PA � 8 × 10−12 m/W
and its corresponding effective waveguide counterpart γI =
β2PA/(2Aeff) is rescaled to the Kerr coefficient so that K =
γI /γR = β2PAλ0/(4πn2). The linear loss coefficient (αl) is
renormalized to the dispersion length (α = αlLD) and can
be neglected for short propagation in the linear transparency
spectral window of silicon, 1 μm < λ0 < 10 μm, where
2PA dominates (if λ0 < 2.2 μm). The density of free-carriers
(FCs) Nc generated through 2PA is normalized so that
φc = σNcLD, where σ � 1.45 × 10−21 m2, the free-carrier
absorption (FCA) cross section of Si at λ0 = 1.55 μm [10].
FCs are responsible for FCA regulated by the parameter θ =
β2PA|β2|σ/(2h̄ω0A

2
eff t0γ

2
R) [11] and free-carrier dispersion

(FCD) depending on the parameter μ = 2πkc/(σλ0), where
kc � 1.35 × 10−27 m3 [12]. The parameter θ has a significant
implication in the context of the present problem where we
are investigating the carrier-mediated frequency blueshift. The
generation rate of FCs is governed by θ , which depends on the
waveguide features and on external parameters, e.g., operating
frequency and input pulse width. A larger value of θ can
produce more blueshift but at the same time it increases the
FCA loss. We calculated θ with the realistic parameters of the
SOI waveguide shown in Fig. 1, but in principle this value
can be modified by using a different waveguide structure. tc
is the characteristic FC recombination time (of the order of
nanoseconds) and normalized as τc = t0/tc. In the following
calculations we neglect the recombination term, since we focus
our analysis on ultrashort pulses with a time duration of the
order t0 � 100 fs. The amplifying medium is characterized by
a gain coefficient, G, which in our dimensionless equations is
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FIG. 1. (Color online) Sketch of a SOI waveguide with lateral
dimensions h = w = 525 nm surrounded by Al2O3:Er+ and its
dispersion property. The solid red line represents the GVD of the
quasi-TM mode, whose spatial profile at λ0 = 1550 nm is depicted
in the inset below.

rescaled to the dispersion length (g = GLD), and a dephasing
time, T2, which is related to the dimensionless gain dispersion
coefficient through g2 = g(T2/t0)2.

The presence of gain and 2PA in the photonic structure
considered in our calculations implies that, in general, energy
is not conserved. Nevertheless, the GL equation supports
isolated stationary solitons where overall gain and loss are
balanced. In contrast to Kerr solitons in conservative systems,
which form continuous families of localized solutions, DSs
are formed under a strict dynamical equilibrium involving
nontrivial internal energy flows. In turn, DSs are associated
with certain discrete parameters of the GL equation that satisfy
the energy balance condition. In absence of linear loss (i.e.,
α = 0) and FCs (i.e., φc = 0), DSs can be found as

u(ξ,τ ) = u0[sech(ητ )]1−iβei�ξ , (2)

where the parameters u0, η, β, and � satisfy the following
relations:

|u0|2 = η2

K

[
sgn(β2)

3

2
β − g2(2 − β2)

]
, (3)

η2 = g

{β[�g2 + sgn(β2)] + g2} , (4)

β± = �

2
±

[(
�

2

)2

+ 2

]1/2

, (5)

� = sgn(β2)
η2

2
(β2 − 1) − 2βg2η

2, (6)

� = 6g2K + sgn(β2)3

sgn(β2)K − 2g2
. (7)

Note that the exact values of u0, η, β, and � are fixed by
the physical parameters of the system: g, g2, and K [8]. It is
well known that solitons of the cubic GL equation suffer from
inherent core and background instabilities [13], which generate
bifurcations and chaotic states [14,15]. In principle, DSs can
be stabilized by introducing higher-order nonlinearities or by
coupling the system to a passive waveguide [16,17], but this
task goes beyond the scope of the present work, where we aim
at understanding the effect of FCs on the DS dynamics. In order

to grasp the fundamental effects induced by FC dynamics, we
develop a soliton perturbative analysis [18], approximating the
GL equation as a perturbed nonlinear Schrödinger equation
(NLSE): i∂ξu + 1

2∂2
τ u + |u|2u = iε(u), where we explicitly

consider the case of anomalous dispersion (β2 < 0) and
ε(u) includes the coupling to FCs, 2PA, linear gain, and
its dispersion: ε = (g − K|u|2 − φc/2 − iμφc + g2∂

2
τ )u. The

perturbative theory is developed by making the ansatz

u(ξ,τ ) = u0(ξ )(sech{η(ξ )[τ − τp(ξ )]})1−iβeiφ(ξ )−i�(ξ )[τ−τp(ξ )],

(8)

where the parameters u0, η, τp, φ, and � are now assumed
to depend on ξ and ε(u) is considered as a small perturbation
depending on u and u∗ and their derivatives. The perturbation
technique aims at obtaining the evolution dynamics of each in-
dividual parameter over the propagation distance. Introducing
the Lagrangian density and integrating it over τ , one gets the
total Lagrangian in the following form:

L = 2u2
0η

−1(∂ξφ + �∂ξτp) + βu2
0η

−2∂ξη + ηu2
0(1 + β2)/3

+u2
0η

−1(�2 − 2u2
0/3) + i

∫ ∞

−∞
(εu∗ − ε∗u)dτ. (9)

In turn, from the Lagrangian above one can derive the reduced
Euler-Lagrangian equations for the pulse parameters [19]. This
procedure leads to a set of differential equations accounting
for the soliton dynamics. We here focus on the evolution
of the pulse energy (E = ∫ ∞

−∞ |u|2dτ ), frequency (�), and
temporal position (τp). The evolution of these three parameters
is derived by the standard variational technique [19,20]

dE

dξ
= d

dξ

(
2u2

0

η

)
= Re

∫ ∞

−∞
εu∗dτ, (10)

d�

dξ
= −η2

u2
0

∫ ∞

−∞
tanh[η(τ − τp)]Re[(β − i)εu∗]dτ, (11)

dτp

dξ
= −δ + η

u2
0

∫ ∞

−∞
(τ − τp)Re(εu∗)dτ, (12)

where Re and Im stand for real and imaginary parts. Taking
the integrations involving the perturbation ε one can find

dE

dξ
= −2E

(
1

6
θu2

0E + g2�
2

)
, (13)

d�

dξ
= 8

15
(μ + β/2)θu4

0 − 4

3
g2(1 + β2)�η2, (14)

dτp

dξ
= −(1 − 2g2β)� − 7

72
θE2. (15)

The perturbative analysis reveals that FCs induce frequency
blueshift and temporal acceleration of DSs, both effects being
hampered by the gain dispersion that limits blueshifting within
the amplifying frequency window of the active material. We
emphasize that the energy is reduced only by FCA and gain
dispersion, since 2PA is initially thoroughly balanced by the
external gain. For small gain dispersion, Eq. (14) is solved
analytically with the initial condition �(0) = 0, obtaining
�(ξ ) ≈ f ξ , where f = 8(μ + β/2)θu4

0/15. This expression
predicts that DSs experience a spectral blueshift proportional
to the propagation distance through a rate (f ) that basically
depends on the FC density and peak amplitude. Under the
assumption of small energy decrease (E ≈ constant), which
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FIG. 2. (Color online) (a) Asymmetric spectral broadening of
the NLSE soliton (uin = sechτ ) with time duration t0 = 40 fs for
g = 1 and g2 = 0 at ξ = 2. (b) DS amplitude u0 as a function of
linear gain g for several dephasing times (τ2 = T2/t0 = 0,0.2,0.5) at
fixed K . (c) Carrier-induced blueshift of DS (uin = u0[sech(ητ )]1−iβ )
for the same parameters of panel (a), where u0 = √

3g/(2K), η =√−g/β, and β = 3/(2K) − √
[3/(2K)]2 + 2. Solid red and blue

dashed lines indicate the output and input power spectra, respectively.
(d) z-dependent DS frequency shift [�δ = �/(2π )] for g2 = 0.
Perturbative predictions with constant (solid red line) and z-dependent
(green dotted line) peak amplitude u0 are shown. The solid blue dots
indicate numerical findings.

is true only for small propagation distance, the solution of the
temporal shift can be approximated as

τp(ξ ) ≈ −(aξ + f ξ 2/2), (16)

where a = 7θE2/72. The equation above suggests that during
propagation DSs are accelerated under the influence of FCs
analogously to the recently studied case of optical solitons in
gas-filled hollow-core photonic crystal fibers [18].

In Fig. 2(a) we show the conventional asymmetric spectral
broadening of NLSE solitons [21]. In Fig. 2(b) we plot the DS
amplitude (u0) as a function of linear gain for several dephasing
times (τ2 = T2/t0 = 0,0.2,0.5). As shown in Fig. 2(c), even
though DSs of the cubic GL equation are unstable, they experi-
ence a considerable carrier-induced blueshift maintaining their
shape over a propagation distance of the order of millimeters.
Indeed, for DSs, 2PA is exactly compensated by the linear gain,
while NLSE solitons experience an imbalanced dynamical
evolution due to 2PA and amplification. In Fig. 2(d) we
compare the perturbatively predicted FC-induced frequency
blueshift (solid red and dashed green lines) with numerical
results (solid blue dots), finding that, for the initial part of
pulse propagation, perturbative predictions nicely match with
the numerical findings. The dimensionless frequency shift is
calculated to be �δ � 0.16 at ξ = 2, corresponding in physical
units to �λ � 35 nm. The solid red line in Fig. 2(d) represents
the predicted frequency shift calculated through the perturba-
tion analysis by approximating the DS amplitude to remain
constant, whereas the green dotted line represents the per-
turbative prediction considering z-dependent DS amplitudes.
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FIG. 3. (Color online) (a), (b) Input (dashed blue line) and output
(ξ = 5, solid red line) power spectrum of a dissipative soliton with
carrier wavelength λ0 = 1550 nm and time duration t0 = 200 fs for
g = 1 and g2 = 0.04 as a function of (a) dimensionless frequency
and (b) physical wavelength. (c) Input (dashed blue line) and output
(ξ = 5, solid red line) temporal DS profile. (d) Intensity counterplot
of the spatiotemporal evolution of an accelerated dissipative soliton.

From the very beginning of the propagation, the pulse shape
is perturbed by FCD and FCA and hence the approximate
analytic treatment fails for long propagation distances. Figure
3 displays the effect of gain dispersion over the pulse propaga-
tion. Due to the finite bandwidth of the amplifying medium, the
frequency shift is hampered after some saturation frequency
(�sat), as clearly predicted by our perturbative analysis:

�(ξ ) � �sat(1 − e−ρξ ), (17)

where

�sat = (μ + β/2)θE2

10g2(1 + β2)
, (18)

ρ = 4

3
g2(1 + β2)η2. (19)

Note that �sat is directly proportional to FCD (μ) and inversely
proportional to gain dispersion (g2). Thus, �sat → +∞ as
g2 → 0, meaning that practically no saturation is observed for
broad amplifying windows. In order to solve the differential
equation analytically, we approximate that the pulse energy
remains conserved, which is strictly valid only for small
propagation distances. Indeed, for long propagation distances,
the pulse shape is significantly distorted by FC effects and
the perturbative analysis fails to predict the evolution of the
pulse parameters. Thus, in order to understand the carrier-
induced pulse dynamics, we restrict our study to the limit
of small propagation distance, where DSs approximately
maintain their shape. In Figs. 3(a) and 3(b) we depict the input
and output spectral power of a DS in the presence of gain dis-
persion, indicating that blueshift is reduced, as predicted by the
theory. In Fig. 3(c) we show the temporal profile of a propagat-
ing pulse at ξ = 5 where the inherent background instability of
DSs starts to affect the pulse propagation. The spatiotemporal
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pulse evolution is displayed in Fig. 3(d), where the pulse
acceleration is reduced by the effect of the gain dispersion.

In conclusion, we have provided a complete theoret-
ical analysis of the carrier-induced DS dynamics in Si-
based waveguides embedded in an amplifying medium.
FCs generated through 2PA affect the refractive index
of the medium and lead to a considerable self-frequency
blueshift. We have derived analytical predictions based on
soliton perturbative theory for the self-frequency blueshift

and for the temporal evolution. We have also examined
the fully realistic condition where gain dispersion hampers
the continuous spectral blueshifting, which is still observed.
We have found that the saturation blueshifted frequency
mainly depends on the amplifying window of the active
medium.

This research was funded by the German Max Planck
Society for the Advancement of Science (MPG).
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