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Vector modulational instability induced by parametric resonance in periodically tapered highly
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We study the modulational instability induced by periodic variations of group-velocity dispersion and nonlinear
coefficients in a highly birefringent fiber. We observe, for each resonance order, the presence of two pairs of
genuine vector-type sidebands, which are spectrally unbalanced between the polarization components for nonzero
group-index mismatch, and one pair of balanced sidebands emerging and dominating at increasing group-index
mismatch. As the conventional modulational instability manifests itself, it is partially suppressed by the proximity
of these additional unstable regions.
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I. INTRODUCTION

In classical mechanics parametric resonance (PR) is a well-
known instability phenomenon which occurs in systems whose
parameters are varied periodically during evolution [1,2]. For
example, a harmonic oscillator whose frequency is forced to
vary in time will become unstable if its internal parameters and
the amplitude of the frequency variation happen to be inside
special regions, known as resonance tongues. The study of the
properties of resonance tongues has a long history and relies
on a variety of geometrical approaches [3,4].

It is natural that such a general phenomenon was associated
with the equally important instability process that is ubiquitous
in infinite-dimensional dynamical systems: modulation insta-
bility (MI), also known as Benjamin-Feir instability [5]. MI is
known to exist in different branches of physics such as fluid
dynamics [6], plasma physics [7], Bose-Einstein condensates
[8], and solid-state physics [9]. In nonlinear optics [10], it
manifests itself as pairs of sidebands exponentially growing on
top of a plane-wave initial condition by virtue of the interplay
between the cubic Kerr nonlinearity and the group-velocity
dispersion (GVD). In optical fibers it leads to the breakup of
a plane wave into a train of normal modes of the system, i.e.,
solitons [11].

The link between PR and MI has been established in
relation to the periodic reamplification of signals in long-haul
telecommunication fiber-optic cables [12]. This was based on
a nonlinear Schrödinger equation (NLS) where the coefficient
of the nonlinear term is varied along the propagation direction.
Importantly, this peculiar type of MI occurs in both normal and
anomalous GVD. This prediction was later partially verified
in experiments (see [13]).

Moreover, in long-haul fibers, dispersion management is
a commonly used technique which introduces periodic mod-
ulation of fiber characteristics. The possibility of instability
phenomena disrupting adjacent communication channels has
been thoroughly analyzed (see, e.g., [14–16]). Specifically,
in [14] the partial suppression of the conventional MI in
anomalous GVD due to a large swing dispersion management
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is discussed, while in [15] the degenerate case of zero average
dispersion was studied. The combination of both loss and
dispersion compensation is studied in [16]. The main interest in
those works was on steplike variations of the GVD coefficient.

At the same time the effects of smooth periodic or random
variations of fiber parameters were studied in [17,18]. Also
some work has been done on the effect of the perturbation of
fiber parameters on soliton propagation [19].

It turns out that the variation of dispersion and nonlinearity
can enhance or suppress the PR, while higher-order nonlinear
effects such as self-steepening proves less important. Quite
surprisingly, experiments on microstructured fibers have been
reported only recently (see Ref. [20]), where a photonic-
crystal fiber (PCF; [21]) of varying diameter is used. In
that experiment, the dispersion is periodically switched from
normal to anomalous, but this feature is not required to achieve
PR, while the effect of Raman scattering plays an important
role in the relative magnitude of the PR peaks.

The conventional explanation is in terms of a grating-
assisted phase-matching process [12,16,20], but it was verified
in Ref. [22] that this approximation is inaccurate if the period of
parameter variation is comparable to the length scale at which
the nonlinear processes occur. In Ref. [22] it was proved that an
accurate description must be based on the Floquet theory [2,3]
and the use of regular perturbation techniques, such as the
method of averaging [23].

The study of birefringent fibers permits us to observe a
variety of new physical phenomena, which are ascribed to
the presence of cross-phase modulation (XPM) terms [24].
The MI in birefringent fibers (vector MI) occurs also for
normal GVD and was extensively studied in the past not
only in highly birefringent fibers (HBFs) [25–27] but also
for weak birefringence [28]. The effect of a stepwise variation
of birefringence was considered in Ref. [29], in the weakly
birefringent regime, while highly birefringent fibers with
stepwise variations of dispersion were studied in Ref. [18] in
a dispersion-management scenario of alternating GVD sign.
This two last works rigorously apply the Floquet theory but
completely ignore the group-index mismatch.

The possibility of tailoring the PCF birefringence (see [21]
and references therein) and of obtaining a smooth reproducible
profile of fiber parameters by advanced fabrication techniques
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[20] permits us to achieve PR instabilities on a short distance
and to explore different birefringence regimes and the effect
of group-velocity mismatch.

In the present work we study parametric instabilities in
a HBF with varying GVD and nonlinear coefficients. We
provide an accurate analytical estimate of PR peak detuning
and gain and contrast them to the numerical application of
Floquet theory and to split-step simulations. We observe the
existence of two families of MI peaks at each PR order: one
exhibits a behavior similar to conventional (i.e., with constant
parameters) vector MI [25], while the other resembles a scalar
MI and is the dominant MI process for large group-index
mismatches. Finally, we found that, at large group-index
mismatch, the conventional vector MI is partially suppressed
for large variations of parameters.

II. MODEL EQUATIONS AND ANALYTICAL ESTIMATES

A. Incoherently coupled NLS and linearized equations

According to the conventional approach [24], the propa-
gation in HBF can be described by two incoherently coupled
NLS equations (ICNLS), which read

i∂zAj ± i
δ

2
∂tAj − 1

2
β2(z)∂ttAj

+ γ (z)(|Aj |2 + B|A3−j |2)Aj = 0, with j = 1, 2, (1)

where β2 and γ are normalized GVD and nonlinear coeffi-

cients, β2(z) ≡ β2(z)/β
0
2 and γ (z) ≡ γ (z)/γ 0, β2(z) and γ (z)

are the physical GVD and nonlinear coefficients, respectively,
and the superscript 0 denotes their mean values. γ and
β2 are assumed to be equal for the two polarizations and
periodic functions of z. Finally, z ≡ Z/Znl is the dimensionless
distance in units of the nonlinear length Znl ≡ (γ 0Pt )−1,
t ≡ [T − (v0

g)−1Z]/Ts is the dimensionless retarded time in

units of Ts ≡
√

Znl|β0
2|, v0

g is the mean group velocity, and
δ = Znl/Ts[(v−1

g )1 − (v−1
g )2] is the normalized group-index

mismatch between the two polarizations. Pt is the total input
power injected in the fiber, and A1,2 are the dimensionless
slowly varying modal amplitudes of the two polarization
components scaled by

√
Pt . The XPM coefficient B is used

throughout the paper since the ICNLS model can be applied
to other physical settings [30]. In a HBF, the ICNLS model
applies provided we set B = 2/3; thus A1,2 correspond to the
mode polarized along the fast and slow axes, respectively.

We look for a steady-state solution of (1) in the form
A1,2 = √

P1,2 exp [iφ1,2(z)]: it can be verified that φ1,2(z) =
(P1,2 + BP2,1)

∫ z

−∞ γ (z′)dz′. We then perturb this steady state
by adding a small complex time-dependent contribution
a1,2(z,t), i.e., A1,2(z,t) = [

√
P1,2 + εa1,2(z,t)] exp [iφ1,2(z)],

with ε � 1. Inserting this ansatz in Eq. (1) and taking only the
terms which are first order in ε, one finds that a1,2 obeys the
following equation:

i∂zaj ± i
δ

2
∂taj − 1

2
β2(z)∂2

t aj + γ (z)[Pj (aj + a∗
j )

+B
√

PjP3−j (a3−j + a∗
3−j )] = 0, j = 1,2. (2)

We further assume that the input light is polarized at an
angle of π/4 with respect to the fast axis, i.e., P ≡ P1 = P2 =

1/2, which significantly simplifies our calculations, and that
GVD and nonlinearity exhibit the simplest possible periodic
behavior,

β2(z) = β0 + β̃(z) = β0 + hβ1 cos 	z,
(3)

γ (z) = γ0 + γ̃ (z) = γ0 + hγ1 cos 	z,

where, generally, β0 = ±1 for normal (anomalous) GVD and
γ0 = 1; 	 is the normalized spatial angular frequency for the
parameter oscillations. The forcing amplitude is controlled
by the parameter h, which must be small to guarantee the
validity of our perturbative expansions. However, we find
below that our estimates are reliable even for h ∼ 0.5. Finally,
we substitute in (2) the Ansatz

aj (z,t) = aA
j (z)e−iωt + aS

j (z)eiωt , j = 1,2,

which permits us to cast the linearized system in the form of a
fourth-order linear ODE system,

i
d

dz
|φ〉 = H (z)|φ〉, H (z) ≡

⎡
⎢⎣

ν c1 0 0
c2 ν 2b 0
0 0 −ν c1

2b 0 c2 −ν

⎤
⎥⎦, (4)

where

|φ〉 = (u1,v1,u2,v2)T ,
(5)

uj = aS
j + aA∗

j , vj = aS
j − aA∗

j , j = 1,2,

and we define c1(z) ≡ −ω2

2 β2(z) ≡ c0
1 + hc̃1 cos 	z, c2(z) ≡

c1(z) − 2γ (z)P ≡ c0
2 + hc̃2 cos 	z, b(z) ≡ − γ (z)BP ≡ b0 +

hb̃ cos 	z, and ν ≡ ν0 ≡ − δ
2ω. By replacing (3) in these

definitions we can naturally split the Hamiltonian matrix H (z)
into average and oscillating parts, i.e., H (z) ≡ H0 + hH̃ (z).

Equation (4) can be rewritten as a system of two coupled
Hill equations, i.e., linear oscillators with periodic variation
of natural frequencies, but it is more practical to deal with the
original first-order system directly.

B. Calculating position and gain of PR peaks
by the averaging method

We first present the relation which provides the values of
PR detuning. We discussed extensively in [22] how to apply
the classical theory of parametric resonance [2] to problems
of instability in fiber optics involving varying parameters.

Parametric resonance is a phenomenon which is accurately
described by a relation between the natural frequency of the
unperturbed oscillator and the forcing-term frequency. Thus
we have to impose that H0 has real eigenvalues, which in turn
implies PR is incompatible with conventional MI, which is
present in fibers with a homogeneous diameter [25]. From
a physical point of view this is justified by the fact that
conventional MI is generally a much stronger instability effect.

The choice of equal GVD and nonlinear coefficients for the
two components of Eq. (1) and of the particular polarization
state (see above) permits us to simplify the calculation of the
eigenvalues of H0. Since the matrix H0 is traceless [31], we
can write its eigenvalues as ±λ1 and ±λ2, with

λ1,2 =
[
c0

1c
0
2 + ν2 ∓ 2

√(
c0

1

)2
b2

0 + c0
1c

0
2ν

2
] 1

2
. (6)
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A single parametric oscillator is destabilized if the unperturbed
system oscillates at half an integer multiple of the forcing
frequency. In the present case we have two coupled oscillators,
and the scenario is more complicated. We must consider four
independent conditions:

2λ1,2 = m	, (7)

which we denote as the vector MI band (V-band), and

λ2 ± λ1 = m	, (8)

denoted by a scalar-like MI band (S-band), where m is the
PR order and the reason for the definitions will be made clear
below. In each case we obtain a polynomial in the detuning
ωm of the mth PR peak. The two polynomials are reported in
Appendix A.

The relations between the spatial frequency of external
forcing and the eigenvalues of H0 can also be obtained by the
method of averaging [23]. In its simplest formulation it is based
on the method of variation of constants for inhomogeneous
differential equations. This in turn is equivalent to transforming
the system of Eq. (4) to the interaction picture; that is, the
evolution of the slow variables |φ〉I = eiH0z|φ〉 is governed by

i
d

dz
|φ〉I = hHI (z)|φ〉I , with HI = eiH0zH̃ (z)e−iH0z.

(9)

The averaging process is used to eliminate the remaining
oscillating terms from Eq. (9). In the right-hand side we find
elements with spatial periods obtained by linear combinations
of 	 and λ1,2, which are, in general, incommensurable. Thus
the method of averaging needs to be generalized by performing
the integration over an infinite range, i.e.,

i∂z|φ〉I = h〈HI (z)〉|φ〉I ,
(10)

〈HI (z)〉 = lim
Z→∞

1

Z

∫ Z

0
HI (z′)dz′.

It is clear from this matrix expression how to obtain the four PR
conditions since the above-mentioned resonances correspond
to the presence of nonzero average elements in the interaction
Hamiltonian. Most importantly, we can estimate the peak gain,
at first order in h, by solving for the complex eigenvalues of
the averaged interaction Hamiltonian.

As in the scalar case of Ref. [22], the first-order averaging
method provides us with an estimate of the peak gain of
the first-order PR, which is reported in Appendix B. In
order to estimate the gain of higher-order PR, a higher-order
perturbation theory is demanded, but this is outside the scope
of this work.

In the next section we present the numerical characteriza-
tion of the PR phenomenon in the form of resonance tongues
and output spectra of split-step simulations and compare it to
our analytical estimates.

III. RESULTS AND DISCUSSION

Throughout this paragraph we set β0 = +1, normal GVD,
	 = 10, and γ1 = −β1 = 1, with the latter associated with
the maximum gain in the scalar case [22]. As a guide for our
considerations we study first the properties of PR sidebands

FIG. 1. (Color online) Characterization of first-order PR as a
function of normalized group-index mismatch δ for parameters
varying with 	 = 10. (a) Resonant detuning. (b) Gain slope (g1/h)
values. (c) Unbalance of V-bands around ω for the fast axis
(logarithmic scale); the slow axis exhibits the opposite behavior. The
S-bands are always balanced and are reported in the region of nonzero
gain. The following line convention applies to every panel: the blue
solid line is the V-band corresponding to 	 = 2λ2, while the red
dashed line corresponds to the other V-band, 	 = 2λ1. The green
dash-dotted line denotes the S-band 	 = λ2 + λ1; finally, the black
dotted line corresponds to the other S-band, 	 = λ2 − λ1. In (a), we
also report the instability range of the conventional XPM MI in the
absence of perturbations, shown as a yellow shaded area.

as a function of the group-index mismatch δ. This parameter
was neglected in the past [18], but it plays here a crucial
role. For our choice of parameters, the conventional MI occurs
at δ >

√
4β0γ0P/3 = √

2/3 ≈ 0.82. In Fig. 1 we report the
analytical estimates as a function of δ of the PR detuning
[Fig. 1(a); Eqs. (A1) and (A2)], their respective gain [Fig. 1(b);
Eqs. (B1) and (B2)], and the Stokes–anti-Stokes imbalance of
sidebands, R1 ≡ |aS

1 /aAS
1 | [Fig. 1(c)], which is obtained by

the eigenvectors of the averaged Hamiltonian. The imbalance
is defined only for one polarization mode because the other
polarization component is exactly the inverse because of the
conservation of total momentum of Eq. (1).

In Fig. 1 we observe that the S-bands occur at constant
detuning between a pair of V-bands [Fig. 1(a)], they have
finite gain only if δ �= 0 [Fig. 1(b)], and they are spectrally
symmetric around the pump frequency [see Fig. 1(c)], which
justifies our definition of scalar-like bands. At around δ ≈ 3.5
the conventional MI unstable sideband crosses the S-band, and
the latter switches from a plus to minus sign in Eq. (8), as can
be noticed by carefully observing the range where the gain is
zero in Fig. 1(b). Moreover their gain is constant over a wide
range of δ.

The V-band amplitudes are perfectly symmetric around
ω = 0 for δ = 0, while they develop an asymmetry for
δ �= 0: thus these PR bands have the same character as the
conventional vector MI bands in the ICNLS system [25,30,32],
and this explains our definition. Finally, they are increasingly
split apart as δ increases.

063848-3
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FIG. 2. (Color online) Resonance tongues for first-order PR, with
	 = 10 and δ = 0. The color scale corresponds to the instability
gain. The dashed lines denote the predicted positions of PR peaks,
while the corresponding cross-marked lines represent the numerically
obtained position. The corresponding maximum gain is shown in the
inset (solid lines) as a function of the perturbation strength h and
is compared with the analytical predictions (dashed lines). The line
colors in the inset correspond to those used in the ω-h diagram for
the peak detuning positions.

The brightest, i.e., largest gain, peak is for δ < 0.52, a
V-band, and then for 0.52 < δ < 2.5, an S-band. We will
discuss below what happens beyond δ ≈ 2.5, where a V-
band exhibits a gain larger than the S-band: the numerically
computed resonance tongues show a complicated structure
where conventional MI and high-order PR coexist and the
gain predictions prove inaccurate.

We then discuss the structure of instability tongues obtained
by directly applying Floquet’s theory to Eq. (4) for four
different cases: (i) δ = 0 in Fig. 2, (ii) δ = 0.4 in Fig. 3,
(iii) δ = 1.15 in Fig. 4, and (iv) δ = 4 in Fig. 5.

FIG. 3. (Color online) Same as Fig. 2, with δ = 0.4.

FIG. 4. (Color online) Same as Fig. 2, with δ = 1.15.

In Fig. 2 we observe two V-bands, the first with a large
peak gain and the second with a much weaker gain. Although
we consider δ = 0 as in [18], we have the important difference
that, here, the GVD varies smoothly and is always in the normal
region, instead of the stepwise variation with alternating sign
presented in that paper, so that we do not observe conventional
scalar MI. Finally, we report the position of the S-band, which
exhibits vanishing gain. It can be verified numerically that the
V-bands grow spectrally symmetric in both polarizations, as
expected for δ = 0.

Figures 3 and 4 show two similar situations: the main
difference is that in the former the lower detuned V-band is
the brightest MI peak, while in the latter the central S-band
has overcome the V-bands as the brightest gain sideband.
Conventional MI occurs at small ω for δ = 1.15 but is not
reported since it is not influenced by PR and is almost
independent of h. Before concentrating more on the case of
Fig. 3, we finally present in Fig. 5 the resonance tongues at
large detuning δ = 4. We observe that the sideband structure

FIG. 5. (Color online) Same as Fig. 2, with δ = 4. The red solid
line in the main panel shows the gain curve of conventional vector
MI, which is partially suppressed at large h.
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of PR is still dominated by the PR S-band, while higher-order
sidebands [at ω ≈ 2.8 (V), ω ≈ 4.4 (S) at second order
and at ω ≈ 5.4 (S) at third order] are interleaved with the
first-order ones. Moreover the conventional MI and the V-band
at ω = 5.6 are partially suppressed for large h because of
the proximity of the higher-order peaks. At such values the
first-order estimate of gain is clearly inadequate (see inset),
which, in general, occurs for the V-bands which coexist at large
detuning with the conventional MI and higher-order PR peaks.
We thus observe that for δ > 3.5, where the conventional
MI occurs beyond the brightest PR peaks of scalar type,
the variations of parameters enhance spectrally symmetric,
scalar-like sidebands and suppress the asymmetric sidebands
which are commonly considered the characterizing feature of
MI in HBFs.

This behavior is consistent with the suppression of vector
MI sidebands due to fluctuations of the fiber parameters, which
has long precluded their observation in PCFs (see [33]). We
tested the effect of periodic variations of δ and observed a
reduction of the peak gain of V-bands for large average δ.
Expressions of gain can be obtained but are more involved
than those presented in Appendix B; the PR detuning values are
robust to this perturbation, and the instability growth happens
on a length scale larger than the period of the parameter
variations, so we decided not to explicitly consider variations
of δ here.

We now complete the characterization in the case shown
in Fig. 3 by showing in Fig. 6 the second-order PR instability
regions for δ = 0.4, which share the same features as the first-
order ones, except the central S-band gain is already slightly
larger than the smaller detuned V-band.

Finally, we include the output spectra obtained by solving
the system of Eq. (1) by means of the split-step method; see
Fig. 7. We set all the parameters as above, h = 0.9 and δ = 0.4.

We clearly identify the first- and second-order PR, each
of which is composed of three peaks. It is thus clear that
the S-bands occur between a couple of V-bands and are

FIG. 6. (Color online) Second-order PR instability regions, using
the same parameters and conventions as in Fig. 3. In the inset only
the numerical results are reported since analytical estimates are not
considered here.

10
−10

10
0

|A
1|2

−5 0 5

10
−10

10
0

ω

|A
2|2

(a)

(b)

2nd order PR

1st order PRV−band #1

V−band #2

S−band

S−band

FIG. 7. (Color online) Output intensity spectrum (in logarithmic
scale) at normalized distance z = 30 obtained by split-step numerical
simulation. h = 0.9, δ = 0.4, and the other parameters are as in the
previous figures; (a) axis 1 and (b) axis 2. We identify and classify the
first- and second-order PR peaks, as indicated by the labels, by their
spectral imbalance with respect to ω = 0. The small peaks near the
pump components are the four-wave mixing product of the brightest
first-order V-band and S-band.

symmetrically growing about the pump in both axes. The
two V-bands exhibit an imbalance about ω = 0 which is
reversed from the fast to slow axis because of the conservation
of total momentum for the model of Eq. (1) [compare
Figs. 7(a) and 7(b)]. Moreover the two V-bands exhibit
opposite symmetry; consider the fast axis in Fig. 7(a): the
first peak at each order is characterized by the Stokes sideband
outgrowing the anti-Stokes sideband, while the second exhibits
the opposite behavior, the anti-Stokes sideband dominates

10
−12

10
−10

10
−8

z

|A
1|2

10 15 20 25

10
−12

10
−10

10
−8

z

|A
1|2

(b)

(a)

FIG. 8. (Color online) Simulated evolution, on the fast axis, of
the intensity of the two main peak frequencies of first-order PR:
(a) the V-band at ω = 2.79 and (b) the S-band at ω = 3.01. Red solid
lines (blue lines with crosses) correspond to the numerical evolution
of the Stokes (anti-Stokes) sideband; dashed lines are the average
growth predicted by analytical calculations.
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over the Stokes sideband. This is analogous to what occurs
in the proximity of zero dispersion due to the presence of
higher-order dispersion [32].

The growth trend is presented in Fig. 8 for the two
brightest first-order peaks. The exponential growth of the
unstable frequencies is superimposed on an oscillation at
spatial (angular) frequency 	, as in the scalar PR [22]; this
is quite effectively explained by the theory of averaging.
However, there is a remarkable difference between the two
peaks: the V-band involves only one eigenvalue (λ2 = 	/2)
of H0 and grows upon a simple oscillation [Fig. 8(a)], while the
S-band involves both eigenvalues of H0 and exhibits a beat of
the fast oscillations, corresponding to λ1 + λ2 = 	, and slow
oscillations, corresponding to λ2 − λ1 = 	 [Fig. 8(b)].

Finally, the imbalance as computed numerically from
Fig. 8(a) is smaller than that in Fig. 1(c); this a general trend: we
observed that for large h the imbalance of V-bands is smaller
than expected by the eigenvectors of the averaged interaction
Hamiltonian.

IV. CONCLUSIONS

In this paper we studied the effect of the periodic variation of
group-velocity dispersion and nonlinearity on the propagation
of light in a highly birefringent optical fiber. We showed that
MI sidebands are effectively described in terms of parametric
instabilities of a system of coupled oscillators and provide
accurate analytical estimates of their detuning and gain. We
considered only the normal GVD regime and discovered
the existence of two different kinds of unstable sidebands:
the first, similar to conventional MI, appears as two pairs of
sidebands which generally exhibit spectral imbalance around
the pumps, while the second manifests itself only for a nonzero
group-index mismatch as a pair of spectrally balanced peaks:
moreover the latter becomes the brightest unstable peak for
large enough mismatch values. The vector sidebands and
the conventional vector (XPM) MI are partially suppressed
by the proximity of scalar-like PR sidebands. The PR peak
position is widely tunable by varying the period of variation of
parameters and the input power; this phenomenon could thus
find interesting applications in quantum optics.
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APPENDIX A: ESTIMATE OF RESONANT
DETUNING—EXPRESSION OF POLYNOMIALS

In order to obtain the resonant detuning we substitute all
the quantities defined after Eq. (5) in Eq. (6), then recast the
conditions for mth order PR as a polynomial in ω2

m, which
reads

P1(ω2) = β4
0

16
ω8 + 1

16

(
8Pβ3

0γ0 − 2β2
0δ2

)
ω6

+ 1

16

[−2m2	2β2
0 − 16(−1 + B2)P 2β2

0γ 2
0

− 8Pβ0γ0δ
2 + δ4

]
ω4

+ 1

16
[−8m2	2β0γ0P − 2m2	2δ2]ω2 + m4	4

16
(A1)

for V-bands, Eq. (7), and

P2(ω2) = 1

4
β2

0δ2ω6

+ 1

4

[
4β2

0B2γ 2
0 P 2 − β2

0	2m2 + 4β0γ0Pδ2
]
ω4

+ 1

4
[δ2	2(−m2) − 4β0γ0Pm2	2]ω2 + 	4m4

4
(A2)

for S-bands, Eq. (8).

APPENDIX B: METHOD OF AVERAGING—
INSTABILITY GAIN

The explicit calculation of the leading expressions of the
PR peak gain is quite tedious; thus we summarize here the
main points and results. Let us diagonalize H0 as

H0 = V V −1,

where V is the matrix, the columns of which are the
eigenvectors of H0 (not necessarily normalized), and  =
diag[−λ2,−λ1,λ1,λ2].

The interaction Hamiltonian in Eq. (9) can be expanded as

HI = V exp(iz)V −1H̃V exp(−iz)V −1,

but since V does not depend on z, we can resort to the similar
matrix

H ′
I = exp(iz)V −1H̃V exp(−iz),

thus simplifying the resulting averaged matrix.
The expressions of gain are different for each of the cases

in Eqs. (7) and (8); we express them in compact form as

gV
1 =

∣∣∣∣ h

4c0
1b0λ2

(
λ2

2 − λ2
1

)
∣∣∣∣{[A1c̃1 + B1c̃2 + C1b̃]

× [A2c̃1 + B2c̃2 + C2b̃]} 1
2 (B1)

for Eq. (7), with 2λ2 = 	, where A1 = b0[4c0
1c

0
2ν(ν + λ2) +

(λ2
2 − λ2

1)(λ2 + ν)2], A2 = b0[4c0
1c

0
2ν(ν − λ2) + (λ2

2 − λ2
1)

(λ2 − ν)2], B1 = b0c
0
1[(λ2 + 2ν)2 − λ2

1], B2 = b0c
0
1[(λ2 −

2ν)2 − λ2
1], C1 = 4b2

0(c0
1)3 − c0

1[c0
1c

0
2 − (λ2 + ν)2](c0

1c
0
2 −

λ2
1 + 3ν2 + 2λ2ν), and C2 = 4b2

0(c0
1)3 − c0

1[c0
1c

0
2 − (λ2 −

ν)2](c0
1c

0
2 − λ2

1 + 3ν2 − 2λ2ν). In order to obtain the gain of
the other V-band, 2λ1 = 	, we must replace λ2 �→ λ1.

The peak gain of the S-band of Eq. (8), for λ1 + λ2 = 	,
is expressed by

gS
1 =

∣∣∣∣ h

4b0λ2
(
λ2

2 − λ2
1

)
∣∣∣∣
[

1

λ1λ2

] 1
2 {[

D1
(
c̃1c

0
2 − c̃2c

0
1

) + E1b̃
]

× [
D2

(
c̃1c

0
2 − c̃2c

0
1

) + E2b̃
]} 1

2 , (B2)

with D1 = 2ν(2ν − 	), D2 = 2ν(2ν + 	), E1 = [c0
1c

0
2 −

(λ1 − ν)2](c0
1c

0
2 − λ2

1 + 3ν2 − 2λ2ν) − 4b2
0(c0

1)2, E2 =
[c0

1c
0
2 − (λ2 + ν)2](c0

1c
0
2 − λ2

2 + 3ν2 + 2λ1ν) − 4b2
0(c0

1)2.
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Instead, for λ2 − λ1 = 	, the expression in Eq. (B2)
is valid provided the new coefficients, denoted by a
prime, are used instead of the ones without a prime,

D′
1 = −2ν(2ν − 	), D′

2 = −2ν(2ν + 	), E′
1 = −[c0

1c
0
2 −

(λ1 + ν)2](c0
1c

0
2 − λ2

1 + 3ν2 − 2λ2ν) + 4b2
0(c0

1)2, E′
2 =

[c0
1c

0
2 − (λ2 + ν)2](c0

1c
0
2 − λ2

2 + 3ν2 − 2λ1ν) + 4b2
0(c0

1)2.
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